Intelligent Control Systems: Qualitative modelling

Katalin Hangos

Department of Electrical Engineering and Information Systems University of Pannonia e-mail: hangos.katalin@virt.uni-pannon.hu

ICS - 2015

ICS - 2015 1 / 30

Contents

- Sign and interval calculus
- Signed Directed Graph (SDG) models
- Confluences
 - rule sets generated from confluences
- Qualitative difference equations
 - normalized qualitative range space
 - algebraic solution

Discrete range spaces

Universe: the range space of variables = a set of intervals

• General qualitative: real intervals with fixed or free endpoints

$$U_{\mathcal{I}} = \{ [a_{\ell}, a_u] \mid a_{\ell}, a_u \in \mathcal{R}, a_{\ell} \leq a_u \}$$

with the landmark set

$$\mathcal{L}_{\mathcal{I}} = \{ a_i \mid a_i \leq a_{i+1} , i \in \mathcal{I} \subseteq \mathcal{N} \}$$

sign-valued case

$$U_{S} = \{ +, -, 0; ? \} , ? = + \cup 0 \cup - L_{S} = \{ a_{1} = -\infty, a_{2} = 0, a_{3} = \infty \}$$

logical (extended)

$$U_{\mathcal{L}} \;=\; \{ \; \mathsf{true} \;, \; \mathsf{false} \;; \; \mathsf{unknown} \; \}$$

Sign algebra

Algebra over the sign universe

Operations: with **usual algebraic properties** (commutativity, associativity, distributivity)

- sign addition (\oplus_S) and substraction (\ominus_S)
- sign multiplication (\otimes_S) and division
- composite operations and functions

Specification (definition) of a sign operation is done by using **operation tables**.

Sign addition

Operation table

$a\oplus_S b$	+	0	—	?
+	+	+	?	?
0	+	0	-	?
-	?	_	-	?
?	?	?	?	?

Properties:

- Growing uncertainty
- commutative

Sign multiplication

Operation table

a⊗s b	+	0	-	?
+	+	0	_	?
0	0	0	0	0
-	-	0	+	?
?	?	0	?	?

Properties:

- correcting by zero values
- commutative

Interval operations – 1

Operation on intervals with *fixed* endpoints

• Set-type definition: the sum (or product) of two intervals $\mathcal{I}_1 = [a_{1\ell}, a_{1u}]$ and $\mathcal{I}_2 = [a_{2\ell}, a_{2u}]$ from $U_{\mathcal{I}}$ is the smallest interval from $U_{\mathcal{I}}$ which covers the interval

$$\mathcal{I}^* = \{ \hspace{0.1cm} b = \mathsf{a}_1 \hspace{0.1cm} \mathsf{op} \hspace{0.1cm} \mathsf{a}_2 \mid \mathsf{a}_1 \in \mathcal{I}_1 \hspace{0.1cm}, \hspace{0.1cm} \mathsf{a}_2 \in \mathcal{I}_2 \}$$

• Endpoint-type definition: for *monotonic operations* we can compute the above as

$$E_{op} = \{ e_{\ell\ell} = a_{1\ell} \text{ op } a_{2\ell} , e_{\ell u} = a_{1\ell} \text{ op } a_{2u} , \\ e_{u\ell} = a_{1u} \text{ op } a_{2\ell} , e_{uu} = a_{1u} \text{ op } a_{2u} \} \\ \text{with} \quad \mathcal{I}^* = [\min E_{op}, \max E_{op}]$$

where E_{op} is formed from the endpoints

Interval operations – 2

Unusual properties caused by the fact that \mathcal{I}^* *should be covered* by an interval from $\mathcal{U}_\mathcal{I}$

- growing uncertainty with every operation
- lack of distributivity: the result may depend on the algebraic form *minimum number of addition is the best*

Order of magnitude intervals

Universe

• landmark set:

$$\mathcal{L}_{\mathcal{OM}} = \{ \ a_1 = -\infty \ , \ a_2 = -A \ , \ a_3 = 0 \ , \ a_3 = A \ , \ a_4 = \infty \}$$

atomic intervals:

$$LN = [-\infty, -A), SN = [-A, 0), 0 = [0, 0], SP = (0, A], LP = (A, \infty)$$

 $U_{OM} = \{ LN, SN, 0, SP, LP \}$

Non-atomic intervals and operations

- pseudo-intervals: $[SP, LP] = (0, \infty]$ or $[LN, LP] = [-\infty, \infty]$
- operations: $LP \oplus_{OM} LN = [LN, LP]$

