Digital Signal Processing Introduction

Gergely Tuboly, PhD

Assistant Professor

University of Pannonia

Department of Electrical Engineering and Information Systems

tuboly.gergely@virt.uni-pannon.hu

About the Course

- Structure: 2 theoretical and 2 practical (seminar) classes
- Attendance: optional for the theoretical part and mandatory for the seminars
- Requirements:
 - Signature: attendance on the seminars
 - Final mark: at least 50% result of the written exam

Website

 http://virt.uni-pannon.hu/index.php/hu/oktatas/tantargyak/284digitalis-jelfeldolgozas

What is Digital Signal Processing?

- Necessary "toolkit" of today's technology
- Involved in all cases when processes of the outside world are to be analyzed by computers
- Some of the many fields it is used in:
 - Telecommunication (phone, radio, TV, computer networks Internet)
 - Recording, playing and manimpulating audio signals (sound, music)
 - Motion detection
 - Seismology
 - Biomedical engineering
 - ECG, EEG, Ultrasound, CT, MRI, etc.

A Typical DSP System

- Input: analog signal
- A/D conversion (analog → digital signal)
- Signal processing (digital signal)
- D/A conversion (digital → analog signal)
- Output: analog signal

Definition(s) of Signal

- Information about the behavior or attributes of a phenomenon
- A function of time: e.g. f(t)
- Input and output of a system

Categories of Signal

- There are many categorizations, e.g.:
 - Analog: continous both in time and amplitude
 - Continous-time (CT): continous in time
 - Discrete-time (DT): discrete in time
 - Digital: discrete both in time and amplitude

Analog

Discrete-time

Continous-time

Deterministic Signals

- Deterministic: there is no uncertainty in it
 - Periodic: there is a constant C such that f(t) = f(t + C)
 - Sinusoidal: can be described as $f(t) = A \sin(2\pi f t + \theta)$, where A is the amplitude, f is the frequency (in Hz) and θ is the phase (in radian)
 - Complex (general) periodic: other periodic (non-sinusoidal) signals
 - Non-periodic
 - "Almost" periodic (quasiperiodic): not exactly periodic, but "similar" $f(t) \approx f(t + C(t)), \qquad |f(t) f(t + C(t))| < \varepsilon$
 - Transient: finite, "short-lived" signals: $\int_{-\infty}^{+\infty} f^2(t) dt < \infty$

Transient

Random Signals

- Random: it varies in a stochastic way
 - Stationary: the statistical properties (expected value and standard deviation) are time invariant
 - Ergodic: the statistical properties along time and observations are the same
 - Non-ergodic
 - Non-stationary

Stationary, ergodic

Non-stationary

2020.02.15.

Stochastic Processes – Examples

- X1: stochastic
 process choosing
 always D6 and
 rolling 100 times
- X2: choosing D4 or D6 with 50% probability and rolling 100 times