Coloured Petri Nets

Modelling and Validation of Concurrent Systems

Chapter 4: Formal Definition of CP-nets

Kurt Jensen & Lars Michael Kristensen

{kjensen,lmkristensen} @cs.au.dk Syntax $CPN = (P, T, A, \Sigma, V, C, G, E, I)$ Semantics $\int_{MS}^{++} \sum_{(t,b)\in Y} E(p,t) < b > <<= M(p) \text{ for all } p \in P$

Coloured Petri Nets Department of Computer Science

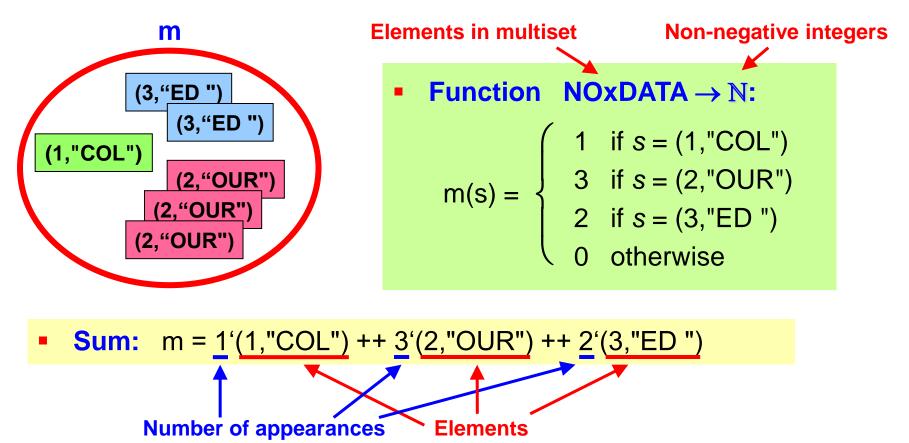
Why do we need a formal definition?

- The formal definition is unambiguous.
- It provides a more precise and complete description than an informal explanation.
- Users who are satisfied with the informal explanation can skip the formal definition.
- Only few programmers know the formal definition of the programming language they are using.
- We define:
 - Multisets.
 - Syntax of Coloured Petri Nets.
 - Semantics of Coloured Petri Nets.

Coloured Petri Nets Department of Computer Science

Multiset

Similar to a set but with multiple occurrences of elements.



(coefficient)

Coloured Petri Nets Department of Computer Science

(from NOxDATA)

Kurt Jensen Lars M. Kristensen

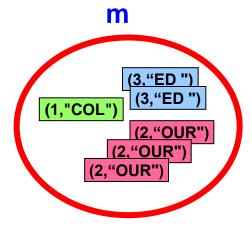
Formal definition of multisets

- Let $S = \{s_1, s_2, s_3, ...\}$ be a non-empty set.
- A multiset over S is a function m : S → N mapping each element s∈S into a non-negative integer m(s)∈ N called the number of appearances (or coefficient) of s in m.
- A multiset m is also written as a sum: $\sum_{s \in S}^{++} \sum_{s \in S} m(s) s = m(s_1) s_1 + m(s_2) s_2 + m(s_3) s_3 + m(s_4) s_4 + \dots$
- Notation:
 - S_{MS} is the set of all multisets over S.
 - Ø_{MS} is the empty multiset (polymorphic).

Coloured Petri Nets Department of Computer Science

Kurt Jensen Lars M. Kristensen

Membership of multiset



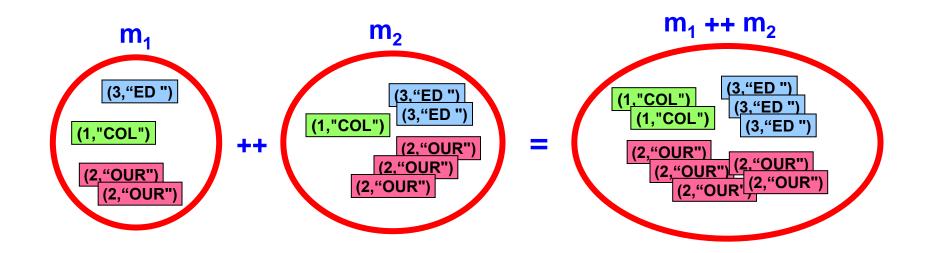
- (1,"COL"), (2,"OUR") and (3,"ED ") are members of the multiset m.
- (4,"PET") and (17,"CPN") are not members.

