
Shared Memory Multiprocessors

The most prevalent form of parallel architecture is the multiprocessor of small to
moderate scale that provides a global physical address space and symmetric access to
all of main memory from any processor, often called a symmetric multiprocessor or
SMP Every processor has its own cache, and all the processors and memory modules
attach to the same interconnect, which is usually a shared bus. SMPs dominate the
server market and are becoming more common on the desktop. They are also impor-
tant building blocks for larger-scale systems. The efficient sharing of resources, such
as memory and processors, makes these machines attractive as "throughput
engines" for multiple sequential jobs with varying memory and CPU requirements.
The ability to access all shared data efficiently from any of the processors using ordi-
nary loads and stores, together with the automatic movement and replication of
shared data in the local caches, makes them attractive for parallel programming.
These features are also very useful for the operating system, whose different pro-
cesses share data structures and can easily run on different processors.

From the viewpoint of the layers of the communication architecture in
Figure 5.1, the shared address space programming model is supported directly by
hardware. User processes can read and write shared virtual addresses, and these
operations are realized by individual loads and stores of shared physical addresses.
In fact, the relationship between the programming model and the hardware opera-
tion is so close that they both are often referred to simply as "shared memory." A
message-passing programming model can be supported by an intervening software
layer-typically a run-time library-that treats large portions of the shared address
space as private to each process and manages some portions explicitly as per-process
message buffers. A sendlreceive operation pair is realized by copying data between
these buffers. The operating system need not be involved since address translation
and protection on the shared buffers is provided by the hardware. For portability,
most message-passing programming interfaces have indeed been implemented on
popular SMPs. In fact, such implementations often deliver higher message-passing
performance than traditional, distributed-memory message-passing systems-as
long as contention for the shared bus and memory does not become a bottleneck-
largely because of the lack of operating system involvement in communication. The
operating system is still used for inputloutput and multiprogramming support.

Since all communication and local computation generates memory accesses in a
shared address space, from a system architect's perspective the key high-level design

270 C H A P T E R 5 Shared Memory Multiprocessors

Message passlng Programming models

Compilation
or library Communication abstraction

Userlsystem boundary
Shared address space Operating systems support

I
Hardwarelsoftware boundary

Commun~cat~on hardware

Physical communlcatton rned~um

FIGURE 5.1 Layers of abstraction of the communication architecture for bus-based SMPs. A
shared address space IS supported d~rectly In hardware, wh~le message passlng IS supported In software

issue is the organization of the extended memory hierarchy In general, memory
hierarchies in multiprocessors fall primarily into four categories, as shown in
Figure 5.2, which correspond loosely to the scale of the multiprocessor being con-
sidered. The first three are symmetric multiprocessors (all of main memory is
equally far away from all processors), while the fourth is not.

In the shared cache approach (Figure 5.2[a]), the interconnect is located between
the processors and a shared first-level cache, which in turn connects to a shared
main memory subsystem. Both the cache and the main memory system may be
interleaved to increase available bandwidth. This approach has been used for con-
necting very small numbers of processors (2-8). In the mid-1980s, it was a common
technique for connecting a couple of processors on a board; today, it is a possible
strategy for a multiprocessor-on-a-chip, where a small number of processors on the
same chip share an on-chip first-level cache. However, it applies only at a very small
scale, both because the interconnect between the processors and the shared first-
level cache is on the critical path that determines the latency of cache access and
because the shared cache must deliver tremendous bandwidth to the multiple pro-
cessors accessing it simultaneously.

In the bus-based shared memory approach (F~gure 5 2[b]), the lnterconnect IS a
shared bus located between the processor's pnvate caches (or cache h~erarch~es) and
the shared mam memory subsystem Th~s approach has been wdely used for small-
to medlum-scale rnultlprocessors consistmg of up to 20 or 30 processors It is the :
dom~nant form of parallel machme sold today, and cons~derable deslgn effort has
been mvested In essentially all modem microprocessors to support "cache-coherent"
shared memory configurattons For example, the Intel Pentlum Pro processor can
attach to a coherent shared bus wthout any glue loglc, and low-cost bus-based .
machines that use these processors have greatly mcreased the popularity of
approach The scahng lmnt for these machlnes comes pnmar~ly due to b a n d ~ d t h
limitations of the shared bus and memory system

The last two approaches are mtended to be scalable to many processing nodes
The dancehall approach also places the Interconnect between the caches and mal!
memory, but the lnterconnect is now a scalable polnt-to-pomt network rather thana
bus, and memory IS dlvlded Into many log~cal modules that connect to loglcall~

