Discrete and Continuous Dynamical Systems

Attila Magyar

University if Pannonia
Faculty of Information Technology
Department of Electrical Engineering and Information Systems

Discrete and continuous dynamical systems: Observability and controllability

February 17, 2018

Overview

- Basic notions
- 2 Continuous-time controllability
- 3 Discrete-time controllability
 - DT controllability and reachability
 - Reachability of DT-LTI systems
- 4 Continuous-time observability
- 5 Discrete-time observability
 - Observability of DT-LTI systems

CT-LTI state-space models

General form - revisited

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$
 , $\boldsymbol{x}(t_0) = \boldsymbol{x_0}$
 $\boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t)$

with

- ullet signals: $m{x}(t) \in \mathbb{R}^n \;,\; m{y}(t) \in \mathbb{R}^p \;,\; m{u}(t) \in \mathbb{R}^r$
- system parameters: $\pmb{A} \in \mathbb{R}^{n \times n}$, $\pmb{B} \in \mathbb{R}^{n \times r}$, $\pmb{C} \in \mathbb{R}^{p \times n}$ (D=0)

DT-LTI state-space models

General form

$$\begin{split} \boldsymbol{x}(k+1) &= \Phi \boldsymbol{x}(k) + \Gamma \boldsymbol{u}(k) & \text{(state equation)} \\ \boldsymbol{y}(k) &= \boldsymbol{C} \boldsymbol{x}(k) + \boldsymbol{D} \boldsymbol{u}(k) & \text{(output equation)} \end{split}$$

with

- ullet given initial condition $oldsymbol{x}(0) = oldsymbol{x_0}$,
- \bullet $x(k) \in \mathbb{R}^n$, $y(k) \in \mathbb{R}^p$, $u(k) \in \mathbb{R}^r$
- system parameters

$$\Phi \in \mathbb{R}^{n \times n}$$
, $\Gamma \in \mathbb{R}^{n \times r}$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{D} \in \mathbb{R}^{p \times r}$

Overview

- Basic notions
- 2 Continuous-time controllability
- 3 Discrete-time controllability
 - DT controllability and reachability
 - Reachability of DT-LTI systems
- 4 Continuous-time observability
- Discrete-time observability
 - Observability of DT-LTI systems

- Problem statement
 - Given:
 - ullet a state-space model with parameters (A,B,C)
 - ullet an initial state $oldsymbol{x}(t_1)$ and a final state $oldsymbol{x}(t_2)
 eq oldsymbol{x}(t_1)$
 - ullet Compute: an input signal $oldsymbol{u}(t)$ which moves the system from $oldsymbol{x}(t_1)$ to $oldsymbol{x}(t_2)$ in finite time

Theorem (Controllability)

Given $({m A},{m B},{m C})$ for

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$

 $\boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t)$

This SSR with state space \mathcal{X} is state controllable **iff** the controllability matrix C_n is of **full rank**

Kalman rank condition: If $dim \mathcal{X} = n$ then $rank \mathcal{C}_n = n$.

• Necessary and sufficient condition

Proof.

 \bullet Apply the Dirac-delta (Single Input case) function as input to the system, i.e. $u(t)=\delta(t)$ with ${\pmb C}={\pmb I}$

$$x(t) = h(t) = e^{At}B$$
, $y(t) = x(t)$, $x(0_{-}) = h(0_{-}) = B$

• Then with $\dot{h}(t) = Ah(t)$

$$\begin{aligned} \mathbf{S}[u(t) &= \delta(t)] &= h(t) \\ \mathbf{S}[u(t) &= \dot{\delta}(t)] &= \dot{h}(t) &= \mathbf{A}h(t) \\ \mathbf{S}[u(t) &= \ddot{\delta}(t)] &= \ddot{h}(t) &= \mathbf{A}^2h(t) \\ &\vdots &\vdots \end{aligned}$$

- Assume the **input**: $u(t) = g_1\delta(t) + g_2\dot{\delta}(t) + ... + g_n\delta^{(n-1)}(t)$
- The superposition principle gives:

$$x(0_{+}) = x(0_{-}) + g_{1}h(0_{-}) + g_{2}\dot{h}(0_{-}) + \dots + g_{n}h^{(n-1)}(0_{-})$$

$$x(0_{+}) = x(0_{-}) + g_{1}B + g_{2}AB + \dots + g_{n}A^{n-1}B$$

• Assuming $x(0_{-}) = 0$ we get

- $x(0_+)$ is an arbitrary desired final state vector then we can find a unique $[g_1...g_n]^T$ (for u(t)) iff $rank \ \mathcal{C}_{n-1}(\boldsymbol{A},\boldsymbol{B}) = n$.
- ullet Controllability subspace: subspace spanned by the columns of ${\mathcal C}$
- ullet Controllability is realization dependent since $\mathcal{C}=\mathcal{C}(\pmb{A},\pmb{B})$

