Discrete and Continuous Dynamical Systems

Attila Magyar

University if Pannonia
Faculty of Information Technology
Department of Electrical Engineering and Information Systems

Discrete and continuous dynamical systems: Introduction to discrete event systems

March 3, 2018

Overview

- 1 Languages
 - Definitions
 - Operations on languages
- Deterministic automata
 - Languages represented by automata
 - Generalizations
- Operations on Automata
 - Unary Operations
 - Composition Operations
- Observability and nondeterminism

Alphabets and Languages

Definition (Language)

A language defined over an event set (or alphabet) E is a set of finite-length strings formed from events in E.

Notation

The empty sting is denoted by ε . If tuv = s with $t, u, v \in E^*$, then

t is called prefix of s

is called prefix of s

u is caled substring of s

v is called suffix of s

Operations on Languages

```
Let L, L_a, L_b \subseteq E^* be languages
```

Concatenation

$$L_a L_b = \{ s \in E^* : (s = s_a s_b) \text{ and } (s_a \in L_a) \text{ and } (s_b \in L_b) \}$$

$$\text{Prefix-closure } \quad \overline{L} = \{s \in E^* : (\forall t \in E^*) \; [st \in L] \}$$

Kleene-closure
$$L^* = \{\varepsilon\} \cup L \cup LL \cup LLL \cup \ldots$$

Post-language
$$L/s = \{t \in E^* : st \in L\}$$

Example (Operations on languages)

Let $E = \{a, b, g\}$ and consider the two languages $L_1 = \{\varepsilon, a, abb\}$ and $L_4 = \{g\}$. Neither L_1 nor L_4 are prefix-closed, since $ab \notin L_1$ and $\varepsilon \notin L_4$

$$L_1L_4 = \{g, ag, abg\}$$

$$\overline{L_1} = \{\varepsilon, a, ab, abb\}$$

$$\overline{L_4} = \{\varepsilon, g\}$$

$$L_1\overline{L_4} = \{\varepsilon, a, abb, g, ag, abbg\}$$

$$L_4^* = \{\varepsilon, g, gg, ggg, \dots\}$$

$$L_1^* = \{\varepsilon, a, abb, aa, aabb, abba, abbabb, \dots\}$$

Projections of Strings

Definition (Projection of strings)

Let $E_s \subset E_l$. Projection of strings $P: E_L^* \to E_s^*$ where

$$P(\varepsilon) = \varepsilon$$

$$P(e) = \begin{cases} e & \text{if } e \in E_s \\ \varepsilon & \text{if } e \in E_l \setminus E_s \end{cases}$$

$$P(se) = P(s)P(e) \text{ for } s \in E_l^*, e \in E_l$$

Inverse of a projection $P^{-1}:E_s^*\to 2^{E_l^*}$ $P^{-1}(t)=\{s\in E_l^*:P(s)=t\}$

Projections of languages

Definition (Projection of language)

Let
$$L \subseteq E_l^*$$
,

$$P(L) = \{ t \in E_s^* : (\exists s \in L) \ [P(s) = t] \}$$

and for $L_s \subseteq E_s^*$

$$P^{-1}(L_s) = \{ s \in E_l^* : (\exists t \in L_s) \ [P(s) = t] \}$$

Projections

Example (Projections)

Let $E_l = \{a,b,c\}$ and consider two proper subsets $E_1 = \{a,b\}$ and $E_2 = \{b,c\}$. Take

$$L = \{c, ccb, abc, cacb, cabcbbca\} \subset E_l^*$$

Consider the projections $P_i: E_l^* \to E_i^*, i = 1, 2$.

$$P_{1}(L) = \{\varepsilon, b, ab, abbba\}$$

$$P_{2}(L) = \{c, ccb, bc, cbcbbc\}$$

$$P_{1}^{-1}(\{\varepsilon\}) = \{c\}^{*}$$

$$P_{1}^{-1}(\{b\}) = \{c\}^{*}\{b\}\{c\}^{*}$$

$$P_{1}^{-1}(\{ab\}) = \{c\}^{*}\{a\}\{c\}^{*}\{b\}\{c\}^{*}$$

Overview

- 1 Languages
 - Definitions
 - Operations on languages
- Deterministic automata
 - Languages represented by automata
 - Generalizations
- Operations on Automata
 - Unary Operations
 - Composition Operations
- Observability and nondeterminism

