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Signals

Signals – 1

Signal:
time-varying (and/or spatial varying)
quantity
Examples

x : R+
0 7→ R, x(t) = e−t

y : N+
0 7→ R, y[n] = e−n

X : C 7→ C, X(s) = 1
s+1



Signals Classification of signals

Classification of signals

dimension of the independent variable
dimension of the signal
real-valued vs. complex-valued
continuous time vs. discrete time
continuous valued vs. discrete valued
bounded vs. unbounded
periodic vs. aperiodic
even vs. odd



Signals Special signals

Special signals – 1

Dirac-δ or unit impulse function∫ ∞
−∞

f(t)δ(t)dt = f(0)

where f : R+
0 7→ R arbitrary smooth (many

times continuously differentiable) function.
Consequence:∫ ∞

−∞
1 · δ(t)dt = 1

Physical meaning of the unit impulse:
density impulse ⇒ mass point



Signals Special signals

Special signals – 2

Unit step function

η(t) =

∫ t

−∞
δ(τ)dτ,

i.e.

η(t) =

{
0, if t < 0
1, if t ≥ 0

Exponential function

eat, a ∈ R

Complex exponential: a ∈ C, a = α+ jΩ

eat = eαt · ejΩt = eαt cos(Ωt) + jeαt sin(Ωt)



Signals Basic operations on signals

Basic operations on signals – 1

x(t) =

 x1(t)
...

xn(t)

 , y(t) =

 y1(t)
...

yn(t)


addition:
(x + y)(t) = x(t) + y(t), ∀t ∈ R+

0

multiplication by scalar:
(αx)(t) = αx(t) ∀t ∈ R+

0 , α ∈ R
scalar product:
〈x,y〉(t) = 〈x(t),y(t)〉 ∀t ∈ R+

0



Signals Basic operations on signals

Basic operations on signals – 2

time shift:
Tax(t) = x(t− a) ∀t ∈ R+

0 , a ∈ R
convolution: x, y : R+

0 7→ R

(x ∗ y)(t) =

∫ ∞
−∞

x(τ)y(t− τ)dτ, ∀t ≥ 0



Signals Basic operations on signals

Laplace transform

Definition

The Laplace transform of a function f(t) (i.e. f : R+ → R), is the
function F (s)

F (s) =

∫ ∞
0

f(t)e−stdt

where s = σ + iω. Alternative notation: L{f} instead of F

Definition
The inverse Laplace transform of a function of F (s)

f(t) = L−1{F}(t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
estF (s)ds

Why is it good for us?



Signals Basic operations on signals

Laplace transform properties

Most important Laplace-transform properties:
Property/function Time domain s domain

Linearity af(t) + bg(t) aF (s) + bF (s)
Derivative f ′(t) sF (s)− f(0)

Second derivative f ′′(t) s2F (s)− sf(0)− f ′(0)

Convolution
∫ t

0 f(τ)g(t− τ)dτ F (s) ·G(s)

unit impulse δ(t) 1
delayed impulse δ(t− τ) e−τs

unit step η(t) 1
s

exponential eαt 1
s−α
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Systems (and control) System

The concept of system

System
An aggregation or assemblage of things so combined by nature or man
as to form an integral or complex whole (Encyclopedia Americana).
A regularly interacting or interdependent group of items forming a
unified whole (Webster’s Dictionary).
A combination of components that act together to perform a function
not possible with any of the individual parts (IEEE Standard
Dictionary of Electrical and Electronic Terms).

consists of interacting components
associated with a function to perform
not always connected to objects and physical laws



Systems (and control) System

System

System (S): acts on signals
y = S[u]

inputs (u ∈ U) and outputs (y ∈ Y)
abstract operator (S : U → Y)



Systems (and control) Input-output mapping

Input-output modeling

Measurable variables
Data: measuring it for [t0, tf ]
Input variables can be manipulated

{u1(t), u2(t), . . . , up(t)} t0 ≥ t ≥ tf

Output variables can be directly measured

{y1(t), y2(t), . . . , ym(t)} t0 ≥ t ≥ tf

Notation:

u(t) = [u1(t), u2(t), . . . , up(t)]T

y(t) = [y1(t), y2(t), . . . , ym(t)]T

Mathematical relationship

y1(t) = g1(u1(t), . . . , up(t))
...

ym(t) = gm(u1(t), . . . , up(t))

 y = g(u)



