# Intelligent Control Systems 

## Tutorial: VERIFICATION OF RULE BASES

October, 2015

Consider the simple rule set below in section 1 that is related to the coffee machine in Fig. 1.


Figure 1: The flowsheet of the coffee machine

The variables are as follows.

```
t time [s]
h level in the tank [m]
hL low level [m]
h}\mp@subsup{h}{H}{\mathrm{ high level [m]}
T temperature in the tank [K]
T
T
\eta
\etaO binary output valve [1/0]
\kappa binary switch to heater [1/0]
```


## 1 The simple rule set

Two sets of rules are considered.

1. rules describing the dynamics of the coffee machine
if (the input valve is open and the output valve is closed) then the level is increasing;
if (the input valve is open and the output valve is open)
then the level does not change;
if (the input valve is closed and the output valve is open)
then the level is decreasing;
if (the level is increasing and 5 min is elapsed and the tank is empty) then the level is low;
if (the level is increasing and 5 min is elapsed and the level is low) then the level is high;
if (the level is increasing and 5 min is elapsed and the level is high) then OVERFLOW;
if (the level is decreasing and 5 min is elapsed and the level is low) then the tank is empty;
if (the level is decreasing and 5 min is elapsed and the level is high) then the level is low;
2. control rules
if (the level high and the level is increasing) then close the input valve;
if (the level low and the level is decreasing) then open the input valve;
if (the tank is empty then (open the input valve and close the output valve);

## 2 Tasks

The following tasks are to be carried out on the above rule set.

1. Identify the set of predicates and their relationships.
2. Transform the rule set into datalog form.
3. Draw the dependence graph of the rule set. Does it contain any circles?
4. Identify the root predicates.
5. Is the rule set complete? Is it contradiction free?
6. How could you improve the rule set to avoid its problems?
