
Kurt Jensen

Lars M. Kristensen

1

Coloured Petri Nets

Department of Computer Science

Coloured Petri Nets
Modelling and Validation of Concurrent Systems

Kurt Jensen &
Lars Michael Kristensen

{kjensen,lmkristensen}
@cs.au.dk

Chapter 4: Formal Definition of CP-nets

++

 E(p,t) <<= M(p) for all pP
(t,b)Y

MS

Syntax

Semantics

CPN = (P, T, A, , V, C, G, E, I)

Kurt Jensen

Lars M. Kristensen

2

Coloured Petri Nets

Department of Computer Science

Why do we need a formal definition?

 The formal definition is unambiguous.

 It provides a more precise and complete description than an
informal explanation.

 Users who are satisfied with the informal explanation can skip
the formal definition.

 Only few programmers know the formal definition of the
programming language they are using.

 We define:

 Multisets.

 Syntax of Coloured Petri Nets.

 Semantics of Coloured Petri Nets.

Kurt Jensen

Lars M. Kristensen

3

Coloured Petri Nets

Department of Computer Science

(2,“OUR")

Multiset

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m(s) =

1 if s = (1,"COL")

3 if s = (2,"OUR")

2 if s = (3,"ED ")

0 otherwise

 Function NOxDATA ℕ:

Non-negative integersElements in multiset

 Sum: m = 1‘(1,"COL") ++ 3‘(2,"OUR") ++ 2‘(3,"ED ")

Number of appearances

(coefficient)

Elements

(from NOxDATA)

 Similar to a set but with multiple occurrences of elements.

m

Kurt Jensen

Lars M. Kristensen

4

Coloured Petri Nets

Department of Computer Science

Formal definition of multisets

 Let S = {s1,s2,s3,…} be a non-empty set.

 A multiset m is also written as a sum:
++

 m(s)‘s = m(s1)‘s1++ m(s2)‘s2++ m(s3)‘s3++ m(s4)‘s4++ …
sS

 A multiset over S is a function m : S ℕ mapping each
element sS into a non-negative integer m(s) ℕ called
the number of appearances (or coefficient) of s in m.

 Notation:

 SMS is the set of all multisets over S.

 ØMS is the empty multiset (polymorphic).

Kurt Jensen

Lars M. Kristensen

5

Coloured Petri Nets

Department of Computer Science

sS: sm m(s)>0.

Membership of multiset

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m

(2,“OUR")

 (1,”COL”), (2,”OUR”) and
(3,”ED ”) are members of
the multiset m.

 (4,”PET”) and (17,”CPN”)
are not members.

Membership

of multiset

Comparison of

integers

Kurt Jensen

Lars M. Kristensen

6

Coloured Petri Nets

Department of Computer Science

Addition of multisets

sS: (m1 ++ m2)(s) = m1(s) + m2(s).

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m2

(1,"COL")

(2,“OUR")

(2,“OUR")

(3,“ED ")

m1

++

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

(3,“ED ")

m1 ++ m2

=
(1,"COL")

(2,“OUR")

(2,“OUR")

(2,“OUR") (2,“OUR")

Addition

of multisets

Addition

of integers

Kurt Jensen

Lars M. Kristensen

7

Coloured Petri Nets

Department of Computer Science

Scalar multiplication of multisets

sS: (n ** m)(s) = n * m(s).

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m

**

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

n ** m

=
(1,"COL")

(2,“OUR")

(2,“OUR")

(2,“OUR") (2,“OUR")

Scalar

multiplication

of multiset

Multiplication

of integers

2

(2,“OUR")

(3,“ED ")

(3,“ED ")

Kurt Jensen

Lars M. Kristensen

8

Coloured Petri Nets

Department of Computer Science

Comparison of multisets

m1 <<= m2 sS: m1(s) ≤ m2(s).

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m2

(1,"COL")

(2,“OUR")

(2,“OUR")

(3,“ED ")

m1

<<=

(2,“OUR")

Smaller than or equal

for multisets

Smaller than or equal

for integers

Kurt Jensen

Lars M. Kristensen

9

Coloured Petri Nets

Department of Computer Science

|m| = sS m(s).

