Computer Controlled Systems Signals and systems Construction of state space models

Katalin Hangos

University of Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

hangos.katalin@virt.uni-pannon.hu

February 2017

Overview

1 9

- Signals
- Classification of signals
- Special signals
- Basic operations on signals

2 Systems

Construction of state-space models

Signals

Signals – 1

Signal:

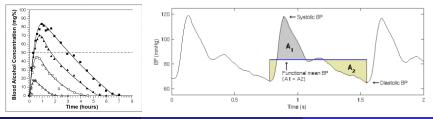
time-varying (and/or spatial varying) quantity

Examples

•
$$x: \mathbb{R}^+_0 \mapsto \mathbb{R}, \quad x(t) = e^{-t}$$

•
$$y: \mathbb{N}_0^+ \mapsto \mathbb{R}, \quad y[n] = e^{-n}$$

•
$$X: \mathbb{C} \mapsto \mathbb{C}, \quad X(s) = \frac{1}{s+1}$$



K. Hangos (University of Pannonia)

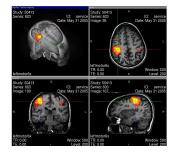
CCS

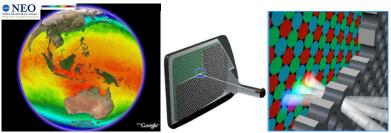
Signals

Signals – 2

- surface temperature $T(r, \theta, \phi, t)$ on Earth: $T : \mathbb{R}^+ \times [0, \pi] \times [0, 2\pi] \mapsto \mathbb{R}$ $(r, \theta, \phi$: spherical coordinates, t: time)
- colored TV screen: $I : \mathbb{N}^3 \mapsto \mathbb{N}^3$

$$I(x, y, t) = \begin{bmatrix} I_R(x, y, t) \\ I_G(x, y, t) \\ I_B(x, y, t), \end{bmatrix}$$





Classification of signals

- dimension of the independent variable **only time-dependent** vs. other dependencies
- dimension of the signal scalar vs. vector-valued
- real-valued vs. complex-valued
- continuous time vs. discrete time
- continuous valued vs. discrete valued
- bounded vs. unbounded
- periodic vs. aperiodic
- even vs. odd

Special signals – 1

$\mathsf{Dirac}\text{-}\delta$ or unit impulse function

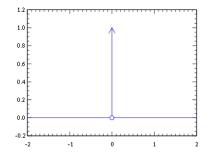
$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)$$

where $f : \mathbb{R}_0^+ \mapsto \mathbb{R}$ arbitrary smooth (many times continuously differentiable) function. Consequence:

$$\int_{-\infty}^{\infty} 1 \cdot \delta(t) dt = 1$$

Physical meaning of the unit impulse:

- force impulse \Rightarrow momentum
- density impulse \Rightarrow mass point



Unit step function

$$\eta(t) = \int_{-\infty}^t \delta(\tau) d\tau,$$

i.e.

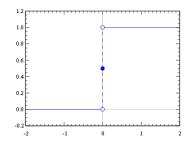
$$\eta(t) = \left\{ egin{array}{c} 0, \ ext{if} \ t < 0 \ 1, \ ext{if} \ t \geq 0 \end{array}
ight.$$

Exponential function

$$e^{at}, a \in \mathbb{R}$$

Complex exponential: $a \in \mathbb{C}, a = \alpha + j\Omega$

$$e^{at} = e^{\alpha t} \cdot e^{j\Omega t} = e^{\alpha t} \cos(\Omega t) + j e^{\alpha t} \sin(\Omega t)$$



Basic operations on signals -1

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}, \quad y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix}$$

addition:

$$(x+y)(t) = x(t) + y(t), \quad \forall t \in \mathbb{R}^+_0$$

- multiplication by scalar: $(\alpha x)(t) = \alpha x(t) \quad \forall t \in \mathbb{R}_0^+, \ \alpha \in \mathbb{R}$
- scalar product: $\langle x, y \rangle(t) = \langle x(t), y(t) \rangle \quad \forall t \in \mathbb{R}^+_0$

