
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 6, NOVEMBER 1994 989

Brief Papers

Training Feedforward Networks with the Marquardt Algorithm
Martin T. Hagan and Mohammad B. Menhaj

Abstract- The Marquardt algorithm for nonlinear least
squares is presented and is incorporated into the backpropagation
algorithm for training feedforward neural networks. The
algorithm is tested on several function approximation problems,
and is compared with a conjugate gradient algorithm and a
variable learning rate algorithm. It is found that the Marquardt
algorithm is much more efficient than either of the other
techniques when the network contains no more than a few
hundred weights. I I I

dl)

~,
,
:

dn)

I. INTRODUCTION Fig. 1. Three-layer feedforward network.

INCE the backpropagation learning algorithm [11 was S first popularized, there has been considerable research
on methods to accelerate the convergence of the algorithm.
This research falls roughly into two categories. The first
category involves the development of ad hoc techniques (e.g.,
[2]-[5]). These techniques include such ideas as varying the
learning rate, using momentum and rescaling variables. An-
other category of research has focused on standard numerical
optimization techniques (e.g., [61-[91).

The most popular approaches from the second category have
used conjugate gradient or quasi-Newton (secant) methods.
The quasi-Newton methods are considered to be more efficient,
but their storage and computational requirements go up as the
square of the size of the network. There have been some lim-
ited memory quasi-Newton (one step secant) algorithms that
speed up convergence while limiting memory requirements
[&lo]. If exact line searches are used, the one step secant
methods produce conjugate directions.

Another area of numerical optimization that has been ap-
plied to neural networks is nonlinear least squares [1 11-[131.
The more general optimization methods were designed to
work effectively on all sufficiently smooth objective functions.
However, when the form of the objective function is known
it is often possible to design more efficient algorithms. One
particular form of objective function that is of interest for neu-
ral networks is a sum of squares of other nonlinear functions.
The minimization of objective functions of this type is called
nonlinear least squares.

Most of the applications of nonlinear least squares to neural
networks have concentrated on sequential implementations,
where the weights are updated after each presentation of an
input/output pair. This technique is useful when on-line adap-
tation is needed, but it requires that several approximations be

This paper presents the application of a nonlinear least
squares algorithm to the batch training of multi-layer percep-
trons. For very large networks the memory requirements of
the algorithm make it impractical for most current machines
(as is the case for the quasi-Newton methods). However, for
networks with a few hundred weights the algorithm is very
efficient when compared with conjugate gradient techniques.
Section I1 briefly presents the basic backpropagation algorithm.
The main purpose of this section is to introduce notation
and concepts which are needed to describe the Marquardt
algorithm. The Marquardt algorithm is then presented in
Section 111. In Section IV the Marquardt algorithm is compared
with the conjugate gradient algorithm and with a variable
learning rate variation of backpropagation. Section V contains
a summary and conclusions.

11. BACKPROPAGATION ALGORITHM

Consider a multilayer feedforward network, such as the

The net input to unit i in layer k + 1 is
three-layer network of Fig. 1.

S k

, k + l (i) = E,&++'(. 2, j) a k . (j) + b k + ' (i) . (1)
j = 1

The output of unit i will be

For an M layer network the system equations in matrix form
are given by

ao = p (3)

,k+l = f k + + '

k = 0,1 , . . . , M - 1. (4)

made to the standard algorithms. The standard algorithms are
performed in batch mode, where the weights are only updated
after a complete sweep through the training set.

The task of the network is to learn associations between a spec-
ified set of input-output pairs { (p l , tl , (p2 , t 2 , . . . (pQ , t~ 1 .

1045-9227/94$04.00 0 1994 IEEE

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on June 26, 2009 at 13:12 from IEEE Xplore. Restrictions apply.

990 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 6, NOVEMBER 1994

The performance index for the network is

where is the output of the network when the qth input,
p , is presented, and e, = t+ - %M is the error for the qth
input. For the standard backpropagation algorithm we use an
approximate steepest descent rule. The performance index is
approximated by

-?

