Discrete and Continuous Dynamical Systems

Attila Magyar

University if Pannonia
Faculty of Information Technology
Department of Electrical Engineering and Information Systems

Discrete and continuous dynamical systems:
 Introduction to discrete event systems

March 3, 2018

Overview

(1) Languages

- Definitions
- Operations on languages
(2) Deterministic automata
- Languages represented by automata
- Generalizations
(3) Operations on Automata
- Unary Operations
- Composition Operations

44 Observability and nondeterminism

Alphabets and Languages

Definition (Language)

A language defined over an event set (or alphabet) E is a set of finite-length strings formed from events in E.

Notation

The empty sting is denoted by ε. If tuv $=s$ with $t, u, v \in E^{*}$, then
t is called prefix of s
u is caled substring of s
v is called suffix of s

Operations on Languages

Let $L, L_{a}, L_{b} \subseteq E^{*}$ be languages
Concatenation

$$
L_{a} L_{b}=\left\{s \in E^{*}:\left(s=s_{a} s_{b}\right) \text { and }\left(s_{a} \in L_{a}\right) \text { and }\left(s_{b} \in L_{b}\right)\right\}
$$

Prefix-closure $\quad \bar{L}=\left\{s \in E^{*}:\left(\forall t \in E^{*}\right)[s t \in L]\right\}$
Kleene-closure $L^{*}=\{\varepsilon\} \cup L \cup L L \cup L L L \cup \ldots$
Post-language $L / s=\left\{t \in E^{*}: s t \in L\right\}$

Example (Operations on languages)

Let $E=\{a, b, g\}$ and consider the two languages $L_{1}=\{\varepsilon, a, a b b\}$ and $L_{4}=\{g\}$. Neither L_{1} nor L_{4} are prefix-closed, since $a b \notin L_{1}$ and $\varepsilon \notin L_{4}$

$$
\begin{aligned}
L_{1} L_{4} & =\{g, a g, a b g\} \\
\overline{L_{1}} & =\{\varepsilon, a, a b, a b b\} \\
\overline{L_{4}} & =\{\varepsilon, g\} \\
L_{1} \overline{L_{4}} & =\{\varepsilon, a, a b b, g, a g, a b b g\} \\
L_{4}^{*} & =\{\varepsilon, g, g g, g g g, \ldots\} \\
L_{1}^{*} & =\{\varepsilon, a, a b b, a a, a a b b, a b b a, a b b a b b, \ldots\}
\end{aligned}
$$

Projections of Strings

Definition (Projection of strings)

Let $E_{s} \subset E_{l}$. Projection of strings $P: E_{L}^{*} \rightarrow E_{s}^{*}$ where

$$
\begin{aligned}
P(\varepsilon) & =\varepsilon \\
P(e) & = \begin{cases}e & \text { if } e \in E_{s} \\
\varepsilon & \text { if } e \in E_{l} \backslash E_{s}\end{cases} \\
P(s e) & =P(s) P(e) \text { for } s \in E_{l}^{*}, e \in E_{l}
\end{aligned}
$$

Inverse of a projection $P^{-1}: E_{s}^{*} \rightarrow 2^{E_{l}^{*}}$
$P^{-1}(t)=\left\{s \in E_{l}^{*}: P(s)=t\right\}$

Projections of languages

Definition (Projection of language)

Let $L \subseteq E_{l}^{*}$,

$$
P(L)=\left\{t \in E_{s}^{*}:(\exists s \in L)[P(s)=t]\right\}
$$

and for $L_{s} \subseteq E_{s}^{*}$

$$
P^{-1}\left(L_{s}\right)=\left\{s \in E_{l}^{*}:\left(\exists t \in L_{s}\right)[P(s)=t]\right\}
$$

Projections

Example (Projections)

Let $E_{l}=\{a, b, c\}$ and consider two proper subsets $E_{1}=\{a, b\}$ and $E_{2}=\{b, c\}$. Take

$$
L=\{c, c c b, a b c, c a c b, c a b c b b c a\} \subset E_{l}^{*}
$$

Consider the projections $P_{i}: E_{l}^{*} \rightarrow E_{i}^{*}, i=1,2$.