Switch u
(Interleaved)
Maln memory

(a) Shared cache

I Interconnection network I

(c) Dancehall

Shared Memory Multiprocessors 271

(b) Bus-based shared memory

I I

Interconnection network

Common extended memory hierarchies found in multiprocessors

ferent points in the interconnect (Figure 5.2[c]). This approach is symmetric-all of
main memory is uniformly far away from all processors-but its limitation is that all
of memory is indeedfar away from all processors. Especially in large systems, sev-
eral "hops" or switches in the interconnect must be traversed to reach any memory
module from any processor. The fourth approach, distributed-memory, is not sym-
metric. A scalable interconnect is located between processing nodes, but each node
has its own local portion of the global main memory to which it has faster access
(Figure 5.2[d]). By exploiting locality in the distribution of data, most cache misses
may be satisfied in the local memory and may not have to traverse the network. This
design is most attractive for scalable multiprocessors, and several chapters are
devoted to the topic laier in the book. Of course, it is also possible to combine mul-
tiple approaches into a single machine design-for example, a distributed-memory
machine whose individual nodes are bus-based SMPs or a machine in which proces-
sors share a cache at a level of the hierarchy other than the first level.

In all cases, caches play an essential role in reducing the average data access time
as seen by the processor and in reducing the bandwidth requirement each processor

272 CHAPTER 5 Shared Memory Mulnprocessors '..<

places on the shared Interconnect and memory system The bandmdth requirement
u reduced because the data accesses Issued by a processor that are satisfied m the
cache do not have to appear on the lnterconnect In all but the shared cache
approach, each processor has at least one level of ~ t s cache h~erarchy that IS pnvate
T h ~ s ralses a cnt~cal challenge-namely, that of caclre coherence The problem anses
when copies of the same memory block are present m the caches of one or more pro-
cessors, ~f a processor writes to and hence mod~fies that memory block, then, unless
spec~al actlon IS taken, the other processors mll continue to access the old, stale
copy of the block that IS in the~r caches

Currently, most small-scale mult~processors use a shared bus lnterconnect w t h
per-processor caches and a centralued main memory, whereas scalable systems use
phys~cally d~stnbuted main memory The dancehall and shared cache approaches are
employed in relatwely spec~fic settlngs Speclfic organuations may change as technol-
ogy evolves However, besides bemg the most popular, the bus-based and d~stributed-
memory organlzatlons also dlustrate the two fundamental approaches to solvmg the
cache coherence problem, dependmg on the nature of the Interconnect one for the
case where any transactlon placed on the Interconnect IS vls~ble to all processors (like
a bus) and the other where the lnterconnect is decentrahzed and a po~nt-to-polnt
transactlon is vlslble only to the processors at ~ t s endpoints T h ~ s chapter focuses on
the logxal design of protocols that explolt the fundamental properties of a bus to
solve the cache coherence problem The next chapter expands on the deslgn issues
associated w t h reallzmg these cache coherence technques m hardware The baslc
design of scalable d~stnbuted-memory mult~processors wl l be addressed In
Chapter 7, followed by coverage of the Issues specific to scalable cache coherence ~n ,
Chapters 8 and 9

Secfion 5 1 descnbes the cache coherence problem for shared memory architec-
tures In detail and descnbes the slmplest example of what are called snoopng cache
coherence protocols Coherence IS not only a key hardware des~gn concept but IS a
necessary part of our intulhve notion of the abstract~on of memory. However, paral-
lel software often makes stronger assumptions than coherence about how memory
behaves Section 5 2 extends the d~scussion of ordenng begun In Chapter 1 and
introduces the concept of memory consistency, wh~ch defines the semdntlcs of
shared address space Thls Issue has become increasingly Important m computer
arch~tecture and compder design, a large fractlon of the reference manuals for most
recent mstructlon set architectures IS devoted to the memory consistency model
Once the abstract~ons and concepts are defined, Sect~on 5 3 presents the deslgn
space for more reahstic snoopmg protocols and shows how they satisfy the condl-
tions for coherence as well as fora useful consistency model. It describes the opera-
don of commonly used protocols at the logical state transition level. The techniques
used for the quantitative evaluation of several design trade-offs at this level are illus-
trated in Section 5.4, using aspects of the methodology for workload-driven evalua-
tion from Chapter 4.

The latter portions of the chapter examine the implications that cache-coherent
shared memory architectures have for the software that runs on them. Section 5.5
examines how the low-level synchronization operations make use of the available

5.1 Cache Coherence 273

hardware primitives on cache-coherent multiprocessors and how algorithms for
locks and barriers can be tailored to use the machine efficiently. Section 5.6 dis-
cusses the implications for parallel programming in general, and in particular, it
discusses how temporal and spatial data locality may be exploited to reduce cache
misses and traffic on the shared bus.