Systems (and control) Input-output mapping

Examples

Example (Voltage divider)

v = V
r

r +R

v = i R

Example (Spring-mass system)

mÿ = −k y

u(t) =

{
u0 t = 0
0 otherwise



Systems (and control) Input-output mapping

Static and Dynamic Systems

Static system The output y(t) is independent of the past inputs
(u(τ), τ < t)

algebraic equations
memory not needed
e.g. voltage divider

Dynamic system The output y(t) dependens on the past inputs
(u(τ), τ < t) (difference equations)

difference equations
memory needed
e.g. spring-mass system
much more interesting



Systems (and control) Input-output mapping

Time-Varying and Time-Invariant Systems

Is the output always the same when the same input is applied?
Time-varying y = g(u, t)

(some) parameters depend on times
Time-invariant y = g(u)

constant parameters



Systems (and control) State

The concept of state

Example (Spring-mass system)

Suppose, that
u(t) is known for t ≥ t0
output y(t) is observed at some t = t1 ≥ t0

Is the above information enought to uniquely predict all future output
y(t), t > t1?

Definition (State)

The state of a system at time t0 is the information required at t0 s.t. the
output y(t), ∀t > t0 is uniquely determined from this information and
from u(t), t ≥ t0.

State variable: x(t) = [x1(t), . . . , xn(t)]T



Systems (and control) State space

State Space

Definition (State equations)

The set of equations required to specify the state x(t) for all t ≥ t0 given
x(t0)and the function u(t), t ≥ t0, are called state equations.

Definition (State space)

The state space of a system, denoted by X , is the set of all possible values
that the state may take.

ẋ(t) = f(x(t),u(t), t), x(t0) = x0 (state equation)
y(t) = g(x(t),u(t), t) (output equation)



Systems (and control) State space

Linear and Nonlinear Systems

Definition (Linear mapping)

The function g is said to be linear if and only if

g(α1u1 + α2u2) = α1g(u1) + α2g(u2)

Linear state space model

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)

Linear time-invariant state space model

ẋ(t) = Ax(t) + Bu(t)

y(t) = C(t)x(t) + Du(t)



Systems (and control) State space

Continuous-State and Discrete-State Systems

Continuous The state space X is a continuum
Discrete The state space X is a discrete set
Hybrid Some variables are dicrete, some are continuous



Systems (and control) Discrete-Time Systems

Discrete-Time Systems

Why?
Digital computers operate in a discrete-time fashion, it has an internal
discrete-time clock.
Many differential equations of continuous-time models can only be
solved numerically using a computer.
Some systems are inherently discrete-time, e.g. economic models
based on quarterly recorded data, etc.

Important: Discretization of time does not imply the discretization of the
state space!



Systems (and control) Discrete-Time Systems

Discrete-time state space models

Nonlinear

x(k + 1) = f(x(k), u(k), k), x(0) = x0

y(k) = g(x(k), u(k), k)

Linear

x(k + 1) = A(k)x(k) +B(k)u(k), x(0) = x0

y(k) = C(k)x(k) +D(k)u(k)

Linear time-invariant

x(k + 1) = Ax(k) +Bu(k), x(0) = x0

y(k) = Cx(k) +Du(k)



Systems (and control) Discrete-Time Systems

Basic System properties

SISO/MIMO
Single Input-Single Output, or Multiple Input-Multiple Output system
Continuous time (CT) vd discrete-time (DT) systems
Continuous-time system: time set T ⊆ R
Discrete-time system: time set T = {. . . , t−1, t0, t1, t2, . . . }
Causality
The present depends only on the past, not on the future.
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Discrete event systems Event

The Concept of Event

Occurs instantaneously
Causes state transition

Example (Random walk)

A random step is taken in one of the
four directions
State is the position on the plane
State space

X = {(i, j) : i, j = . . . ,−1, 0, 1, . . . }

Event set

E = {N,S,W,E}



Discrete event systems Time-driven and event-driven systems

Time-driven and event-driven systems

Time-driven At every clock tick an event e is to be selected from E. The
state transitions are synchronized by the clock. The clock
alone is responsible for any state transition.

Event-driven At various time instants some event e occurs. Every event
e ∈ E defines a distinct process through which the time
instants when e occors are determined. State transitions are
the results of combining of these asynchronous and
concurrent processes.
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