$$
\begin{aligned}
P_{1}(L) & =\{\varepsilon, b, a b, a b b b a\} \\
P_{2}(L) & =\{c, c c b, b c, c b c b b c\} \\
P_{1}^{-1}(\{\varepsilon\}) & =\{c\}^{*} \\
P_{1}^{-1}(\{b\}) & =\{c\}^{*}\{b\}\{c\}^{*} \\
P_{1}^{-1}(\{a b\}) & =\{c\}^{*}\{a\}\{c\}^{*}\{b\}\{c\}^{*}
\end{aligned}
$$

Overview

(1) Languages

- Definitions
- Operations on languages
(2) Deterministic automata
- Languages represented by automata
- Generalizations
(3) Operations on Automata
- Unary Operations
- Composition Operations

4 Observability and nondeterminism

Automata

Definition (Deterministic Automaton)

A Deterministic Automaton G is a quintuple

$$
G=\left(X, E, f, x_{0}, X_{m}\right)
$$

where
X is the set of states
E is a finite set of events associated with G
$f: X \times E \rightarrow X$ (partial) transition function
x_{0} is the initial state
$X_{m} \subseteq X$ is the set of marked states (or accepting-, or final states)
Synonyms: state machine, generator
Determinism: f is a function

Example (A simple automaton - state transition diagram)

- Event set $E=\{a, b, g\}$
- Nodes (states) $X=\{x, y, z\}$
- Transition function $f: X \times E \rightarrow X$

$$
\begin{array}{ll}
f(x, a)=x & \\
f(y, a)=x & \\
f(y, g)=z \\
f(z, b)=z & \\
f(z, a)=f(z, g)=y
\end{array}
$$

Deterministic Automata

Extended transition function For sake of convenience f is always extended from domain $X \times E$ to $X \times E^{*}$ as follows

$$
\begin{aligned}
f(x, \varepsilon) & =x \\
f(x, s e) & =f(f(x, s), e) \text { for } s \in E^{*} \text { and } e \in E
\end{aligned}
$$

Active event set $\Gamma(x)$ is the set of all events e for which $f(x, e)$ is defined. Also known as feasible event set

Example (Ext. transition function)

Example (Active event set)

$$
\begin{aligned}
f(y, \varepsilon) & =y \\
f(x, g b a) & =y \\
f(x, a a g b) & =z \\
f\left(z, b^{n}\right) & =z, \text { for all } n \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\Gamma(x) & =\{a, g\} \\
\Gamma(y) & =\{a, b\} \\
\Gamma(z) & =\{a, b, g\}
\end{aligned}
$$

Languages and automata

Definition (Languages generated and marked)

The language generated by $G=\left(X, E, f, x_{0}, X_{m}\right)$ is

$$
\mathcal{L}(G)=\left\{s \in E^{*}: f\left(x_{0}, s\right) \text { is defined }\right\}
$$

The language marked by G is

$$
\mathcal{L}_{m}(G)=\left\{s \in \mathcal{L}(G): f\left(x_{0}, s\right) \in X_{m}\right\}
$$

f already means the extended transition function!

- Language $\mathcal{L}(G)$ represents all directed paths (i.e. strings) on the state transition digraph starting az x_{0}.
- Language $\mathcal{L}_{m}(G)$ represents all paths that end at a marked state
- $\mathcal{L}_{m}(G) \subseteq \mathcal{L}(G)$

Example (Marked language)

- Event set $E=\{a, b\}$
- Language marked

$$
\mathcal{L}_{m}(G)=\{a, a a, b a, a a a, a b a, b a a, b b a, \ldots\}
$$

- Language generated

$$
\mathcal{L}(G)=E^{*} \text { (since } f \text { is a total function) }
$$

Example (Marked and generated language)

- Language generated
$\mathcal{L}(G)=$ any b is the last or followed by a
- Language marked
$\mathcal{L}_{m}(G)=$ strings end with event $a \subset \mathcal{L}(G)$

