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Languages Definitions

Alphabets and Languages

Definition (Language)

A language defined over an event set (or alphabet) E is a set of
finite-length strings formed from events in E.

Notation
The empty sting is denoted by ε.
If tuv = s with t, u, v ∈ E∗, then

t is called prefix of s
u is caled substring of s
v is called suffix of s



Languages Operations on languages

Operations on Languages

Let L,La, Lb ⊆ E∗ be languages
Concatenation

LaLb = {s ∈ E∗ : (s = sasb) and (sa ∈ La) and (sb ∈ Lb)}
Prefix-closure L = {s ∈ E∗ : (∀t ∈ E∗) [st ∈ L]}
Kleene-closure L∗ = {ε} ∪ L ∪ LL ∪ LLL ∪ . . .

Post-language L/s = {t ∈ E∗ : st ∈ L}



Languages Operations on languages

Example (Operations on languages)

Let E = {a, b, g} and consider the two languages L1 = {ε, a, abb} and
L4 = {g}. Neither L1nor L4 are prefix-closed, since ab /∈ L1 and ε /∈ L4

L1L4 = {g, ag, abg}
L1 = {ε, a, ab, abb}
L4 = {ε, g}

L1L4 = {ε, a, abb, g, ag, abbg}
L∗4 = {ε, g, gg, ggg, . . . }
L∗1 = {ε, a, abb, aa, aabb, abba, abbabb, . . . }



Languages Operations on languages

Projections of Strings

Definition (Projection of strings)

Let Es ⊂ El. Projection of strings P : E∗L → E∗s where

P (ε) = ε

P (e) =

{
e if e ∈ Es

ε if e ∈ El \ Es

P (se) = P (s)P (e) for s ∈ E∗l , e ∈ El

Inverse of a projection P−1 : E∗s → 2E
∗
l

P−1(t) = {s ∈ E∗l : P (s) = t}



Languages Operations on languages

Projections of languages

Definition (Projection of language)

Let L ⊆ E∗l ,
P (L) = {t ∈ E∗s : (∃s ∈ L) [P (s) = t]}

and for Ls ⊆ E∗s

P−1(Ls) = {s ∈ E∗l : (∃t ∈ Ls) [P (s) = t]}



Languages Operations on languages

Projections

Example (Projections)

Let El = {a, b, c} and consider two proper subsets E1 = {a, b} and
E2 = {b, c}. Take

L = {c, ccb, abc, cacb, cabcbbca} ⊂ E∗l

Consider the projections Pi : E∗l → E∗i , i = 1, 2.

P1(L) = {ε, b, ab, abbba}
P2(L) = {c, ccb, bc, cbcbbc}

P−11 ({ε}) = {c}∗

P−11 ({b}) = {c}∗{b}{c}∗

P−11 ({ab}) = {c}∗{a}{c}∗{b}{c}∗
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Deterministic automata

Automata

Definition (Deterministic Automaton)

A Deterministic Automaton G is a quintuple

G = (X,E, f, x0, Xm)

where
X is the set of states
E is a finite set of events associated with G

f : X × E → X (partial) transition function
x0 is the initial state

Xm ⊆ X is the set of marked states (or accepting-, or final states)

Synonyms: state machine, generator
Determinism: f is a function



Deterministic automata

Example (A simple automaton - state transition diagram)

x

z

y

g

a

a

b

a,g

b

Event set E = {a, b, g}
Nodes (states) X = {x, y, z}
Transition function f : X × E → X

f(x, a) = x f(x, g) = z

f(y, a) = x f(y, b) = y

f(z, b) = z f(z, a) = f(z, g) = y



Deterministic automata

Deterministic Automata

Extended transition function For sake of convenience f is always extended
from domain X × E to X × E∗ as follows

f(x, ε) = x

f(x, se) = f(f(x, s), e) for s ∈ E∗ and e ∈ E

Active event set Γ(x) is the set of all events e for which f(x, e) is defined.
Also known as feasible event set

Example (Ext. transition function)

f(y, ε) = y

f(x, gba) = y

f(x, aagb) = z

f(z, bn) = z, for all n ≥ 0

Example (Active event set)

Γ(x) = {a, g}
Γ(y) = {a, b}
Γ(z) = {a, b, g}



Deterministic automata Languages represented by automata

Languages and automata

Definition (Languages generated and marked)