Automata

Definition (Deterministic Automaton)

A Deterministic Automaton G is a quintuple

$$G = (X, E, f, x_0, X_m)$$

where

X is the set of states

E is a finite set of events associated with G

 $f: X \times E \to X$ (partial) transition function

 x_0 is the initial state

 $X_m \subseteq X$ is the set of marked states (or accepting-, or final states)

Synonyms: state machine, generator

Determinism: f is a function

Example (A simple automaton - state transition diagram)

- Event set $E = \{a, b, g\}$
- Nodes (states) $X = \{x, y, z\}$
- Transition function $f: X \times E \to X$

$$f(x, a) = x$$
 $f(x, g) = z$
 $f(y, a) = x$ $f(y, b) = y$
 $f(z, b) = z$ $f(z, a) = f(z, g) = y$

Deterministic Automata

Extended transition function For sake of convenience f is always extended from domain $X \times E$ to $X \times E^*$ as follows

$$f(x,\varepsilon) = x$$

$$f(x,se) = f(f(x,s),e) \text{ for } s \in E^* \text{ and } e \in E$$

Active event set $\Gamma(x)$ is the set of all events e for which f(x,e) is defined. Also known as feasible event set

Example (Ext. transition function)

Example (Active event set)

$$\begin{split} f(y,\varepsilon) &= y \\ f(x,gba) &= y \\ f(x,aagb) &= z \\ f(z,b^n) &= z, \text{ for all } n \geq 0 \end{split}$$

$$\Gamma(x) = \{a, g\}$$

$$\Gamma(y) = \{a, b\}$$

$$\Gamma(z) = \{a, b, g\}$$

Languages and automata

Definition (Languages generated and marked)

The language generated by $G = (X, E, f, x_0, X_m)$ is

$$\mathcal{L}(G) = \{ s \in E^* : f(x_0, s) \text{ is defined} \}$$

The language marked by G is

$$\mathcal{L}_m(G) = \{ s \in \mathcal{L}(G) : f(x_0, s) \in X_m \}$$

f already means the extended transition function!

- Language $\mathcal{L}(G)$ represents all directed paths (i.e. strings) on the state transition digraph starting az x_0 .
- ullet Language $\mathcal{L}_m(G)$ represents all paths that end at a marked state
- $\mathcal{L}_m(G) \subseteq \mathcal{L}(G)$

Example (Marked language)

- Event set $E = \{a, b\}$
- Language marked

$$\mathcal{L}_m(G) = \{a, aa, ba, aaa, aba, baa, bba, \dots\}$$

Language generated

$$\mathcal{L}(G) = E^*$$
 (since f is a total function)

Example (Marked and generated language)

Language generated

$$\mathcal{L}(G) = \text{any } b \text{ is the last or followed by } a$$

Language marked

$$\mathcal{L}_m(G) = \text{strings end with event } a \subset \mathcal{L}(G)$$

Language Equivalence

Definition (Language-equivalent automata)

Automata G_1 and G_2 are language-equivalent if

$$\mathcal{L}(G_1) = \mathcal{L}(G_2)$$
 and $\mathcal{L}_m(G_1) = \mathcal{L}_m(G_2)$

Example (Language-equivalent automata)

Blocking

Generally

$$\mathcal{L}_m(G) \subseteq \overline{\mathcal{L}_m(G)} \subseteq \mathcal{L}(G)$$

Definition (Blocking)

Automaton G is said to be blocking if

$$\overline{\mathcal{L}_m(G)} \subset \mathcal{L}(G)$$

where the set inclusion is proper, and nonblocking if

$$\overline{\mathcal{L}_m(G)} = \mathcal{L}(G)$$

If an automaton is blocking, deadlock and livelock can happen.