A 1 v = -eTe
2-9 -9

where the total sum of squares is replaced by the squared
errors for a single input/output pair. The approximate steepest
(gradient) descent algorithm is then

d v
a W"(i , j)

Q w k (i , j) = -a

av
Q b k (i) = --cy-

d bk((i)

where (Y is the leaming rate. Define

(7)

(9)

as the sensitivity of the performance index to changes in the
net input of unit i in layer k. Now it can be shown, using (l),
(6) , and (9), that

It can also be shown that the sensitivities satisfy the following
recurrence relation

- s k = F k ('k) wk+lT - sk++1 (12)

where

and

This recurrence relation is initialized at the final layer

- (15)

The overall learning algorithm now proceeds as follows; first,
propagate the input forward using (3)-(4); next, propagate the
sensitivities back using (15) and (12); and finally, update the
weights and offsets using (7), (8), (lo), and (11).

6 M = - F " (- M
72)(t, -aq) .

111. MARQUARDT-LEVENBERG MODIFICATION

While backpropagation is a steepest descent algorithm, the
Marquardt-Levenberg algorithm [141 is an approximation to
Newton's method. Suppose that we have a function V(:)
which we want to minimize with respect to the parameter
vector I, then Newton's method would be

A: = -[V2V(~)]-'VV(:) (16)

where V2V(:) is the Hessian matrix and VV(:) is the
gradient. If we assume that V(:) is a sum of squares function

N

V(:) = e 3 4 (17)

VV(:) = JT(:)e(:) (18)

i=l
then it can be shown that

V2V(:) = JT(:)J(.) + S (c) (19)

where J (z) is the Jacobian matrix

and
N

For the Gauss-Newton method it is assumed that S (g) x 0,
and the update (16) becomes

A: = [JT(:>J(:)]- lJT(~)e(~:) . (22)

The Marquardt-Levenberg modification to the Gauss-Newton
method is

A: = [J'(z)J(:) + pI]-'JT(:)e(:). (23)

The parameter p is multiplied by some factor (p) whenever
a step would result in an increased V (g) . When a step
reduces V (g) , p is divided by p. (In Section IV we used
p =0.01 as a starting point, with p=lO.) Notice that when
p is large the algorithm becomes steepest descent (with step
Up), while for small p the algorithm becomes Gauss-Newton.
The Marquardt-Levenberg algorithm can be considered a trust-
region modification to Gauss-Newton [8].

The key step in this algorithm is the computation of the
Jacobian matrix. For the neural network mapping problem
the terms in the Jacobian matrix can be computed by a
simple modification to the backpropagation algorithm. The
performance index for the mapping problem is given by (5). It
is easy to see that this is equivalent in form to (1 7), where : =

b'(SM)]' , and N = Q x S M . Standard backpropagation
calculates terms like

[w ~ (l , l) w ~ (l , 2) . ~ ~ w ~ (s l , ~) b ~ (l) ~ . ~ b ~ (s l) w ~ (l , l) ~ ~ ~

av
dW"(i,j)

S M
3 c

m=l

dwk(i , j) '

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on June 26, 2009 at 13:12 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 6, NOVEMBER 1994

~

99 I

For the elements of the Jacobian matrix that are needed for
the Marquardt algorithm we need to calculate terms like

These terms can be calculated using the standard backpropa-
gation algorithm with one modification at the final layer

Note that each column of the matrix in (26) is a sensitivity
vector which must be backpropagated through the network to
produce one row of the Jacobian.

A. Summary

rithm thus proceeds as follows:
The Marquardt modification to the backpropagation algo-

Present all inputs to the network and compute the
corresponding network outputs (using (3) and (4)), and
errors (q = & - %M). Compute the sum of squares of
errors over all inputs (V(zJ).
Compute the Jacobian matrix (using (26), (12), (lo),
(11>, and (20)).
Solve (23) to obtain A:. (For the results shown in the
next section Cholesky factorization was used to solve
this equation.)
Recompute the sum of squares of errors using : + A:.
If this new sum of squares is smaller than that computed
in step 1, then reduce p by p, let 2 = 9 + A:, and go
back to step 1. If the sum of squares is not reduced, then
increase p by p and go back to step 3.
The algorithm is assumed to have converged when the
norm of the gradient ((18)) is less than some prede-
termined value, or when the sum of squares has been
reduced to some error goal.

