
2019.10.15. 1

Low level Petri nets

Miklós Gerzson

Low_level_Petri_nets/2

Introduction

• Petri nets: graphical and mathematical modelling
tool for the description of dynamic systems

• system types: concurrent, asynchronous,
distributed, parallel, nondeterministic, stochastic

• graphical representation: structural description and
dynamic characterization

• mathematical description: state equations,
algebraic equations

• analysis tool: behavioral and structural features of
systems

History

• Carl Adam Petri: Kommunikation mit Automaten,
PhD Dissertation, 1962,

• very popular modelling tool

• conference series: International Conferences on
Application and Theory of petri Nets and
Concurrency, e.g.

• papers: Petri Net Newsletter, e.g.

• software: HPSim, CPN Tools, e.g.

Low_level_Petri_nets/3

Introductory example

• Problem description

Low_level_Petri_nets/4

Introductory example

• Petri net of example

Low_level_Petri_nets/5

Introductory example

• Firing of a transition

Low_level_Petri_nets/6

Basic definitions

• Petri nets are the abstract models of information
flow in the form of directed graph

• two types of elements:

• transitions – occurring events

• places – pre- and postconditions

• graphical representation

• transitions: bars or boxes

• places: circles

• logical connections: arcs

Low_level_Petri_nets/7

Examples

Input places Transitions Output places

Preconditions Events Postconditions

input data computation step output data

input signals signal processor output signals

resources
needed

task or job
resources
released

conditions clause in logic conclusion(s)

buffers processor buffers

Low_level_Petri_nets/8

Dynamic behavior

• tokens on places: description of the state of a place

• availability of a given resource

• number of data

• number of resources

• representation of tokens: black dots

• marking vector: defines the number of tokens on
places

• weight function: assigns weight (positive integers)
to the arcs

Low_level_Petri_nets/9

Formal definition

• Petri net is a 5-tuple,

where

– set of places;

– set of transitions;

    – set of arcs;

 – weight function;

 – initial marking.

  and  

Low_level_Petri_nets/10

Example

• Processing a
workpiece

Low_level_Petri_nets/11

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Formal description of the example

PN = (P, T, F, W, M0)
P = {p1, p2, p3, p4}

T = {t1, t2, t2, t3}

F = {(t1, p1), (p1, t2), (p2, t2),
(t2, p3), (p3, t3), (t3, p2),
(t3, p4), (p4, t4)}

W : w(t1, p1) = 1, w(p1, t2)= 1,
w(p2, t2) = 1, …
w(p4, t4) = 1.

M0 : P {0, 1, 0, 0} Low_level_Petri_nets/12

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot
 is idle

t1 

p1 

t2 

t3 

t4 

p3 

p4 

p2 

Firing of transitions

• Behavior of systems: state of their elements and
changes in the system

• Simulation of changes: firing rules

1. A transition t is enabled if each of its input place is
marked with at least w(p, t) tokens (w(p, t) is the
weight of the arc from the place p to the transition t).

2. An enabled transition may or may not fire.

3. A firing of an enabled transition t removes w(p, t)
tokens from each of its input place and adds w(t, p)
tokens to its output places (w(t, p) is the weight of
the arc from the transition t to the place p).

Low_level_Petri_nets/13

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a
workpiece

Low_level_Petri_nets/14

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a
workpiece

Low_level_Petri_nets /15

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a
workpiece

Low_level_Petri_nets/16

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a
workpiece

Low_level_Petri_nets/17

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a
workpiece

Low_level_Petri_nets/18

Formal description

• source transition has no input place 
• sink transition has no output place 
• source transitions: unconditionally enabled

• sink transitions: consumes tokens

• Petri net is ordinary: all arc weights are 1’s

• self-loop: p is input and output place of

• Petri net is pure: no self-loop in it

Low_level_Petri_nets/19

Formal description

• Capacity of places: the maximum number of tokens
that they can hold any time
• infinite capacity – no limit to number of tokens

• finite capacity – the maximum token number is
defined:

• transition can fire depending on the capacity of their
output places!