CACHE COHERENCE

Think for a moment about your intuitive model of what a memory should do. It
should provide a set of locations that hold values, and when a locaaon is read it
should return the latest value written to that location. This is the fundamental prop-
erty of the memory abstraction that we rely on in sequential programs, in which we
use memory to communicate a value from a point in a program where it is computed
to other points where it is used. We rely on the same property of a memory system
when using a shared address space to communicate data%etween threads or
processes running on one processor. A read returns the latest value written to the
location regardless of which process wrote it. Caching does not interfere because all
processes see the memory through the same cache hierarchy. We would like to rely
on the same property when the two processes run on different processors that share
a memory. That is, we would like the results of a program that uses multiple pro-
cesses to be no different when the processes run on different physical processors
than when they run (interleaved or multiprogrammed) on the same physical proces-
sor. However, when two processes see the shared memory through different caches,
a danger exists that one may see the new value in its cache while the other still sees
the old value.

The Cache Coherence Problem

The cache coherence problem in multiprocessors is both pervasive and performance
critical. It is illustrated in Example 5.1.

EXAMPLE 5.1 Figure 5.3 shows three processors with caches connected via a bus to
shared main memory. A sequence of accesses to location u is made by the proces-
sors. First, processor PI reads u from main memory, bringing a copy into its cache.
Then processor P3 reads u from main memory, bringing a copy into its cache. Then
processor P3 writes location u, changing i t s value from 5 to 7. With a write-through
cache, this will cause the main memory location to be updated; however, when
processor PI reads location u again (action 4), it will unfortunately read the stale
value 5 from i t s own cache instead of the correct value 7 from main memory. This is
a cache coherence problem. What happens if the caches are write back instead of
write through?

Answer The situation is even worse with write-back caches. P i s write would merely
set the dirty (or modified) bit associated with the cache block holding location u
and would not update main memory right away. Only when this cache block is
subsequently replaced from Pis cache would its contents be written back to main
memory. Thus, not only will PI read the stale value, but when processor P2 reads

274 C H A P T E R 5 Shared Memory Multiprocessors

FIGURE 5.3 Example cache coherence problem. The figure shows three processors
with caches connected by a bus to main memory. u is a location in memory whose contents
are being read and written by the processors. The sequence in which reads and writes are
done is md~cated by the number listed inside the circles placed next to the arc. It is easy to
see that unless special action is taken when P3 updates the value of u to 7, PI will subse-
quently continue to read the stale value out of ~ t s cache, and P2 will also read a stale value
out of main memory.

location u (action 5), it will miss in its cache and read the stale value of 5 from main
memory instead of 7. Finally, if multiple processors write distinct values to location
u in their write-back caches, the final value that will reach main memory will be
determined by the order in which the cache blocks containing u are replaced and
will have nothing t o do with the order in which the writes t o u occur.

Clearly, the behavior described in Example 5.1 violates our intuitive notion of
what a memory should do. In fact, cache coherence problems arise even in uni-
processors when VO operations occur. Most VO transfers are performed by direct
memory access (DMA) devices that move data between memory and the peripheral
component without involving the processor. When the DMA device writes to a
location in main memory, unless special action is taken, the processor may continue
to see the old value if that location was previously present in its cache. With write-
back caches, a DMA device may read a stale value for a location from main memory
because the latest value for that location is in the processor's cache. Since VO
operations are much less frequent than memory operations, several coarse solutions
have been adopted in uniprocessors. For example, segments of memory space used
for 110 may be marked as "uncacheable" (i.e., they do not enter the processor
cache), or the processor may always use uncached load and store operations for
locations used to communicate with WO devices. For YO devices that transfer large
blocks of data at a time, such as disks, operating system support is often enlisted to
ensure coherence. In many systems, the pages of memory f rodto which the data is

5.1 Cache Coherence 275

to be transferred are flushed by the operating system from the processor's cache
before the VO is allowed to proceed. In still other systems, all WO traffic is made to
flow through the processor cache hierarchy, thus maintaining coherence. This, of
course, pollutes the cache hierarchy with data that may not be of immediate interest
to the processor. Fortunately, the techniques and support used to solve the multi-
processor cache coherence problem also solve the V 0 coherence problem. Essen-
tially all microprocessors today provide support for multiprocessor cache coherence.

In multiprocessors, reading and writing of shared variables by different proces-
sors is expected to be a frequent event since it is the way that multiple processes
belonging to a parallel application communicate with each other. Therefore, we do
not want to disallow caching of shared data or to invoke the operating system on all
shared references. Rather, cache coherence needs to be addressed as a basic hardware
design issue; for example, stale cached copies of a shared location (like the copy of u
in Pj's cache in Example 5.1) must be eliminated when the location is modified,
either by invalidating them or updating them with the new value. In fact, the operat-
ing system itself benefits greatly from transparent, hardware-supported coherence of
its data structures.

