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Signals

Signals – 1

Signal:
time-varying (and/or spatial varying)
quantity
Examples

x : R+
0 7→ R, x(t) = e−t

y : N+
0 7→ R, y [n] = e−n

X : C 7→ C, X (s) = 1
s+1

K. Hangos (University of Pannonia) CCS Feb 2017 3 / 24



Signals

Signals – 2

surface temperature T (r , θ, φ, t) on
Earth: T : R+ × [0, π]× [0, 2π] 7→ R
(r , θ, φ: spherical coordinates, t: time)
colored TV screen: I : N3 7→ N3

I (x , y , t) =

 IR(x , y , t)
IG (x , y , t)
IB(x , y , t),
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Signals Classification of signals

Classification of signals

dimension of the independent variable - only time-dependent vs.
other dependencies
dimension of the signal - scalar vs. vector-valued
real-valued vs. complex-valued
continuous time vs. discrete time
continuous valued vs. discrete valued
bounded vs. unbounded
periodic vs. aperiodic
even vs. odd
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Signals Special signals

Special signals – 1

Dirac-δ or unit impulse function∫ ∞
−∞

f (t)δ(t)dt = f (0)

where f : R+
0 7→ R arbitrary smooth (many

times continuously differentiable) function.
Consequence:∫ ∞

−∞
1 · δ(t)dt = 1

Physical meaning of the unit impulse:
force impulse ⇒ momentum
density impulse ⇒ mass point
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Signals Special signals

Special signals – 2

Unit step function

η(t) =

∫ t

−∞
δ(τ)dτ,

i.e.

η(t) =

{
0, if t < 0
1, if t ≥ 0

Exponential function

eat , a ∈ R

Complex exponential: a ∈ C, a = α + jΩ

eat = eαt · e jΩt = eαt cos(Ωt) + jeαt sin(Ωt)
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Signals Basic operations on signals

Basic operations on signals – 1

x(t) =

 x1(t)
...

xn(t)

 , y(t) =

 y1(t)
...

yn(t)


addition:
(x + y)(t) = x(t) + y(t), ∀t ∈ R+

0

multiplication by scalar:
(αx)(t) = αx(t) ∀t ∈ R+

0 , α ∈ R
scalar product:
〈x , y〉(t) = 〈x(t), y(t)〉 ∀t ∈ R+

0
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Signals Basic operations on signals

Basic operations on signals – 2

time shift:
Tax(t) = x(t − a) ∀t ∈ R+

0 , a ∈ R
convolution: x , y : R+

0 7→ R

(x ∗ y)(t) =

∫ ∞
−∞

x(τ)y(t − τ)dτ, ∀t ≥ 0
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Signals Basic operations on signals

Laplace-transformation

Domain:

Λ = { f | f : R+
0 7→ C, f integrable on [0, a], ∀a > 0 and

∃Af ≥ 0, af ∈ R, such that |f (x)| ≤ Af eaf x ∀x ≥ 0 }

Laplace-transform (connection with Fourier transform: s = jΩ)

F (s) = L{f (t)} =

∫ ∞
0

f (t)e−stdt, f ∈ Λ, s ∈ C, s = σ + jΩ

Properties
Linear: L{c1y1 + c2y2} = c1L{y1}+ c2L{y2}
L{dy

dt } = sY (s)− y(0)

L{
∫∞
−∞ h(t − τ)u(τ)dτ} = H(s)U(s)

Inverse Laplace transform

f (t) = L−1{F (s)} =
1
2πj

∫ c+j∞

c−j∞
F (s)estds, t ∈ R+

0
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Systems

Systems

System (S): acts on signals
y = S[u]

inputs (u ∈ U) and outputs (y ∈ Y)
abstract operator (S : U → Y)
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Systems System properties

Basic system properties – 1

Linearity
S[c1u1 + c2u2] = c1y1 + c2y2

with c1, c2 ∈ R, u1, u2 ∈ U , y1, y2 ∈ Y and S[u1] = y1, S[u2] = y2

Linearity check: use the definition
Time-invariance

Tτ ◦ S = S ◦ Tτ

where Tτ is the time-shift operator: Tτ (u(t)) = u(t + τ), ∀t
Time invariance check: constant parameters
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Systems System properties

