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Abstract— A simple dynamic model of an industrial
size synchronous generator operating in a nuclear power
plant is developed in this paper based on first engi-
neering principles. The constructed state-space model
consists of a nonlinear state equation and a bi-linear
output equation. It has been shown that the model is
locally asymptotically stable with parameters obtained
from the literature for a similar generator.

The effect of load disturbances on the partially con-
trolled generator has been analyzed by simulation using
a traditional PI controller. It has been found that the
controlled system is stable and can follow the set-point
changes in the effective power well. The disturbance
rejection of the controller is also satisfactory.

I. INTRODUCTION

Nuclear power plants generate electrical power from
nuclear energy, where the final stage of the power
production includes a synchronous generator that is
driven by a turbine. Similarly to other power plants,
both the effective and reactive components of the
generated power depend on the need of the consumers
and on their own operability criteria. This consumer
generated time-varying load is the major disturbance
that should be taken care of by the generator con-
troller.

The turbo generator, the subject of our study, is a
specific synchronous generator with a special cooling
system. The armature has been cooled by water and
the rotor has been cooled by hydrogen. In the exam-
ined nuclear power station the exciter field regulator of
the synchronous generator currently does not control
the reactive power, only the effective power. The final
aim of our study is to design a controller that can
control the reactive power such that its generation is
minimized in such a way that the quality of the control
of the effective power remains (nearly) unchanged.

There are three generator exciter field regulators for
each generators (automatic, manual, and the back-up).
The manual generator exciter field regulator performs
output voltage control of the synchronous generator
by applying a sequential control to the output voltage
of generator that is constrained by a voltage limiter.
The sequential controller is a PI controller.

Because of the specialities and great practical im-
portance of the synchronous generators in power
plants, their modeling for control purposes is well
investigated in the literature. Besides of the basic
textbooks (see e.g. [1] and [2]), there are papers that
describe the modeling and use the developed models
for the design of various controllers [3], [4]. These
papers, however, do not take the special circumstances
found in nuclear power plants in to account and that
may result in special generator models. The aim of
this paper is to propose a simple dynamic model of
a synchronous generator in a nuclear power plant for
control studies together with a local stability analysis
and model verification.

II. THE MODEL OF THE SYNCHRONOUS
GENERATOR

In this section the state-space model for a syn-
chronous generator is constructed that will be used
for stability analysis and controller design based on
[1] and [2].

A. The engineering model

For constructing the synchronous generator model,
let us make the following assumptions:
• a symmetrical tri-phase stator winding system is

assumed,
• one field winding is considered to be in the

machine,
• there are two amortisseur or damper windings in

the machine,
• all of the windings are magnetically coupled,
• the flux linkage of the winding is a function of

the rotor position,
• the copper losses and the slots in the machine are

neglected,
• the spatial distribution of the stator fluxes and

apertures wave are considered to be sinusoidal,
• stator and rotor permeability are assumed to be

infinite.
It is also assumed that all the losses due to wiring,
saturation, and slots can be neglected.



The six windings (three stators, one rotor and two
damper) are magnetically coupled. Since the magnetic
coupling between the windings is a function of the
rotor position, the flux linking of the windings is also
a function of the rotor position. The actual terminal
voltage v of the windings can be written in the form

v = ±
J∑

j=1

(rj · ij)±
J∑

j=1

(λ̇j),

where ij are the currents, rj are the winding resis-
tances, and λj are the flux linkages. The positive
directions of the stator currents point out of the
synchronous generator terminals.

Thereafter, the two stator electromagnetic fields,
both traveling at rotor speed, were identified by de-
composing each stator phase current under steady
state into two components, one in phase with the
electromagnetic field and an other phase shifted by
90o. With the aboves, one can construct an airgap
field with its maxima aligned to the rotor poles (d
axis), while the other is aligned to the q axis (between
poles) (see Fig. 1).

Fig. 1. The abc and 0dq frames of the generator

This method is called the Park’s transformation that
gives the following relationship:

i0dq = P · iabc

iabc = P−1 · i0dq
(1)

where the current vectors are i0dq =
[

i0 id iq
]T

and iabc =
[

ia ib ic
]T and the Park’s transfor-

mation matrix is:

P =

√
2

3

[ 1√
2

1√
2

1√
2

ia cos(Θ) ib cos(Θ − 2π
3 ) ic cos(Θ − 4π

3 )

ia sin(Θ) ib sin(Θ − 2π
3 ) ic sin(Θ − 4π

3 )

]

where ia, ib and ic are the phase currents and Θ
[rad] is the angle between the phase current ia and the
current id. Park’s transformation uses three variables:
d and q axis components (id and iq) and stationary
current component (i0), which is proportional to the
zero-sequence current.