Language Equivalence

Definition (Language-equivalent automata)

Automata G_{1} and G_{2} are language-equivalent if

$$
\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right) \quad \text { and } \quad \mathcal{L}_{m}\left(G_{1}\right)=\mathcal{L}_{m}\left(G_{2}\right)
$$

Example (Language-equivalent automata)

Blocking

Generally

$$
\mathcal{L}_{m}(G) \subseteq \overline{\mathcal{L}_{m}(G)} \subseteq \mathcal{L}(G)
$$

Definition (Blocking)

Automaton G is said to be blocking if

$$
\overline{\mathcal{L}_{m}(G)} \subset \mathcal{L}(G)
$$

where the set inclusion is proper, and nonblocking if

$$
\overline{\mathcal{L}_{m}(G)}=\mathcal{L}(G)
$$

If an automaton is blocking, deadlock and livelock can happen.

Deadlock and livelock

Example

Deadlock is a state x where $\Gamma(x)=\emptyset$ but $x \notin X_{m}$ Livelock is a set of unmarked states of G forming a strongly connected component (i.e. no transition is going out from the set)

Nondeterministic Automata

Definition (Nondeterministic automaton)

A nondeterministic automaton $G_{n d}$ is a quintuple

$$
G_{n d}=\left(X, E \cup\{\varepsilon\}, f_{n d}, x_{0}, X_{m}\right)
$$

where all the objects have the same interpretation as in the definition of deterministic automaton except
(1) $f_{n d}$ is a function $f_{n d}: X \times E \cup\{\varepsilon\} \rightarrow 2^{X}$, i.e. $f_{n d}(x, e) \subseteq X$ whenever it is defined.
(2) The initial state may itself be a set of states, $x_{0} \subseteq X$

Example (A simple nondeterministic automaton)

Moore and Mealy automata

Moore - An output function assigns an output to each state

- Generalizes the notion of marking
- Standard automata can be thought as having two outputs (marked, non-marked)
Mealy - Input/output automata
- Transitions are labeled by events in the form input event / output event
- $E_{\text {out }}$ may not be the same as $E_{\text {in }}$

Interpretation (Mealy transitions)

When the system is in state x and the automaton receives an input event e_{i} it will make a transition to state y and will output the event e_{o}.

Moore automata

Example（Valve together with a flow sensor as a Moore automaton）

Mealy automata

Example

Moore:

Mealy:

Overview

(1) Languages

- Definitions
- Operations on languages
(2) Deterministic automata
- Languages represented by automata
- Generalizations
(3) Operations on Automata
- Unary Operations
- Composition Operations

4 Observability and nondeterminism

Accessible Part

States of G not accessible from x_{0} can be deleted without affecting $\mathcal{L}(G)$ and $\mathcal{L}_{m}(G)$.

$$
\begin{aligned}
A c(G) & =\left(X_{a c}, E, f_{a c}, x_{0}, X_{a c, m}\right) \quad \text { where } \\
X_{a c} & =\left\{x \in X:\left(\exists s \in E^{*}\right)\left[f\left(x_{0}, s\right)=x\right]\right\} \\
X_{a c, m} & =X_{m} \cap X_{a c} \\
f_{a c} & =\left.f\right|_{X_{a c} \times E \rightarrow X_{a c}}
\end{aligned}
$$

where $\left.f\right|_{X_{a c} \times E \rightarrow X_{a c}}$ means restricting f to a smaller domain Operation $A c$ has no effect on $\mathcal{L}(G)$ and $\mathcal{L}_{m}(G)$. From now on, $G=A c(G)$ is assumed.

