# Discrete and Continuous Dynamical Systems 

Attila Magyar

University if Pannonia<br>Faculty of Information Technology<br>Department of Electrical Engineering and Information Systems



# Discrete and continuous dynamical systems： Introduction to signals and systems 

February 12， 2019

## Overview

(1) Signals

- Classification of signals
- Special signals
- Basic operations on signals
(2) Systems (and control)
- System
- Input-output mapping
- State
- State space
- Discrete-Time Systems
(3) Discrete event systems
- Event
- Time-driven and event-driven systems


## Signals - 1

## Signal:

time-varying (and/or spatial varying) quantity

## Examples

- $x: \mathbb{R}_{0}^{+} \mapsto \mathbb{R}, \quad x(t)=e^{-t}$
- $y: \mathbb{N}_{0}^{+} \mapsto \mathbb{R}, \quad y[n]=e^{-n}$
- $X: \mathbb{C} \mapsto \mathbb{C}, \quad X(s)=\frac{1}{s+1}$




## Classification of signals

- dimension of the independent variable
- dimension of the signal
- real-valued vs. complex-valued
- continuous time vs. discrete time
- continuous valued vs. discrete valued
- bounded vs. unbounded
- periodic vs. aperiodic
- even vs. odd


## Special signals - 1

Dirac- $\delta$ or unit impulse function

$$
\int_{-\infty}^{\infty} f(t) \delta(t) d t=f(0)
$$

where $f: \mathbb{R}_{0}^{+} \mapsto \mathbb{R}$ arbitrary smooth (many times continuously differentiable) function. Consequence:

$$
\int_{-\infty}^{\infty} 1 \cdot \delta(t) d t=1
$$

Physical meaning of the unit impulse:

- density impulse $\Rightarrow$ mass point


## Special signals - 2

Unit step function

$$
\eta(t)=\int_{-\infty}^{t} \delta(\tau) d \tau
$$

i.e.

$$
\eta(t)= \begin{cases}0, & \text { if } t<0 \\ 1, & \text { if } t \geq 0\end{cases}
$$

Exponential function


$$
e^{a t}, \quad a \in \mathbb{R}
$$

Complex exponential: $a \in \mathbb{C}, a=\alpha+\mathrm{j} \Omega$
$e^{a t}=e^{\alpha t} \cdot e^{\mathrm{j} \Omega t}=e^{\alpha t} \cos (\Omega t)+\mathrm{j} e^{\alpha t} \sin (\Omega t)$


## Basic operations on signals - 1

$$
\boldsymbol{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right], \quad \boldsymbol{y}(t)=\left[\begin{array}{c}
y_{1}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right]
$$

- addition:

$$
(\boldsymbol{x}+\boldsymbol{y})(t)=\boldsymbol{x}(t)+\boldsymbol{y}(t), \quad \forall t \in \mathbb{R}_{0}^{+}
$$

- multiplication by scalar:

$$
(\alpha \boldsymbol{x})(t)=\alpha \boldsymbol{x}(t) \quad \forall t \in \mathbb{R}_{0}^{+}, \alpha \in \mathbb{R}
$$

- scalar product:

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle(t)=\langle\boldsymbol{x}(t), \boldsymbol{y}(t)\rangle \quad \forall t \in \mathbb{R}_{0}^{+}
$$

## Basic operations on signals - 2

- time shift:

$$
\mathbf{T}_{a} x(t)=x(t-a) \quad \forall t \in \mathbb{R}_{0}^{+}, a \in \mathbb{R}
$$

- convolution: $x, y: \mathbb{R}_{0}^{+} \mapsto \mathbb{R}$

$$
(x * y)(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau, \quad \forall t \geq 0
$$

## Laplace transform

## Definition

The Laplace transform of a function $f(t)$ (i.e. $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ ), is the function $F(s)$

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t
$$

where $s=\sigma+\mathrm{i} \omega$. Alternative notation: $\mathcal{L}\{f\}$ instead of $F$

## Definition

The inverse Laplace transform of a function of $F(s)$

$$
f(t)=\mathcal{L}^{-1}\{F\}(t)=\frac{1}{2 \pi \mathrm{i}} \lim _{T \rightarrow \infty} \int_{\gamma-\mathrm{i} T}^{\gamma+\mathrm{i} T} e^{s t} F(s) \mathrm{d} s
$$

Why is it good for us?