$$\forall s \in S: s \in m \Leftrightarrow m(s) > 0.$$

$$Membership \qquad Comparison of \\ of multiset \qquad integers$$

Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

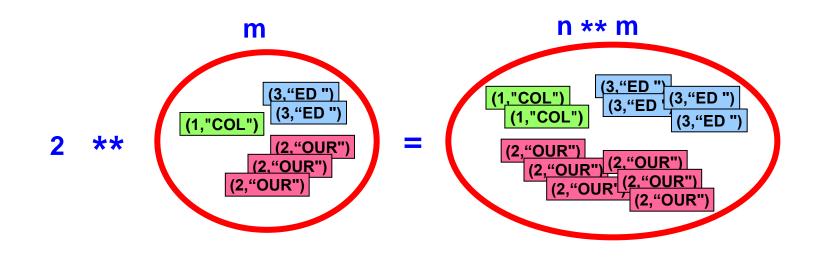
Addition of multisets

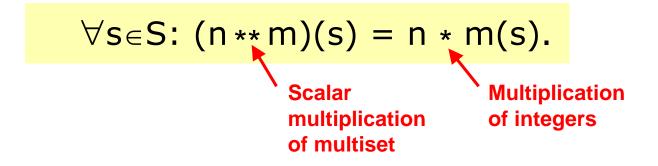


$$\forall s \in S: (m_1 + + m_2)(s) = m_1(s) + m_2(s).$$
Addition
of multisets
Addition
of integers

Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

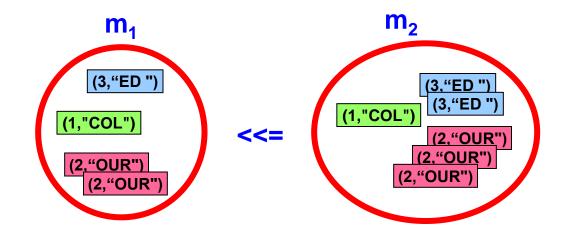
Scalar multiplication of multisets





Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

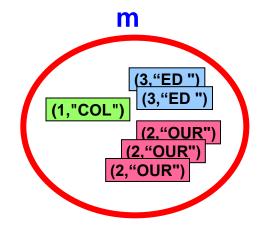
Comparison of multisets



$$m_1 < = m_2 \quad \Leftrightarrow \quad \forall s \in S: \ m_1(s) \leq m_2(s).$$
Smaller than or equal for multisets Smaller than or equal for integers

Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

Size of multiset



 This multiset contains six elements.

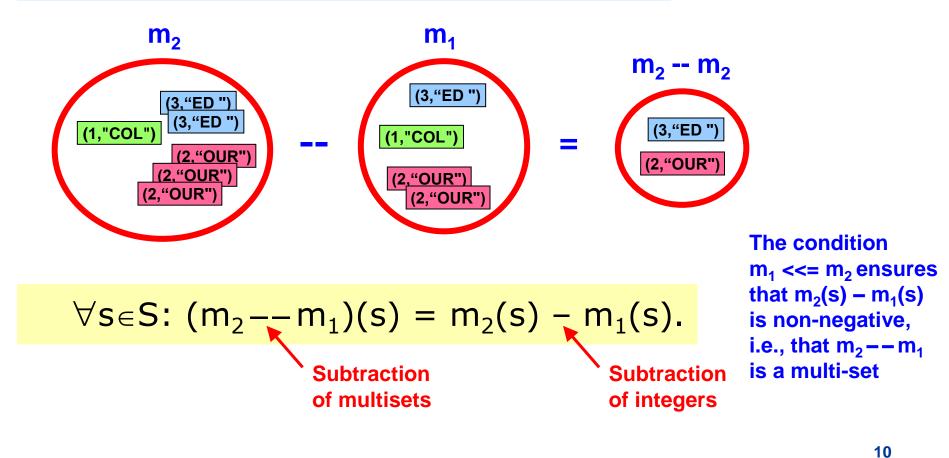
$$|m| = \sum_{s \in S} m(s).$$
Size of multiset Summation of integers

When $|m| = \infty$ we say that m is infinite.

Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

Subtraction of multisets

When m₁ <<= m₂ we also define subtraction:



Coloured Petri Nets Department of Computer Science

Formal definition of Coloured Petri Nets

A Coloured Petri Net is a nine-tuple CPN = (P, T, A, Σ , V, C, G, E, I).

- P set of places.
- T set of transitions.
- A set of arcs.
- Σ set of colour sets.
- V set of variables.
- C colour set function (assigns colour sets to places).
- G guard function (assigns guards to transitions).
- E arc expression function (assigns arc expressions to arcs).
- I initialisation function (assigns initial markings to places).

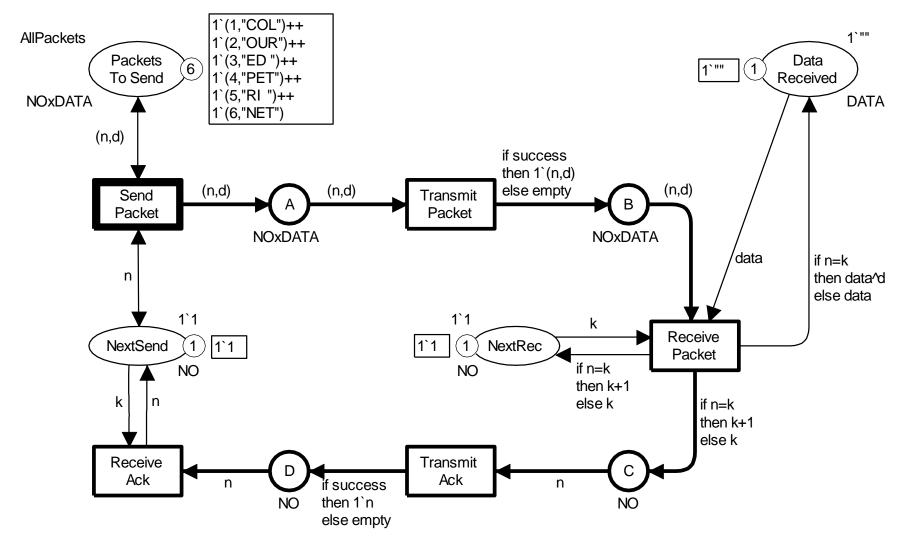
Kurt Jensen Lars M. Kristensen

11

Net structure

Types and variables

Example to illustrate the formal definitions



Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

Places and transitions

• A finite set of places P.

P = { PacketsToSend, A, B, DataReceived, NextRec, C,D, NextSend }.

- A finite set of transitions T.
- We demand that $P \cap T = \emptyset$.

A node is either a place or a transition – it cannot be both

T = { SendPacket, TransmitPacket, ReceivePacket, TransmitAck, ReceiveAck }.

Coloured Petri Nets Department of Computer Science

Arcs

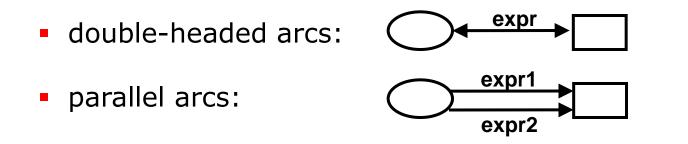
- A set of directed arcs A.
- We demand that $A \subseteq P \times T \cup T \times P$.