Size of multiset

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m

When |m| = we say that m is infinite.

(2,“OUR")

Size of multiset

 This multiset contains
six elements.

Summation of integers

Kurt Jensen

Lars M. Kristensen

10

Coloured Petri Nets

Department of Computer Science

Subtraction of multisets

sS: (m2 –– m1)(s) = m2(s) – m1(s).

(1,"COL")

(2,“OUR")

(3,“ED ")

(2,“OUR")

(3,“ED ")

m2

(1,"COL")

(2,“OUR")

(2,“OUR")

(3,“ED ")

m1

--
(3,“ED ")

m2 -- m2

=

 When m1 <<= m2 we also define subtraction:

(2,“OUR")

(2,“OUR")

Subtraction

of multisets

Subtraction

of integers

The condition

m1 <<= m2 ensures

that m2(s) – m1(s)

is non-negative,

i.e., that m2 – – m1

is a multi-set

Kurt Jensen

Lars M. Kristensen

11

Coloured Petri Nets

Department of Computer Science

Formal definition of Coloured Petri Nets

A Coloured Petri Net is a nine-tuple CPN = (P, T, A, , V, C, G, E, I).

 P set of places.

 T set of transitions.

 A set of arcs.

 set of colour sets.

 V set of variables.

 C colour set function (assigns colour sets to places).

 G guard function (assigns guards to transitions).

 E arc expression function (assigns arc expressions to arcs).

 I initialisation function (assigns initial markings to places).

Net structure

Types and variables

N
e
t in

s
c
rip

tio
n

s

Kurt Jensen

Lars M. Kristensen

12

Coloured Petri Nets

Department of Computer Science

Example to illustrate the formal definitions

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data d̂
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

1`1

NO

CD

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

NextRec

k

if n=k
then k+1
else k

NO

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

11`1

Kurt Jensen

Lars M. Kristensen

13

Coloured Petri Nets

Department of Computer Science

Places and transitions

 A finite set of places P.

 A finite set of transitions T.

 We demand that P T = Ø.

T = { SendPacket,TransmitPacket, ReceivePacket,TransmitAck, ReceiveAck }.

P = { PacketsToSend, A, B, DataReceived, NextRec, C,D, NextSend }.

A node is either a

place or a transition

– it cannot be both

Kurt Jensen

Lars M. Kristensen

14

Coloured Petri Nets

Department of Computer Science

Arcs

 A set of directed arcs A.

 We demand that A P T T P.

A = { (PacketsToSend, SendPacket), (SendPacket, PacketsToSend),

(SendPacket, A), (A,TransmitPacket), (TransmitPacket, B),

(B, ReceivePacket), (NextRec, ReceivePacket), (ReceivePacket, NextRec),

(DataReceived, ReceivePacket), (ReceivePacket, DataReceived),

(ReceivePacket, C), (C, TransmitAck), (TransmitAck, D), (D, ReceiveAck),

(ReceiveAck, NextSend), (NextSend, ReceiveAck),

(NextSend, SendPacket), (SendPacket, NextSend) }.

Each arc starts in a place and ends

in a transition – or it starts in a

transition and ends in a place

Kurt Jensen

Lars M. Kristensen

15

Coloured Petri Nets

Department of Computer Science

Arcs

 In the formal definition we do not have:

 double-headed arcs:

 parallel arcs:

 CPN Tools allow these and consider them to be shorthands for:

 two oppositely directed arcs
with the same arc expression:

 addition of the two
arc expressions:

expr

expr1

expr2

expr

expr

expr1 ++
expr2

Kurt Jensen

Lars M. Kristensen

16

Coloured Petri Nets

Department of Computer Science

Colour sets and variables

 A finite set of non-empty colour sets .

 = { NO, DATA, NOxDATA, BOOL }.

 A finite set of typed variables V.

We demand that Type[v] for all vV.

V = { n : NO, k : NO, d : DATA, data : DATA, success : BOOL }.