Accessible Part

Example (Accessible part)

Coaccessible Part

A state x of G is coaccessive (to X_{m}) if there is a path from state x to a marked state. The operation of deleting all the states of G not coaccessible is defined as follows

$$
\begin{aligned}
\operatorname{CoAc}(G) & =\left(X_{\text {coac }}, E, f_{\text {coac }}, x_{0, \text { coac }}, X_{m}\right) \quad \text { where } \\
X_{\text {coac }} & =\left\{x \in X:\left(\exists s \in E^{*}\right)\left[f(x, s) \in X_{m}\right]\right\} \\
x_{0, \text { coac }} & = \begin{cases}x_{0} & \text { if } x_{0} \in X_{\text {coac }} \\
\text { undefined } & \text { otherwise }\end{cases} \\
f_{\text {coac }} & =\left.f\right|_{X_{\text {coac }} \times E \rightarrow X_{\text {coac }}}
\end{aligned}
$$

Operation CoAc may shrink $\mathcal{L}(G)$ but does not affect $\mathcal{L}_{m}(G)$.

Coaccessible Part

Example (Coaccessible part)

Trim Operation

An automaton both accessible and coaccessible is said to be trim: $\operatorname{Trim}(G)=\operatorname{CoAc}(A c(G))=A c(\operatorname{CoAc}(G))$

Example (Trim Operation)

Projection and Inverse Projection

Projection - Let G have event sef E. Furthermore, let $E_{s} \subset E$

- The projections of $\mathcal{L}\{G\} \mathcal{L}_{m}\{G\}$ from E^{*} to E_{s}^{*} can be implemented on G by replacing all labels in $E \backslash E_{s}$ by ε.
- The result is a nondeterministic automaton.

Inverse projection

- Let $K_{s}=\mathcal{L}(G) \subset E_{s}^{*}$ and $K_{m, s}=\mathcal{L}_{m}(G)$.

Furthermore, let $E_{s} \subset E_{l}$ and P_{s} is the projection from E_{l}^{*} to E_{s}^{*}

- The automaton that generates $P_{s}^{-1}\left(K_{s}\right)$ and marks $P_{s}^{-1}\left(K_{m, s}\right)$ can be obtained by adding self-loops for all the events in $E_{l} \backslash E_{s}$ at all the states of G

Complement

Given an automaton $G=\left(X, E, f, x_{0}, X_{m}\right)$ with $\mathcal{L}_{m}(G) \subseteq E^{*}$. Thus, $\mathcal{L}(G)=\overline{\mathcal{L}_{m}(G)}$.
Let's build $G^{\text {comp }}$ for which $\mathcal{L}_{m}\left(G^{\text {comp }}\right)=E^{*} \backslash \mathcal{L}_{m}(G)$
Step 1 Add a dump state x_{d} and all undefined $f(x, e)$ will be assigned to x_{d}

$$
\begin{aligned}
f_{t o t}(x, e) & = \begin{cases}f(x, e) & \text { if } e \in \Gamma(x) \\
x_{d} & \text { otherwise }\end{cases} \\
f_{t o t}\left(x_{d}, e\right) & =x_{d}, \quad \forall e \in E
\end{aligned}
$$

Step 2 Mark all unmarked states (and x_{d}) and unmark all marked states

$$
\operatorname{Comp}(G)=\left(X \cup\left\{x_{d}\right\}, E, f_{t o t}, x_{0},\left(X \cup\left\{x_{d}\right\}\right) \backslash X_{m}\right)
$$

Complement

Example (Complement)

$\operatorname{Comp}(\operatorname{Trim}(G))$

Product of automata

Definition (Product)

The product of G_{1} and G_{2} is the automaton

$$
G_{1} \times G_{2}=A c\left(X_{1} \times X_{2}, E_{1} \cup E_{2}, f,\left(x_{01}, x_{02}\right), X_{m 1} \times X_{m 2}\right)
$$

where

$$
f\left(\left(x_{1}, x_{2}\right), e\right)= \begin{cases}\left(f_{1}\left(x_{1}, e\right), f_{2}\left(x_{2}, e\right)\right) & \text { if } e \in \Gamma\left(x_{1}\right) \cap \Gamma\left(x_{2}\right) \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- $\Gamma_{1 \times 2}\left(x_{1}, x_{2}\right)=\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right)$
- $\mathcal{L}\left(G_{1} \times G_{2}\right)=\mathcal{L}\left(G_{1}\right) \cap \mathcal{L}\left(G_{2}\right)$
- $\mathcal{L}_{m}\left(G_{1} \times G_{2}\right)=\mathcal{L}_{m}\left(G_{1}\right) \cap \mathcal{L}_{m}\left(G_{2}\right)$
- $G_{1} \times G_{2} \times G_{3}=\left(G_{1} \times G_{2}\right) \times G_{3}=G_{1} \times\left(G_{2} \times G_{3}\right)$