Basic operations on signals -2

- time shift: $T_a x(t) = x(t-a) \quad \forall t \in \mathbb{R}^+_0, a \in \mathbb{R}$
- convolution: $x, y : \mathbb{R}^+_0 \mapsto \mathbb{R}$

$$(x*y)(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau, \quad \forall t \ge 0$$

Laplace-transformation

Domain:

$$\Lambda = \{ f \mid f : \mathbb{R}_0^+ \mapsto \mathbb{C}, f \text{ integrable on } [0, a], \forall a > 0 \text{ and} \\ \exists A_f \ge 0, a_f \in \mathbb{R}, \text{ such that } |f(x)| \le A_f e^{a_f x} \forall x \ge 0 \}$$

Laplace-transform (connection with Fourier transform: $s = j\Omega$)

$$F(s) = \mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt, \ f \in \Lambda, \ s \in \mathbb{C}, \ s = \sigma + j\Omega$$

Properties

• Linear:
$$\mathcal{L}\{c_1y_1 + c_2y_2\} = c_1\mathcal{L}\{y_1\} + c_2\mathcal{L}\{y_2\}$$

• $\mathcal{L}\{\frac{dy}{dt}\} = sY(s) - y(0)$
• $\mathcal{L}\{\int_{-\infty}^{\infty} h(t - \tau)u(\tau)d\tau\} = H(s)U(s)$

Inverse Laplace transform

$$f(t) = \mathcal{L}^{-1}{F(s)} = rac{1}{2\pi \mathrm{j}}\int_{c-\mathrm{j}\infty}^{c+\mathrm{j}\infty}F(s)e^{st}ds, \ t\in\mathbb{R}^+_0$$

Overview

2 Systems

- System properties
- System model types

Construction of state-space models

System (S): acts on signals

$$y = \mathbf{S}[u]$$

• inputs $(u \in \mathcal{U})$ and outputs $(y \in \mathcal{Y})$

• abstract operator ($\boldsymbol{\mathsf{S}}: \mathcal{U} \to \mathcal{Y})$

Basic system properties – 1

• Linearity

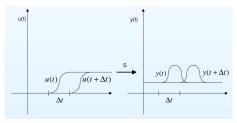
$$\mathbf{S}[c_1u_1 + c_2u_2] = c_1y_1 + c_2y_2$$

with $c_1, c_2 \in \mathbb{R}$, $u_1, u_2 \in \mathcal{U}$, $y_1, y_2 \in \mathcal{Y}$ and $S[u_1] = y_1$, $S[u_2] = y_2$ Linearity check: use the definition

• Time-invariance

$$\mathbf{T}_{ au} \circ \mathbf{S} = \mathbf{S} \circ \mathbf{T}_{ au}$$

where \mathbf{T}_{τ} is the time-shift operator: $\mathbf{T}_{\tau}(u(t)) = u(t + \tau)$, $\forall t$ Time invariance check: **constant parameters**



Basic system properties – 2

• SISO/MIMO

Single Input-Single Output, or Multiple Input-Multiple Output sytems

Continuous-time (CT) and Discrete-time (DT) systems
 Continuous-time system: the time set T ⊆ ℝ
 Discrete-time system: the time set T = {..., t₋₁, t₀, t₁, t₂,...}

• Causality

The present does not depend on the future, only on the past.

System model types

- Input-output (I/O) models (for SISO systems in this course)
 - time domain
 - frequency domain
 - operator domain
- State-space models

State-space models

General form

$$\begin{split} \dot{x}(t) &= \mathcal{F}(x(t), u(t)) & (\text{state equation}) \\ y(t) &= \mathcal{H}(x(t), u(t)) & (\text{output equation}) \end{split}, \quad x(t_0) = x_0 \end{split}$$

with

- given initial condition $x(t_0) = x_0$,
- $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^p$, $u(t) \in \mathbb{R}^r$ signals, time-dependent quantities
- state equation is a set of differential equations
- output equation is a set of algebraic equations in the MIMO case
- system parameters constants, do not depend on time

