Discrete and Continuous Dynamical Systems

Attila Magyar

University if Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

(日) (四) (王) (王) (王)

Discrete and continuous dynamical systems: Introduction to signals and systems

February 12, 2019

Signals

◆□▶ ◆@▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Overview

Signals

- Classification of signals
- Special signals
- Basic operations on signals

Systems (and control)

- System
- Input-output mapping
- State
- State space
- Discrete-Time Systems

Discrete event systems

- Event
- Time-driven and event-driven systems

Signals

Signals -1

Signal:

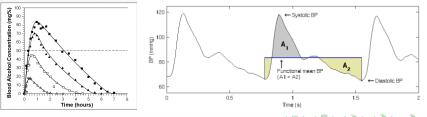
time-varying (and/or spatial varying) quantity

Examples

•
$$x : \mathbb{R}_0^+ \mapsto \mathbb{R}, \quad x(t) = e^-$$

•
$$y: \mathbb{N}_0^+ \mapsto \mathbb{R}, \quad y[n] = e^{-n}$$

•
$$X: \mathbb{C} \mapsto \mathbb{C}, \quad X(s) = \frac{1}{s+1}$$



590

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

Classification of signals

- dimension of the independent variable
- dimension of the signal
- real-valued vs. complex-valued
- continuous time vs. discrete time
- continuous valued vs. discrete valued
- bounded vs. unbounded
- periodic vs. aperiodic
- even vs. odd

Special signals – 1

$\mathsf{Dirac}\text{-}\delta$ or unit impulse function

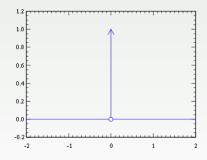
$$\int_{-\infty}^{\infty} f(t) \delta(t) dt = f(0)$$

where $f : \mathbb{R}_0^+ \mapsto \mathbb{R}$ arbitrary smooth (many times continuously differentiable) function. Consequence:

$$\int_{-\infty}^{\infty} 1 \cdot \delta(t) dt = 1$$

Physical meaning of the unit impulse:

 $\bullet \ \text{density impulse} \Rightarrow \text{mass point}$



・ロト ・ 同ト ・ ヨト ・ ヨト

Special signals – 2

Unit step function

$$\eta(t) = \int_{-\infty}^t \delta(\tau) d\tau,$$

i.e.

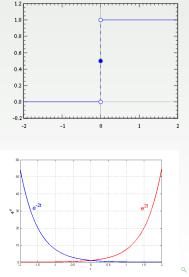
$$\eta(t) = \begin{cases} 0, \text{ if } t < 0\\ 1, \text{ if } t \ge 0 \end{cases}$$

Exponential function

$$e^{at}, \quad a \in \mathbb{R}$$

Complex exponential: $a \in \mathbb{C}, \ a = \alpha + j\Omega$

$$e^{at} = e^{\alpha t} \cdot e^{j\Omega t} = e^{\alpha t} \cos(\Omega t) + j e^{\alpha t} \sin(\Omega t)$$



うして ふゆ く 山 マ ふ し マ し く し マ

Basic operations on signals -1

$$\boldsymbol{x}(t) = \left[egin{array}{c} x_1(t) \\ dots \\ x_n(t) \end{array}
ight], \quad \boldsymbol{y}(t) = \left[egin{array}{c} y_1(t) \\ dots \\ y_n(t) \end{array}
ight]$$

addition:

$$(\boldsymbol{x} + \boldsymbol{y})(t) = \boldsymbol{x}(t) + \boldsymbol{y}(t), \quad \forall t \in \mathbb{R}_0^+$$

- multiplication by scalar: $(\alpha \boldsymbol{x})(t) = \alpha \boldsymbol{x}(t) \quad \forall t \in \mathbb{R}_0^+, \ \alpha \in \mathbb{R}$
- scalar product:

 $\langle \boldsymbol{x}, \boldsymbol{y} \rangle(t) = \langle \boldsymbol{x}(t), \boldsymbol{y}(t) \rangle \quad \forall t \in \mathbb{R}_0^+$

Basic operations on signals -2

• time shift:

$$\mathbf{T}_a x(t) = x(t-a) \quad \forall t \in \mathbb{R}_0^+, a \in \mathbb{R}$$

• convolution: $x, y: \mathbb{R}^+_0 \mapsto \mathbb{R}$

$$(x*y)(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau, \quad \forall t \ge 0$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣

Laplace transform

Definition

The Laplace transform of a function f(t) (i.e. $f : \mathbb{R}^+ \to \mathbb{R}$), is the function F(s)

$$F(s) = \int_0^\infty f(t)e^{-st} \mathrm{d}t$$

where $s = \sigma + i\omega$. Alternative notation: $\mathcal{L}{f}$ instead of F

Definition

The inverse Laplace transform of a function of F(s)

$$f(t) = \mathcal{L}^{-1}\{F\}(t) = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{\gamma - iT}^{\gamma + iT} e^{st} F(s) ds$$

ション ふゆ アメリア メリア しょうくしゃ

Why is it good for us?