All flux components correspond to an electromag-
netic field (EMF), the generator EMF is primarily
along the rotor q axis. The angle between this EMF

and the output voltage is the machine torque angle
δ, where the phase a is the reference voltage of the
output voltage. The position of the d axis (in radian) is
Θ = ωrt+δ+π/2, where ωr is the rated synchronous
angular frequency. Finally, the the voltage and linkage
equations are v0dq = P · vabc and λ0dq = P · λabc,
where the vectors are v0dq =

[
v0 vd vq

]T
and vabc =

[
va vb vc

]T
, and the linkage flux

vectors are λ0dq =
[

λ0 λd λq

]T and λabc =[
λa λb λc

]T.
The value of the active power can be written (using

(1)) in both coordinate systems:

p = vT
abciabc = vT

0dqPP−1i0dq = vT
0dqi0dq (2)

B. The flux linkage equations

The generator consists of six coupled coils referred
to with indices a, b, c (the stator phases coils), F , D,
and Q (the field coil, the d-axis amortisseur and the
q-axis amortisseur). The linkage equations are in the
following form:[

λa λb λc λF λD λQ

]T
=




Laa Lab Lac LaF LaD LaQ
Lba Lbb Lbc LbF LbD LbQ
Lca Lcb Lcc LcF LcD LcQ
LF a LF b LF c LF F LF D LF Q
LDa LDb LDc LDF LDD LDQ
LQa LQb LQc LQF LQD LQQ







ia
ib
ic
iF
iD
iQ


 (3)

where Lxy is the coupling inductance of the coils.
It is important to note that the inductances are time
varying since Θ is a function of time. The time
varying inductances can be simplified by referring all
quantities to a rotor frame of reference through Park’s
transformation:

[
P 0
0 I3

][
λabc

λFDQ

]
=

[
P 0
0 I3

]
·

·
[

Laa LaR
LRa LRR

][
P−1 0

0 I3

][
P 0
0 I3

][
iabc
iFDQ

]
,

(4)

where LRR is the rotor-rotor, Laa is the stator-stator,
LaR and LRa are the stator-rotor inductance matrices.
P is the Park’s transformation matrix, I3 is the 3 ×
3 unit matrix. The obtained transformed flux linkage
equations are as follows:

[
λ0 λd λq λF λD λQ

]T
=




L0 0 0 0 0 0
0 Ld 0 kMF kMD 0
0 0 Lq 0 0 kMQ
0 kMF 0 LF MR 0
0 kMD 0 MR LD 0
0 0 kMQ 0 0 LQ







i0
id
iq
iF
iD
iQ


 (5)

where:

Ld = Ls + Ms + 3
2Lm Lq = Ls + Ms − 3

2Lm

L0 = Ls − 2Ms k =
√

2
3

(6)

C. The voltage equations

The schematic equivalent circuit of the synchronous
machine can be seen in Fig. 2, and the voltage
equations (7) can be derived from it.



Fig. 2. The simplified schema of the synchronous machine

[
vabc
vFDQ

]
= −

[
Rabc 0

0 RFDQ

][
iabc
iFDQ

]
−

−
[

λ̇abc
λ̇FDQ

]
+

[
vn
0

]
,

(7)

where Rabc = diag(
[

ra rb rc

]
), and RFDQ =

diag(
[

rF rD rQ

]
).

The neutral voltage vn can also be deduced from
Fig. 2 as follows:

vn = −Rniabc − Lnmi̇abc, (8)

where Lnm = LnU3, and Rn = rnU3, and U3

denotes the 3× 3 matrix of full ones.
The direct, quadratic, field and amortisseur compo-

nent of the voltage using Park’s transformation:
[

P 0
0 I3

][
vabc
vFDQ

]
=

[
v0dq
vFDQ

]
(9)

Using (1), it is possible to expand the voltages of
the resistances from (9) as[

P 0
0 I3

][
Rabc 0

0 RFDQ

][
iabc
iFDQ

]
=

=

[
PRabcP−1 0

0 RFDQ

][
i0dq
iFDQ

]
=

=

[
R̂abc 0

0 RFDQ

][
i0dq
iFDQ

]
.

Using the initial assumption of symmetrical tri-
phase stator windings (i.e. ra = rb = rc = r), we
obtain R̂abc = Rabc = diag(

[
r r r

]
).

