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Chapter 4: Formal Definition of CP-nets

++

 E(p,t)<b> <<= M(p) for all pP
(t,b)Y

MS

Syntax

Semantics

CPN = (P, T, A, , V, C, G, E, I)
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Why do we need a formal definition?

 The formal definition is unambiguous.

 It provides a more precise and complete description than an 
informal explanation.

 Users who are satisfied with the informal explanation can skip
the formal definition.

 Only few programmers know the formal definition of the 
programming language they are using.

 We define:

 Multisets.

 Syntax of Coloured Petri Nets.

 Semantics of Coloured Petri Nets.
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(2,“OUR")

Multiset

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m(s) =

1   if s = (1,"COL")

3   if s = (2,"OUR")

2   if s = (3,"ED ")

0   otherwise







 Function   NOxDATA  ℕ:

Non-negative integersElements in multiset

 Sum: m = 1‘(1,"COL") ++ 3‘(2,"OUR") ++ 2‘(3,"ED ")

Number of appearances

(coefficient)

Elements

(from NOxDATA)

 Similar to a set but with multiple occurrences of elements.

m
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Formal definition of multisets

 Let  S = {s1,s2,s3,…}  be a non-empty set.

 A multiset m is also written as a sum:
++

 m(s)‘s = m(s1)‘s1++ m(s2)‘s2++ m(s3)‘s3++ m(s4)‘s4++ … 
sS

 A multiset over S is a function m : S  ℕ mapping each 
element sS into a non-negative integer m(s) ℕ called 
the number of appearances (or coefficient) of s in m.

 Notation:

 SMS is the set of all multisets over S.

 ØMS is the empty multiset (polymorphic).



Kurt Jensen

Lars M. Kristensen

5

Coloured Petri Nets

Department of Computer Science

sS: sm  m(s)>0.

Membership of multiset

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m

(2,“OUR")

 (1,”COL”), (2,”OUR”) and 
(3,”ED ”) are members of 
the multiset m.

 (4,”PET”) and (17,”CPN”) 
are not members.  

Membership 

of multiset

Comparison of 

integers



Kurt Jensen

Lars M. Kristensen

6

Coloured Petri Nets

Department of Computer Science

Addition of multisets

sS: (m1 ++ m2)(s) = m1(s) + m2(s).

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m2

(1,"COL")

(2,“OUR")

(2,“OUR")

(3,“ED ")

m1

++

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

(3,“ED ")

m1 ++ m2

=
(1,"COL")

(2,“OUR")

(2,“OUR")

(2,“OUR") (2,“OUR")

Addition

of multisets

Addition

of integers
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Scalar multiplication of multisets

sS: (n ** m)(s) = n * m(s).

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m

**

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

n ** m

=
(1,"COL")

(2,“OUR")

(2,“OUR")

(2,“OUR") (2,“OUR")

Scalar 

multiplication

of multiset

Multiplication

of integers

2

(2,“OUR")

(3,“ED ")

(3,“ED ")
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Comparison of multisets

m1 <<= m2  sS: m1(s) ≤ m2(s).

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m2

(1,"COL")

(2,“OUR")

(2,“OUR")

(3,“ED ")

m1

<<=

(2,“OUR")

Smaller than or equal 

for multisets

Smaller than or equal 

for integers
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|m| =  sS m(s).

Size of multiset

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m

When |m| =  we say that m is infinite.

(2,“OUR")

Size of multiset

 This multiset contains 
six elements. 

Summation of integers
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Subtraction of multisets

sS: (m2 –– m1)(s) = m2(s) – m1(s).

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m2

(1,"COL")

(2,“OUR")

(2,“OUR")

(3,“ED ")

m1

--
(3,“ED ")

m2 -- m2

=

 When m1 <<= m2 we also define subtraction:

(2,“OUR")

(2,“OUR")

Subtraction

of multisets

Subtraction

of integers

The condition

m1 <<= m2 ensures 

that m2(s) – m1(s) 

is non-negative, 

i.e., that m2 – – m1 

is a multi-set
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Formal definition of Coloured Petri Nets

A Coloured Petri Net is a nine-tuple CPN = (P, T, A, , V, C, G, E, I).

 P   set of places.

 T   set of transitions.