Uncontrollable state space

Controllable state space

Overview

- Basic notions
- 2 Continuous-time controllability
- 3 Discrete-time controllability
 - DT controllability and reachability
 - Reachability of DT-LTI systems
- 4 Continuous-time observability
- Discrete-time observability
 - Observability of DT-LTI systems

DT controllability and reachability

Definition (controllability)

A discrete time system is said to be controllable if there exists a control sequence for each state such that the origin of the state space, that is $x^* = 0$ (!!) can be reached in finite time.

Definition (reachability)

A discrete time system is said to be reachable (which is stronger that controllability) if it is possible to find a control sequence such that an arbitrary state x^* can be reached from any initial state x_0 in finite time.

LTI controllability and reachability

- Controllability does not imply reachability
- Consider the solution of a DT-LTI state equation

$$\boldsymbol{x}(n) = \Phi^n \boldsymbol{x}(0) + \Phi^{n-1} \Gamma \boldsymbol{u}(0) + \dots + \Gamma \boldsymbol{u}(n-1)$$

with $\Phi^n \boldsymbol{x}(0) = 0$.

• They are, however, equivalent if Φ is invertible, i.e. it is of full rank.

Reachability of DT-LTI systems

Theorem (Reachability)

Given (Φ, Γ, C) for

$$egin{aligned} & oldsymbol{x}(k+1) = \Phi oldsymbol{x}(k) + \Gamma oldsymbol{u}(k), \quad oldsymbol{x}(0) = oldsymbol{x_0} \ & oldsymbol{y}(k) = oldsymbol{C} oldsymbol{x}(k) \end{aligned}$$

This SSR is reachable if and only if the discrete controllability matrix W_c

$$\mathbf{W_c} = [\Gamma \ \Phi \Gamma \ \dots \ \Phi^{n-1} \Gamma]$$

has full rank (n).

A necessary and sufficient condition.

Reachability of DT-LTI systems

Proof.

(constructive)

• Given an initial condition x(0). The solution of the state equation is

$$\mathbf{x}(n) = \Phi^n \mathbf{x}(0) + \Phi^{n-1} \Gamma \mathbf{u}(0) + \dots + \Gamma \mathbf{u}(n-1)$$
$$\mathbf{x}(n) = \Phi^n \mathbf{x}(0) + \mathbf{W}_c \mathcal{U}$$

where

$$\boldsymbol{W_c} = [\Gamma \ \Phi \Gamma \ \dots \ \Phi^{n-1} \Gamma] \ , \ \mathcal{U} = [\boldsymbol{u}^T (n-1) \ \dots \ \boldsymbol{u}^T (0)]^T$$

 W_c is the discrete time controllability matrix.

• We can design a suitable $\mathcal{U} \iff W_c$ is of full rank.

Discrete-time controllability

Example (Controllability, reachability)

A CT LTI SISO system is given by the following input-output model

$$\mathbf{x}(k+1) = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} -1 & 1 \end{bmatrix} x(k)$$
$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{x}(2) = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

- Is the above state space model controllable, and or reachable?
- What is the relationship between the above two properties?
- Find an input signal, that governs the system from x(0) to x(2)!

Overview

- Basic notions
- 2 Continuous-time controllability
- 3 Discrete-time controllability
 - DT controllability and reachability
 - Reachability of DT-LTI systems
- Continuous-time observability
- 5 Discrete-time observability
 - Observability of DT-LTI systems

- Problem statement
 - Given:
 - ullet a state-space model with parameters $(m{A}, m{B}, m{C})$
 - ullet a measurement record of $oldsymbol{u}(t)$ and $oldsymbol{y}(t)$ as over a finite time interval
 - Compute:
 - ullet The state signal $oldsymbol{x}(t)$ over the finite time interval
 - It is enough to compute $x(t_0) = x_0$

Theorem (Observability)

Given (A, B, C). This SSR with state space \mathcal{X} is state observable iff the observability matrix \mathcal{O}_n is of full rank

$$\mathcal{O}_n = \left[egin{array}{c} C \ CA \ dots \ dots \ CA^{n-1} \end{array}
ight]$$

Kalman rank condition: If $dim \mathcal{X} = n$ then $rank \mathcal{O}_n = n$.