Basic system properties – 2

SISO/MIMO
Single Input-Single Output, or Multiple Input-Multiple Output sytems
Continuous-time (CT) and Discrete-time (DT) systems
Continuous-time system: the time set T ⊆ R
Discrete-time system: the time set T = {. . . , t−1, t0, t1, t2, . . . }
Causality
The present does not depend on the future, only on the past.
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Systems System model types

System model types

Input-output (I/O) models (for SISO systems in this course)
time domain
frequency domain
operator domain

State-space models
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Systems System model types

State-space models

General form

ẋ(t) = F(x(t), u(t)) (state equation)
y(t) = H(x(t), u(t)) (output equation)

, x(t0) = x0

with

given initial condition x(t0) = x0 ,

x(t) ∈ Rn, y(t) ∈ Rp, u(t) ∈ Rr – signals, time-dependent quantities

state equation is a set of differential equations

output equation is a set of algebraic equations in the MIMO case

system parameters – constants, do not depend on time
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Construction of state-space models
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Construction of state-space models Modelling fundamentals - conservation balances

Conservation balances

Balance volumes: for constructing conservation balances

most often with constant volume

perfectly stirred (concentrated parameter, the balance is in the form of
ordinary differential equations)

Conserved (extensive) quantities:

ovarall mass

energy (entalpy, internal energy)

component mass, (momentum)

Dynamic conservation balance in general form: for a conserved quantity{
rate of
change

}
=

{
in-
flow

}
−
{

out-
flow

}
+

{
source
sink

}
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Construction of state-space models Tank with gravitational outflow

Example: tank with gravitational outflow - 1

Problem description
Given a tank with constant cross section that is used for storing water. The water
flows into the tank through a binary input valve, the outflow rate is driven by
gravitation, i.e. depends on the water level in the tank, but it is controlled by a
binary output valve.

Construct the model of the tank for diagnostic purposes if we can measure the
water level and the status of the valves.
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Construction of state-space models Tank with gravitational outflow

Example: tank with gravitational outflow - 2

Conservation balance equation: for overall mass

dm
dt

= vb − vk (1)

Constitutive equations

m = A · h · ρ (water level h is measurable)

vB = v∗
BkB (valve status kB is measurable)

vK = K · h · kK (gravitational outflow, valve status kK is measurable)
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Construction of state-space models Tank with gravitational outflow

Example: tank with gravitational outflow - 3

Model equation with measurable variables:

dh
dt

=
v∗
b

Aρ
kb −

K
Aρ

h · kK (2)

State-space model form

state variable: water level h

input variables: status of the valves kB and kK

output variable: water level h
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Construction of state-space models Coffee machine

Example: Coffee machine - 1

Problem description
Given a tank with constant cross section equipped with an electric heater that is
used for boiling water water. The water flows into the tank through a binary
input valve, and the outflow is also controlled by a binary output valve. The
heater is controlled by a binary switch.

Construct the model of the coffee machine if we can measure the water level, the
water temperature and the status of the valves and the switch.
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Construction of state-space models Coffee machine

Example: Coffee machine - 2

Conservation balance equation: for overall mass

dM
dt

= ρvI − ρvO (3)

Conservation balance equation: for internal energy

dE
dt

= cPρTI vI − cPρTvO + κH (4)

Constitutive equations

M = ρAh (5)
E = cPρAhT (6)

vI = ηI v , vO = ηOv (7)
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Construction of state-space models Coffee machine

Example: Coffee machine - 3

Model equation with measurable variables:

dh
dt

=
1
A
ηI v −

1
A
ηOv (8)

dT
dt

=
1
A
ηI vTI

1
h
− 1

A
ηOvT

1
h

+
H

cPρA
κ
1
h

(9)

State-space model form

state variables: water level h, temperature T

input variables: status of the valves ηI and ηO , switch κ, inlet temperature
TI

output variable: water level h, temperature T

Parameters: A, H, cP , ρ, v
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