Type of variable must

be one of those that is

defined in

Kurt Jensen

Lars M. Kristensen

17

Coloured Petri Nets

Department of Computer Science

Colour sets for places

 A colour set function C : P .

Assigns a colour set to each place.

NO if p { NextSend, NextRec, C, D }

DATA if p = DataReceived

NOxDATA if p { PacketsToSend, A, B }

C(p) =

Kurt Jensen

Lars M. Kristensen

18

Coloured Petri Nets

Department of Computer Science

Guard expressions

 A guard function G : T EXPRV.

Assigns a guard to each transition.

We demand that Type[G(t)] = Bool for all tT.

G(t) = true for all tT.
The guard expression must

evaluate to a boolean

All variables must

belong to V

 In the formal definition we demand all transitions to have
a guard.

 CPN Tools consider a missing guard to be a shorthand for
the guard expression true which always evaluates to true.

 Hence we have omitted all guards in the protocol example.

Kurt Jensen

Lars M. Kristensen

19

Coloured Petri Nets

Department of Computer Science

Guard expressions

 CPN Tools consider a list of Boolean expressions:

to be a shorthand for:

[expr1,expr2, … ,exprn]

expr1 expr2 … exprn

 We recommend to write all guards as a list even when they
only have a single Boolean expression:

[expr]

 In this way it is easy to distinguish guards from other kinds
of net inscriptions.

Kurt Jensen

Lars M. Kristensen

20

Coloured Petri Nets

Department of Computer Science

Arc expressions

 An arc expression function E : A EXPRV.

Assigns an arc expression to each arc.

We demand that Type[E(a)] = C(p)MS for all aA,

where p is the place connected to the arc a.

Arc expression must

evaluate to a multiset

of tokens belonging to

the colour set of the

connected place

All variables must

belong to V

1`(n,d) if a { (PacketsToSend, SendPacket), … }

1`n if a { (C, TransmitAck), (D, ReceiveAck) … }

1`data if a = (DataReceived, ReceivePacket) }
………

E(a) =

p pa a

Kurt Jensen

Lars M. Kristensen

21

Coloured Petri Nets

Department of Computer Science

Arc expressions

 In the formal definition we
demand all arc expressions to
evaluate to multisets.

 CPN Tools consider an arc
expression expr which evaluates
to a single value to be a
shorthand for 1`expr.

 Hence we can write n and (n,d)
instead of 1`n and 1`(n,d).

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data d̂
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

1`1

NO

CD

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

NextRec

k

if n=k
then k+1
else k

NO

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

11`1

Kurt Jensen

Lars M. Kristensen

22

Coloured Petri Nets

Department of Computer Science

Initialisation expressions

 An initialisation function I : P EXPRØ.

Assigns an initial marking to each place.

We demand that

 Type[I(p)] = C(p)MS for all pP. Initialisation expression must

evaluate to a multiset of tokens

belonging to the colour set of

the place

Initialisation expression is not

allowed to contain any variables

AllPackets if p = PacketsToSend

1`1 if p { NextSend, NextRec }

1` " " if p = { DataReceived }

ØMS otherwise

I(p) =

Kurt Jensen

Lars M. Kristensen

23

Coloured Petri Nets

Department of Computer Science

Initialisation expressions

 In the formal definition we demand
all places to have an initialisation
expression and that these evaluate
to multisets.

 CPN Tools consider a missing
initialisation expression to be a
shorthand for ØMS.

 Hence we are allowed to omit the
initialisation expression for place A.

 CPN Tools consider an initialisation
expression expr which evaluates to a
single value to be a shorthand for
1`expr.

 Hence we could have written 1
instead of 1`1.

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data d̂
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

1`1

NO

CD

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

NextRec

k

if n=k
then k+1
else k

NO

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

11`1

Kurt Jensen

Lars M. Kristensen

24

Coloured Petri Nets

Department of Computer Science

A. Can a node be both a place and a transition?

B. Can we have an infinite number of places?

C. Can we have an arc from a place to another place?

D. Can a transition have two guards?

E. Can a guard evaluate to an integer?

F. Can an arc expression evaluate to a multiset of booleans?

G. Can we have a variable in an initial marking expression?

H. Can an arc expression always evaluate to empty?

A. Can a node be both a place and a transition?

B. Can we have an infinite number of places?

C. Can we have an arc from a place to another place?

D. Can a transition have two guards?

E. Can a guard evaluate to an integer?

F. Can an arc expression evaluate to a multiset of booleans?

G. Can we have a variable in an initial marking expression?

H. Can an arc expression always evaluate to empty?

Questions about CPN syntax

Find those where the answer is YES?