The language generated by G = (X,E, f, x0, Xm) is

L(G) = {s ∈ E∗ : f(x0, s) is defined}

The language marked by G is

Lm(G) = {s ∈ L(G) : f(x0, s) ∈ Xm}

f already means the extended transition function!
Language L(G) represents all directed paths (i.e. strings) on the state
transition digraph starting az x0.
Language Lm(G) represents all paths that end at a marked state
Lm(G) ⊆ L(G)



Deterministic automata Languages represented by automata

Example (Marked language)

0 1

a

b

b

a
Event set E = {a, b}
Language marked

Lm(G) = {a, aa, ba, aaa, aba, baa, bba, . . . }

Language generated

L(G) = E∗ (since f is a total function)

Example (Marked and generated language)

0 1

a

b

a Language generated

L(G) = any b is the last or followed by a

Language marked

Lm(G) = strings end with event a ⊂ L(G)



Deterministic automata Languages represented by automata

Language Equivalence

Definition (Language-equivalent automata)

Automata G1 and G2 are language-equivalent if

L(G1) = L(G2) and Lm(G1) = Lm(G2)

Example (Language-equivalent automata)

0 1

a

b

a

0 1 2

a

b
a

a

b



Deterministic automata Languages represented by automata

Blocking

Generally
Lm(G) ⊆ Lm(G) ⊆ L(G)

Definition (Blocking)

Automaton G is said to be blocking if

Lm(G) ⊂ L(G)

where the set inclusion is proper, and nonblocking if

Lm(G) = L(G)

If an automaton is blocking, deadlock and livelock can happen.



Deterministic automata Languages represented by automata

Deadlock and livelock

Example

0

1

2

3

4

5
a

b

a

g

g

b

a g

State 5 is a deadlock state
States 3 and 4 are involved in a
livelock

Deadlock is a state x where Γ(x) = ∅ but x /∈ Xm

Livelock is a set of unmarked states of G forming a strongly connected
component (i.e. no transition is going out from the set)



Deterministic automata Generalizations

Nondeterministic Automata

Definition (Nondeterministic automaton)

A nondeterministic automaton Gnd is a quintuple

Gnd = (X,E ∪ {ε}, fnd, x0, Xm)

where all the objects have the same interpretation as in the definition of
deterministic automaton except

1 fnd is a function fnd : X × E ∪ {ε} → 2X , i.e. fnd(x, e) ⊆ X
whenever it is defined.

2 The initial state may itself be a set of states, x0 ⊆ X

Example (A simple nondeterministic automaton)

0 1

a

a

b



Deterministic automata Generalizations

Moore and Mealy automata

Moore An output function assigns an output to each state
Generalizes the notion of marking
Standard automata can be thought as having two
outputs (marked, non-marked)

Mealy Input/output automata
Transitions are labeled by events in the form input event
/ output event
Eout may not be the same as Ein

Interpretation (Mealy transitions)

When the system is in state x and the automaton receives an input event
ei it will make a transition to state y and will output the event eo.

0



Deterministic automata Generalizations

Moore automata

Example (Valve together with a flow sensor as a Moore automaton)

closed
NO_FLOW

half open

PART_FLOW

open

MAX_FLOW

open_1_turn

close_1_turn

open_1_turnclose_1_turn
shut_off



Deterministic automata Generalizations

Mealy automata

Example

Moore:

1

01

3

03

2

02

a

b

d

c

Mealy:

1

3

2

a/02

b/03

d/01
c/02
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Operations on Automata Unary Operations

Accessible Part

States of G not accessible from x0 can be deleted without affecting L(G)
and Lm(G).

Ac(G) = (Xac, E, fac, x0, Xac,m) where
Xac = {x ∈ X : (∃s ∈ E∗) [f(x0, s) = x]}

Xac,m = Xm ∩Xac

fac = f |Xac×E→Xac

where f |Xac×E→Xac means restricting f to a smaller domain
Operation Ac has no effect on L(G) and Lm(G). From now on,
G = Ac(G) is assumed.



Operations on Automata Unary Operations

Accessible Part

Example (Accessible part)

G

0

1

2

3

4

5

6

a

b

a

g

g

b
a

g

a

b

Ac(G)

0

1

2

3

4

5
a

b

a

g

g

b
a

g



Operations on Automata Unary Operations

Coaccessible Part

A state x of G is coaccessive (to Xm) if there is a path from state x to a
marked state. The operation of deleting all the states of G not coaccessible
is defined as follows

CoAc(G) = (Xcoac, E, fcoac, x0,coac, Xm) where
Xcoac = {x ∈ X : (∃s ∈ E∗) [f(x, s) ∈ Xm]}

x0,coac =

{
x0 if x0 ∈ Xcoac

undefined otherwise

fcoac = f |Xcoac×E→Xcoac

Operation CoAc may shrink L(G) but does not affect Lm(G).