IV. RESULTS

The Marquardt backpropagation algorithm (MBP), as de-
scribed in the previous section, was tested on five function
approximation problems. To provide a basis for comparison,
two other modifications to backpropagation were also applied
to the same problems: backpropagation with variable learning
rate (VLBP) [2], and conjugate gradient backpropagation
(CGBP). For the purposes of this study we used the Fletcher-
Reeves version of the conjugate gradient algorithm [15, pp.
73-84], with an exact line search. The line search consisted of
two parts: interval location, using function comparison [15, pp.
41421 and a golden section search [15, pp. 31-32]. It should
be noted that there are a number of decisions to be made
in the implementation of the conjugate gradient algorithm,
including the precision and the type of line search and the
choice of the number of steps before the search direction
is reinitialized to the gradient direction (typically chosen to
be equal to the number of parameters, see [15]). We took
some care in making these decisions, but there is no guarantee
that our implementation is optimal. However, we found that
the basic trends described in the examples to follow were

103
__......,,
,

. . , *
100 10' 102 1W 104 1 0 2 1 ' . . ' "". . ' . . . ' . I '

Fig. 2. Network convergence for sine wave (sum of squares vs. epoch).

not sensitive to modifications in the implementation of the
conjugate gradient algorithm.

A. Problem # I : Sine Wave
For the first test problem a 1-15-1 network, with a hidden

layer of sigmoid nonlinearities and a linear output layer, was
trained to approximate the sinusoidal function

y = 1/2 + 1/4sin(37rx)

using MBP, CGBP and VLBP. Fig. 2 displays the training
curves for the three methods. The training set consisted of 40
inpudoutput pairs, where the input values were scattered in the
interval [-1,1]; and the network was trained until the sum of
squares of the errors was less than the error goal of 0.02. The
curves shown in Fig. 2 are an average over 5 different initial
weights. The initial weights are random, but are normalized
using the method of Nguyen and Widrow [16].

A comment is appropriate at this point on the shape of the
learning curve for CGBP. Note that there is a plateau followed
by a steep curve. The plateau ends at the point when the search
direction is re-initialized to the gradient direction (when the
number of steps is equal to the number of parameters), and the
plateau only occurs once. When we reset the search direction
more often the plateau was shortened, but the steepness of the
subsequent slope was reduced, and the overall convergence
rate was not improved. We found that the plateau could be
eliminated by using the gradient direction for the first few
steps and then using the conjugate gradient algorithm, but this
made only a small difference in overall convergence rate.

Fig. 2 provides only limited information, since the three
algorithms do not have the same number of floating point op-
erations for each iteration. The first line of Table 1 summarizes
the results, showing the number of floating point operations
required for convergence. Notice that CGBP takes more than
nine times as many flops as MBP, and VLBP takes almost 45
times as many flops.

B. Problem #2: Square Wave
Fig. 3 illustrates the second test problem, in which the same

1-15-1 network is trained to approximate a square wave.
Fig. 4 displays the average leaming curves (5 different initial
weights), and line 2 of Table I summarizes the average results.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on June 26, 2009 at 13:12 from IEEE Xplore. Restrictions apply.

992 I E E l TRANSACTIONS ON NEURAL NBIWORKS, V01, 5 . N O 6, NOVEMBER 1994

TABLE I1
NUMBER OF FLOPS REQUIRED FOR CONVERGENCE

VT.RP CGRP MBP

-2 ' I
-3 -2 -1 0 1 2 3

Function approximation, problem #2. Fig. 3.

.

1 0 2 ~ - - - - - _ _

101
'.