Kurt Jensen

Lars M. Kristensen

25

Coloured Petri Nets

Department of Computer Science

Markings

 A marking is a function M mapping each place p into
a multiset of tokens M(p)C(p)MS.

All token values must belong to

the colour set of the place

Initialisation expression has no variables.

Hence it is evaluated in the empty binding

 The initial marking M0 is defined by M0(p) = I(p)<> for all pP.

Kurt Jensen

Lars M. Kristensen

26

Coloured Petri Nets

Department of Computer Science

Variables of a transition

 The variables of a transition are
those that appear in the guard
or in an arc expression of an
arc connected to the transition.

 The set of variables is denoted
Var(t) V.

 Var(SendPacket) = {n,d}.
data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data d̂
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

1`1

NO

CD

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

NextRec

k

if n=k
then k+1
else k

NO

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

11`1

Kurt Jensen

Lars M. Kristensen

27

Coloured Petri Nets

Department of Computer Science

Bindings and binding elements

 A binding of a transition t is a function b mapping each
variable vVar(t) into a value b(v)Type[v].

 Bindings are written in:
brackets: <n=1,d="COL">.

 The set of all bindings for a
transition t is denoted B(t).

 A binding element is a pair (t,b) such that t is a transition
and bB(t).

 The set of all binding elements of a transition t is denoted BE(t).

 The set of all binding elements in CPN is denoted BE.

Each variable must be bound

to a value in its type

Transition Binding for t

Kurt Jensen

Lars M. Kristensen

28

Coloured Petri Nets

Department of Computer Science

Steps

 A step YBEMS is a non-empty and finite multiset of
binding elements.

 Why forbid empty steps?

 We would have steps with
no effect.

 It would be impossible to
reach a dead marking,
i.e., a marking without
enabled steps.

 Why forbid infinite steps?

 We would be able to
produce markings which
are not multisets.

x

0

INT

INT

INT
Infinitely

many tokens

Infinitely many tokens

with value zero

Enabled concurrently

with itself infinitely

many times

This is illegal.

Multisets cannot have

infinite coefficients

Kurt Jensen

Lars M. Kristensen

29

Coloured Petri Nets

Department of Computer Science

Evaluation of guards and arc expressions

 The rules for enabling and occurrence are based on evaluation of
guards and arc expressions.

Evaluation of the guard expression

for t in the binding b

E(a)

G(t)

Evaluation of the arc expression

for a in the binding b

E(p,t)
Evaluation of the arc expression on

the arc from p to t in the binding b.

If no such arc exists E(p,t) = ØMS

E(t,p)
Evaluation of the arc expression on

the arc from t to p in the binding b.

If no such arc exists E(t,p) = ØMS

Kurt Jensen

Lars M. Kristensen

30

Coloured Petri Nets

Department of Computer Science

Enabling of single binding element

 A binding element (t,b)BE is enabled in a marking M if and
only if the following two properties are satisfied:

 G(t) = true.

 E(p,t) <<= M(p) for all pP.

Guard must evaluate to true

The tokens demanded by the

input arc expressions must be

present in the marking M

Smaller than or equal

for multisets

Kurt Jensen

Lars M. Kristensen

31

Coloured Petri Nets

Department of Computer Science

Occurrence of single binding element

 When the binding element (t,b)BE is enabled in a marking M, it
may occur leading to a new marking M’ defined by:

 M’(p) = (M(p) –– E(p,t)) ++ E(t,p) for all pP.

