Discrete and Continuous Dynamical Systems

Attila Magyar

University if Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

(日) (四) (王) (王) (王)

Discrete and continuous dynamical systems: Analysis of discrete event systems

April 18, 2018

2 Diagnosability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Nondeterminism

Possible sources of nonterminism

- Stochastic transitions (model is not detailed enough)
- Unobservable events

Problem: The actual state of the automaton is unknown by knowing the sequence of observable events

Nondeterministic Automata

Definition (Nondeterministic automaton)

A nondeterministic automaton G_{nd} is a quintuple

$$G_{nd} = (X, E \cup \{\varepsilon\}, f_{nd}, x_0, X_m)$$

where all the objects have the same interpretation as in the definition of deterministic automaton except

- f_{nd} is a function $f_{nd}: X \times E \cup \{\varepsilon\} \to 2^X$, i.e. $f_{nd}(x, e) \subseteq X$ whenever it is defined.
- 2 The initial state may itself be a set of states, $x_0 \subseteq X$

Example (A simple nondeterministic automaton)

Motivating example

Example (Nondeterministic and deterministic automata)

- $\bullet~{\rm State}~A~{\rm corresponds}$ to 0
- State B corresponds to $\{0,1\}$

•
$$f(A, a) = B$$
 and $f_{nd}(0, a) = \{0, 1\}$

- 2 f(A,b) and $f_{nd}(0,b)$ are undefined
- $\ \, {\bf O} \ \, f(B,a)=B \ \, {\rm and} \ \, f_{nd}(0,a)=\{0,1\} \ \, (f_{nd}(1,a) \ \, {\rm undefined})$
- f(B,b) = A and $f_{nd}(1,b) = \{0\}$ ($f_{nd}(0,b)$ undefined)

The automata G_{nd} and G are language-equivalent! G is called an observer of G_{nd}

・ロト ・聞ト ・ヨト ・ヨト

э

Another example

Example (Constructive example)

Example (Constructive example)

From state 0 we cannot get to other states reading ε

・ロト ・ 一下・ ・ ヨト

э

Example (Constructive example)

・ロト ・ 同ト ・ ヨト ・ ヨト

Example (Constructive example)

From the set of states $\{1,2,3\}$ we can get to state 0 reading a (from 2)

・ロト ・ 日本 ・ 日本 ・ 日本

ъ

Example (Constructive example)

・ロト ・ 日本 ・ 日本 ・ 日本

э

Example (Constructive example)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Example (Constructive example)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Reachability function

 $\varepsilon\text{-reachability}$ function

$$\varepsilon R(x) = \{ p \in X : p \text{ is reachable from } x \text{ by } \varepsilon \}$$

$$\varepsilon R(B) = \cup_{x \in B} \varepsilon R(x)$$

Extended transition mapping

$$\begin{split} f_{nd}^{ext}(x,\varepsilon) &= \varepsilon R(x) \\ f_{nd}^{ext}(x,ue) &= \varepsilon R[\{z: z \in f_{nd}(y,e) \text{ for some state } y \in f_{nd}^{ext}(x,u)\}] \end{split}$$

ヘロト 人間ト 人間ト 人間ト

Э

Observer automata

Procedure of building an observer $Obs(G_{nd})$

Step 1: Define
$$x_{0,obs} = \varepsilon R(x_0)$$
. Set $X_{obs} = \{x_{0,obs}\}$.
Step 2: for each $B \in X_{obs}$ and $e \in E$

$$f_{obs}(B,e) = \varepsilon R(\{x \in X : (\exists x_e \in B) \ [x \in f_{nd}(x_e,e)]\})$$

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のへで

Step 3: Repeat Step 2 until the accessible part of $Obs(G_{nd})$ has been constructed

Step 4:
$$X_{m,obs} = \{B \in X_{obs} : B \cup X_m \neq \emptyset\}$$

Important properties

• $Obs(G_{nd})$ is a deterministic automaton

•
$$\mathcal{L}(Obs(G_{nd})) = \mathcal{L}(G_{nd})$$

•
$$\mathcal{L}_m(Obs(G_{nd})) = \mathcal{L}_m(G_{nd})$$

Important in studying partially observed DES

Observer automata

Main idea

An outside observer that knows the system model G_{nd} but only observes the transitions labelled by the events in E will start with $x_{0,obs}$ as its estimate of the state G_{nd} . Upon observing event $e \in E$, this outside observer will update its state estimate to $f_{obs}(x_{0,obs}, e)$ as this set represents all the states where G_{nd} could be after executing the string epreceded /followed by ε .