Deadlock and livelock

Deadlock is a state x where $\Gamma(x) = \emptyset$ but $x \notin X_m$

Livelock is a set of unmarked states of G forming a strongly connected component (i.e. no transition is going out from the set)

Nondeterministic Automata

Definition (Nondeterministic automaton)

A nondeterministic automaton G_{nd} is a quintuple

$$G_{nd} = (X, E \cup \{\varepsilon\}, f_{nd}, x_0, X_m)$$

where all the objects have the same interpretation as in the definition of deterministic automaton except

- f_{nd} is a function $f_{nd}: X \times E \cup \{\varepsilon\} \to 2^X$, i.e. $f_{nd}(x,e) \subseteq X$ whenever it is defined.
- ② The initial state may itself be a set of states, $x_0 \subseteq X$

Example (A simple nondeterministic automaton)

Moore and Mealy automata

Moore

- An output function assigns an output to each state
- Generalizes the notion of marking
- Standard automata can be thought as having two outputs (marked, non-marked)

Mealy

- Input/output automata
- Transitions are labeled by events in the form input event
 / output event
- ullet E_{out} may not be the same as E_{in}

Interpretation (Mealy transitions)

When the system is in state x and the automaton receives an input event e_i it will make a transition to state y and will output the event e_o .

0

Moore automata

Example (Valve together with a flow sensor as a Moore automaton)

Mealy automata

Overview

- 1 Languages
 - Definitions
 - Operations on languages
- Deterministic automata
 - Languages represented by automata
 - Generalizations
- Operations on Automata
 - Unary Operations
 - Composition Operations
- Observability and nondeterminism

Accessible Part

States of G not accessible from x_0 can be deleted without affecting $\mathcal{L}(G)$ and $\mathcal{L}_m(G)$.

$$Ac(G) = (X_{ac}, E, f_{ac}, x_0, X_{ac,m})$$
 where
$$X_{ac} = \{x \in X : (\exists s \in E^*) \ [f(x_0, s) = x]\}$$

$$X_{ac,m} = X_m \cap X_{ac}$$

$$f_{ac} = f|_{X_{ac} \times E \to X_{ac}}$$

where $f|_{X_{ac} \times E \to X_{ac}}$ means restricting f to a smaller domain Operation Ac has no effect on $\mathcal{L}(G)$ and $\mathcal{L}_m(G)$. From now on, G = Ac(G) is assumed.

Accessible Part

Coaccessible Part

A state x of G is coaccessive (to X_m) if there is a path from state x to a marked state. The operation of deleting all the states of G not coaccessible is defined as follows

$$CoAc(G) = (X_{coac}, E, f_{coac}, x_{0,coac}, X_m)$$
 where $X_{coac} = \{x \in X : (\exists s \in E^*) \ [f(x,s) \in X_m]\}$ $x_{0,coac} = \begin{cases} x_0 & \text{if } x_0 \in X_{coac} \\ \text{undefined otherwise} \end{cases}$ $f_{coac} = f|_{X_{coac} \times E \to X_{coac}}$

Operation CoAc may shrink $\mathcal{L}(G)$ but does not affect $\mathcal{L}_m(G)$.

Example (Coaccessible part) GCoAc(G)g a a а b 3 0 b b a а g b 6 b

Trim Operation

An automaton both accessible and coaccessible is said to be trim: Trim(G) = CoAc(Ac(G)) = Ac(CoAc(G))

Example (Trim Operation)

Projection and Inverse Projection

Projection

- Let G have event sef E. Furthermore, let $E_s \subset E$
- The projections of $\mathcal{L}\{G\}$ $\mathcal{L}_m\{G\}$ from E^* to E_s^* can be implemented on G by replacing all labels in $E \setminus E_s$ by ε .
- The result is a nondeterministic automaton.