## Laplace transform properties

Most important Laplace-transform properties:

| Property/function | Time domain | $s$ domain |
| :---: | :---: | :---: |
| Linearity | $a f(t)+b g(t)$ | $a F(s)+b F(s)$ |
| Derivative | $f^{\prime}(t)$ | $s F(s)-f(0)$ |
| Second derivative | $f^{\prime \prime}(t)$ | $s^{2} F(s)-s f(0)-f^{\prime}(0)$ |
| Convolution | $\int_{0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau$ | $F(s) \cdot G(s)$ |
| unit impulse | $\delta(t)$ | 1 |
| delayed impulse | $\delta(t-\tau)$ | $e^{-\tau s}$ |
| unit step | $\eta(t)$ | $\frac{1}{s}$ |
|  |  | $\frac{1}{s-\alpha}$ |

## Overview

(1) Signals

- Classification of signals
- Special signals
- Basic operations on signals
(2) Systems (and control)
- System
- Input-output mapping
- State
- State space
- Discrete-Time Systems
(3) Discrete event systems
- Event
- Time-driven and event-driven systems


## The concept of system

## System

- An aggregation or assemblage of things so combined by nature or man as to form an integral or complex whole (Encyclopedia Americana).
- A regularly interacting or interdependent group of items forming a unified whole (Webster's Dictionary).
- A combination of components that act together to perform a function not possible with any of the individual parts (IEEE Standard Dictionary of Electrical and Electronic Terms).
- consists of interacting components
- associated with a function to perform
- not always connected to objects and physical laws


## System

System (S): acts on signals

$$
y=\mathbf{S}[u]
$$

- inputs $(u \in \mathcal{U})$ and outputs $(y \in \mathcal{Y})$
- abstract operator $(\mathbf{S}: \mathcal{U} \rightarrow \mathcal{Y})$



## Input-output modeling

- Measurable variables
- Data: measuring it for $\left[t_{0}, t_{f}\right]$
- Input variables can be manipulated

$$
\left\{u_{1}(t), u_{2}(t), \ldots, u_{p}(t)\right\} \quad t_{0} \geq t \geq t_{f}
$$

- Output variables can be directly measured

$$
\left\{y_{1}(t), y_{2}(t), \ldots, y_{m}(t)\right\} \quad t_{0} \geq t \geq t_{f}
$$

- Notation:


$$
\begin{aligned}
\boldsymbol{u}(t) & =\left[u_{1}(t), u_{2}(t), \ldots, u_{p}(t)\right]^{T} \\
\boldsymbol{y}(t) & =\left[y_{1}(t), y_{2}(t), \ldots, y_{m}(t)\right]^{T}
\end{aligned}
$$

- Mathematical relationship

$$
\left.\begin{array}{rl}
y_{1}(t) & =g_{1}\left(u_{1}(t), \ldots, u_{p}(t)\right) \\
\vdots & \\
y_{m}(t) & =g_{m}\left(u_{1}(t), \ldots, u_{p}(t)\right)
\end{array}\right\} \boldsymbol{y}=\boldsymbol{g}(\boldsymbol{u})
$$

## Examples

## Example (Voltage divider)



$$
\begin{aligned}
& v=V \frac{r}{r+R} \\
& v=i R
\end{aligned}
$$

## Example (Spring-mass system)



$$
u(t) \longrightarrow \mathrm{MODEL} \longrightarrow y(t)
$$

$$
\begin{aligned}
& m \ddot{y}=-k y \\
& u(t)=\left\{\begin{array}{rl}
u_{0} & t=0 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

## Static and Dynamic Systems

Static system The output $y(t)$ is independent of the past inputs $(u(\tau), \tau<t)$

- algebraic equations
- memory not needed
- e.g. voltage divider

Dynamic system The output $y(t)$ dependens on the past inputs
( $u(\tau), \tau<t$ ) (difference equations)

- difference equations
- memory needed
- e.g. spring-mass system
- much more interesting


## Time-Varying and Time-Invariant Systems

Is the output always the same when the same input is applied? Time-varying $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{u}, t)$

- (some) parameters depend on times

Time-invariant $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{u})$

- constant parameters



## The concept of state

## Example (Spring-mass system)

Suppose, that

- $u(t)$ is known for $t \geq t_{0}$
- output $y(t)$ is observed at some $t=t_{1} \geq t_{0}$

Is the above information enought to uniquely predict all future output $y(t), t>t_{1}$ ?

## Definition (State)

The state of a system at time $t_{0}$ is the information required at $t_{0}$ s.t. the output $\boldsymbol{y}(t), \forall t>t_{0}$ is uniquely determined from this information and from $\boldsymbol{u}(t), t \geq t_{0}$.