Subtract tokens

consumed by

input arcs

Add tokens

produced by

output arcs

Old

marking

New

marking

Kurt Jensen

Lars M. Kristensen

32

Coloured Petri Nets

Department of Computer Science

Enabling of step

 A step Y BEMS is enabled in a marking M if and only if the
following two properties are satisfied:

 G(t) = true for all (t,b)Y.

++

 E(p,t) <<= M(p) for all pP.
(t,b)Y

All guards must evaluate to true

The tokens demanded by the

input arc expressions must be

present in the marking M

MS

Summation over

a multiset Y

Smaller than or equal

for multisets

Kurt Jensen

Lars M. Kristensen

33

Coloured Petri Nets

Department of Computer Science

Occurrence of step

 When the step YBEMS is enabled in a marking M, it may occur
leading to a new marking M’ defined by:

 M’(p) = (M(p) ––
++

 E(p,t)) ++
++

 E(t,p) for all pP.
(t,b)Y (t,b)Y

Subtract tokens

consumed by

input arcs

Add tokens

produced by

output arcs

Old

marking

New

marking

MS MS

Kurt Jensen

Lars M. Kristensen

34

Coloured Petri Nets

Department of Computer Science

Notation for occurrence and enabling

M1 M2

Y Step Y occurs in marking M1

leading to marking M2

M1 M2
Marking M2 can be reached from marking M1

(by the occurrence of an unknown step)

M1
Step Y is enabled in marking M1

(leading to an unknown marking)

Y

Kurt Jensen

Lars M. Kristensen

35

Coloured Petri Nets

Department of Computer Science

Finite occurrence sequence

M1 M2

Y1
M3 ……

Y2
Mn Mn+1

Yn

 Length n ≥ 0.

 All markings in the sequence are reachable from M1.

 An arbitrary marking is reachable from itself
by the trivial occurrence sequence of length 0.

Kurt Jensen

Lars M. Kristensen

36

Coloured Petri Nets

Department of Computer Science

Infinite occurrence sequence

M1 M2

Y1
M3 ……

Y2

The set of markings

reachable from M

The set of

reachable markings

 (M)

 (M0)

Y3

Kurt Jensen

Lars M. Kristensen

37

Coloured Petri Nets

Department of Computer Science

Diamond property

M M’
Y

Y = Y1 ++ Y2

Assume that

Y can be divided into

two substeps:

Y2 Y1

M’’’

M’’
Y2Y1

In all three cases we

reach the same marking

Y1 can occur followed by Y2

Y2 can occur followed by Y1

 This is called the diamond property.

 It can be proved from the definition of enabling and occurrence.

 It plays an important role in Petri net theory.

Kurt Jensen

Lars M. Kristensen

38

Coloured Petri Nets

Department of Computer Science

Diamond property

 The diamond property follows
from the fact that the effect of a
step is independent of the
marking in which it occurs.

 Repeated use of diamond property:

 When a step Y is enabled in a marking M, the binding
elements of Y can occur one by one in any order.

 The order has no influence on the total effect.

x := x+1;

x := 0;

x := 0;

x := x+1;

 The diamond property is not
satisfied by ordinary programming
languages.

M M’
Y

Y2 Y1

M’’’

M’’
Y2Y1

Kurt Jensen

Lars M. Kristensen

39

Coloured Petri Nets

Department of Computer Science

Questions about CPN semantics

A. Can a transition change the marking of places that are
neither input nor output places?

B. Can a transition occur concurrently with itself?

C. Can a binding element occur concurrently with itself?

D. Can two transitions that “reads” the value of the same
token occur concurrently?

E. Can a marking be reachable from itself?

F. Can we have more than one initial marking?

G. Can we have an infinite number of reachable markings?

Find those where the answer is YES?

A. Can a transition change the marking of places that are
neither input nor output places?

B. Can a transition occur concurrently with itself?

C. Can a binding element occur concurrently with itself?

D. Can two transitions that “reads” the value of the same
token occur concurrently?

E. Can a marking be reachable from itself?

F. Can we have more than one initial marking?

G. Can we have an infinite number of reachable markings?

Kurt Jensen

Lars M. Kristensen

40

Coloured Petri Nets

Department of Computer Science

Questions