・ロト ・ 「日 ト ・ 日 ト ・ 日 ト

Partially observed DES

- ε -transitions were defined to describe unobservable events
- Let us define genuine events for this phenomenon: unobservable events $E = E_{uo} \cup E_o$ where $E_{uo} \cap E_O = \emptyset$
- Instead of NFA, DFA might be used with unobservable events
- Treat unobservable events as they were ε

Definition (Unobservable reach)

The unobservable reach of state $x \in X$ denoted by UR(x) is

$$UR(x) = \{ y \in X : \ (\exists t \in E_{uo}^*) [f(x,t) = y] \}$$

The definition can be extended to sets of states $B \subseteq X$ by

$$UR(B) = \cup_{x \in B} UR(x)$$

Observer for automaton G with unobservable events

Let $G = (X, E, f, x_0, X_m)$ be a deterministic automaton and let $E = E_{uo} \cup E_o$. Then $Obs(G) = (X_{obs}, E_o, f_{obs}, x_{0,obs}, X_{m,obs})$ can be built as follows

Step 1: Define
$$x_{0,obs} = UR(x_0)$$

set $X_{m,obs} = \{x_{0,obs}\}$

Step 2: For each $B \in X_{obs}$ and $e \in E_o$ define

 $f_{obs}(B,e) = UR(\{x \in X : (\exists x_e \in B) [x \in f(x_e,e)]\})$

whenever $f(x_e, e)$ is defined for some $x_e \in B$

Step 3: Repeat Step 2 until the entire accessible part of Obs(G) has been constructed

Step 4: $X_{m,obs} = \{B \in X_{obs} : B \cap X_m \neq \emptyset\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Observability and nondeterminism

Observer with unobservable events

Observability and nondeterminism

Overview

Event diagnosis: determining if certain unobservable event could have been occured or must have occured in the string of events executed by the system

Definition (Diagnosability)

Unobservable event e_d is not diagnosable in language $\mathcal{L}{G}$ if there exist two strings s_N and s_Y in $\mathcal{L}{G}$ that satisfy the following conditions:

- s_Y contains e_d and s_N does not
- s_Y is of arbitrary long length after e_d

•
$$P(s_N) = P(s_Y)$$

when no such pair of strings exists, e_d is said to be diagnosable in $\mathcal{L}{G}$

うして ふゆ く 山 マ ふ し マ し く し マ

• Diagnozers are similar to observers with the difference that labels are attached to the states of G of Diag(G):

 $N\,$ No, e_d has not occured yet

Y Yes, e_d has occured

- They are used to track the system behavior and diagnose, if possible, the prior occurrence of certain unobservable events
- If multiple events to be diagnosed, we can either build one diagnoser for each events to be diagnosed, or build a single diagnoser for all

うして ふゆ く 山 マ ふ し マ し く し マ

Diagnosability

Building Diag(G)

- Mod. 1 When building the unobservable reach of x_0 of G:
 - Attach the label N to states that can be reached from x_0 by unobservable strings in $[E_{uo} \setminus \{e_d\}]^*$
 - Attach the label Y to states that can be reached from x₀ by unobservable strings that contain at least one occurrence of e_d
 - If state z can be reached both with and without executing e_d, then create two entries in the initial state set of Diag(G) : z_n and z_Y
- Mod. 2 When building subsequent reachable states of Diag(G):
 - Follow the rules for the transition function of Obs(G), but with the above modified way to build unobservable reaches with state labels
 - Propagate the label Y to indicate that e_d has occurred in the process of reaching z and thus in tha process of reaching the new state

Mod. 3 No set of marked states is defined for Diag(G), is solved by $\mathcal{D}(G)$

<ロト < 団 > < 臣 > < 臣 > 三 · つへ()