Digital Signal Processing Signals and Systems

Gergely Tuboly, PhD

Assistant Professor

University of Pannonia

Department of Electrical Engineering and Information Systems

tuboly.gergely@virt.uni-pannon.hu

Special Signals - Dirac delta

- Reminder: signals are described as functions of time
- Dirac delta function:

$$\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

- Difficult to understand
- Infinitesimally narrow and infinitely tall at 0
- Represents the unit impulse in the analog case

Special Signals – Kronecker delta

Kronecker delta (unit impulse) function:

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$
$$\sum_{i=0}^{\infty} \delta[n] = 1$$

- Easy to understand
- Represents the unit impulse in the discrete case

Special Signals – Heaviside function

- Unit step function
- Analog case:

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

Its value at 0 is a mystery...

Discrete case:

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

Definition(s) of System

- Any process that produces an output (signal) in response to an input (signal)
- Part of the world which interacts with the outside world by input(s) and output(s)
- Input, transformation and output
- Systems can be illustrated by block diagrams

Categories of System

- Many categorizations (similarly to signals), e.g.:
 - Analog: continous both in time and amplitude
 - Continous-time (CT): continous in time
 - Discrete-time (DT): discrete in time
 - Digital: discrete both in time and amplitude

Continous and Discrete System

- Stability
 - Stable
 - Non-stable
- Linearity
 - Linear
 - Non-linear
- Behavior over time
 - Time-variant
 - Time-invariant

- Causality
 - Causal
 - Non-causal
 - Memoryless
- Number of inputs
 - SISO (Single Input Single Output)
 - MIMO (Multiple Input Multiple Output)
 - SIMO, MISO

Stability

Local stable

- If the input varies to a certain degree, the system returns to equilibrium after a while (with a finite distance from the original point)
- BIBO (bounded input bounded output
 - For any bounded input $|x(t)| < \infty$ the output of the system is also bounded $|y(t)| < \infty$
- Local asymptotically stable
 - If the input varies to a certain degree, the system returns to the original equilibrium point
- Global asymptotically stable
 - if the input varies to whatever degree, the system returns to the original equilibrium point

Stability – Examples

- Local stable
 - An orb on a table with a finite surface
- BIBO

- An orb on a table with an infinite surface
- Local asymptotically stable
 - An orb in a finite bowl
- Global asymptotically stable
 - An orb in an infinite bowl
- A system with many equilibrium points:

Linearity and Time Invariance

Linearity

•
$$x(t) = a_1 x_1(t) + a_2 x_2(t) + \dots \leftrightarrow y(t) = a_1 y_1(t) + a_2 y_2(t) + \dots$$

- Superposition
- Divide and conquer strategy

Time invariance

•
$$x(t) = x_1(t - T) \rightarrow y(t) = y_1(t - T)$$

 If a delay appears in the input, the same delay will appear in the output

Causality

- Causal: the output depends only on the current or past values of the input, e.g.
 - y[n] = x[n] + x[n-2]
- Non-causal: the output depends also on future values of the input
 - y[n] = x[n] x[n+1]
 - $y(t) = x(t \sin(t))$
- Memoryless: there is no time shift
 - y[n] = 2x[n] 4x[n]

Number of Inputs

- SISO: input and output is a scalar
- MIMO: input and output is a vector

Example

The accumulator:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

- Stable?
- Linear?
- Time invariant?
- Causal?
- Memoryless?
- SISO?