Overview

2 Systems

3 Construction of state-space models

- Modelling fundamentals conservation balances
- Tank with gravitational outflow
- Coffee machine

Conservation balances

Balance volumes: for constructing conservation balances

- most often with *constant volume*
- *perfectly stirred* (concentrated parameter, the balance is in the form of ordinary differential equations)

Conserved (extensive) quantities:

- ovarall mass
- energy (entalpy, internal energy)
- component mass, (momentum)

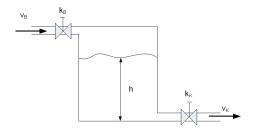
Dynamic conservation balance in general form: for a conserved quantity

$$\left\{\begin{array}{c} \textit{rate of} \\ \textit{change} \end{array}\right\} = \left\{\begin{array}{c} \textit{in-} \\ \textit{flow} \end{array}\right\} - \left\{\begin{array}{c} \textit{out-} \\ \textit{flow} \end{array}\right\} + \left\{\begin{array}{c} \textit{source} \\ \textit{sink} \end{array}\right\}$$

Example: tank with gravitational outflow - 1

Problem description

Given a tank with constant cross section that is used for storing water. The water flows into the tank through a binary input valve, the outflow rate is driven by gravitation, i.e. depends on the water level in the tank, but it is controlled by a binary output valve.



Construct the model of the tank for diagnostic purposes if we can measure the water level and the status of the valves.

Example: tank with gravitational outflow - 2

Conservation balance equation: for overall mass

$$\frac{dm}{dt} = v_b - v_k \tag{1}$$

Constitutive equations

- $m = A \cdot h \cdot \rho$ (water level h is measurable)
- $v_B = v_B^* k_B$ (valve status k_B is measurable)
- $v_{\mathcal{K}} = \mathcal{K} \cdot h \cdot k_{\mathcal{K}}$ (gravitational outflow, valve status $k_{\mathcal{K}}$ is measurable)

Example: tank with gravitational outflow - 3

Model equation with measurable variables:

$$\frac{dh}{dt} = \frac{v_b^*}{A\rho} k_b - \frac{K}{A\rho} h \cdot k_K \tag{2}$$

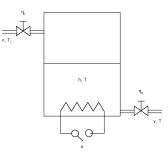
State-space model form

- state variable: water level h
- input variables: status of the valves k_B and k_K
- output variable: water level h

Example: Coffee machine - 1

Problem description

Given a tank with constant cross section equipped with an electric heater that is used for boiling water water. The water flows into the tank through a binary input valve, and the outflow is also controlled by a binary output valve. The heater is controlled by a binary switch.



Construct the model of the coffee machine if we can measure the water level, the water temperature and the status of the valves and the switch.

Example: Coffee machine - 2

Conservation balance equation: for overall mass

$$\frac{dM}{dt} = \rho v_I - \rho v_O \tag{3}$$

Conservation balance equation: for internal energy

$$\frac{dE}{dt} = c_P \rho T_I v_I - c_P \rho T v_O + \kappa H \tag{4}$$

Constitutive equations

$$M = \rho A h \tag{5}$$

$$E = c_P \rho A h T \tag{6}$$

$$v_I = \eta_I v$$
, $v_O = \eta_O v$

Example: Coffee machine - 3

Model equation with measurable variables:

$$\frac{dh}{dt} = \frac{1}{A}\eta_I v - \frac{1}{A}\eta_O v \tag{8}$$

$$\frac{dT}{dt} = \frac{1}{A}\eta_I v T_I \frac{1}{h} - \frac{1}{A}\eta_O v T \frac{1}{h} + \frac{H}{c_P \rho A} \kappa \frac{1}{h}$$
(9)

State-space model form

- state variables: water level h, temperature T
- input variables: status of the values η_I and η_O , switch κ , inlet temperature T_{I}
- output variable: water level h, temperature T

Parameters: A, H, c_P , ρ , v