Operations on Automata Unary Operations

Coaccessible Part

Example (Coaccessible part)

G

0

1

2

3

4

5

6

a

b

a

g

g

b
a

g

a

b

CoAc(G)

0

1

2 6

a

b

g

b



Operations on Automata Unary Operations

Trim Operation

An automaton both accessible and coaccessible is said to be trim:
Trim(G) = CoAc(Ac(G)) = Ac(CoAc(G))

Example (Trim Operation)

G

0

1

2

3

4

5

6

a

b

a

g

g

b
a

g

a

b

Trim(G)

0

1

2

a

b

g



Operations on Automata Unary Operations

Projection and Inverse Projection

Projection Let G have event sef E. Furthermore, let Es ⊂ E
The projections of L{G} Lm{G} from E∗ to E∗s can be
implemented on G by replacing all labels in E \ Es by ε.
The result is a nondeterministic automaton.

Inverse projection Let Ks = L(G) ⊂ E∗s and Km,s = Lm(G) .
Furthermore, let Es ⊂ El and Ps is the projection from
E∗l to E∗s
The automaton that generates P−1s (Ks) and marks
P−1s (Km,s) can be obtained by adding self-loops for all
the events in El \ Es at all the states of G



Operations on Automata Unary Operations

Complement

Given an automaton G = (X,E, f, x0, Xm) with Lm(G) ⊆ E∗. Thus,
L(G) = Lm(G).
Let’s build Gcomp for which Lm(Gcomp) = E∗ \ Lm(G)

Step 1 Add a dump state xd and all undefined f(x, e) will be
assigned to xd

ftot(x, e) =

{
f(x, e) if e ∈ Γ(x)
xd otherwise

ftot(xd, e) = xd, ∀e ∈ E

Step 2 Mark all unmarked states (and xd) and unmark all marked
states

Comp(G) = (X ∪ {xd}, E, ftot, x0, (X ∪ {xd}) \Xm)



Operations on Automata Unary Operations

Complement

Example (Complement)

Trim(G)

0

1

2

a

b

g

Comp(Trim(G))

0

1

2 xd

a

b,g

b
a,g

g a,b

a,b,g



Operations on Automata Composition Operations

Product of automata

Definition (Product)

The product of G1 and G2 is the automaton

G1 ×G2 = Ac (X1 ×X2, E1 ∪ E2, f, (x01, x02), Xm1 ×Xm2)

where

f((x1, x2), e) =

{
(f1(x1, e), f2(x2, e)) if e ∈ Γ(x1) ∩ Γ(x2)
undefined otherwise

Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2)

L(G1 ×G2) = L(G1) ∩ L(G2)

Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2)

G1 ×G2 ×G3 = (G1 ×G2)×G3 = G1 × (G2 ×G3)



Operations on Automata Composition Operations

Product of automata

Example (Product)

x

z

y

g

a

a

b

a,g

b

0 1

a

b

b

a

(x, 0) (x, 1)
a a



Operations on Automata Composition Operations

Product of automata

Example (Product)

0 1

a

b

b

a

0

1

2

a

b

g

(0, 0) (1, 1) (0, 2)
a b



Operations on Automata Composition Operations

Parallel Composition of Automata

Definition (Parallel composition)

The parallel composition of G1 and G2 is the automaton

G1||G2 = Ac (X1 ×X2, E1 ∪ E2, f, (x01, x02), Xm1 ×Xm2)

where

f((x1, x2), e) =


(f1(x1, e), f2(x2, e)) if e ∈ Γ(x1) ∩ Γ(x2)
(f1(x1, e), x2) if e ∈ Γ1(x1) \ E2

(x1, f2(x2, e)) if e ∈ Γ2(x2) \ E1

undefined otherwise

Γ1×2(x1, x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ2(x2) \ E1] ∪ [Γ1(x1) \ E2]



Operations on Automata Composition Operations

Parallel composition

The two automata are synchronized on the common events
e ∈ E1 ∩ E2 (can be executed simultaneously)
Private events e ∈ E2 \ E1 or e ∈ E1 \ E2 can be executed whenever
its possible (concurrently)
If E1 = E2, then G1||G2 = G1 ×G2

L(G1||G2) = P−11 [L(G1)] ∩ P−12 [L(G2)

Lm(G1||G2) = P−11 [Lm(G1)] ∩ P−12 [Lm(G2)

where Pi : (E1 ∪ E2)
∗ → E∗i for i = 1, 2



Operations on Automata Composition Operations

Parallel Composition of Automata

Example (Parallel Composition)