 A   set of arcs.

  set of colour sets.

 V   set of variables.

 C   colour set function (assigns colour sets to places).

 G   guard function (assigns guards to transitions).

 E   arc expression function (assigns arc expressions to arcs).

 I    initialisation function (assigns initial markings to places).

Net structure

Types and variables

N
e
t in

s
c
rip

tio
n

s
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Example to illustrate the formal definitions

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k 
then data d̂
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

1`1

NO

CD

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

NextRec

k

if n=k
then k+1
else k

NO

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI  ")++
1`(6,"NET")

11`1
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Places and transitions

 A finite set of places P.

 A finite set of transitions T.

 We demand that P  T = Ø.

T = { SendPacket,TransmitPacket, ReceivePacket,TransmitAck, ReceiveAck }.

P = { PacketsToSend, A, B, DataReceived, NextRec, C,D, NextSend }.

A node is either a 

place or a transition

– it cannot be both
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Arcs

 A set of directed arcs A.

 We demand that A   P  T  T  P.

A = { (PacketsToSend, SendPacket), (SendPacket, PacketsToSend),

(SendPacket, A), (A,TransmitPacket), (TransmitPacket, B),

(B, ReceivePacket), (NextRec, ReceivePacket), (ReceivePacket, NextRec),

(DataReceived, ReceivePacket), (ReceivePacket, DataReceived),

(ReceivePacket, C), (C, TransmitAck), (TransmitAck, D), (D, ReceiveAck),

(ReceiveAck, NextSend), (NextSend, ReceiveAck),

(NextSend, SendPacket), (SendPacket, NextSend) }.

Each arc starts in a place and ends 

in a transition – or it starts in a 

transition and ends in a place
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Arcs

 In the formal definition we do not have:

 double-headed arcs:

 parallel arcs:

 CPN Tools allow these and consider them to be shorthands for:

 two oppositely directed arcs
with the same arc expression:

 addition of the two
arc expressions:

expr

expr1

expr2

expr

expr

expr1 ++    
expr2
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Colour sets and variables

 A finite set of non-empty colour sets .

 = { NO, DATA, NOxDATA, BOOL }.

 A finite set of typed variables V.

We demand that Type[v] for all vV.

V = { n : NO, k : NO, d : DATA, data : DATA, success : BOOL }.

Type of variable must 

be one of those that is 

defined in 
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Colour sets for places

 A colour set function  C : P  .

Assigns a colour set to each place.

NO              if p  { NextSend, NextRec, C, D }

DATA          if p =  DataReceived

NOxDATA   if p  { PacketsToSend, A, B } 

C(p) =
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Guard expressions

 A guard function  G : T  EXPRV.

Assigns a guard to each transition.

We demand that Type[G(t)] = Bool for all tT.

G(t) = true    for all tT.
The guard expression must 

evaluate to a boolean

All variables must 

belong to V

 In the formal definition we demand all transitions to have
a guard.

 CPN Tools consider a missing guard to be a shorthand for 
the guard expression true which always evaluates to true.

 Hence we have omitted all guards in the protocol example.
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Guard expressions

 CPN Tools consider a list of Boolean expressions:

to be a shorthand for:

[expr1,expr2, … ,exprn]

expr1  expr2  …  exprn

 We recommend to write all guards as a list even when they 
only have a single Boolean expression:

[expr]

 In this way it is easy to distinguish guards from other kinds
of net inscriptions.
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Arc expressions

 An arc expression function  E : A  EXPRV.

Assigns an arc expression to each arc.

We demand that Type[E(a)] = C(p)MS for all aA,

where p is the place connected to the arc a.

Arc expression must 

evaluate to a multiset 

of tokens belonging to 

the colour set of the 

connected place

All variables must 

belong to V

1`(n,d)    if a  { (PacketsToSend, SendPacket), … }

1`n          if a  { (C, TransmitAck), (D, ReceiveAck) … } 

1`data     if a = (DataReceived, ReceivePacket) } 
………

E(a) =

p pa a
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Arc expressions

 In the formal definition we 
demand all arc expressions to 
evaluate to multisets.

 CPN Tools consider an arc 
expression expr which evaluates 
to a single value to be a
shorthand for 1`expr.