The time derivatives of the fluxes can be computed
similarly

[
P 0
0 I3

][
λ̇abc

λ̇FDQ

]
=

[
Pλ̇abc
λ̇FDQ

]
, (10)

where
Pλ̇abc = λ̇0dq − Ṗλabc = λ̇0dq − ṖP

−1
λ0dq,

and the last term is

ṖP
−1

λ0dq = ω

[
0 0 0
0 0 −1
0 1 0

][
λ0
λd
λq

]
=

[
0

−ωλq
ωλd

]

Finally, the neutral voltage is derived as
[

v0dq
vFDQ

]
= −

[
R0dq 0

0 RFDQ

][
i0dq
iFDQ

]

−
[

λ̇0dq
λ̇FDQ

]
+

[
ṖP−1λ0dq

0

]
+

[
n0dq

0

]
(11)

where n0dq is the voltage drop from the neutral
network.

n0dq = Pvn = −PRnP
−1

Piabc − PLnmP
−1

Pi̇abc =

−PRnP
−1

i0dq − PLnmP
−1

i̇0dq =

[ −3rni0
0
0

]
−

[ −3Lni̇0
0
0

]
(12)

In balanced condition the v0 voltage is 0. The above
equation can be written in the following form:[

vdq vFDQ

]T
=

−
[

R 0
0 RR

][
idq

iFDQ

]
−

[
λ̇dq

λ̇FDQ

]
+

[
S
0

]
+

[
n0dq

0

]
(13)

where R = diag(
[

r r
]
), RR =

diag(
[

rF rD rQ

]
), and S =

[ −ωλq ωλd

]T
We can write the voltage equation in simplified

matrix form as
vdFDqQ = −RRSωidFDqQ − Li̇dFDqQ, (14)

where vdFDqQ =[
vd −vF vD = 0 vq vQ = 0

]T, idFDqQ =[
id iF iD iq iQ

]T while RRSω and L are
the following expressions

RRSω =

[
r 0 0 ωLq ωkMQ
0 rF 0 0 0
0 0 rD 0 0

−ωLd −ωkMF −ωkMD r 0
0 0 0 0 rQ

]

L =

[
Ld kMF kMD 0 0

kMF LF MR 0 0
kMD MR LD 0 0

0 0 0 Lq kMQ
0 0 0 kMQ LQ

]

The state-space model for the currents is obtained by
expressing i̇dFDqQ from (14), i.e.

i̇dFDqQ = −L−1 ·RRSω · idFDqQ − L−1 · vdFDqQ

(15)

D. Torque

The next step is to derive the mechanical part of the
model [2]. The energy balance is written in the form

dWout = dWMech − dWField + dWΩ, (16)

where WΩ is the energy losses in the resistance of the
machine, WField is the energy of the field, WMech is
the mechanical energy and Wout is the output energy
of the synchronous generator. The time derivative of
(16) is the power equation:

dWout

dt
=

dWMech

dt
− dWField

dt
− dWΩ

dt
(17)

pout = pMech − pField − pΩ (18)

On the other hand, using (2), the output power of tri-
phase system is:

pout = vT
abciabc = vT

0dqi0dq (19)

The mechanical torque (TMech) is obtained by
dividing power by the angular velocity ω = dθ

dt , i.e.
TMech = PMech

ω . This gives

TMech = λdiq − λqid (20)



The torque equation which gives the torque of the field
energy is:

TField = (i0
λ0

dθ
+ id

λd

dθ
+ iq

λq

dθ
) (21)

On the other hand, the electrical torque can be ex-
pressed as

TElectr = TMech − TField (22)

From Newton’s second law the equation of motion is

2H

ωB
ω̇ = TMech − TElectr − TDump, (23)

where H is the inertia constant and TDump is the
dumping torque. The time and the rotation speed using
per units i.e. dimensionless variables is tu = ωBt
and ωu = ω/ωB . Afterwards the normalized swing
equation can be written as

2HωB
dωu

dtu
= TAcc, (24)

where 2HωB = τj , where τj is a time-like quantity
coming from per unit notation not detailed here.

The electrical torque can be expressed from the flux
and the current of the machine

TElectr =
1
3
(λdiq − λqid) (25)

The total torque accelerating the generator is then

TAcc = TMech −
TElect3

3
− TDump = TMech − TElectr − TDump,

where TMech is the mechanical torque, TElectr is the
electrical torque per phase, TElect3 is the electrical
torque for all 3 phases. It is often convenient to write
the damping torque as TDump = Dω, where D is a
damping constant.