MBP 100

101

Fig. 4.

1 8 101 102 103 104 105

Network convergence for square wave (sum of squares vs. epoch).

(a) (b)

Fig. 5.
function, (b) network response.

Function approximation, problem #3, and network response; (a) sinc

Note that CGBP takes more than four times as many flops as
MBP, and VLBP takes more than 65 times as many flops.

C. Problem #3: 2-0 Sinc Function
Fig. 5(a) illustrates the third test problem. In this case a

2-15-1 network is trained to approximate a two-dimensional
sinc function. Fig. 6 displays the average learning curves (3
different initial weights), and line 3 of Table I summarizes
the average results (error goal of 0.5 with 289 input/output
sets). The CGBP algorithm takes more than 7 times as many
flops as MBP, and VLBP takes more than 27 times as
many flops. These differences in convergence time became
more pronounced as the error goal was reduced, but the
time required for convergence of VLBP made multiple runs
impractical. Fig. 5(b) illustrates the network response, after
training with MBP to an error goal of 0.02.

Sine Wave 8.42 x 10' 1.75 x 10' 1.89 x lo6

Square Wave 2.28 x 109 1.49 x 3.48 x 10'
2-D Sinc 2.94 x 109 7.67 x lox 1.07 x l o8
4-D Test - 7.71 x io9 1.97 x i o 9

103 3
102

101

1 8

...

1 CGBP

.
1 8 101 102 103 104

1 0 1 '

Fig. 6.
epoch).

Network convergence for 2-D sinc function (sum of squares vs.

103

102

101

100

1n.i

103
I" -

1 8 101 102

Fig. 7.
epoch).

Network convergence for 4-D test function (sum of squares vs.

D. Problem #4: 4-0 Function
The fourth test problem is a four input-single output function

= ~ i n (2 ~ 2 ~) 2 ~ 2 ~ ~ ~ ~ - (~ l f 2 " + 5 3 + ~ 4) (27)

For this example a 4-50-1 network (301 parameters) is trained
to approximate (27), where the input values were scattered
in the interval [-1,1]; and the network was trained until the
sum of squares of the errors (over 400 input/output sets) was
less that the error goal of 0.5. Fig. 7 displays the average
learning curves (3 different initial weights), and line 4 of Table
I summarizes the average results. The CGBP algorithm takes
approximately four times as many flops as MBP (VLBP was
not applied to this problem because of excessive training time)

E. Example Set Scaling

In order to investigate the effect of sample size on the
efficiency of the algorithm, MBP and CGBP were used to

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on June 26, 2009 at 13:12 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 6, NOVEMBER 1994 993

Fig. 8. FLOPS required for convergence versus sample size.

MBP
----------- ----------- I -------- ~ _ -

106’ I
106 1 0 5 10-4 1 0 3

Fig. 9. FLOPS required for convergence versus error goal.

train a 1-10-1 network to approximate the function

y = sin(.rr/2z) (28)

over the interval -1< z <l. The size of the training set was
varied from 100 points to 1600 points, and the network was
trained until the mean square error was less than 2 x
Fig. 8 displays the number of flops required for convergence,
as a function of the sample size. The curves represent an
average over 10 different initial conditions. From this figure
we can see that the effect is linear, both for MBP and CGBP.
MBP is approximately 16 times faster than CGBP for each
sample size.

F. Accuracy Requirements

We noted that the difference between the performances of
MBP and CGBP became more pronounced as higher preci-
sion approximations were required. This effect is illustrated
in Fig. 9. In this example a 1-10-1 network is trained to
approximate the sine wave of (28). The sample size is held
constant at 100 points, but the mean square error goal is halved
in steps from 2 x lop4 to 1.6 x Fig. 9 displays the
number of flops required for convergence, as a function of the
error goal, for both MBP and CGBP. The curves represent an
average over 10 different initial conditions. With an error goal
of 2 x MBP is 16 times faster than CGBP. This ratio
increases as the error goal is reduced; when the error goal is
1.6 x lop6, MBP is 136 times faster than CGBP.