• number of waiting pieces : 
• one robot is in the system:

• one piece is being processed:

• number of pieces to be output (!)
Low_level_Petri_nets/20

Example

• two pieces are needed for the process:

Low_level_Petri_nets/21

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

2

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

2



Example

• Self-loop: robot is idle until the piece is being
processed

Low_level_Petri_nets/22

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output



Formal description

• Formal description of net state changes after firing
transition :

where

Mk(pi) is the number of token on place

i = 1, …, m, m is the number of places in the net

w(tj , pi) = 0 and w(pi , tj) = 0 no connection
between and

• Firing or occurrence sequence:

భ మ ೖ

Low_level_Petri_nets/23

Example

• Markings after firing of transitions (assume 2 pieces

are to be processed):

– initial marking

– after firing

– after firing again

– after firing

– after firing

– after firing

Firing sequence:

Low_level_Petri_nets/24

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot
is idle

2

Occurrence graph

• Occurrence graph: a graph containing

• all reachable markings from a given initial
marking and

• all possible firings at each marking

• Definition


• if  and  is enabled in

and after its firing is generated, then


Low_level_Petri_nets/25

Example

• Occurrence graph
of the example

Low_level_Petri_nets/26

(0, 1, 0, 0)

(1, 1, 0, 0)

(2, 1, 0, 0)

(0, 0, 1, 0)

(0, 1, 0, 1)

(0, 1, 0, 0)

1

2

3

4

1

Parallel activities

• Firing two or more transitions at the same time:

• concurrent situation: the transitions can fire
independently of each other
the places have exactly one incoming and one
outcoming arc  marked graph

• conflict situation: after firing of one transition the
other will not be enabled

• confusion: if concurrent and conflict situations
present at the same time (symmetric and
asymmetric)

Low_level_Petri_nets/27

Example

• Firing of transitions:
robot serves two
manufacturing lines

• Transitions and
can fire at the same
time

• Concurrent situation

Low_level_Petri_nets/28

t1

p1

t2

t3

t4

p3

p4

p2

p5

p0

t6

t5

p7

p6

t8

p9

p10

p8

t7

Example

• Firing of transitions:
robot serves two
manufacturing lines

• Transitions and
can not fire
at the same time

• Conflict situation

Low_level_Petri_nets/29

t1

p1

t2

t3

t4

p3

p4

p2

p5

p0

t6

t5

p7

p6

t8

p9

p10

p8

t7

Example

• Firing of transitions:
robot serves two
manufacturing lines

• If transition fires
first, there is no conflict

• If transition fires
first, there is conflict
between transitions

and

• Confusion
Low_level_Petri_nets/30

t1

p1

t2

t3

t4

p3

p4

p2

p5

p0

t6

t5

p7

p6

t8

p9

p10

p8

t7

Parallel activities

• concurrent situation: arbitrary order for the firing of
transitions

• conflict situation: the firing of transitions mutually
exclusive

• confusion: conflict depends on the order of the
firing of transitions

• branches on reachability tree: refer to either
concurrent or conflict situation

Low_level_Petri_nets/31

Parallel activities

• Solutions for conflict situation:

• inhibitor arc
transition is enabled iff the place does not
contain any token

• priority function: transition having higher priority
fires

• extended Petri net models

Low_level_Petri_nets/32

Example

• only is enabled

Low_level_Petri_nets/33

t1

p1

t2

t3

t4

p3

p4

p2

p5

p0

t6

t5

p7

p6

t8

p9

p10

p8

t7

Reachability graph of extended example

• Reachability graph of two manufacturing line
system (part)

• transitions denoted by red are in conflict

Low_level_Petri_nets/34

(1,0,1,0,0,0,1,0,0,0,0)

(0,1,1,0,0,0,1,0,0,0,0) (1,0,1,0,0,0,0,1,0,0,0)

t1 t5

(0,0,0,1,0,0,1,0,0,0,0)

t2

(0,1,1,0,0,0,0,1,0,0,0)

t5

(0,1,1,0,0,0,0,1,0,0,0)

t1

(1,0,0,0,0,0,0,1,0,0,0)

t6

t3 t5
t2 t6 t2 t6

t1 t7

Occurrence graph

• properties of occurrence graph

• even if the net is simple the graph can be infinite

• solution:

• delete duplicate nodes from the graph

• introduction of symbol , where  represents
arbitrarily large number, representing the
accumulation of tokens on a given place

Low_level_Petri_nets/35

Behavioral properties

• Analysis of Petri nets:

• reachability

• boundedness

• liveness

• reversibility

• coverability

• persistence

• fairness

Low_level_Petri_nets/36

Behavioral properties

• Reachability

• A marking is reachable from marking , if
there exists a firing sequence from to

set of all possible markings reachable
from

• reachability problem: ?

• submarking reachability

Low_level_Petri_nets/37

Behavioral properties

• Boundedness

• A Petri net is -bounded if the number of tokens
in each place does not exceed a finite number .