Each arc starts in a place and ends in a transition – or it starts in a transition and ends in a place

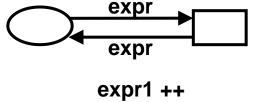
A = { (PacketsToSend, SendPacket), (SendPacket, PacketsToSend), (SendPacket, A), (A,TransmitPacket), (TransmitPacket, B), (B, ReceivePacket), (NextRec, ReceivePacket), (ReceivePacket, NextRec), (DataReceived, ReceivePacket), (ReceivePacket, DataReceived), (ReceivePacket, C), (C, TransmitAck), (TransmitAck, D), (D, ReceiveAck), (ReceiveAck, NextSend), (NextSend, ReceiveAck), (NextSend, SendPacket), (SendPacket, NextSend) }.

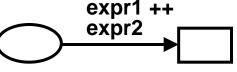
Arcs

• In the formal definition we do <u>not</u> have:



- CPN Tools allow these and consider them to be shorthands for:
 - two oppositely directed arcs with the same arc expression:
 - addition of the two arc expressions:





Coloured Petri Nets Department of Computer Science

Colour sets and variables

A finite set of non-empty colour sets Σ.

 $\Sigma = \{ NO, DATA, NOXDATA, BOOL \}.$

• A finite set of typed variables V. We demand that Type[v] $\in \Sigma$ for all $v \in V$. Type of variable must be one of those that is defined in Σ

 $V = \{ n : NO, k : NO, d : DATA, data : DATA, success : BOOL \}.$

Coloured Petri Nets Department of Computer Science

Colour sets for places

• A colour set function $C : P \rightarrow \Sigma$.

Assigns a colour set to each place.

$$\label{eq:cp} \textbf{C(p)} = \left\{ \begin{array}{ll} \text{NO} & \text{if } p \in \{ \text{ NextSend, NextRec, C, D} \} \\ \text{DATA} & \text{if } p = \text{ DataReceived} \\ \text{NOxDATA} & \text{if } p \in \{ \text{ PacketsToSend, A, B} \} \end{array} \right.$$

Coloured Petri Nets Department of Computer Science

Guard expressions

All variables must belong to V

• A guard function $G : T \rightarrow EXPR_{V}$.

Assigns a guard to each transition.

We demand that Type[G(t)] = Bool for all $t \in T$.

G(t) = true for all $t \in T$.

The guard expression must evaluate to a boolean

- In the formal definition we demand all transitions to have a guard.
- CPN Tools consider a missing guard to be a shorthand for the guard expression true which always evaluates to true.
- Hence we have omitted all guards in the protocol example.

Guard expressions

• CPN Tools consider a list of Boolean expressions:

```
[expr_1, expr_2, \dots, expr_n]
```

to be a shorthand for:

 $expr_1 \wedge expr_2 \wedge ... \wedge expr_n$

- We recommend to write all guards as a list even when they only have a single Boolean expression: [expr]
- In this way it is easy to distinguish guards from other kinds of net inscriptions.

Arc expressions

• An arc expression function $E : A \rightarrow EXPR_{V}$.

Assigns an arc expression to each arc.

We demand that Type[E(a)] = $C(p)_{MS}$ for all $a \in A$, where p is the place connected to the arc a.

All variables must belong to V

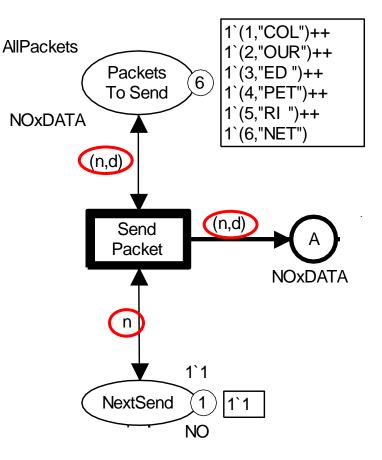
Arc expression must evaluate to a multiset of tokens belonging to the colour set of the connected place

 $E(a) = \begin{cases} 1^{(n,d)} & \text{if } a \in \{ (PacketsToSend, SendPacket), \dots \} \\ 1^{n} & \text{if } a \in \{ (C, TransmitAck), (D, ReceiveAck) \dots \} \\ 1^{(data)} & \text{if } a = (DataReceived, ReceivePacket) \} \\ \dots \dots \end{pmatrix}$