V. CONCLUSION
Many numerical optimization techniques have been success-

fully used to speed up convergence of the backpropagation
learning algorithm. This paper presented a standard nonlinear
least squares optimization algorithm, and showed how to
incorporate it into the backpropagation algorithm. The Mar-
quardt algorithm was tested on several function approximation
problems, and it was compared with the conjugate gradient
algorithm and with variable learning rate backpropagation. The
results indicate that the Marquardt algorithm is very efficient
when training networks which have up to a few hundred
weights. Although the computational requirements are much
higher for each iteration of the Marquardt algorithm, this is
more than made up for by the increased efficiency. This is
especially true when high precision is required.

The authors also found that in many cases the Marquardt
algorithm converged when the conjugate gradient and variable
learning rate algorithms failed to converge. For example, in
problem #2 (Fig. 3) if we used five neurons in the hidden layer
the CGBP and VLBP algorithms almost never converged to an
optimal solution. The MBP algorithm converged to an optimal
solution in 50% of the tests, and in less time than was required
for the network with 15 hidden neurons.

REFERENCES

D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning Repre-
sentations by Back-Propagating Errors,” Nature, vol. 323, pp. 533-536,
1986.
T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink and D. L. Alkon,
“Accelerating the convergence of the backpropagation method,” Bio.
Cybern., vol. 59, pp. 256-264, Sept. 1988.
R. A. Jacobs, “Increased Rates of Convergence Through Learning Rate
Adaptation,” Neural Networks, vol. 1, no. 4, pp. 295-308, 1988.
T. Tollenaere, “SuperSAB: Fast adaptive back propagation with good
scaling properties,” Neural Networks, vol. 3, no. 5, pp. 561-573, 1990.
A. K. Rigler, J. M. Irvine, and T. P. Vogl, “Rescaling of variables in
back propagation learning,” Neural Networks, vol. 3, no. 5, pp. 561-573,
1990.
D. F. Shanno, “Recent advances in numerical techniques for large-
scale optimization,” in Neural Networks for Control, Miller, Sutton and
Werbos, Eds. Cambridge MA: MIT Press, 1990.
E. Barnard, “Optimization for training neural nets,” IEEE Trans. Neural
Net., vol. 3, no. 2, pp. 232-240, 1992.
R. Battiti, “First- and second order methods for learning: Between
steepest descent and Newton’s method,” Neural Computation, vol. 4,
no. 2, pp. 141-166, 1992.
C. Charalambous, “Conjugate gradient algorithm for efficient training
of artificial neural networks,” IEE Proc., vol. 139, no. 3, pp. 301-310,
1992.
D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Math. Prog., vol. 45, pp. 503-528, 1989.
S. Kollias and D. Anastassiou, “An adaptive least squares algorithm for
the efficient training of artificial neural networks,” ZEEE Trans. Circ.
Syst., vol. 36, no. 8, pp. 1092-1101, 1989.
S. Singhal and L. Wu, “Training multilayer perceptrons with the
Extended Kalman Algorithm,” in Advances in Neural Information Pro-
cessing Systems I , D. S. Touretzky, Ed. San Mateo, C A Morgan
Kaufman, pp. 133-140, 1989.
G. V. Puskorius and L. A. Feldkamp, “Decoupled Extended Kalman
Filter Training of feedforward layered networks,” in Proc. IJCNN, vol.
I, pp. 771-777, July 1991.
D. Marquardt, “An algorithm for least squares estimation of non-linear
parameters,” J. Soc. Ind. Appl. Math., pp. 4 3 1 4 1 , 1963.
L. E. Scales, Introduction to Nonlinear Optimization. New York:
Springer-Verlag, 1985.
D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,” in
Proc. IJCNN, vol. 3, pp. 21-26, July 1990.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA CATARINA. Downloaded on June 26, 2009 at 13:12 from IEEE Xplore. Restrictions apply.