• A necessary and sufficient condition

Proof.

Output and its derivatives can be expressed as

$$\begin{array}{l} y = Cx \\ \dot{y} = C\dot{x} = CAx + CBu \\ \ddot{y} = C\ddot{x} = CA(Ax + Bu) + CB\dot{u} = CA^2x + CABu + CB\dot{u} \\ \vdots \\ y^{(n-1)} = Cx^{(n-1)} = CA^{n-1}x + CA^{n-2}Bu + ... + CABu^{(n-3)} + CBu^{(n-2)} \end{array}$$

Matrix form

$$\begin{vmatrix} y \\ \dot{y} \\ \ddot{y} \\ \vdots \\ y^{(n-1)} \end{vmatrix} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} x + \begin{bmatrix} 0 & 0 & \dots & \dots & 0 \\ CB & 0 & \dots & \dots & 0 \\ CAB & CB & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots & \dots & \dots & \dots & \dots \\ CA^{n-2}B & CA^{n-3}B & \dots & CB & 0 \end{bmatrix} \begin{bmatrix} u \\ \dot{u} \\ \ddot{u} \\ \vdots \\ u^{(n-1)} \end{bmatrix}$$

Compact form

$$\dot{\mathcal{Y}}(t) = \mathcal{O}_n x(t) + \mathcal{T} \dot{\mathcal{U}}(t)$$

Zero initial state conditions

$$\dot{\mathcal{U}} = 0$$
 for $t = 0_-$

Then

$$\dot{\mathcal{Y}}(0_{-}) = \mathcal{O}_{n}(\boldsymbol{A}, \boldsymbol{C})\boldsymbol{x}(0_{-})$$

- $x(0_{-})$ can be uniquely determined iff $rank \ \mathcal{O}_n(\boldsymbol{A},\boldsymbol{C}) = n$.
- ullet Observability subspace: subspace spanned by the rows of ${\mathcal O}$
- ullet Observability is realization dependent since $\mathcal{O} = \mathcal{O}(A,C)$

Unobservable state space

Overview

- Basic notions
- 2 Continuous-time controllability
- 3 Discrete-time controllability
 - DT controllability and reachability
 - Reachability of DT-LTI systems
- 4 Continuous-time observability
- Discrete-time observability
 - Observability of DT-LTI systems

Definition (Observability)

A discrete time system is observable if there is a finite k such that the knowledge of

$$\{u(0),...,u(k-1); y(0),...,y(k-1)\}$$

with k being finite is sufficient to determine x(0).

Theorem (Observability)

Given (Φ, Γ, C) for

$$egin{aligned} oldsymbol{x}(k+1) &= \Phi oldsymbol{x}(k) + \Gamma oldsymbol{u}(k) \ oldsymbol{y}(k) &= oldsymbol{C} oldsymbol{x}(k) \end{aligned}$$

This system is observable if and only if the discrete observability matrix W_0 has full rank (n)

$$egin{aligned} oldsymbol{W_o} = \left[egin{array}{c} oldsymbol{C} oldsymbol{\Phi} \ dots \ oldsymbol{C} oldsymbol{\Phi}^{n-1} \end{array}
ight] \end{aligned}$$

A necessary and sufficient condition.

Proof.

• Assume that u(k) = 0 for k = 0, 1, ... Then from $x(k+1) = \Phi x(k)$ we get

 $\boldsymbol{y}(0) = \boldsymbol{C}\boldsymbol{x}(0)$

$$egin{aligned} oldsymbol{y}(1) &= oldsymbol{C} oldsymbol{x}(1) &= oldsymbol{C} \Phi oldsymbol{x}(0) \ oldsymbol{y}(n-1) &= oldsymbol{C} \Phi^{n-1} oldsymbol{x}(0) \ oldsymbol{C} oldsymbol{\psi}(1) \ oldsymbol{x}(0) &= egin{bmatrix} y(0) \ y(1) \ \vdots \ \vdots \ y(n-1) \end{bmatrix}$$

with W_o being the discrete time observability matrix.

Discrete-time observability

Example (Observability)

A CT LTI SISO system is given by the following input-output model

$$\mathbf{x}(k+1) = \begin{bmatrix} 0 & 1 \\ 3 & -2 \end{bmatrix} \mathbf{x}(k)$$
$$y(t) = \begin{bmatrix} 1 & -2 \end{bmatrix} \mathbf{x}(t)$$

ullet Find the $oldsymbol{x}(0)$ from the following output samples, if it is possible!

$$y(0) = 3$$
, $y(1) = 2$, $y(2) = 4$