Coloured Petri Nets Department of Computer Science

Arc expressions

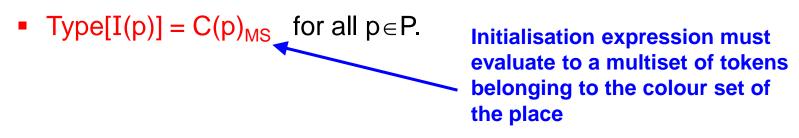
- In the formal definition we demand all arc expressions to evaluate to multisets.
- CPN Tools consider an arc expression expr which evaluates to a single value to be a shorthand for 1`expr.
- Hence we can write n and (n,d) instead of 1`n and 1`(n,d).

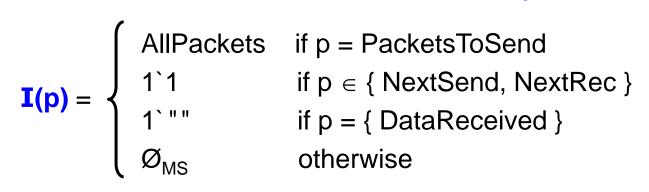


Coloured Petri Nets Department of Computer Science

Initialisation expressions

An initialisation function I : P → EXPR_Ø.
 Assigns an initial marking to each place.
 We demand that

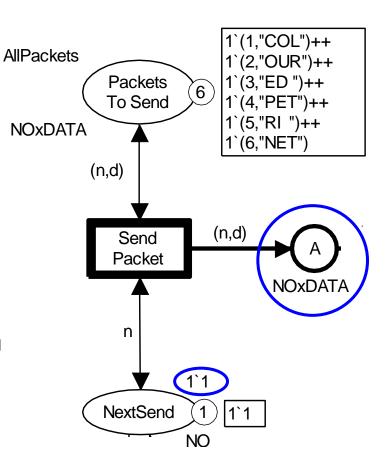




Coloured Petri Nets Department of Computer Science

Initialisation expressions

- In the formal definition we demand all places to have an initialisation expression and that these evaluate to multisets.
- CPN Tools consider a missing initialisation expression to be a shorthand for Ø_{MS}.
- Hence we are allowed to omit the initialisation expression for place A.
- CPN Tools consider an initialisation expression expr which evaluates to a single value to be a shorthand for 1`expr.
- Hence we could have written 1 instead of 1`1.



Coloured Petri Nets Department of Computer Science

Questions about CPN syntax

- A. Can a node be both a place and a transition?
- B. Can we have an infinite number of places?
- C. Can we have an arc from a place to another place?
- D. Can a transition have two guards?
- E. Can a guard evaluate to an integer?
- F. Can an arc expression evaluate to a multiset of booleans?
- G. Can we have a variable in an initial marking expression?
- H. Can an arc expression always evaluate to empty?

Find those where the answer is YES?

Markings

 A marking is a function M mapping each place p into a multiset of tokens M(p)∈ C(p)_{MS}.

All token values must belong to the colour set of the place

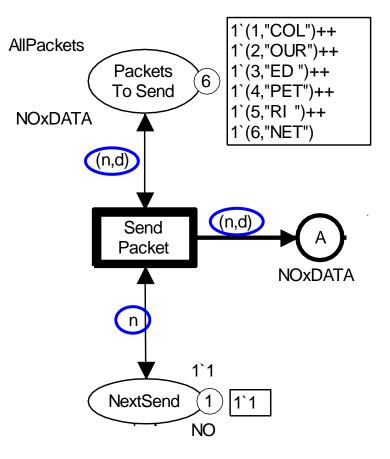
• The initial marking M_0 is defined by $M_0(p) = I(p) <>$ for all $p \in P$.

Initialisation expression has no variables. Hence it is evaluated in the empty binding

Coloured Petri Nets Department of Computer Science

Variables of a transition

- The variables of a transition are those that appear in the guard or in an arc expression of an arc connected to the transition.
- The set of variables is denoted Var(t) ⊆ V.
- Var(SendPacket) = {n,d}.



Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

Bindings and binding elements

- A binding of a transition t is a function b mapping each variable v∈Var(t) into a value b(v)∈Type[v].
- Bindings are written in: brackets: <n=1,d="COL">.
- The set of all bindings for a transition t is denoted B(t).

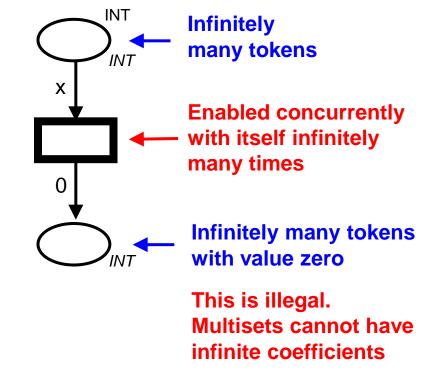
Each variable must be bound to a value in its type

Transition _ / Binding for t

- A binding element is a pair (t,b) such that t is a transition and b∈B(t).
- The set of all binding elements of a transition t is denoted BE(t).
- The set of all binding elements in CPN is denoted BE.

Steps

- A step Y∈BE_{MS} is a non-empty and finite multiset of binding elements.
- Why forbid empty steps?
 - We would have steps with no effect.
 - It would be impossible to reach a dead marking, i.e., a marking without enabled steps.
- Why forbid infinite steps?
 - We would be able to produce markings which are not multisets.



Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

Evaluation of guards and arc expressions

 The rules for enabling and occurrence are based on evaluation of guards and arc expressions.

G(t) 	Evaluation of the guard expression for t in the binding b
E(a) 	Evaluation of the arc expression for a in the binding b
E(p,t) 	Evaluation of the arc expression on the arc from p to t in the binding b. If no such arc exists $E(p,t) = Ø_{MS}$
E(t,p) 	Evaluation of the arc expression on the arc from t to p in the binding b. If no such arc exists $E(t,p) = \emptyset_{MS}$

Coloured Petri Nets Department of Computer Science

Enabling of single binding element

A binding element (t,b)∈BE is enabled in a marking M if and only if the following two properties are satisfied:

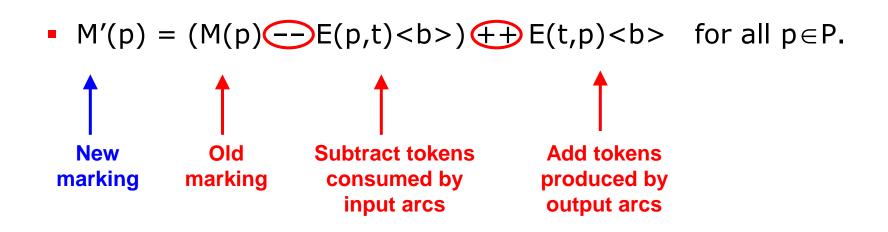
Guard must evaluate to true

The tokens demanded by the input arc expressions must be present in the marking M

Coloured Petri Nets Department of Computer Science

Occurrence of single binding element

When the binding element (t,b)∈BE is enabled in a marking M, it may occur leading to a new marking M' defined by:



Coloured Petri Nets Department of Computer Science

Enabling of step

- A step Y ⊆ BE_{MS} is enabled in a marking M if and only if the following two properties are satisfied:
 - G(t) < b > = true for all $(t,b) \in Y$. All guards must evaluate to true

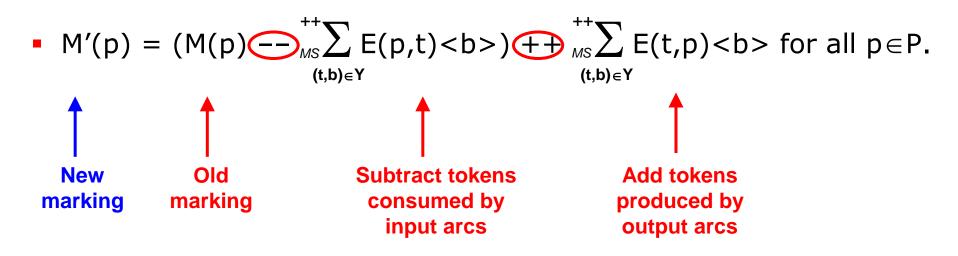
•
$$M_{MS} \sum_{(t,b) \in Y} E(p,t) < b > <<= M(p) for all $p \in P$.
Smaller than or equal for multisets
Summation over
a multiset Y$$