• M(pj) denotes number of tokens on a place

• boundedness problem:  for  and
 .

• safe net 

Low_level_Petri_nets/38

Behavioral properties

• Liveness

• deadlock-free operation

• A Petri net is live if it is possible to fire any
transition by progressing through some further
firing sequence

• liveness of all net is ideal property

• too costly to verify

• liveness of a given transition

Low_level_Petri_nets/39

Behavioral properties

• Liveness (cont.)

• different level of liveness for a transition :

• L0-live or dead – can never be fired in any
firing sequence

• L1-live or potentially fireable – if can be fired
at least once in some firing sequence

-live – if can be fired at least -times in
some firing sequence

-live – if can be fired infinitely often in
some firing sequence

-live – if is -live for every marking
Low_level_Petri_nets/40

Behavioral properties

• Reversibility

• A Petri net is reversible if the initial marking M0 is
reachable from every marking

• home state: a marking M’ is home state if it is
reachable from every marking

Low_level_Petri_nets/41

Behavioral properties

• Coverability

• a marking is coverable if such
that for in the net

• coverability  -liveness:

• let be the minimum marking needed to enable
transition , then

is dead iff is not coverable
is -live iff is coverable

Low_level_Petri_nets/42

Behavioral properties

• Persistence

• a Petri net is persistent if, any two enabled
transitions, the firing of one transition will not
disable the other

• a transition in a persistent net stays enabled until
it fires

Low_level_Petri_nets/43

Behavioral properties

• Fairness

• different definitions in the literature

• bounded-fairness: two transitions is in bounded-
fair relation if the maximum number of times that
either can fire while the other is not firing is
bounded

• unconditionally fairness: a firing sequence is
unconditionally fair if it is finite or every transition
in the net appears infinitely often in it

Low_level_Petri_nets/44

Behavioral properties

• Analysis of behavioral properties

• constructing the occurrence graph for given initial
markings

• searching on the occurrence graph

• desired or undesired markings

• number of tokens on given place

• firing sequences based on arc labels

• checking the terminal nodes

• may be NP-hard

• cyclic behavior, symbol 
Low_level_Petri_nets/45

Structural properties

• aim is to characterize the Petri net independently
from the initial marking

• matrix equations governing the dynamic behavior of
concurrent systems modeled by Petri nets

• solvability of these equations is limited

• nondeterministic nature inherent in Petri net
model

• solutions must be found as non-negative integer

• assume: Petri net is pure (no self loop in it) or can
be made pure

Low_level_Petri_nets/46

Structural properties

• incidence matrix

• let the number of transition and the number of
places in a Petri net

• the incidence matrix A =[aij]
aij = a+

ij - a-
ij

where a+
ij = w(i,j) is the weight of the arc from to

and a-
ij = w(j,i) is the weight of the arc from to

Low_level_Petri_nets/47

Structural properties

• a-
ij is the number of tokens to be removed

• a+
ij is the number of tokens to be added

• aij is the number of tokens changed in a place

• transition is enabled iff

a-
ij < M(j), j = 1, 2, …, m

Low_level_Petri_nets/48

Structural properties

• State equations:

• let is  column vector and Mk(j) denotes
the number tokens in place after th firing in
some firing sequence

• let control or firing vector is  unit column
vector, the value 1 in th position indicates that
transition fires at th firing

• state equation of Petri net:

Low_level_Petri_nets/49

Structural properties

• Necessary reachability condition:

• let is reachable from trough a firing
sequence

• expressing with state equation:

or

where

firing count vector

Low_level_Petri_nets/50

Structural properties

• equation has a solution iff is
orthogonal to every solution y of its homogeneous
system:

-invariant: An integer solution of the
homogeneous equation:

-invariant: An integer solution of the
homogeneous equation:

Low_level_Petri_nets/51

Structural properties

-invariants:

• if is a -invariants then there exists a marking
and firing sequence starting from back to

, that its firing count vector is equal to

-invariants:

• if is a -invariants then MTy = M0
Ty for any fixed

initial marking and any in

Low_level_Petri_nets/52

Automata, formal languages and Petri nets

• Automata and Petri nets:

• both suitable for representing DES

• explicit representation of state transitions

• automata: the definition contains the possible
states and the possible transitions between them
in explicit way

• Petri nets: the state description is defined in
distributed way, it is encoded into the state of
places

Low_level_Petri_nets/53

Automata, formal languages and Petri nets

• Petri-net languages

• labelled Petri net generating the context-
sensitive language L(M0) = {anbncn | n  0}

Low_level_Petri_nets/54