Order of magnitude addition

Operation table of the order of magnitude interval addition

$a \oplus_{OM} b$	LN	SN	0	SP	LP
LN	LN	LN	LN	[LN, SN]	[LN, LP]
SN	LN	[LN, SN]	SN	[SN, SP]	[SP, LP]
0	LN	SN	0	SP	LP
SP	[LN, SN]	[<i>SN</i> , <i>SP</i>]	SP	[SP, LP]	LP
LP	[LN, LP]	[SP, LP]	LP	LP	LP

Normalized intervals

Qualitative range space: for variables with "normal" N value

 $Q = \{H, N, L, 0\}, \quad B = \{0, 1\}, \quad Q_E = \{H, N, L, 0, e+, e-\}$

Intervals with non-fixed endpoints

-

Operation table for interval addition

[a] + [b]	0	L	Ν	Н
0	0	L	Ν	Н
L	L	Ν	Н	e+
N	Ν	Н	e+	e+
Н	Н	e+	e+	e+

This is only a possible definition!

The notion of qualitative models

The range space of the variables and parameters is interval-valued

- sign-valued
 - Signed Directed Graph (SDG) models
 - Confluences (sign qualitative differential equations)
- interval-valued
 - Qualitative Differential Equations (QDEs): constraint type, algebraic type

From AI viewpoint: qualitative models are **special knowledge representation forms** with special reasoning.

The origin of qualitative models

Engineering dynamical models in state-space form:

Qualitative models can be derived *systematically* from engineering models by using

- interval-values variables and parameters
- simplified equations

The structure of a state-space model

Linearized state-space models near a steady-state point

$$\begin{array}{rcl} \frac{dx}{dt} &=& Ax + Bu & (\text{state eq.}) \\ y &=& Cx + Du & (\text{output eq.}) \end{array}$$

Signed structure matrices: [A]

$$[A]_{ij} = \left\{ egin{array}{ccc} + & {
m if} & a_{ij} > 0 \ 0 & {
m if} & a_{ij} = 0 \ - & {
m if} & a_{ij} < 0 \end{array}
ight.$$

Structure graph

A signed directed graph $S = (V, \mathcal{E}; w)$

• vertex set for the state, input and output variables

$$V = X \cup U \cup Y$$
$$X \cap U = X \cap Y = U \cap Y = \emptyset$$

- edges for the *direct* effects between variables
- edge weights for the sign of the effect

Paths in the structure graph

A directed path $P = (v_1, v_2, ..., v_n)$, $v_i \in V$, $e_{i,i+1} = (v_i, v_{i+1}) \in \mathcal{E}$

- describe an indirect effect from variable v_1 to v_n
- value of the path

$$W(P) = \prod_{i=1}^{n-1} w(e_{i,i+1})$$

• significance of shortest path(s) and directed circles

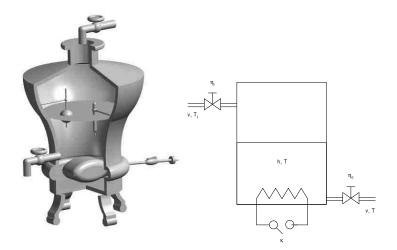
Diagnostic reasoning using SDGs

Sign-valued variables: sign of the deviation from their steady-state value

The effect of a variable v_i to another variable v_j

- initial deviation is determined by the sign-value of the shortest path(s)
 - sign-sum is needed if not unique ⇒ ambiguity
- steady-state effect is the sign-sum of the sign-value of all paths
 - → ambiguity (often)
 - directed circles: solution of sign-linear equations

Example – Coffee machine



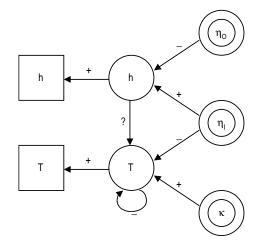
State-space model of the coffee machine

$$\frac{\frac{dh}{dt}}{\frac{dt}{dt}} = \frac{v}{A}\eta_{I} - \frac{v}{A}\eta_{O} \qquad (\text{mass})$$
$$\frac{\frac{dT}{dt}}{\frac{dT}{dt}} = \frac{v}{Ah}(T_{I} - T)\eta_{I} + \frac{H}{c_{P}\rho h}\kappa \quad (\text{energy})$$

- t time [s]
- h level in the tank [m]
- v volumetric flowrate $[m^3/s]$
- c_p specific heat [Joule/kgK]
- ρ density $[kg/m^3]$
- T temperature in the tank [K]
- T_I inlet temperature [K]
- *H* heat provided by the heater [*Joule/sec*]
- A cross section of the tank $[m^2]$
- η_I binary input valve [1/0]
- η_O binary output valve [1/0]
- κ binary switch [1/0]

Signed Directed Graph (SDG) models

SDG of the coffee machine



Origin of confluences

"Qualitative Physics" by de Kleer and Brown

Sign version of lumped nonlinear state equations (dynamic models with perfectly stirred balance volumes)

- can be formally derived therefrom
- sign-valued variables and operations are used

A complete and contradiction-free rule-set can be derived from confluences

Derivation of confluences

define qualitative variables [q] and δq to each of the model variables q(t) as follows:

 $q \sim [q] = sign(q)$, $dq/dt \sim \delta q = sign(dq/dt)$

2 operations are replaced by sign operations, i.e.