State variable: $\boldsymbol{x}(t)=\left[x_{1}(t), \ldots, x_{n}(t)\right]^{T}$

## State Space

## Definition (State equations)

The set of equations required to specify the state $\boldsymbol{x}(t)$ for all $t \geq t_{0}$ given $\boldsymbol{x}\left(t_{0}\right)$ and the function $\boldsymbol{u}(t), t \geq t_{0}$, are called state equations.

## Definition (State space)

The state space of a system, denoted by $\mathcal{X}$, is the set of all possible values that the state may take.

$$
\begin{array}{ll}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t), \quad \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{x}_{\mathbf{0}} \quad \text { (state equation) } \\
\boldsymbol{y}(t)=\boldsymbol{g}(\boldsymbol{x}(t), \boldsymbol{u}(t), t) & \text { (output equation) }
\end{array}
$$



## Linear and Nonlinear Systems

## Definition (Linear mapping)

The function $\boldsymbol{g}$ is said to be linear if and only if

$$
\boldsymbol{g}\left(\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}\right)=\alpha_{1} \boldsymbol{g}\left(\boldsymbol{u}_{1}\right)+\alpha_{2} \boldsymbol{g}\left(\boldsymbol{u}_{2}\right)
$$

Linear state space model

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A}(t) \boldsymbol{x}(t)+\boldsymbol{B}(t) \boldsymbol{u}(t) \\
\boldsymbol{y}(t) & =\boldsymbol{C}(t) \boldsymbol{x}(t)+\boldsymbol{D}(t) \boldsymbol{u}(t)
\end{aligned}
$$

Linear time-invariant state space model

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t) \\
& \boldsymbol{y}(t)=\boldsymbol{C}(t) \boldsymbol{x}(t)+\boldsymbol{D} \boldsymbol{u}(t)
\end{aligned}
$$

## Continuous-State and Discrete-State Systems

Continuous The state space $\mathcal{X}$ is a continuum
Discrete The state space $\mathcal{X}$ is a discrete set
Hybrid Some variables are dicrete, some are continuous

## Discrete-Time Systems

Why?

- Digital computers operate in a discrete-time fashion, it has an internal discrete-time clock.
- Many differential equations of continuous-time models can only be solved numerically using a computer.
- Some systems are inherently discrete-time, e.g. economic models based on quarterly recorded data, etc.



Important: Discretization of time does not imply the discretization of the state space!

## Discrete-time state space models

- Nonlinear

$$
\begin{array}{rlr}
x(k+1) & =f(x(k), u(k), k), & x(0)=x_{0} \\
y(k) & =g(x(k), u(k), k) &
\end{array}
$$

- Linear

$$
\begin{array}{rlr}
x(k+1) & =A(k) x(k)+B(k) u(k), & x(0)=x_{0} \\
y(k) & =C(k) x(k)+D(k) u(k) &
\end{array}
$$

- Linear time-invariant

$$
\begin{array}{rlr}
x(k+1) & =A x(k)+B u(k), & x(0)=x_{0} \\
y(k) & =C x(k)+D u(k) &
\end{array}
$$

## Basic System properties

- SISO/MIMO

Single Input-Single Output, or Multiple Input-Multiple Output system

- Continuous time (CT) vd discrete-time (DT) systems Continuous-time system: time set $\mathcal{T} \subseteq \mathbb{R}$ Discrete-time system: time set $\mathcal{T}=\left\{\ldots, t_{-1}, t_{0}, t_{1}, t_{2}, \ldots\right\}$
- Causality

The present depends only on the past, not on the future.

## Overview

(1) Signals

- Classification of signals
- Special signals
- Basic operations on signals
(2) Systems (and contro')
- System
- Input-output mapping
- State
- State space
- Discrete-Time Systems
(3) Discrete event systems
- Event
- Time-driven and event-driven systems


## The Concept of Event

- Occurs instantaneously
- Causes state transition


## Example (Random walk)



- A random step is taken in one of the four directions
- State is the position on the plane
- State space

$$
X=\{(i, j): i, j=\ldots,-1,0,1, \ldots\}
$$

- Event set

$$
E=\{N, S, W, E\}
$$

## Time-driven and event-driven systems

Time-driven At every clock tick an event $e$ is to be selected from $E$. The state transitions are synchronized by the clock. The clock alone is responsible for any state transition.
Event-driven At various time instants some event $e$ occurs. Every event $e \in E$ defines a distinct process through which the time instants when $e$ occors are determined. State transitions are the results of combining of these asynchronous and concurrent processes.