Before we explore techniques to provide coherence, z i s useful to define the
coherence property more precisely Our intuitive notion that "each read should
return the last value written to that location" is problematic for parallel architecture
because "last" may not be well defined. Two different processors might write to the
same location at the same instant, or one processor may read so soon after another
writes that, due to the speed of light and other factors, there isn't time to propagatc
the invalidation or update to the reader. Even in the sequential case, "last" is not a
chronological or physical notion but refers to latest in program order. For now, we
can think of program order within a process as the order in which memory opera-
tions occur in the machine language program. The subtleties of program order are
elaborated further in Section 5.2. The challenge in the parallel case is that, while
program order is defined for the operations within each individual process, in order
to define the semantics of a coherent memory system we need to make sense of the
collection of program orders.

Let us first review the definitions of some terms in the context of uniprocessor
memory systems so that we can extend the definitions for multiprocessors. By
memovy operation, we mean a single read (load), write (store), or read-modify-write
access to a memory location. Instructions that perform multiple reads and writes,
such as those that appear in many complex instruction sets, can be viewed as broken
down into multiple memory operations, and the order in which these memory oper-
ations are executed is specified by the instruction. These memory operations within
an instruction are assumed to execute atomically with respect to each other in the
specified order; that is; all aspects of one appear to execute before any aspect of the
next. A memory operation issues when it leaves the processor's internal environment
and is presented to the memory system, which includes the caches, write buffers,
bus, and memory modules. A very important point for ordering is that the only way
the processor observes the state of the memory system is by issuing memory opera-
tions (e.g., reads); thus, for a memory operation to be performed with respect to the

276 C H A P T E R 5 Shared Merpory Multiprocessors

processor means that it appears to have taken place, as far as the processor can tell
from the memory operations it issues. In particular, a write operation is said to per-
form with respect to the processor when a subsequent read by the processor returns
the value produced by either that write or a later wTite. A read operation is said to
perform with respect to the processor when subsequent writes issued by the proces-
sor cannot affect the value returned by the read. Notice that in neither case do we
specify that the physical location in the memory chip has been accessed or that spe-
cific bits of hardware have changed their values. Also, "subsequent" is well defined
in the sequential case since reads and writes are ordered by the program order.

The same definitions for memory operations issuing and performing with respect
to a processor apply in the parallel case; we can simply replace "the processor" with
"a processor" in the definitions. The problem is that "subsequent" and "last" are not
yet well defined since we do not have one program order; rather, we have separate
program orders for every process, and these program orders interact when accessing
the memory system. One way to sharpen our idea of a coherent memory system is to
picture what would happen if there were a single shared memory and no caches.
Every write and every read to a memory location would access the physical location
at main memory. The operation would be performed with respect to all processors at
this point and would therefore be said to complete. Thus, the memory would impose
a serial order on all the read and write operations from all processors to the location.
Moreover, the reads and writes to the location from any individual processor should
be in program order within this overall serial order. In this case, then, the main
memory location provides a natural point in the hardware to determine the order
across processes of operations to that location. We have no reason to believe that the
memory system should interleave accesses from different processors in a particular
way, so any interleaving that preserves the individual program orders is reasonable.
We do assume some basic fairness; eventually, the operations from each processor
should be performed. Our intuitive notion of "last" can be viewed as most recent in
a hypothetical serial order that maintains these properties, and "subsequent" can be
defined similarly Since this serial order must be consistent, it is important that all
processors see the writes to a location in the same order (if they bother to look, i.e.,
to read the location).

The appearance of such a total, serial order on operations to a location is what we
expect from any coherent memory system. Of course, the total order need not actu-
ally be constructed at any given point in the machine while executing the program.
Particularly in a system with caches, we do not want main memory to see all the
memory operations, and we want to avoid serialization whenever possible. We just
need to make sure that the program behaves as if some serial order was enforced.

More formally, we say that a multiprocessor memory system is coherent if the
results of any execution of a program are such that, for each location, it is possible to
construct a hypothetical serial order of all operations to the location (i.e., put all
readslwrites issued by all processes into a total order) that is consistent with the
results of the execution and in which

1. operations issued by any particular process occur in the order in which they
were issued to the memory system by that process, and

5.1 Cache Coherence 277

2. the value returned by each read operation is the value written by the last write
to that location in the serial order.

Two properties are implicit in the definition of coherence: write propagation
means that writes become visible to other processes; write serialization means that
all writes to a location (from the same or different processes) are seen in the same
order by all processes. For example, write serialization means that if read operations
by process PI to a location see the value produced by write wl (from P2, say) before
the value produced by write w2 (from P3, say), then reads by another process P.+ (or
Pz or P3) also should not be able to see w2 before w l . There is no need for an analo-
gous concept of read serialization since the effects of reads are not visible to any pro-
cess but the one issuing the read.

