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Mechanical systems - 1

Characterization: through mechanisms and modeling objects

Modeling objects: called "bodies" for which conservation balances
are constructed

• elementary object: mass point
• models of "mass point systems" result in concentrated parameter

models
• rigid bodies
• deformable bodies

Mechanisms: for which constitutive equations are available
• forces originating from a potential field, e.g. spring
• gravitation
• friction
• torsion, deformation (elastic, non-elastic), etc.
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Mechanical systems - 2

Basic principles: Newton - Principia Mathematica Phylosophiae
Naturalis (1687)

1. Each object (body) keeps its steady-state position or its rectilinear
motion with constant velocity unless an external effect forces it to
change.
• equivalent coordinate systems - move with constant relative

velocity
• external effects - described by forces

2. The change of momentum is proportional to the effect of the
force and takes place in the direction of the force.
• both the momentum and the force are vectors, thus they have

magnitude and direction
• momentum is a conserved extensive quantity

3. The effect is equal to the reaction, that is, the effect of two bodies
to each other is of equal magnitude but of adverse direction.
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Rectilinear motions
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Modeling of mechanical systems - 1

I. Rectilinear motions
simplest case: mass-point systems

Conservation balances: momentum balance in each considered
direction for each mass point

Constitutive equations
• static equation(s) for each force from the physics of its underlying

mechanism
◦ gravitation: Fg = m · g

◦ friction: Ff = µ · m · g

◦ elastic force (e.g. in spring): Fs = −k · x position dependent!
◦ other position dependent forces (e.g. from a potential,

electrical forces)
• dynamic position-momentum equation (if needed)
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Example: mass and spring

Problem description
Given a mass point m connected to the wall by an elastic spring with
spring coefficient k and moving along a horizontal line. The mass is
under the influence of an external force Fe and there is a friction with a
coefficient µ.

m

0 x

v

Construct the model of the mass-spring system for control purposes if
we can measure the position of the mass point x and the external force
Fe.

Dynamic modelling - 5. – p. 7/20



m

0 x

v

Example: mass and spring - 2

Mechanisms
• spring
• friction generated by the gravitational force
• external force Fe

Modeling assumptions

F1 one mass point with mass m

F2 rectilinear motion

F3 elastic ideal spring with coefficient k (force Fs)

F4 friction with constant coefficient µ (force Ff )

F5 position origo x = 0 is at the equilibrium point
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Example: mass and spring - 3

Conservation balance equation:
for momentum p = m · v

dp

dt
= Ff + Fs + Fe (1)

Constitutive equations
• Ff = µ · m · g (friction)

• Fs = −k · x (spring)

• p = m · v = m ·
dx
dt

(position is measurable)
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Example: mass and spring - 4

Model equations with measurable variables:

dp

dt
= µ · m · g − k · x + Fe (2)

dx

dt
=

1

m
p (3)

State-space model form
• state variables: position x and momentum (p, or v)
• input variable: external force Fe

• output variable: position x
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Rotating motions
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Modeling of mechanical systems - 2

II. Rotating motions
simplest case: mass-point systems

Characteristic variables and parameters
• angular momentum N (analogue to the momentum p)

• angle velocity (angular frequency) ω ([ rad
s

])

• moment of inertia Θ (for mass point mi: Θi = mi · r
2
i

• torque M = F × r in [Nm] - r is the distance from the rotating axis

Conservation balances: angular momentum balance in each
considered direction for each rotating mass point

dN

dt
=

∑

k

Mk (4)

with the external torques Mk
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Example: a simple limb model - 1

Problem description
Given a simple limb consisting of two segments (bones) two muscles
(flexor and extensor) that move the lower segment around the joint
axis.

Construct the model of the simple limb system for control purposes if
we can measure the position of lower segment and the external forces
causing contraction on the flexor and extensor muscles, respectively.
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Example: a simple limb model - 2

Mechanisms
• muscle force
• muscle contraction by activation
• rotation

Modeling assumptions

F1 one mass point with mass m for the lower segment

F2 the upper segment is fixed vertically

F3 fixed distance lCOM from the rotating axis

F4 activation state equations with fixed parameters (τ activation time,
β descreasing factor)

F5 activation determines the torque of the muscles M
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Example: a simple limb model - 3

Conservation balance equations:
for angular momentum N = Θ(total)

· ω

dN

dt
= M(q1, q2, α, ω) + m · lCOM · cos(α −

π

2
) · g (5)

for the acticvation states q1 and q2 (bioelectrical model)

dq1

dt
=

(

1

τact

(β + [1 − β]uf (t))

)

q1 +
1

τact

uf (t) (6)

dq2

dt
=

(

1

τact

(β + [1 − β]ue(t))

)

q2 +
1

τact

ue(t) (7)

Constitutive equations

• dα
dt

= ω (velocity equation)

• the actual form of M(q1, q2, α, ω) (from biology)
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Thermo-mechanical systems
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Modeling of mechanical systems - 3

III. Energy-based description – simplest case: mass-point systems

Rectilinear motion: potential (position dependent) and kinetic (momentum
dependent) energy - for a single mass point with mass m

Etotal = V (x) +
1

2m
p2

Power (dEtotal

dt
) provided by a force F : dEtotal

dt
= F ·

dx
dt

= F · v

Rotating motion: kinetic energy for a rotating body with moment of inertia Θ

Erot =
1

2
Θω2

Power (dErot

dt
) provided by a torque M : dErot

dt
= M · ω

Equivalence with the momentum-based description
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Example: simple steam turbine - 1

Problem description
Given a simple steam turbine that moves a rotating shaft aroung a
given axis. The steam enters and leaves the turbine with a given mass
flow rate v, the inlet temperature is TI , the outlet temperature is TO.

v,  TI v,  TO 

Construct the model of the simple turbine for control purposes if we
can measure the external load torque Mload and the angular velocity ω.
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v,  TI v,  TO Example: simple steam turbine - 2

Mechanisms
• thermal energy conversion
• rotation

Modeling assumptions

F1 one rotating body (shaft) with moment of inertia Θ

F2 equal and given mass flow rate v for inlet and outlet

F3 given inlet TI and outlet TO temperatures (no condensation!)

F4 the mechanical efficiency factor χ is given and constant

F5 constant steam specific heat cP

F6 given the external load torque Mload (input)
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v,  TI v,  TO Example: simple steam turbine - 3

Conservation balance equation:
for the rotation energy

dErot

dt
= Psteam − Mloadω (8)

Constitutive equations

• Erot = 1
2Θω2 (rotation energy)

• Psteam = χ · cP · v · (TI − TO) (power generated by the steam
temperature drop)

Model equation with measurable quantities

dω

dt
=

1

Θω
(χ · cP · v · (TI − TO) − Mloadω)
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