 Hence we can write n and (n,d)
instead of 1`n and 1`(n,d).

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k 
then data d̂
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

1`1

NO

CD

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

NextRec

k

if n=k
then k+1
else k

NO

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI  ")++
1`(6,"NET")

11`1
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Initialisation expressions

 An initialisation function  I : P  EXPRØ.

Assigns an initial marking to each place.

We demand that

 Type[I(p)] = C(p)MS for all pP. Initialisation expression must 

evaluate to a multiset of tokens 

belonging to the colour set of 

the place

Initialisation expression is not 

allowed to contain any variables

AllPackets    if p = PacketsToSend

1`1                if p  { NextSend, NextRec }

1` " "              if p = { DataReceived } 

ØMS otherwise

I(p) =
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Initialisation expressions

 In the formal definition we demand
all places to have an initialisation 
expression and that these evaluate
to multisets.

 CPN Tools consider a missing 
initialisation expression to be a
shorthand for ØMS.

 Hence we are allowed to omit the 
initialisation expression for place A.

 CPN Tools consider an initialisation 
expression expr which evaluates to a 
single value to be a shorthand for 
1`expr.

 Hence we could have written 1
instead of 1`1.

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k 
then data d̂
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

1`1

NO

CD

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

NextRec

k

if n=k
then k+1
else k

NO

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI  ")++
1`(6,"NET")

11`1
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A. Can a node be both a place and a transition?

B. Can we have an infinite number of places?

C. Can we have an arc from a place to another place?

D. Can a transition have two guards?

E. Can a guard evaluate to an integer?

F. Can an arc expression evaluate to a multiset of booleans?

G. Can we have a variable in an initial marking expression?

H. Can an arc expression always evaluate to empty?

A. Can a node be both a place and a transition?

B. Can we have an infinite number of places?

C. Can we have an arc from a place to another place?

D. Can a transition have two guards?

E. Can a guard evaluate to an integer?

F. Can an arc expression evaluate to a multiset of booleans?

G. Can we have a variable in an initial marking expression?

H. Can an arc expression always evaluate to empty?

Questions about CPN syntax

Find those where the answer is YES?
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Markings

 A marking is a function M mapping each place p into
a multiset of tokens M(p)C(p)MS.

All token values must belong to 

the colour set of the place

Initialisation expression has no variables.

Hence it is evaluated in the empty binding

 The initial marking M0 is defined by M0(p) = I(p)<> for all pP.
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Variables of a transition

 The variables of a transition are 
those that appear in the guard
or in an arc expression of an 
arc connected to the transition.

 The set of variables is denoted 
Var(t)  V.

 Var(SendPacket) = {n,d}.
data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k 
then data d̂
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

1`1

NO

CD

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

NextRec

k

if n=k
then k+1
else k

NO

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI  ")++
1`(6,"NET")

11`1
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Bindings and binding elements

 A binding of a transition t is a function b mapping each 
variable vVar(t) into a value b(v)Type[v].

 Bindings are written in:
brackets: <n=1,d="COL">.

 The set of all bindings for a
transition t is denoted B(t).

 A binding element is a pair (t,b) such that t is a transition
and bB(t).

 The set of all binding elements of a transition t is denoted BE(t).

 The set of all binding elements in CPN is denoted BE.

Each variable must be bound 

to a value in its type

Transition Binding for t
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Steps

 A step YBEMS is a non-empty and finite multiset of
binding elements.

 Why forbid empty steps?

 We would have steps with
no effect.

 It would be impossible to
reach a dead marking, 
i.e., a marking without 
enabled steps.

 Why forbid infinite steps?

 We would be able to 
produce markings which 
are not multisets.

x

0

INT

INT

INT
Infinitely 

many tokens

Infinitely many tokens

with value zero

Enabled concurrently 

with itself infinitely 

many times

This is illegal.

Multisets cannot have 

infinite coefficients
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Evaluation of guards and arc expressions

 The rules for enabling and occurrence are based on evaluation of 
guards and arc expressions.

Evaluation of the guard expression 

for t in the binding b

E(a)<b>

G(t)<b>

Evaluation of the arc expression 

for a in the binding b

E(p,t)<b>
Evaluation of the arc expression on 

the arc from p to t in the binding b.

