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Previous notions

Systems

System (S): acts on signals

y = S[u]

inputs (u) and outputs (y)
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Previous notions

CT-LTI state-space models

General form - revisited

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x(0)
y(t) = Cx(t)

with
signals: x(t) ∈ Rn , y(t) ∈ Rp , u(t) ∈ Rr

system parameters: A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n (D = 0 by
using centering the inputs and outputs)

Dynamic system properties:
observability
controllability
stability
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Previous notions

DT-LTI state space models

State space model

x(k + 1) = Φx(k) + Γu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

with given initial condition x(0) and

x(k) ∈ Rn , y(k) ∈ Rp , u(k) ∈ Rr

being vectors of finite dimensional spaces and

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r

being matrices
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Nonlinear continuous time state space models

General form

Concentrated parameter: (=finite dimensional) general form

ẋ(t) = f̃ (x(t), u(t)) (state equation)

y(t) = h̃(x(t), u(t)) (output equation)

with
the state, input and output vectors x , u and y and
the smooth nonlinear mappings

f̃ : Rn × Rr 7→ Rn , h̃ : Rn × Rr 7→ Rp .

K. Hangos (University of Pannonia) PE Feb 2018 8 / 29



Nonlinear continuous time state space models Input-affine state space models

Input-affine state space models

General form of continuous time nonlinear input-affine state-space models

ẋ(t) = f (x(t)) +
∑m

i=1 gi (x(t))ui (t) (state equation)
y(t) = h(x(t)) (output equation)

with
given initial condition x(t0) = x(0) and x(t) ∈ Rn ,
y(t) ∈ Rp , u(t) ∈ Rr

system parameters: smooth nonlinear mappings

f : Rn 7→ Rn , gi : Rn 7→ R , h : Rn 7→ Rp .
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Nonlinear continuous time state space models Linearization

The steady-state point(s)

Steady-state point: x0 for a given u0

Input-affine systems: Solve the steady-state equations with u0 given

0 = f (x0) + g(x0)u0 (∗)

y0 = h(x0)

(∗) may have more that one solution (or no solution at all).
Centered variables: x̃ = x − x0
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Nonlinear continuous time state space models Linearization

Linearization

Linearization of multivariate functions:
y = h(x1, . . . , xn) , h : Rn 7→ Rm

ỹ = J(h,x)
∣∣∣
x0
· x̃

J
(h,x)
ji =

∂hj
∂xi

is the Jacobian matrix of f and y0 = h(x0)

Input-affine systems: Linearize the nonlinear functions in

ẋ = f (x) + g(x)u = F (x , u)

y = h(x)

in the neighborhood of the steady-state point (x0, u0).
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Nonlinear continuous time state space models Linearization

Linearized LTI state-space models

Input-affine case: linearize y = F (x , u) = f (x) + g(x)u

ỹ = J(F ,x)
∣∣∣
x0,u0
· x̃ + J(F ,u)

∣∣∣
x0,u0
· ũ

ỹ =
(
J(f ,x)

∣∣∣
0

+ J(g ,x)
∣∣∣
0
u0)
)
· x̃ + g(x0) · ũ

LTI model form:

˙̃x = Ãx̃ + B̃ũ

ỹ = C̃ x̃ + D̃ũ

Ã = J(f ,x)
∣∣∣
0

+ J(g ,x)
∣∣∣
0
u0, B̃ = g(x0), C̃ = J(h,x)

∣∣∣
0
, D̃ = 0
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Nonlinear continuous time state space models Linearization

Linearization

Example

ẋ1 = 0.4x1x2 − 1.5x1
ẋ2 = −0.8x1x2 − 1.5x2 + 1.5u
y = x2

Steady-state points with u0 = 0

0 = 0.4x1x2 − 1.5x1 = x1(0.4x2 − 1.5)

0 = −0.8x1x2 − 1.5x2 = x2(−0.8x1 − 1.5)

x1 = 0, x2 = 0
x1 = 1.875, x2 = 3.75
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Nonlinear continuous time state space models Linearization

Linearization

Example (contd)

System parameters and Jacobian matrices

f (x) =

[
0.4x1x2 − 1.5x1
−0.8x1x2 − 1.5x2

]
, g(x) =

[
0
1.5

]

J(f ,x) =

[
0.4x2 − 1.5 0.4x1
−0.8x2 −0.8x1 − 1.5

]
h(x) =

[
x2
]

Linearized state equation at x1 = 0, x2 = 0

ẋ =

[
−1.5 0
0 −1.5

]
x +

[
0
1.5

]
u
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Nonlinear stability analysis The Lyapunov method

Lyapunov theorem of stability

Given an autonomous nonlinear system model with equilibrium point x∗

ẋ = f (x)

Lyapunov-function: V : X 7→ R
V > 0, if x 6= x∗, V (x∗) = 0
V continuously differentiable
V non-increasing, i.e. d

dtV (x) = ∂V
∂x ẋ = ∂V

∂x f (x) ≤ 0

Theorem (Lyapunov stability theorem)

If there exists a Lyapunov function to the system ẋ = f (x), f (x∗) = 0,
then x∗ is a stable equilibrium point.
If d

dtV < 0 then x∗ is an asymptotically stable equilibrium point.
If the properties of a Lyapunov function hold only in a neighborhood
U of x∗, then x∗ is a locally (asymptotically) stable equilibrium point.