The results of a program can be viewed as the values returned by the read opera-
tions in it, perhaps augmented with an implicit set of reads to all locations at the end
of the program. From the results, we cannot determine the order in which opera-
tions were actually executed by the machine or exactly when birs changed, only the
order in which they appear to execute. Fortunately, this is all that matters since this
is all that processors can detect. This concept will become even more important
when we discuss memory consistency models.

5.1.2 Cache Coherence through Bus Snooping

Having defined the memory coherence property, let us examine techniques to solve
the cache coherence problem. For instance, in Figure 5.3, how do we ensure that PI
and P2 see the value that Pj wrote? In fact, a simple and elegant solution to cache
coherence arises from the very nature of a bus. The bus is a single set of wires con-
necting several devices, each of which can observe every bus transaction, for exam-
ple, every read or write on the shared bus. When a processor issues a request to its
cache, the cache controller examines the state of the cache and takes suitable action,
which may include generating bus transactions to access memory. Coherence is
maintained by having all cache controllers "snoop" on the bus and monitor the
transactions, as illustrated in Figure 5.4 (Goodman 1983). A snooping cache con-
troller may take action if a bus transaction is relevant to it-that is, if it involves a
memory block of which it has a copy in its cache. Thus, PI may take an action, such
as invalidating or updating its copy of the location, if it sees the write from P3. In
fact, since the allocation and replacement of data in caches is managed at the granu-
larity of a cache block (usually several words long) and cache misses fetch a block of
data, most often coherence is maintained at the granularity of a cache block as well.
In other words, either an entire cache block is in valid state in the cache or none of it
is. Thus, a cache block is the granularity of allocation in the cache, of data transfer
between caches, and of coherence.

The key properties of a bus that support coherence are the following. First, all
transactions that appear on the bus are visible to all cache controllers. Second, they
are visible to all controllers in the same order (the order in which they appear on the
bus). A coherence protocol must guarantee that all the "necessary" transactions in

278 CHAPTER 5 Shared Memory Multiprocessors

FIGURE 5.4 A snooping cache-coherent multiprocessor. Multiple processors with
private caches are placed on a shared bus. Each processor's cache controller continuously
"snoops" on the bus watching for relevant transaction and updates its state suitably to
keep its local cache coherent. The gray arrows show the transaction being placed on the
bus and accepted by main memory, as in a uniprocessor system. The black arrow indicates
the snoop.

fact appear on the bus, in response to memory operations, and that the controllers
take the appropriate actions when they see a relevant transaction.

The simplest illustration of maintaining coherence is a system that has single-
level write-through caches. It is basically the approach followed by the first commer-
cial bus-based SMPs in the mid-1980s. In this case, every write operation causes a
write transaction to appear on the bus, so every cache controller observes every
write (thus providing write If a snooping cache has a copy of the
block, it either invalidates or updates its copy. Protocols that invalidate cached cop-
ies (other than the writer's copy) on a write are called invalidation-based protocols,
whereas those that update other cached copies are called update-based protocols. In
either case, the next time the processor with the copy accesses the block, it will see
the most recent value, either through a miss or because the updated value is in its
cache. Main memory always has valid data, so the cache need not take any action
when it observes a read on the bus. Example 5.2 illustrates how the coherence prob-
lem in Figure 5.3 is solved with write-through caches.

EXAMPLE 5.2 Consrder the scenarlo presented in Figure 5.3. Assuming write-through
caches, show how the bus may be used to provide coherence using an ~nvalidation-
based protocol

Answer When processor P3 wrltes 7 to locatton u, Pj's cache controller generates a
bus transact~on to update memory. Observing thts bus transaction as relevant and
as a wnte transaction, Pl's cache controller invalidates ~ t s own copy of the block
contanng u The main memory controller will update the value it has stored for
location u to 7 Subsequent reads to u from processors PI and P2 (actlons 4 and 5)
wtll both mlss in their private caches and get the correct value of 7 from the main
memory .

5.1 Cache Coherence 279

The check to determine if a bus transaction is relevant to a cache is essentially the
same tag match that is performed for a request from the processor. The action taken
may involve invalidating or updating the contents or state of that cache block andlor
supplymg the latest value for that block from the cache to the bus.