The electrical torque expressed using the state vec-
tor of model (15) is then

TElect3 =

[
Ldiq

kMF iq
kMDiq
−Lqid
−kMQid

]T

·

[
id
iF
iD
iq
iQ

]
. (26)

Since the variables have a few orders of magni-
tude difference in their values in natural units, the
equations are normalized with respect to a base value
(corresponding to the normal range of the variables).
This way all signals are measured in normalized units
(p.u.). Since ω̇ = TAcc

τj
, the speed of the synchronous

machine is

ω̇ =




−Ldiq
3τj

− kMF iq
3τj

− kMDiq
3τj

Lqid
3τj

kMQid
3τj

− D
τj




T

·




id
iF
iD
iq
iQ
ω


 +

TMech

τj

(27)

Note, that (27) can be used as a supplementary state
equation for state space model (15). The loading angle
(δ) of the synchronous generator is

δ = δ0 +
∫ t

t0

(ω − ωr)dt

that we can differentiate to obtain the time derivative
of the δ in per unit notation

δ̇ = ω − 1, (28)
so the loading angle (δ) can also be regarded as a state
variable in the state space model (15, 27). Altogether,
there are 6 state variables: id , iF , iD , iq , iQ , ω
and δ. The input variables (i.e. manipulatable inputs
and disturbances) are: TMech, vF , vd and vq . Observe,
that the state equations (15, 27, 28) are bilinear in the
state variables because matrix RRSω in (15) depends
linearly on ω.

E. The output equation of the model

The output active power equation can be written in
the following form:

pout = vdid + vqiq + v0i0 (29)

Assuming steady-state for the stationary components
(v0 = i0 = 0), (29) simplifies to

pout = vdid + vqiq, (30)
and the reactive power is

qout = vdiq − vqid. (31)

Equations (30-31) are the output equations of the gen-
erator’s state-space model. Observe, that these equa-
tions are bi-linear in the state and input variables.

F. Connecting the synchronous generator to an infi-
nite huge network

Since every synchronous machine is connected to
an infinite bus (shown in Fig. 3.) the next task is to
extend the previous models with an infinite bus. In
Fig. 3, resistance Re and inductance Le represent the
output transformer of the synchronous generator and
the transmission-line.

Fig. 3. Synchronous machine connected to an infinite bus

The matrix form of the modified voltage equation
is as follows:

vabc = v∞abc + Re I3iabc + Le I3i̇abc (32)

Equation (32) can be transformed to the 0dq coordi-
nate system as

v0dq = Pvabc = Pv∞abc + Re I3i0dq + Le I3i̇0dq (33)

The tri-phase voltage of the bus in the 0dq coordinate
system is then

v∞0dq = Pv∞abc =
√

3V∞

[
0

− sin(δ − α)
cos(δ − α)

]
(34)

Afterwards, one can express the current vector i0dq
and voltage vector v0dq as

Pi̇abc = i̇0dq − Ṗiabc = i̇0dq − ṖP
−1

i0dq (35)

and

v0dq = v∞
√

3

[
0

− sin(δ − α)
cos(δ − α)

]
+Rei0dq +Lei̇0dq−ωLe

[
0
−iq
id

]
(36)



The integration of resistance Re and inductance Le

into voltage equation (14) can be done by a simple
change in matrices RRSω and L.

The obtained voltage equation is:
vdFDqQ = R̃RSω idFDqQ + L̃i̇dFDqQ, (37)

where vdFDqQ, idFDqQ, i̇dFDqQ RRSω and L̃ are

vdFDqQ =
[

vd −vF vD = 0 vq vQ = 0
]T

idFDqQ =
[

id iF iD iq iQ

]T

R̃RSω = RRSω + diag(
[

Re 0 0 Re 0
]
)

L̃ = L + diag(
[

Le 0 0 Le 0
]
)

From (37) it is possible to express i̇dFDqQ as

i̇dFDqQ = −L̃
−1

R̃RSω idFDqQ − L̃
−1

vdFDqQ (38)

III. SIMULATION RESULTS

The above model has been verified by simulation
against engineering intuition using parameter values
of a similar generator taken from the literature.

A. Generator parameters

The parameters of the synchronous generator were
obtained from the literature [1]:

Apparent energy 160 MVA,
cos ϕ 0.85,
Voltage 15 kV,
Current 6158 A,
Frequency 60 Hz,
Excitation current 926 A,
Excitation voltage 375 V.