The tokens demanded by the input arc expressions must be present in the marking M

Coloured Petri Nets Department of Computer Science

Occurrence of step

 When the step Y∈ BE_{MS} is enabled in a marking M, it may occur leading to a new marking M' defined by:



Coloured Petri Nets Department of Computer Science

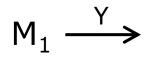
Notation for occurrence and enabling

$$M_1 \xrightarrow{Y} M_2$$

Step Y occurs in marking M₁ leading to marking M₂

$$M_1 \longrightarrow M_2$$

Marking M₂ can be reached from marking M₁ (by the occurrence of an unknown step)



Step Y is enabled in marking M₁ (leading to an unknown marking)

Coloured Petri Nets Department of Computer Science

Finite occurrence sequence

$$M_1 \xrightarrow{Y_1} M_2 \xrightarrow{Y_2} M_3 \dots M_n \xrightarrow{Y_n} M_{n+1}$$

- Length $n \ge 0$.
- All markings in the sequence are reachable from M₁.
- An arbitrary marking is reachable from itself by the trivial occurrence sequence of length 0.

Coloured Petri Nets Department of Computer Science

Infinite occurrence sequence

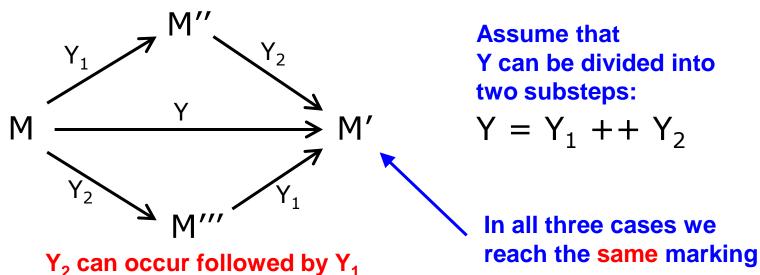
$$M_1 \xrightarrow{Y_1} M_2 \xrightarrow{Y_2} M_3 \xrightarrow{Y_3} \dots$$

ℜ(M)
 The set of markings reachable from M

ℜ(M₀)
 The set of reachable markings

Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen

Diamond property



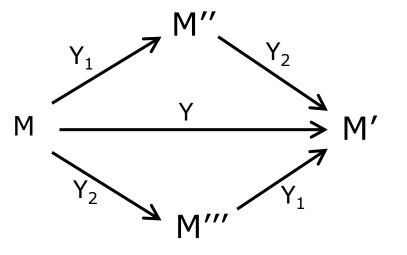
- This is called the diamond property.
- It can be proved from the definition of enabling and occurrence.
- It plays an important role in Petri net theory.

Coloured Petri Nets Department of Computer Science

Diamond property

- The diamond property follows from the fact that the effect of a step is independent of the marking in which it occurs.
- The diamond property is <u>not</u> satisfied by ordinary programming languages.

x := x+1; x := 0; x := 0; x := x+1;



- Repeated use of diamond property:
 - When a step Y is enabled in a marking M, the binding elements of Y can occur one by one in any order.
 - The order has no influence on the total effect.

Questions about CPN semantics

- A. Can a transition change the marking of places that are neither input nor output places?
- B. Can a transition occur concurrently with itself?
- C. Can a binding element occur concurrently with itself?
- D. Can two transitions that "reads" the value of the same token occur concurrently?
- E. Can a marking be reachable from itself?
- F. Can we have more than one initial marking?
- G. Can we have an infinite number of reachable markings?

Find those where the answer is YES?

Questions

Coloured Petri Nets Department of Computer Science Kurt Jensen Lars M. Kristensen