Give the parallel composition of the following two automata!

x

z

y

g

a

a

b

a,g

b

0 1

a

b

b

a



Operations on Automata Composition Operations

Parallel Composition of Automata

Example (Parallel Composition)

Solution

(x, 0) (z, 0) (y, 0)

(x, 1) (z, 1) (y, 1)

g

a

g

a

a

a

b

g
a

b

a,g

b

a
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Observability and nondeterminism

Nondeterminism

Possible sources of nonterminism
Stochastic transitions (model is not detailed enough)
Unobservable events

Problem: The actual state of the automaton is unknown by knowing the
sequence of observable events



Observability and nondeterminism

Nondeterministic Automata

Definition (Nondeterministic automaton)

A nondeterministic automaton Gnd is a quintuple

Gnd = (X,E ∪ {ε}, fnd, x0, Xm)

where all the objects have the same interpretation as in the definition of
deterministic automaton except

1 fnd is a function fnd : X × E ∪ {ε} → 2X , i.e. fnd(x, e) ⊆ X
whenever it is defined.

2 The initial state may itself be a set of states, x0 ⊆ X

Example (A simple nondeterministic automaton)

0 1

a

a

b



Observability and nondeterminism

Motivating example

Example (Nondeterministic and deterministic automata)

0 1

a

a

b

A B

a

b

a



Observability and nondeterminism

Reachability function

ε-reachability function

εR(x) = {p ∈ X : p is reachable from x by ε}
εR(B) = ∪x∈BεR(x)

Extended transition mapping

fext
nd (x, ε) = εR(x)

fext
nd (x, ue) = εR[{z : z ∈ fnd(y, e) for some state y ∈ fext

nd (x, u)}]



Observability and nondeterminism

Observer automata

Procedure of building an observer Obs(Gnd)

Step 1: Define x0,obs = εR(x0). Set Xobs = {x0,obs}.
Step 2: for each B ∈ Xobs and e ∈ E

fobs(B, e) = εR({x ∈ X : (∃xe ∈ B) [x ∈ fnd(xe, e)]})

Step 3: Repeat Step 2 until the accessible part of Obs(Gnd) has been
constructed

Step 4: Xm,obs = {B ∈ Xobs : B ∪Xm 6= ∅}

Obs(Gnd) is a deterministic automaton
L(Obs(Gnd)) = L(Gnd)

Lm(Obs(Gnd)) = Lm(Gnd)

Important in studying partially observed DES



Observability and nondeterminism

Example

Example (Another example)

0 1

23

a

b b

εa

ε

b

{0} {1, 2, 3} {0, 1, 2, 3}

a

a

b

a,b



Observability and nondeterminism

Partially observed DES

ε-transitions were defined to describe unobservable events
Let us define genuine events for this phenomenon: unobservable
events E = Euo ∪ Eo where Euo ∩ EO = ∅

Definition (Unobservable reach)

The unobservable reach of state x ∈ X denoted by UR(x) is

UR(x) = {y ∈ X : (∃t ∈ E∗uo)[f(x, t) = y]}

The definition can be extended to sets of states B ⊆ X by

UR(B) = ∪x∈BUR(x)



Observability and nondeterminism

Observer for automaton G with unobservable events

Let G = (X,E, f, x0, Xm) be a deterministic automaton and let
E = Euo ∪ Eo. Then Obs(G) = (Xobs, Eo, fobs, x0,obs, Xm,obs) can be
built as follows

Step 1: Define x0,obs = UR(x0)
set Xm,obs = {x0,obs}

Step 2: For each B ∈ Xobs and e ∈ Eo define

fobs(B, e) = UR({x ∈ X : (∃xe ∈ B)[x ∈ f(xe, e)]})

whenever f(xe, e) is defined for some xe ∈ B

Step 3: Repeat Step 2 until the entire accessible part of Obs(G) has
been constrcted

Step 4: Xm,obs = {B ∈ Xobs : B ∩Xm 6= ∅}



Observability and nondeterminism

Observer with unobservable events

Example (Automaton with unobservable events)

1 2 3

4 5

6

7

8 9 10

11 12

ed

a a

u

c

ed

b

u
g

v

b

d

ed

v

u

d

d

ed



Observability and nondeterminism

{1, 2, 3}

{4, 5, 6}

{8, 9, 10, 11, 12}

{5, 6, 7}

{9, 10}

{2, 3}

{5, 6}

a

c

g

b

g

b

d

d

c

a

g

b
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