Inverse projection

- Let $K_s=\mathcal{L}(G)\subset E_s^*$ and $K_{m,s}=\mathcal{L}_m(G)$. Furthermore, let $E_s\subset E_l$ and P_s is the projection from E_l^* to E_s^*
- The automaton that generates $P_s^{-1}(K_s)$ and marks $P_s^{-1}(K_{m,s})$ can be obtained by adding self-loops for all the events in $E_l \setminus E_s$ at all the states of G

Complement

Given an automaton $G = (X, E, f, x_0, X_m)$ with $\mathcal{L}_m(G) \subseteq E^*$. Thus, $\mathcal{L}(G) = \mathcal{L}_m(G)$. Let's build G^{comp} for which $\mathcal{L}_m(G^{comp}) = E^* \setminus \mathcal{L}_m(G)$

Step 1 Add a dump state x_d and all undefined f(x,e) will be assigned to x_d

$$f_{tot}(x, e) = \begin{cases} f(x, e) & \text{if } e \in \Gamma(x) \\ x_d & \text{otherwise} \end{cases}$$

$$f_{tot}(x_d, e) = x_d, \quad \forall e \in E$$

Step 2 Mark all unmarked states (and x_d) and unmark all marked states

$$Comp(G) = (X \cup \{x_d\}, E, f_{tot}, x_0, (X \cup \{x_d\}) \setminus X_m)$$

Example (Complement)

Comp(Trim(G))

Product of automata

Definition (Product)

The product of G_1 and G_2 is the automaton

$$G_1 \times G_2 = Ac(X_1 \times X_2, E_1 \cup E_2, f, (x_{01}, x_{02}), X_{m1} \times X_{m2})$$

where

$$f((x_1,x_2),e) = \left\{ \begin{array}{ll} (f_1(x_1,e),f_2(x_2,e)) & \text{if } e \in \Gamma(x_1) \cap \Gamma(x_2) \\ \text{undefined} & \text{otherwise} \end{array} \right.$$

- $\Gamma_{1\times 2}(x_1,x_2) = \Gamma_1(x_1) \cap \Gamma_2(x_2)$
- $\mathcal{L}(G_1 \times G_2) = \mathcal{L}(G_1) \cap \mathcal{L}(G_2)$
- $\bullet \ \mathcal{L}_m(G_1 \times G_2) = \mathcal{L}_m(G_1) \cap \mathcal{L}_m(G_2)$
- $G_1 \times G_2 \times G_3 = (G_1 \times G_2) \times G_3 = G_1 \times (G_2 \times G_3)$

Product of automata

Example (Product)

Example (Product) a а b 0 b b a (0,0)(1, 1)(0, 2)

Parallel Composition of Automata

Definition (Parallel composition)

The parallel composition of G_1 and G_2 is the automaton

$$G_1||G_2 = Ac(X_1 \times X_2, E_1 \cup E_2, f, (x_{01}, x_{02}), X_{m1} \times X_{m2})$$

where

$$f((x_1,x_2),e) = \left\{ \begin{array}{ll} (f_1(x_1,e),f_2(x_2,e)) & \text{if } e \in \Gamma(x_1) \cap \Gamma(x_2) \\ (f_1(x_1,e),x_2) & \text{if } e \in \Gamma_1(x_1) \setminus E_2 \\ (x_1,f_2(x_2,e)) & \text{if } e \in \Gamma_2(x_2) \setminus E_1 \\ \text{undefined} & \text{otherwise} \end{array} \right.$$

• $\Gamma_{1\times 2}(x_1,x_2) = [\Gamma_1(x_1) \cap \Gamma_2(x_2)] \cup [\Gamma_2(x_2) \setminus E_1] \cup [\Gamma_1(x_1) \setminus E_2]$

Parallel composition

- The two automata are synchronized on the common events $e \in E_1 \cap E_2$ (can be executed simultaneously)
- Private events $e \in E_2 \setminus E_1$ or $e \in E_1 \setminus E_2$ can be executed whenever its possible (concurrently)
- If $E_1 = E_2$, then $G_1 || G_2 = G_1 \times G_2$
- $\mathcal{L}(G_1||G_2) = P_1^{-1}[\mathcal{L}(G_1)] \cap P_2^{-1}[\mathcal{L}(G_2)]$
- $\mathcal{L}_m(G_1||G_2) = P_1^{-1}[\mathcal{L}_m(G_1)] \cap P_2^{-1}[\mathcal{L}_m(G_2)]$

where $P_i: (E_1 \cup E_2)^* \to E_i^*$ for i = 1, 2

Parallel Composition of Automata

Example (Parallel Composition)

Give the parallel composition of the following two automata!