The stator base quantities, the rated power, output
voltage, output current and the angular frequency are:

SB = 160 MVA/3 = 53.333 MVA
VB = 15 kV/

√
3 = 8.66 kV

IB = 6158 A
ωe = 2πf rad/s

Finally, the parameters of the synchronous machine
and the external network in per units are:

Ld = 1.700 ld = 0.150 LMD = 0.02838
Lq = 1.640 lq = 0.150 LMQ = 0.2836
LD = 1.605 lF = 0.101 r = 0.001096
LQ = 1.526 lD = −0.055 rF = 0.00074
LAD = 1.550 lQ = 0.036 rD = 0.0131
LAQ = 1.490 rQ = 0.054 Re = 0.2
V∞ = 0.828 Le = 1.640 D = 2.004

The steady-state values of the state variables can
be obtained from the steady-state version of state
equations (15, 27, 28) using the above parameters.
Equation (14) implies that the expected value to iD
and iQ are 0, that coincide with the engineering
intuition. The equilibrium point of the system is:

ω = 0.9990691, id = −1.9132609, iq =
0.66750001, iF = 2.97899982, iD = −8.6242856 ·
10−9, iQ = −5.3334899 · 10−10

The state matrix A of the locally linearized state-
space model ẋ = Ax + Bu has the following
numerical value:



−0.0361 0.0004 0.0142 −3.4851 −2.5455 −2.3285
0.0124 −0.0049 0.0772 1.2011 0.8773 0.8025
0.0228 0.0044 −0.0964 2.2057 1.6110 1.4737
3.5855 2.6464 2.6464 −0.0361 0.0901 1.0247
−3.5009 −2.5839 −2.5839 0.0352 −0.1234 −1.0005
−8 · 10−6 −0.0002 −0.0002 −0.0008 −0.0005 −0.0011




The eigenvalues of the state matrix are:
λ1,2 = −3.619088 · 10−2± j0.997704

λ3 = −0.100024 λ4 = −1.67235 · 10−3

λ5 = −4.724291e · 10−4 λ6 = −0.123426

It is apparent that the real part of the eigenvalues
are negative but their magnitudes are small, thus the
system is on the boundary of the stability domain.
Furthermore, λ1,2 are complex conjugated pair with
a relatively large imaginary part, that indicates the
presence of an oscillatory component in the response.
This behavior was expected since the direct and
the quadrature equivalent circuit of the synchronous
generator consist only of resistances and inductances,
where the resistances give the windings and the iron
losses, which are designed to be small in order to
decrease the heating of the generator.

B. Validation of the model

The dynamic properties of the generator have been
investigated in such a way that a single synchronous
machine was connected to an infinite bus that models
the electrical network (see Fig. 3). First, the response
of the speed controlled generator has been tested
under step-like changes of the exciter voltage. The
simulation results are shown in Fig. 4, where the
exciter voltage vF and the torque angle δ are shown.

Fig. 4. Response to the exciter voltage step change of the controlled
generator (∆ means the deviation form the steady-state value)

C. Changing the effective power of the generator

The control schemes of synchronous machines are
commonly based on a reduced-order linearized model
and a classical PI controller that ensures stability of



the equilibrium point under small perturbations [4].
The controlled outputs are the effective power (pout)
and the speed (ω), the manipulated input are the
exciter voltage (vF ) and the mechanical torque TMech.
The proportional parameter of the PI controller of the
speed is 0.5 and the integrator time is 0.5 in per units,
the parameters of the effective power controller are
P=0.02 and I=0.02. The response of the controlled
generator has been tested under step-like changes in
the setpoint of the effective power. The simulation
results can be seen in Fig. 5, where the currents
and the power components (effective and reactive) are
shown. It is apparent that both the effective and the

Fig. 5. Changing the effective power of the generator

reactive power follow the setpoint changes well, and
the controlled system is fairly stable.

D. The effect of disturbances from the network

The effect of the disturbances from the electrical
network is modeled by using a noise from the infinite
bus that appears in the voltage variable vq . The same
step-like changes in the setpoint of the effective power
has been applied as before.

Fig. 6. shows the simulation results. Here again,
both the effective and the reactive power follow the
setpoint changes well, and the controlled system is sta-
ble. In addition, the controller rejects the disturbances
well.

IV. CONCLUSION AND FURTHER WORK

A simple dynamic model of an industrial size syn-
chronous generator operating in a nuclear power plant
is developed in this paper based on first engineering
principles. The constructed state-space model consists
of a bilinear state equation originating from the flux
linkage equations, and a bilinear output equation giv-
ing the effective and reactive power of the generator.

It has been shown that the model is locally asymp-
totically stable around a physically meaningful equi-
librium state with parameters obtained from the liter-
ature for a similar generator.

Fig. 6. The effect of the network disturbances

The effect of load disturbances on the partially
controlled generator has been analyzed by simulation
by using a traditional PI controller. It has been found
that the controlled system is stable and can follow
the setpoint changes in the effective power well.
The disturbance rejection of the controller is also
satisfactory.
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