Laplace transform properties

Most important Laplace-transform properties:

Property/function	Time domain	s domain
Linearity	af(t) + bg(t)	aF(s) + bF(s)
Derivative	f'(t)	sF(s) - f(0)
Second derivative	f''(t)	$s^2F(s) - sf(0) - f'(0)$
Convolution	$\int_0^t f(\tau) g(t-\tau) d\tau$	$F(s) \cdot G(s)$
unit impulse	$\delta(t)$	1
delayed impulse	$\delta(t- au)$	$e^{-\tau s}$
unit step	$\eta(t)$	1
		3
exponential	$e^{lpha t}$	$\frac{1}{s-\alpha}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

Overview

Signals

- Classification of signals
- Special signals
- Basic operations on signals

2 Systems (and control)

- System
- Input-output mapping
- State
- State space
- Discrete-Time Systems

Discrete event systems

- Event
- Time-driven and event-driven systems

イロト 不得 トイヨト イヨト 二日

The concept of system

System

- An aggregation or assemblage of things so combined by nature or man as to form an integral or complex whole (*Encyclopedia Americana*).
- A regularly interacting or interdependent group of items forming a unified whole (*Webster's Dictionary*).
- A combination of components that act together to perform a function not possible with any of the individual parts (*IEEE Standard Dictionary of Electrical and Electronic Terms*).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

- consists of interacting components
- associated with a function to perform
- not always connected to objects and physical laws

System

System (S): acts on signals

$$y = \mathbf{S}[u]$$

- inputs $(u \in \mathcal{U})$ and outputs $(y \in \mathcal{Y})$
- abstract operator ($\mathbf{S}: \mathcal{U}
 ightarrow \mathcal{Y})$

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のへで

Input-output modeling

- Measurable variables
 - Data: measuring it for $[t_0, t_f]$
 - Input variables can be manipulated

 $\{u_1(t), u_2(t), \dots, u_p(t)\} \quad t_0 \ge t \ge t_f$

• Output variables can be directly measured

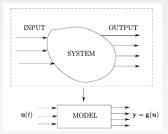
 $\{y_1(t), y_2(t), \dots, y_m(t)\} \quad t_0 \ge t \ge t_f$

• Notation:

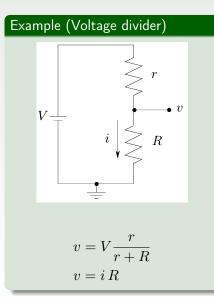
 $\boldsymbol{u}(t) = [u_1(t), u_2(t), \dots, u_p(t)]^T$ $\boldsymbol{y}(t) = [y_1(t), y_2(t), \dots, y_m(t)]^T$

• Mathematical relationship

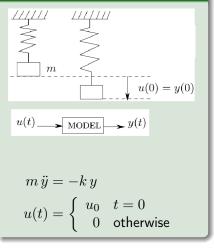
$$\begin{array}{rcl} y_1(t) &=& g_1(u_1(t), \ \dots, u_p(t)) \\ &\vdots \\ y_m(t) &=& g_m(u_1(t), \ \dots, u_p(t)) \\ \end{array} \right\} \begin{array}{rcl} y = g(u) \\ & & \\ & & \\ \end{array}$$



Examples



Example (Spring-mass system)



Static and Dynamic Systems

Static system The output y(t) is independent of the past inputs ($u(\tau), \ \tau < t$)

- algebraic equations
- memory not needed
- e.g. voltage divider

Dynamic system The output $\boldsymbol{y}(t)$ dependens on the past inputs

 $(u(au), \ au < t)$ (difference equations)

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のへで

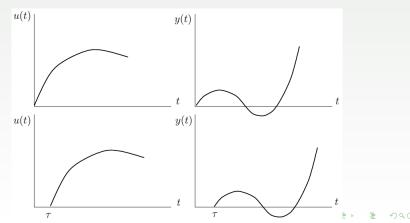
- difference equations
- memory needed
- e.g. spring-mass system
- much more interesting

Systems (and control) Input-output mapping

Time-Varying and Time-Invariant Systems

Is the output always the same when the same input is applied? Time-varying y = g(u, t)• (some) parameters depend on times Time-invariant y = g(u)

constant parameters



State

The concept of state

Example (Spring-mass system)

Suppose, that

- u(t) is known for $t \ge t_0$
- output y(t) is observed at some $t = t_1 \ge t_0$

Is the above information enought to uniquely predict all future output $y(t), t > t_1$?

Definition (State)

The state of a system at time t_0 is the information required at t_0 s.t. the output y(t), $\forall t > t_0$ is uniquely determined from this information and from $\boldsymbol{u}(t), t \geq t_0$.