 $+ \sim \oplus_S$, $* \sim \otimes_S$ etc.

Parameters are replaced by + or - or 0 forming sign constants in the confluence equations, i.e. they virtually disappear from the equations.

Solution of a confluence

In the form of an **extended truth table** (sign-operation table)

- collect all of the *right-hand side variables* (time-dependent values!)
- enumerate all of their sign-values
- systematically enumerate all of the possible combinations
 ⇒ exponentially growing size with the number of variables

Rule generation from confluences

The rows of the truth table of a confluence can be interpreted as a rule if one reads them from right to left. For example

$$\delta h = [\eta_I] \ominus_S [\eta_O]$$

with the combination $\eta_I = 0$, $\eta_I = +$ gives $\delta h = -$

if $(\eta_I = \text{closed})$ and $(\eta_O = \text{open})$ then (h = decreasing)

Rule sets can be generated from the truth table of a confluence and they are complete and contradiction-free

A simple example -1

Model equation: mass balance of the coffee machine

$$\frac{dh}{dt} = \frac{v}{A}\eta_I - \frac{v}{A}\eta_O$$

- **Q** qualitative variables: $[\eta_I] \in \{0,+\}$, $[\eta_O] \in \{0,+\}$
- 2 all sign constants are "+"

confluence

$$\delta h = [\eta_I] \ominus_S [\eta_O]$$

A simple example – 2

Truth table of the confluence

$$\delta h = [\eta_I] \ominus_S [\eta_O]$$

δh	$[\eta_I]$	$[\eta_O]$
0	0	0
_	0	+
+	+	0
?	+	+

The derivation of discrete time qualitative DAEs

Dynamic models derived from first engineering principles: continuous time differential-algebraic equation models

- differential equations originate from conservation balances: *to be transformed to difference equations* (time discretization)
- selection of the *qualitative range spaces* of variables and parameters
- deriving the qualitative form

Qualitative signals

Qualitative range spaces

 $Q = \{H, N, L, 0\}, \ B = \{0, 1\}, \ Q_{\mathcal{E}} = \{H, N, L, 0, e+, e-\}$

with High, Low, Normal, error.

A qualitative signal is a signal (input, output, state and *disturbance* (*fault indicator*)) that takes its values from a finite qualitative range set

An event is generated when a qualitative signal changes its value. An event e_X is formally described by a pair $e_X(t, q_X) = (t, [x](t) = q_X)$ where t is the occurrence time when the qualitative signal [x] takes the value q_X .

Solution of a qualitative DAE

In the form of a **solution table** (interval operation table)

- collect all of the *right-hand side variables* (time-dependent values!)
- enumerate all of their signal traces
- systematically enumerate all of the possible combinations
 ⇒ exponentially growing size with the number of variables

A static example: sensor with additive type fault

Algebraic model equation: $v^m = v + \chi \cdot E$ $[v] \in Q$, $[v]^m \in Q_e$, $\chi \in B_{-1} = \{-1, 0, 1\}$

[v ^m]	$[\chi]$	[v]	mode
N	0	N	normal
Н	0	Н	normal
L	0	L	normal
0	0	0	normal
e+	1	Н	faulty
Н	1	N	faulty
N	1	L	faulty
L	1	0	faulty
N	-1	Н	faulty
L	-1	N	faulty
0	-1	L	faulty
e-	-1	0	faulty

A dynamic example: mass balance of the coffee machine

Differential equation in discrete form: $h^T = h + \chi_I \cdot v - \chi_O \cdot v$ $[h], [h]^T \in Q_e, \chi_I, \chi_O \in \mathcal{B} \text{ and } [v] = L$ Solution for constant inputs

$[h]^{T}$	$[h](t_0)$	χ_I	χο
(N, N, N)	N	(1,1,1)	(1,1,1)
(L, L, L)	L	(1,1,1)	(1,1,1)
(N, N, N)	N	(0,0,0)	(0,0,0)
(e+, e+, H)	N	(1,1,1)	(0,0,0)
(e+, H, N)	L	(1,1,1)	(0,0,0)
(e-, 0, L)	N	(0,0,0)	(1,1,1)
(e-, e-, 0)	L	(0,0,0)	(1,1,1)