If no such arc exists E(p,t) = ØMS

E(t,p)<b>
Evaluation of the arc expression on 

the arc from t to p in the binding b.

If no such arc exists E(t,p) = ØMS
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Enabling of single binding element

 A binding element (t,b)BE is enabled in a marking M if and 
only if the following two properties are satisfied:

 G(t)<b> = true.

 E(p,t)<b> <<= M(p)    for all pP.

Guard must evaluate to true

The tokens demanded by the 

input arc expressions must be 

present in the marking M

Smaller than or equal 

for multisets
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Occurrence of single binding element

 When the binding element (t,b)BE is enabled in a marking M, it 
may occur leading to a new marking M’ defined by:

 M’(p) = (M(p) –– E(p,t)<b>) ++ E(t,p)<b>   for all pP.

Subtract tokens 

consumed by 

input arcs

Add tokens 

produced by 

output arcs

Old 

marking

New 

marking
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Enabling of step

 A step Y  BEMS is enabled in a marking M if and only if the 
following two properties are satisfied:

 G(t)<b> = true       for all (t,b)Y.



++

 E(p,t)<b> <<= M(p)   for all pP.
(t,b)Y

All guards must evaluate to true

The tokens demanded by the 

input arc expressions must be 

present in the marking M

MS

Summation over 

a multiset Y

Smaller than or equal 

for multisets
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Occurrence of step

 When the step YBEMS is enabled in a marking M, it may occur
leading to a new marking M’ defined by:

 M’(p) = (M(p) ––
++

 E(p,t)<b>) ++ 
++

 E(t,p)<b> for all pP.
(t,b)Y                                                (t,b)Y

Subtract tokens 

consumed by 

input arcs

Add tokens 

produced by 

output arcs

Old 

marking

New 

marking

MS MS
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Notation for occurrence and enabling

M1 M2

Y Step Y occurs in marking M1

leading to marking M2

M1 M2
Marking M2 can be reached from marking M1 

(by the occurrence of an unknown step)

M1
Step Y is enabled in marking M1 

(leading to an unknown marking)

Y
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Finite occurrence sequence

M1 M2

Y1
M3  ……

Y2
Mn Mn+1

Yn

 Length n ≥ 0.

 All markings in the sequence are reachable from M1.

 An arbitrary marking is reachable from itself
by the trivial occurrence sequence of length 0.
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Infinite occurrence sequence

M1 M2

Y1
M3            ……

Y2

The set of markings 

reachable from M

The set of

reachable markings

 (M)

 (M0)

Y3
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Diamond property

M M’
Y

Y = Y1 ++ Y2

Assume that

Y can be divided into 

two substeps:

Y2 Y1

M’’’

M’’
Y2Y1

In all three cases we 

reach the same marking

Y1 can occur followed by Y2

Y2 can occur followed by Y1

 This is called the diamond property.

 It can be proved from the definition of enabling and occurrence.

 It plays an important role in Petri net theory.
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Diamond property

 The diamond property follows 
from the fact that the effect of a 
step is independent of the 
marking in which it occurs.

 Repeated use of diamond property:

 When a step Y is enabled in a marking M, the binding 
elements of Y can occur one by one in any order.

 The order has no influence on the total effect.

x := x+1;

x := 0;

x := 0;

x := x+1;

 The diamond property is not
satisfied by ordinary programming 
languages.

M M’
Y

Y2 Y1

M’’’

M’’
Y2Y1
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Questions about CPN semantics

A. Can a transition change the marking of places that are 
neither input nor output places?

B. Can a transition occur concurrently with itself?

C. Can a binding element occur concurrently with itself?

D. Can two transitions that “reads” the value of the same  
token occur concurrently?

E. Can a marking be reachable from itself?

F. Can we have more than one initial marking?

G. Can we have an infinite number of reachable markings?

Find those where the answer is YES?

A. Can a transition change the marking of places that are 
neither input nor output places?

B. Can a transition occur concurrently with itself?

C. Can a binding element occur concurrently with itself?

D. Can two transitions that “reads” the value of the same 
token occur concurrently?

E. Can a marking be reachable from itself?

F. Can we have more than one initial marking?

G. Can we have an infinite number of reachable markings?
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Questions