うして ふゆ く 山 マ ふ し マ し く し マ

State variable: $\boldsymbol{x}(t) = [x_1(t), \dots, x_n(t)]^T$

State Space

Definition (State equations)

The set of equations required to specify the state $\boldsymbol{x}(t)$ for all $t \ge t_0$ given $\boldsymbol{x}(t_0)$ and the function $\boldsymbol{u}(t), t \ge t_0$, are called state equations.

Definition (State space)

The state space of a system, denoted by \mathcal{X} , is the set of all possible values that the state may take.

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t), \quad \boldsymbol{x}(t_0) = \boldsymbol{x_0}$$
 (state equation)
 $\boldsymbol{y}(t) = \boldsymbol{g}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)$ (output equation)

 $\mathbf{u}(t) \xrightarrow{\mathbf{\dot{x}}} \mathbf{f}(\mathbf{x}, \mathbf{u}, t) \xrightarrow{\mathbf{\dot{y}}} \mathbf{y} = \mathbf{g}(\mathbf{x}, \mathbf{u}, t)$

State space

Linear and Nonlinear Systems

Definition (Linear mapping)

The function g is said to be linear if and only if

$$\boldsymbol{g}(\alpha_1\boldsymbol{u}_1+\alpha_2\boldsymbol{u}_2)=\alpha_1\boldsymbol{g}(\boldsymbol{u}_1)+\alpha_2\boldsymbol{g}(\boldsymbol{u}_2)$$

Linear state space model

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}(t)\boldsymbol{x}(t) + \boldsymbol{B}(t)\boldsymbol{u}(t)$$
$$\boldsymbol{y}(t) = \boldsymbol{C}(t)\boldsymbol{x}(t) + \boldsymbol{D}(t)\boldsymbol{u}(t)$$

Linear time-invariant state space model

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$
$$\boldsymbol{y}(t) = \boldsymbol{C}(t)\boldsymbol{x}(t) + \boldsymbol{D}\boldsymbol{u}(t)$$

うして ふゆ く 山 マ ふ し マ し く し マ

Systems (and control) State space

Continuous-State and Discrete-State Systems

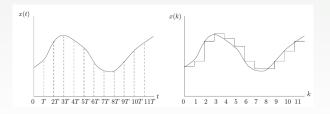
Continuous The state space \mathcal{X} is a continuum Discrete The state space \mathcal{X} is a discrete set Hybrid Some variables are dicrete, some are continuous

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のへで

Discrete-Time Systems

Why?

- Digital computers operate in a discrete-time fashion, it has an internal discrete-time clock.
- Many differential equations of continuous-time models can only be solved numerically using a computer.
- Some systems are inherently discrete-time, e.g. economic models based on quarterly recorded data, etc.



Important: Discretization of time does not imply the discretization of the state space! ・ロト ・ 同ト ・ ヨト ・ ヨト

Discrete-time state space models

• Nonlinear

$$\begin{aligned} x(k+1) &= f(x(k), u(k), k), & x(0) = x_0 \\ y(k) &= g(x(k), u(k), k) \end{aligned}$$

• Linear

$$\begin{aligned} x(k+1) &= A(k)x(k) + B(k)u(k), & x(0) = x_0 \\ y(k) &= C(k)x(k) + D(k)u(k) \end{aligned}$$

• Linear time-invariant

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k), \qquad x(0) = x_0 \\ y(k) &= Cx(k) + Du(k) \end{aligned}$$

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲臣 ▶ □ 臣 □ の � @

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のへで

Basic System properties

• SISO/MIMO

Single Input-Single Output, or Multiple Input-Multiple Output system

• Continuous time (CT) vd discrete-time (DT) systems Continuous-time system: time set $\mathcal{T} \subseteq \mathbb{R}$ Discrete-time system: time set $\mathcal{T} = \{\dots, t_{-1}, t_0, t_1, t_2, \dots\}$

Causality

The present depends only on the past, not on the future.

Overview

Signals

- Classification of signals
- Special signals
- Basic operations on signals

Systems (and control)

- System
- Input-output mapping
- State
- State space
- Discrete-Time Systems

3 Discrete event systems

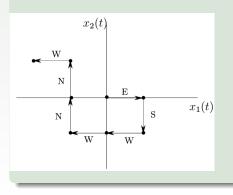
- Event
- Time-driven and event-driven systems

Event

The Concept of Event

- Occurs instantaneously
- Causes state transition

Example (Random walk)



- A random step is taken in one of the four directions
- State is the position on the plane
- State space

$$X = \{(i, j) : i, j = \dots, -1, 0, 1, \dots\}$$

• Event set

$$E = \{N, S, W, E\}$$

ъ

ъ

200

Time-driven and event-driven systems

- Time-driven At every clock tick an event e is to be selected from E. The state transitions are synchronized by the clock. The clock alone is responsible for any state transition.
- Event-driven At various time instants some event e occurs. Every event $e \in E$ defines a distinct process through which the time instants when e occors are determined. State transitions are the results of combining of these asynchronous and concurrent processes.

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のへで