A snoopy cache coherence protocol ties together two basic facets of computer
architecture that are also found in uniprocessors: bus transactions and the state tran-
sition diagram associated with a cache block. Recall that the first component-the
bus transaction-consists of three phases: arbitration, command/address, and data.
In the arbitration phase, devices that desire to initiate a transaction assert their bus
request, and the bus arbiter selects one of these and responds by asserting its grant
signal. Upon grant, the selected device places the command, for example, read or
write, and the associated address on the bus command and address lines. All devices
observe the address and, in a uniprocessor, one of them recognizes that it is respon-
sible for the particular address. For a read transaction, the address phase is followed
by data transfer. Write transactions vary from bus to bus according to whether the
data is transferred during or after the address phase. For most buses, a responding
device can assert a wait signal to hold off the data transfer until it is ready This wait
signal is different from the other bus signals because it is a wired-OR across all the
processors; that is, it is a logical 1 if any device asserts it. The initiator does not need
to know which responding device is participating in the transfer, only that there is
one and whether it is ready. I

The second basic facet of computer architecture leveraged by a cache coherence
protocol is that each block in a uniprocessor cache has a state associated with it,
along with the tag and data, which indicates the disposition of the block, (e.g.,
invalid, valid, dirty). The cache policy is defined by the cache bloclz state transition
diagram, which is a finite state machine specifying how the disposition of a block
changes. Transitions for a cache block occur upon access to that block or to an
address that maps to the same cache line as that block. (We refer to a cache block as
the actual data, and a line as the fixed storage in the hardware cache, in exact anal-
ogy with a page and a page frame in main memory.) While only blocks that are actu-
ally in cache lines have hardware state information, logically, all blocks that are not
resident in the cache can be viewed as being in either a special "not present" state or
in the "invalid state. In a uniprocessor system, for a write-through, write-no-
allocate cache (Hennessy and Patterson 1996), only two states are required: valid
and invalid. Initially, all the blocks are invalid. When a processor read operation
misses, a bus transaction is generated to load the block from memory and the block
is marked valid. Writes generate a bus transaction to update memory, and they also
update the cache block if it is present in the valid state. Writes do not change the
state of the block. If a bbck is replaced, it may be marked invalid until the memory
provides the new block, whereupon it becomes val~d. A write-back cache requires an
additional state per cache line, indicating a "dirty" or modified block.

In a multiprocessor system, a block has a state in each cache, and these cache
states change according to the state transition diagram. Thus, we can think of a
block's cache state as being a vector of p states instead of a single state, where p is the
number of caches. The cache state is manipulated by a set of distributed finite state

;HAPTER 5 Shared Memory Multiprocessors

machines, implemented by the cache controllers. The state machine or state transi-
tion diagram that governs the state changes is the same for all blocks and all caches,
but the current state of a block in different caches is different. As before, if a block is
not present in a cache we can assume it to be in a special "not present" state or even
in the invalid state.

In a snooping cache coherence scheme, each cache controller receives two sets of
inputs: the processor issues memory requests, and the bus snooper informs about
bus transactions from other caches. In response to either, the controller may update
the state of the appropriate block in the cache according to the current state and the
state transition diagram. It may also take an action. For example, it responds to the
processor with the requested data, potentially generating new bus transactions to
obtain the data. It responds to bus transactions by updating its state and sometimes
intervenes in completing the transaction. Thus, a snooping protocol is a distributed
algorithm represented by a collection of cooperating finite state machines. It is spec-
ified by the following components:

the set of states associated with memory blocks in the local caches
the state transition diagram, which takes as inputs the current state and the
processor request or observed bus transaction and produces as output the next
state for the cache block
the actions associated with each state transition, which are determined in part
by the set of feasible actions defined by the bus, the cache, and the processor
design

The different state machines for a block are coordinated by bus transactions.
A simple invalidation-based protocol for a coherent write-through, write-no-

allocate cache is described by the state transition diagram in Figure 5.5. As in the
uniprocessor case, each cache block has only two states: invalid (I) and valid (V)
(the "not present" state is assumed to be the same as invalid). The transitions are
marked with the input that causes the transition and the output that is generated
with the transition. For example, when a controller sees a read from its processor
miss in the cache, a BusRd transaction is generated, and upon completion of this
transaction the block transitions up to the valid state. Whenever the controller sees a
processor write to a location, a bus transaction is generated that updates that loca-
tion in main memory with no change of state. The key enhancement to the unipro-
cessor state diagram is that when the bus snooper sees a write transaction on the bus
for a memory block that is cached locally, the controller sets the cache state for that
block to invalid, thereby effectively discarding its copy. (Figure 5.5 shows this bus-
induced transition with a dashed arc.) By extension, if any processor generates a
write for a block that is cached by any of the others, all of the others will invalidate
their copies. Thus, multiple simultaneous readers of a block may coexist without
generating bus transactions or invalidations, but a write will eliminate all other
cached copies.