Product of automata

Example (Product)

Product of automata

Example (Product)

Parallel Composition of Automata

Definition (Parallel composition)

The parallel composition of G_{1} and G_{2} is the automaton

$$
G_{1} \| G_{2}=A c\left(X_{1} \times X_{2}, E_{1} \cup E_{2}, f,\left(x_{01}, x_{02}\right), X_{m 1} \times X_{m 2}\right)
$$

where

$$
f\left(\left(x_{1}, x_{2}\right), e\right)= \begin{cases}\left(f_{1}\left(x_{1}, e\right), f_{2}\left(x_{2}, e\right)\right) & \text { if } e \in \Gamma\left(x_{1}\right) \cap \Gamma\left(x_{2}\right) \\ \left(f_{1}\left(x_{1}, e\right), x_{2}\right) & \text { if } e \in \Gamma_{1}\left(x_{1}\right) \backslash E_{2} \\ \left(x_{1}, f_{2}\left(x_{2}, e\right)\right) & \text { if } e \in \Gamma_{2}\left(x_{2}\right) \backslash E_{1} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- $\Gamma_{1 \times 2}\left(x_{1}, x_{2}\right)=\left[\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right)\right] \cup\left[\Gamma_{2}\left(x_{2}\right) \backslash E_{1}\right] \cup\left[\Gamma_{1}\left(x_{1}\right) \backslash E_{2}\right]$

Parallel composition

- The two automata are synchronized on the common events $e \in E_{1} \cap E_{2}$ (can be executed simultaneously)
- Private events $e \in E_{2} \backslash E_{1}$ or $e \in E_{1} \backslash E_{2}$ can be executed whenever its possible (concurrently)
- If $E_{1}=E_{2}$, then $G_{1} \| G_{2}=G_{1} \times G_{2}$
- $\mathcal{L}\left(G_{1} \| G_{2}\right)=P_{1}^{-1}[\mathcal{L}(G 1)] \cap P_{2}^{-1}[\mathcal{L}(G 2)$
- $\mathcal{L}_{m}\left(G_{1} \| G_{2}\right)=P_{1}^{-1}\left[\mathcal{L}_{m}(G 1)\right] \cap P_{2}^{-1}\left[\mathcal{L}_{m}(G 2)\right.$
where $P_{i}:\left(E_{1} \cup E_{2}\right)^{*} \rightarrow E_{i}^{*}$ for $i=1,2$

Parallel Composition of Automata

Example (Parallel Composition)

Give the parallel composition of the following two automata!

Parallel Composition of Automata

Example (Parallel Composition)

Solution

Overview

(1) Languages

- Definitions
- Operations on languages
(2) Deterministic automata
- Languages represented by automata
- Generalizations
(3) Operations on Automata
- Unary Operations
- Composition Operations
(4) Observability and nondeterminism

Nondeterminism

Possible sources of nonterminism

- Stochastic transitions (model is not detailed enough)
- Unobservable events

Problem: The actual state of the automaton is unknown by knowing the sequence of observable events

Nondeterministic Automata

Definition (Nondeterministic automaton)

A nondeterministic automaton $G_{n d}$ is a quintuple

$$
G_{n d}=\left(X, E \cup\{\varepsilon\}, f_{n d}, x_{0}, X_{m}\right)
$$

where all the objects have the same interpretation as in the definition of deterministic automaton except
(1) $f_{n d}$ is a function $f_{n d}: X \times E \cup\{\varepsilon\} \rightarrow 2^{X}$, i.e. $f_{n d}(x, e) \subseteq X$ whenever it is defined.
(2) The initial state may itself be a set of states, $x_{0} \subseteq X$

