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Basic notions

CT-LTI state-space models

General form - revisited

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x0

y(t) = Cx(t)

with
signals: x(t) ∈ Rn , y(t) ∈ Rp , u(t) ∈ Rr

system parameters: A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n (D = 0)



Basic notions

DT-LTI state-space models

General form

x(k + 1) = Φx(k) + Γu(k) (state equation)

y(k) = Cx(k) + Du(k) (output equation)

with

given initial condition x(0) = x0 ,

x(k) ∈ Rn, y(k) ∈ Rp, u(k) ∈ Rr

system parameters

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r
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Continuous-time controllability

Controllability of CT-LTI systems

Problem statement
Given:

a state-space model with parameters (A,B,C)
an initial state x(t1) and a final state x(t2) 6= x(t1)

Compute:
an input signal u(t) which moves the system from x(t1) to x(t2) in
finite time



Continuous-time controllability

Controllability of CT-LTI systems

Theorem (Controllability)

Given (A,B,C) for

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

This SSR with state space X is state controllable iff the controllability
matrix Cn is of full rank

Cn =
[
B AB A2B . . An−1B

]
Kalman rank condition: If dimX = n then rank Cn = n.

Necessary and sufficient condition



Continuous-time controllability

Controllability of CT-LTI systems

Proof.
Apply the Dirac-delta (Single Input case) function as input to the system, i.e. u(t) = δ(t)
with C = I

x(t) = h(t) = eAtB , y(t) = x(t) , x(0−) = h(0−) = B

Then with ḣ(t) = Ah(t)

S[u(t) = δ(t)] = h(t)

S[u(t) = δ̇(t)] = ḣ(t) = Ah(t)

S[u(t) = δ̈(t)] = ḧ(t) = A2h(t)
...

Assume the input: u(t) = g1δ(t) + g2δ̇(t) + ...+ gnδ(n−1)(t)

The superposition principle gives:

x(0+) = x(0−) + g1h(0−) + g2ḣ(0−) + ...+ gnh(n−1)(0−)
x(0+) = x(0−) + g1B + g2AB + ...+ gnA

n−1B



Continuous-time controllability

Controllability of CT-LTI systems

Assuming x(0−) = 0 we get

x(0+) =
[
B AB A2B . . . An−1B

]


g1
g2
.
.
.
gn


x(0+) is an arbitrary desired final state vector then we can find a
unique [g1...gn]T (for u(t)) iff rank Cn−1(A,B) = n.
Controllability subspace: subspace spanned by the columns of C
Controllability is realization dependent since C = C(A,B)



Continuous-time controllability

Uncontrollable state space

System dynamics: H(s) =
s+ 2

s3 + 4s2 + 6s+ 4
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Discrete-time controllability DT controllability and reachability

DT controllability and reachability

Definition (controllability)

A discrete time system is said to be controllable if there exists a control
sequence for each state such that the origin of the state space, that is
x∗ = 0 (!!) can be reached in finite time.

Definition (reachability)

A discrete time system is said to be reachable (which is stronger that
controllability) if it is possible to find a control sequence such that an
arbitrary state x∗ can be reached from any initial state x0 in finite time.



Discrete-time controllability DT controllability and reachability

LTI controllability and reachability

Controllability does not imply reachability

Consider the solution of a DT-LTI state equation

x(n) = Φnx(0) + Φn−1Γu(0) + ... + Γu(n− 1)

with Φnx(0) = 0.

They are, however, equivalent if Φ is invertible, i.e. it is of full rank.



Discrete-time controllability Reachability of DT-LTI systems

Reachability of DT-LTI systems

Theorem (Reachability)

Given (Φ,Γ, C) for

x(k + 1) = Φx(k) + Γu(k), x(0) = x0

y(k) = Cx(k)

This SSR is reachable if and only if the discrete controllability matrix Wc

Wc = [ Γ ΦΓ ... Φn−1Γ ]

has full rank (n).

A necessary and sufficient condition.