To see how this simple write-through invalidation protocol provides coherence,
we need to show that for any execution under the protocol a tola1 order on the mem-

5.1 Cache Coherence 281

FIGURE 5.5 Snoopy coherence for-a multiprocessor with write-through, write-
no-allocate caches. There are two states, valid (V) and invalid (I) , with intuitive semantics.
The notation ,415 (e.g., PrRdIBusRd) means if A is observed, then transaction B is generated.
From the processor side, the requests can be read (PrRd) or write (PrWr). From the bus side,
the cache controller may obse~efgenerate transactions bus read (BusRd) or bus write
(BusWr).

ory operations for a location can be constructed that satisfies the program order and
write serialization conditions. Let us assume for the present discussion that both bus
transactions and the memory operations are atomic. That is, only one transaction is
in progress on the bus at a time: once a request is placed on the bus, all phases of the
transaction, including the data response, complete before any other request from any
processor is allowed access to the bus (such a bus with atomic transactions is called
an atomic bus). Also, a processor waits until its previous memory operation is com-
plete before issuing another memory operation. With single-level caches, it is also
natural to assume that invalidations are applied to the caches, and hence the write
completes during the bus transaction itself. (These assumptions will be continued
throughout this chapter and will be relaxed when we look at protocol implementa-
tions in more detail and study high-performance designs with greater concurrency in
Chapter 6.) Finally, we may assume that the memory handles writes and reads in the
order in which they are presented by the bus.

In the write-through protocol, all writes appear on the bus. Since only one bus
transaction is in progress at a time, in any execution all writes to a location are seri-
alized (consistently) by the order in which they appear on the shared bus, called the
bus order. Since each snooping cache controller performs the invalidation during the
bus transaction, invalidations are ~erformed by all cache controllers in bus order.

282 CHAPTER 4 Shared Memory Muh~processors

Processors "see" writes through read operations, so for write serialization we
must ensure that reads from all processors see the writes in the serialized bus order.
However, reads to a location are not completely serialized since read hits may be per-
formed independently and concurrently in their caches without generating bus
transactions. To see how reads may be inserted in the serial order of writes, consider
the following scenario. A read that goes on the bus (a read miss) is serialized by the
bus along with the u~i tes ; it will therefore obtain the value written by the most
recent write to the location in bus order. The only memory operations that do not go
on the bus are read hits. In this case, the value read was placed in the cache by either
the most recent write to that location by the same processor or by its most recent
read miss (in program order). Since both these sources of the value appear on the
bus, read hits also see the values produced in the consistent bus order. Thus, under
this protocol, bus order together with program order provide enough constraints to
satisfy the demands of coherence.

More generally, we can construct a (hypothetical) total order that satisfies coher-
ence by observing the following partial orders imposed by the protocol:

A memory operation M2 is subsequent to a memory operatlon MI ~f the opera-
tions are issued by the same processor and M2 follows MI in program order

rn A read operation is subsequent to a wrlte operation W d the read generates a
bus transaction that follows that for W

rn A wnte operation is subsequent to a read or wrlte operatlon M if M generates a
bus transaction and the bus transactlon for the wnte follows that for M

rn A wnte operatlon is subsequent to a read operation lf the read does not gener-
ate a bus transactlon (IS a hit) and is not already separated from the wnte by
another bus transactlon.

Any serial order that preserves the resulting partial order is coherent. The "subse-
quent" ordering relationship is transitive. An illustration of the resulting partial
order is depicted in Figure 5.6. where the bus transactions associated with writes
segment the individual program orders. The partial order does not constrain the
ordering of read bus transactions from different processors that occur between two
write transactions, though the bus will likely establish a particular order. In fact, any
interleaving of read operations in the segment between two writes is a valid serial
order, as long as it obeys program order.

Of course, the problem with this simple write-through approach is that every
store instruction goes to memory, which is why most modern microprocessors use
write-back caches (at least at the level closest to the bus). This problem is exacer-
bated in the multiprocessor setting, since every store from every processor consumes
precious bandwidth on the shared bus, resulting in poor scalability, as illustrated by
Example 5.3.

EXAMPLE 5.3 Cons~der a superscalar RlSC processor issuing two instruct~ons per cycle
runnmg at 200 MHz Suppose the average CPI (clocks per instruction) for thls pro-
cessor is 1, 15% of all instruct~ons are stores, and each store writes 8 bytes of data.
How many processors w ~ l l a 1-GB/s bus be able to support without becoming satu-
rated?

5.2 Memory Consistency 283

FIGURE 5.6 Partial order of memory operations for an execution with the write-
through invalidation protocol. Write bus transactions define a global sequence of
events between which individual processors read locations in program order. The execution
is consistent with any total order obtained by interleaving the processor orders within each
segment.

Answer A single processor will generate 30 million stores per second (0.1 5 stores per
instruction x 1 instruction per cycle x 1,000,000/200 cycles per second), so the total
write-through bandwidth is 240 MB of data per second per processor. Even ig-
noring address and other information and ignoring read misses, a 1-GBls bus will
therefore support only about four processors. W

For most applications, a write-back cache would absorb the vast majority of the
writes. However, if writes do not go to memory, they do not generate bus transac-
tions, and it is no longer clear how the other caches will observe these modifications
and ensure write propagation. Also, when writes to different caches are allowed to
occur concurrently, no obvious ordering mechanism exists to sequence the writes.
We will need somewhat more sophisticated cache coherence protocols to make the
"critical" events visible to the other caches and to ensure write serialization.