Example (A simple nondeterministic automaton)

Motivating example

Example (Nondeterministic and deterministic automata)

Reachability function

ε-reachability function

$$
\begin{aligned}
& \varepsilon R(x)=\{p \in X: p \text { is reachable from } x \text { by } \varepsilon\} \\
& \varepsilon R(B)=\cup_{x \in B} \varepsilon R(x)
\end{aligned}
$$

Extended transition mapping

$$
\begin{aligned}
f_{n d}^{e x t}(x, \varepsilon) & =\varepsilon R(x) \\
f_{n d}^{e x x}(x, u e) & =\varepsilon R\left[\left\{z: z \in f_{n d}(y, e) \text { for some state } y \in f_{n d}^{e x t}(x, u)\right\}\right]
\end{aligned}
$$

Observer automata

Procedure of building an observer $\operatorname{Obs}\left(G_{n d}\right)$
Step 1: Define $x_{0, o b s}=\varepsilon R\left(x_{0}\right)$. Set $X_{o b s}=\left\{x_{0, o b s}\right\}$.
Step 2: for each $B \in X_{o b s}$ and $e \in E$

$$
f_{o b s}(B, e)=\varepsilon R\left(\left\{x \in X:\left(\exists x_{e} \in B\right)\left[x \in f_{n d}\left(x_{e}, e\right)\right]\right\}\right)
$$

Step 3: Repeat Step 2 until the accessible part of $\operatorname{Obs}\left(G_{n d}\right)$ has been constructed

Step 4: $X_{m, o b s}=\left\{B \in X_{o b s}: B \cup X_{m} \neq \emptyset\right\}$

- $\operatorname{Obs}\left(G_{n d}\right)$ is a deterministic automaton
- $\mathcal{L}\left(\operatorname{Obs}\left(G_{n d}\right)\right)=\mathcal{L}\left(G_{n d}\right)$
- $\mathcal{L}_{m}\left(\operatorname{Obs}\left(G_{n d}\right)\right)=\mathcal{L}_{m}\left(G_{n d}\right)$

Important in studying partially observed DES

Example

Example (Another example)

Partially observed DES

- ε-transitions were defined to describe unobservable events
- Let us define genuine events for this phenomenon: unobservable events $E=E_{u o} \cup E_{o}$ where $E_{u o} \cap E_{O}=\emptyset$

Definition (Unobservable reach)

The unobservable reach of state $x \in X$ denoted by $U R(x)$ is

$$
U R(x)=\left\{y \in X:\left(\exists t \in E_{u o}^{*}\right)[f(x, t)=y]\right\}
$$

The definition can be extended to sets of states $B \subseteq X$ by

$$
U R(B)=\cup_{x \in B} U R(x)
$$

Observer for automaton G with unobservable events

Let $G=\left(X, E, f, x_{0}, X_{m}\right)$ be a deterministic automaton and let $E=E_{u o} \cup E_{o}$. Then $\operatorname{Obs}(G)=\left(X_{o b s}, E_{o}, f_{o b s}, x_{0, o b s}, X_{m, o b s}\right)$ can be built as follows

Step 1: Define $x_{0, o b s}=U R\left(x_{0}\right)$
set $X_{m, o b s}=\left\{x_{0, o b s}\right\}$
Step 2: For each $B \in X_{o b s}$ and $e \in E_{o}$ define

$$
f_{o b s}(B, e)=U R\left(\left\{x \in X:\left(\exists x_{e} \in B\right)\left[x \in f\left(x_{e}, e\right)\right]\right\}\right)
$$

whenever $f\left(x_{e}, e\right)$ is defined for some $x_{e} \in B$
Step 3: Repeat Step 2 until the entire accessible part of $\operatorname{Obs}(G)$ has been constrcted
Step 4: $X_{m, o b s}=\left\{B \in X_{o b s}: B \cap X_{m} \neq \emptyset\right\}$

Observer with unobservable events

Example (Automaton with unobservable events)

