Számítógéppel irányított rendszerek elmélete

Gyakorlat - CT-LTI Stabilitás

Hangos Katalin

Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos.katalin@virt.uni-pannon.hu

Exercise 1

Given the following CT LTI SISO state space model:

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
-1 & 6 \\
1 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
2 & -4
\end{array}\right] x
\end{aligned}
$$

- Compute the transfer function of the system.
- Is the system jointly controllable and observable?
- Is the system asymptotically/BIBO stable?

Solution to Exercise 1 - Transfer function

The SSR is in controller form, therefore

$$
H(s)=\frac{2 s-4}{s^{2}+s-6}=\frac{2(s-2)}{(s+3)(s-2)}
$$

- The system IS NOT jointly controllable and observable, because there is a common root (+2) of the nominator and the denominator in $H(s)$.
- The system IS NOT asymptotically stable, since there is a pole $(+2)$ with positive real part. However, it is BIBO stable, since the minimal realization with the reduced transfer function

$$
\bar{H}(s)=\frac{2}{s+3}
$$

is asymptotically stable.

Exercise 2

We are given the following differential equation:

$$
\ddot{y}(t)+5 \dot{y}(t)+6 y(t)=2 \dot{u}(t)+u(t)
$$

1. Is the above system stable (BIBO, or asymptotically)?
2. Give a possible state-space representation of the system!
3. Is the system controllable and/or observable?

Solution to Exercise 2-1 and 2

1. Stability:

The poles (eigenvalues) of the system are:

$$
\lambda_{1}=-2, \quad \lambda_{2}=-3
$$

so it is asymptotically stable. Asymptotic stability implies BIBO stability, so it is BIBO stable.
2. Possible state space representation Solution: controller form:

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cr}
-5 & -6 \\
1 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
2 & 1
\end{array}\right] x
\end{aligned}
$$

Solution to Exercise 2-3

Given the CT LTI SISO input-output model:

$$
\ddot{y}(t)+5 \dot{y}(t)+6 y(t)=2 \dot{u}(t)+u(t)
$$

3. Controllability, observability Solution:

$$
H(s)=\frac{2(s+0.5)}{(s+2)(s+3)} \quad \text { is irreducible, }
$$

i.e. the system is joint controllable and observable.

Exercise 3

Given the following CT LTI SISO system:

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll}
3 & 0 \\
5 & p
\end{array}\right] x+\left[\begin{array}{l}
q \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
r & 1
\end{array}\right] x
\end{aligned}
$$

1. Give the parameter values p, q, r so that the above system is asymptotically stable! (If it is not possible, why?)
2. Give the parameter values p, q, r so that the above system is BIBO stable! (If it is not possible, why?)

Solution to Exercise 3

$$
\dot{x}=\left[\begin{array}{ll}
3 & 0 \\
5 & p
\end{array}\right] x+\left[\begin{array}{l}
q \\
1
\end{array}\right] u, \quad y=[r 1] x
$$

1. Give the parameter values p, q, r so that the above system is asymptotically stable! (If it is not possible, why?)
Solution: Not possible, since $\lambda_{1}=3$. (The state matrix is lower triangular!)
2. Give the parameter values p, q, r so that the above system is BIBO stable! (If it is not possible, why?) Solution: From the condition

$$
\int_{0}^{\infty}|h(t)| d t<\infty
$$

and using

$$
h(t)=C e^{A t} B
$$

$p<0, \quad q=0, \quad r=0$.

Exercise 4

Given the following CT LTI SISO system:

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{rr}
-3 & 1 \\
0 & -1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \quad Q=\left[\begin{array}{cc}
12 & 2 \\
2 & 4
\end{array}\right] \\
y & =\left[\begin{array}{ll}
3 & 2
\end{array}\right] x
\end{aligned}
$$

- Is it possible to find a $P>0$ symmetric matrix for any $Q>0$ symmetric matrix such that $A^{T} P+P A=-Q$?
Solution: The eigenvalues of A are $\lambda_{1}=-1$, and $\lambda_{2}=-3$, i.e. A is a stability matrix, so according to the Lyapunov criterion for LTI systems, it is possible.

Homework Exercise

Given the following CT LTI SISO system:

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{cc}
-3 & 0 \\
2 & p
\end{array}\right] x+\left[\begin{array}{l}
q \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
r & 2
\end{array}\right] x
\end{aligned}
$$

- Give the values of parameters p, q and r so that the system is asymptotically stable and minimal!