A sufficient condition!
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Nonlinear stability analysis The Lyapunov method

Lyapunov theorem – example

System:
ẋ = −(x − 1)3

Equilibrium point: x∗ = 1
Lyapunov function: V (x) = (x − 1)2

d

dt
V =

∂V

∂x
ẋ = 2(x − 1) · (−(x − 1)3) =

= −2(x − 1)4 < 0

The system is globally asymptotically stable
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Nonlinear stability analysis CT-LTI Lyapunov theorem

CT-LTI Lyapunov theorem – 1

Basic notions:
Q ∈ Rn×n symmetric matrix: Q = QT , i.e. [Q]ij = [Q]ji (every
eigenvalue of Q is real)
symmetric matrix Q is positive definite (Q > 0):
xTQx > 0,∀x ∈ Rn, x 6= 0 (⇔ every eigenvalue of Q is positive)
symmetric matrix Q is negative definite Q < 0: xTQx < 0,∀x ∈ Rn,
x 6= 0 (⇔ every eigenvalue of Q is negative)

Theorem (Lyapunov criterion for LTI systems)

The state matrix (A) of an LTI system is a stability matrix if and only if
there exists a positive definite symmetric matrix P for every given positive
definite symmetric matrix Q such that

ATP + PA = −Q
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Nonlinear stability analysis CT-LTI Lyapunov theorem

CT-LTI Lyapunov theorem – 2

Proof:
⇐ Assume ∀ Q > 0 ∃ P > 0 such that ATP + PA = −Q. Let
V (x) = xTPx .

d

dt
V = ẋTPx + xTPẋ = xT (ATP + PA)x < 0

⇒ Assume A is a stability matrix. Then

P =

∫ ∞
0

eA
T tQeAtdt

ATP + PA =

∫ ∞

0
AT eA

T tQeAtdt +

∫ ∞

0
eA

T tQeAtAdt = [eA
T tQeAt ]∞0 = 0 − Q = −Q
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Nonlinear stability analysis Stability region of nonlinear systems

Quadratic stability region

Use quadratic Lyapunov function candidate with a given positive
definite diagonal weighting matrix Q (tuning parameter!)

V [x(t)] = (x − x∗)T · Q · (x − x∗)

Dissipativity condition gives a conservative estimate of the stability
region

dV

dt
=
∂V

∂x

dx

dt
=
∂V

∂x
f (x)

f (x) = f (x) in the open loop case with u = 0
f (x) = f (x) + g(x) · C (x) in the closed-loop case where C (x) is the
static state feedback
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Nonlinear stability analysis Stability region of nonlinear systems

Quadratic stability region: an example - 1

Nonlinear system

ẋ1 = 0.4x1x2 − 1.5x1
ẋ2 = −0.8x1x2 − 1.5x2 + 1.5u
y = x2

Equilibrium point with u∗ = 7.75

x∗ =

[
x∗1
x∗2

]
=

[
2

3.75

]
Locally linearized system

˙̃x =

[
0 0.8
−3 −3.1

]
x̃ +

[
0
1.5

]
ũ

ỹ =
[
0 1

]
x̃

Eigenvalues of the state matrix are λ1 = −1.5 and λ2 = −1.6 so
equilibrium x∗ (and not the whole system!) is locally asymptotically
stable.
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Nonlinear stability analysis Stability region of nonlinear systems

Quadratic stability region: an example - 2

Quadratic Lyapunov function

V (x) = (x − x∗)T ·
[
1 0
0 1

]
· (x − x∗)
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Nonlinear stability analysis Stability region of nonlinear systems

Quadratic stability region: an example - 2

Time derivative of the quadratic Lyapunov function
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Discrete time nonlinear state space models

Discrete time nonlinear state space model

Generalized form of DT-LTI state space model

x(k + 1) = Ψ(x(k), u(k)) (state equation)
y(k) = h(x(k), u(k)) (output equation)
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Discrete time nonlinear state space models Discrete event systems

Discrete event systems

Characteristic properties:
discrete valued signals (for inputs, states, outputs) :
x(t) ∈ X = {x0, x1, ..., xn}
event: occurrence of a change in a discrete valued signal
time is discrete: T = {t0, t1, ..., tn} = {0, 1, ..., n}

Only the sequence of the events is important
sequential and parallel events
application area: scheduling, operating procedures, resource allocation
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Discrete time nonlinear state space models Discrete event systems

Discrete event systems - discrete time state-space models

Generalization of DT-LTI state-space models

x(k + 1) = Ψ(x(k), u(k)) (state equation)
y(k) = h(x(k), u(k)) (output equation)

with given initial conditions x(0), and with nonlinear state Ψ and output h
functions.

Discrete event system:
1 non-equividistant sampling (discrete time)
2 discrete valued signals (!!)
3 event: change in the discrete value of a signal

A discrete event system can be described by a special DT state-space model
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Discrete time nonlinear state space models Finite automaton

Finite automaton – abstract model: A = (Q,Σ, δ; ΣO , ϕ)

Set of states: Q
Finite alphabet of the input tape: Σ = {#; a, b, ...}
State-transition function: δ : Q × Σ→ Q

Initial and final state(s): QI , QF ⊆ Q

Finite alphabet of the output tape: ΣO = {#;α, β, ...}
Output function: ϕ : Q → ΣO

Graphical description: using a weighted directed graph
Vertices: states (Q)
Edges: state transitions (δ)
Edge weights: input symbols (Σ)

A discrete event system can be modelled by a finite automaton
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Discrete time nonlinear state space models Discrete event systems and automata

Automata and discrete event systems

Automata Discrete event SS
model model

State space Q X ∈ Zn

Input u string from discrete valued
Σ discrete time signal

Output y string from discrete valued
ΣO discrete time signal

State q(k + 1) = δ(q(k), u(k)) x(k + 1) = Ψ(x(k), u(k))
equation
Output y(k) = ϕ(x(k)) y(k) = h(x(k), u(k))
equation
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