Parallel Composition of Automata

Example (Parallel Composition)

Solution

Overview

- Languages
 - Definitions
 - Operations on languages
- 2 Deterministic automata
 - Languages represented by automata
 - Generalizations
- Operations on Automata
 - Unary Operations
 - Composition Operations
- Observability and nondeterminism

Nondeterminism

Possible sources of nonterminism

- Stochastic transitions (model is not detailed enough)
- Unobservable events

Problem: The actual state of the automaton is unknown by knowing the sequence of observable events

Nondeterministic Automata

Definition (Nondeterministic automaton)

A nondeterministic automaton G_{nd} is a quintuple

$$G_{nd} = (X, E \cup \{\varepsilon\}, f_{nd}, x_0, X_m)$$

where all the objects have the same interpretation as in the definition of deterministic automaton except

- f_{nd} is a function $f_{nd}: X \times E \cup \{\varepsilon\} \to 2^X$, i.e. $f_{nd}(x,e) \subseteq X$ whenever it is defined.
- ② The initial state may itself be a set of states, $x_0 \subseteq X$

Example (A simple nondeterministic automaton)

Motivating example

Reachability function

$\varepsilon\text{-reachability function}$

$$\varepsilon R(x) = \{ p \in X : p \text{ is reachable from } x \text{ by } \varepsilon \}$$

$$\varepsilon R(B) = \cup_{x \in B} \varepsilon R(x)$$

Extended transition mapping

$$\begin{split} f_{nd}^{ext}(x,\varepsilon) &= \varepsilon R(x) \\ f_{nd}^{ext}(x,ue) &= \varepsilon R[\{z: z \in f_{nd}(y,e) \text{ for some state } y \in f_{nd}^{ext}(x,u)\}] \end{split}$$

Observer automata

Procedure of building an observer $Obs(G_{nd})$

- Step 1: Define $x_{0,obs} = \varepsilon R(x_0)$. Set $X_{obs} = \{x_{0,obs}\}$.
- Step 2: for each $B \in X_{obs}$ and $e \in E$

$$f_{obs}(B, e) = \varepsilon R(\{x \in X : (\exists x_e \in B) \ [x \in f_{nd}(x_e, e)]\})$$

- Step 3: Repeat Step 2 until the accessible part of $Obs(G_{nd})$ has been constructed
- Step 4: $X_{m,obs} = \{B \in X_{obs} : B \cup X_m \neq \emptyset\}$
- ullet $Obs(G_{nd})$ is a deterministic automaton
- $\mathcal{L}(Obs(G_{nd})) = \mathcal{L}(G_{nd})$
- $\mathcal{L}_m(Obs(G_{nd})) = \mathcal{L}_m(G_{nd})$

Important in studying partially observed DES

Example

Partially observed DES

- ε -transitions were defined to describe unobservable events
- Let us define genuine events for this phenomenon: unobservable events $E = E_{uo} \cup E_o$ where $E_{uo} \cap E_O = \emptyset$

Definition (Unobservable reach)

The unobservable reach of state $x \in X$ denoted by UR(x) is

$$UR(x) = \{ y \in X : (\exists t \in E_{uo}^*) [f(x, t) = y] \}$$

The definition can be extended to sets of states $B \subseteq X$ by

$$UR(B) = \bigcup_{x \in B} UR(x)$$

Observer for automaton G with unobservable events

Let $G=(X,E,f,x_0,X_m)$ be a deterministic automaton and let $E=E_{uo}\cup E_o$. Then $Obs(G)=(X_{obs},E_o,f_{obs},x_{0,obs},X_{m,obs})$ can be built as follows

Step 1: Define
$$x_{0,obs} = UR(x_0)$$

set $X_{m,obs} = \{x_{0,obs}\}$

Step 2: For each $B \in X_{obs}$ and $e \in E_o$ define

$$f_{obs}(B, e) = UR(\{x \in X : (\exists x_e \in B)[x \in f(x_e, e)]\})$$

whenever $f(x_e, e)$ is defined for some $x_e \in B$

Step 3: Repeat Step 2 until the entire accessible part of Obs(G) has been constricted

Step 4:
$$X_{m,obs} = \{B \in X_{obs} : B \cap X_m \neq \emptyset\}$$

Observer with unobservable events