Discrete-time controllability Reachability of DT-LTI systems

Reachability of DT-LTI systems

Proof.
(constructive)

Given an initial condition x(0). The solution of the state equation is

x(n) = Φnx(0) + Φn−1Γu(0) + ... + Γu(n− 1)

x(n) = Φnx(0) + WcU

where

Wc = [ Γ ΦΓ ... Φn−1Γ ] , U = [ uT (n− 1) ... uT (0) ]T

Wc is the discrete time controllability matrix.
We can design a suitable U ⇐⇒ Wc is of full rank.



Discrete-time controllability Reachability of DT-LTI systems

Discrete-time controllability

Example (Controllability, reachability)

A CT LTI SISO system is given by the following input-output model

x(k + 1) =

[
1 2
−2 3

]
x(k) +

[
2
1

]
u(k)

y(k) =
[
−1 1

]
x(k)

x(0) =

[
1
0

]
, x(2) =

[
5
4

]

Is the above state space model controllable, and or reachable?
What is the relationship between the above two properties?
Find an input signal, that governs the system from x(0) to x(2)!
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Continuous-time observability

Observability of CT-LTI systems

Problem statement
Given:

a state-space model with parameters (A,B,C)
a measurement record of u(t) and y(t) as over a finite time interval

Compute:
The state signal x(t) over the finite time interval
It is enough to compute x(t0) = x0



Continuous-time observability

Observability of CT-LTI systems

Theorem (Observability)

Given (A,B,C). This SSR with state space X is state observable iff the
observability matrix On is of full rank

On =



C
CA
.
.
.

CAn−1


Kalman rank condition: If dimX = n then rank On = n.

A necessary and sufficient condition



Continuous-time observability

Observability of CT-LTI systems

Proof.
Output and its derivatives can be expressed as

y = Cx
ẏ = Cẋ = CAx+CBu
ÿ = Cẍ = CA(Ax+Bu) +CBu̇ = CA2x+CABu+CBu̇
.
.

y(n−1) = Cx(n−1) = CAn−1x+CAn−2Bu+ ...+CABu(n−3) +CBu(n−2)

Matrix form

y
ẏ
ÿ
.
.
.

y(n−1)


=



C
CA
CA2

.

.

.
CAn−1


x+



0 0 . . . 0
CB 0 . . . 0
CAB CB 0 . . 0
. . . . . .
. . . . . .
. . . . . .

CAn−2B CAn−3B . . CB 0





u
u̇
ü
.
.
.

u(n−1)





Continuous-time observability

Observability of CT-LTI systems

Compact form
Ẏ(t) = Onx(t) + T U̇(t)

Zero initial state conditions

U̇ = 0 for t = 0−

Then
Ẏ(0−) = On(A,C)x(0−)

x(0−) can be uniquely determined iff rank On(A,C) = n.
Observability subspace: subspace spanned by the rows of O
Observability is realization dependent since O = O(A,C)



Continuous-time observability

Unobservable state space
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Discrete-time observability Observability of DT-LTI systems

Observability of DT-LTI systems

Definition (Observability)

A discrete time system is observable if there is a finite k such that the
knowledge of

{u(0), ...,u(k − 1) ; y(0), ...,y(k − 1)}

with k being finite is sufficient to determine x(0).



Discrete-time observability Observability of DT-LTI systems

Observability of DT-LTI systems

Theorem (Observability)

Given (Φ,Γ,C) for

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k)

This system is observable if and only if the discrete observability matrix
Wo has full rank (n)

Wo =



C
CΦ
.
.
.

CΦn−1


A necessary and sufficient condition.



Discrete-time observability Observability of DT-LTI systems

Observability of DT-LTI systems

Proof.
Assume that u(k) = 0 for k = 0, 1, .... Then from x(k + 1) = Φx(k)
we get

y(0) = Cx(0)

y(1) = Cx(1) = CΦx(0)

...

y(n− 1) = CΦn−1x(0)
C
CΦ
.
.
.

CΦn−1

x(0) =


y(0)
y(1)
.
.
.

y(n− 1)


with Wo being the discrete time observability matrix.



Discrete-time observability Observability of DT-LTI systems

Discrete-time observability

Example (Observability)

A CT LTI SISO system is given by the following input-output model

x(k + 1) =

[
0 1
3 −2

]
x(k)

y(t) =
[

1 −2
]
x(t)

Find the x(0) from the following output samples, if it is possible!
y(0) = 3, y(1) = 2, y(2) = 4
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