Intelligent Control Systems: Qualitative modelling – Tutorial

Katalin Hangos

Department of Electrical Engineering and Information Systems University of Pannonia e-mail: hangos.katalin@virt.uni-pannon.hu

ICS - 2015

Qualitative range space: for variables with "normal" N value

$$Q = \{H, N, L, 0\}, \quad B = \{0, 1\}, \quad Q_E = \{H, N, L, 0, e+, e-\}$$

Operation table for addition

[a]+[b]	0	L	Ν	Н
0	0	L	Ν	Н
L	L	Ν	Н	e+
Ν	Ν	Н	е+ е+	e+
Н	Н	e+	e+	e+

TASK: Construct (a possible) operation table for multiplication

(A possible) Solution

[a] * [b]	0	L	Ν	Н	
0	0	0	0	0	-
L	0	L	L	Ν	
N	0	L	Ν	Н	
Н	0	Ν	Н	Н	

TASK: Construct another possible operation table for the multiplication.

Given a tank with in- and outflow, and a possible hole at the bottom of the tank.

The dynamic model originates from the mass balance

$$\frac{dm}{dt} = v_{in} - v_{out} - \kappa m$$

where $\kappa \in \{0,1\}$ is the fault (hole) indicator variable.

TASK: Derive the confluence from the model, and give its solution. Derive the set of rules from the confluence.

Qualitative difference equation models

Given a (static) model of a sensor that suffers from a multiplicative bias over the normalized qualitative range set Q:

$$[x^m](k) = [x](k) * \chi_{Mx}$$

where $[x] \in Q$ is the real value, $[x^m] \in Q_E$ is the value indicated by the (possibly faulty) sensor), and $\chi_{Mx} \in \{L, N\}$ is the fault (bias) indicator variable.

Use the qualitative multiplication constructed at the beginning of the tutorial.

TASK: Give the solution table of the qualitative model.

Construct rules from the rows of the solution table.