The space of protocols for write-back caches is quite large. Before we examine it,
let us step back to the more general ordering issue alluded to in the introduction to
this chapter and examine the semantics of a shared address space as determined by
the memory consistency model.

MEMORY CONSISTENCY

Coherence, on which we have focused so far, is essential if information is to be
transferred between processors by one writing to a location that the other reads.
Eventually, the value written will become visible to the reader-indeed to all read-
ers. However, coherence says nothing about when the write will become visible.
Often in writing a parallel program, we want to ensure that a read returns the value
of a particular write; that is, we want to establish an order between a write and a
read. Typically, we use some form of event synchronization to convey this depen-
dence, and we use more than one memory location.

284 C H A P T E R 5 Shared Memory Multiprocessors

Consider, for example, the code fragments executed by processors PI and P2 In
Flgure 5 7, which we saw when d~scussmg pomt-to-pomt event synchron~zat~on in a
shared address space m Chapter 2 It 1s clear that the programmer Intends for pro-
cess P2 to spm ldly untd the value of the shared vanable f l ag changes to 1 and then
to pnnt the value of rar~able A as 1, slnce the value of A was updated before that of
f l a g by process P1 In t h ~ s case, we use accesses to another locat~on (f l ag) to pre-
serve a des~red order of d~fferent processes' accesses to the same locat~on (A) In par-
t~cular, we assume that the wnte of A becomes vls~ble to P2 before the wnte to f l a g
and that the read of f l a g by P2 that breaks ~t out of ~ t s whde loop completes before
its read of A (a pnnt operatton is essent~ally a read) These program orders wthm
P1 and Pis accesses to d~fferent locat~ons are not imphed by coherence, wh~ch, for
example, only requires that the new value for A eventually become visible to process
P2, not necessardy before the new value of flag IS observed

The programmer m~ght try to avo~d th~s Issue by uslng a barr~er or other expl~c~t
event synchronuat~on, as shown m F~gure 5 8 We expect the value of A to be
prmted as 1 since A was set to 1 before the barr~er Even t h ~ s approach has two
potenttal problems, however First, we are addmg assumptions to the meanmg of the
barner not only do processes Walt at the barr~er unul all of them have amved, they
also Walt untll all wntes ~ssued prlor to the barrier have become ms~ble to the other
processors Second, a barner 1s often bulk usmg reads and wrltes to ord~nary shared
vanables (e g , bl In the figure) rather than w t h spec~al~zed hardware support In
thls case, as far as the machme is concerned, ~t sees only accesses to d~fferent shared
vanables m the compiled code, not a special barner operation Coherence does not
say anything at all about the order among these accesses

Clearly, we expect more from a memory system than to "return the last value
written" for each locat~on To estabhsh order among accesses to the same locanon
(say, A) by dtfferent processes, we sometimes expect a memory system to respect the
order of reads and wntes to dtfferent locat~ons (A and f l a g or A and bl) issued by
the same process Coherence says nothmg about the order m wh~ch wrltes to d~ffer-
ent locat~ons become visible S~m~larly, ~t says nothlng about the order m wh~ch the
reads ~ssued to d~fferent locations by P2 are performed w t h respect to PI Thus,
coherence does not in Itself prevent an answer of 0 from bemg pnnted by e~ther
example, wh~ch IS certa~nly not what the programmer had In m ~ n d

In other sltuatlons, the programmer's lntentlon may not be so clear Cons~der the
example m Flgure 5 9 The accesses made by process PI are ord~nary wntes, and A

and B are not used as flags or synchron~zatton vanables Should we mtuit~vely
expect that ~f the value prmted for B IS 2, then the value printed for A 1s 1 7 Whatever
the answer, the two pnnt statements read d~fferent locations and coherence says
nothmg about the order m whlch the wntes by P1 become vis~ble to P2 T h ~ s exam-
ple IS m fact a fragment from Dekker's algor~thm (Tanenbaum and Woodhull 1997)
to determ~ne wh~ch of two processes arnves first at a cr~tical point as a step m ensur-
mg mutual exclus~on The algorlthm rehes on wrltes to dlstmct locattons by a pro-
cess becommg mstble to other processes m the order m wh~ch they appear In the

5.2 Memory Consistency 285

PI p2

/*Assume initial value of A andflag is 0*/

A = 1; while (flag == 0) ; l"spinidly*l

flag = 1; p r i n t A;

FIGURE 5.7 Requirements of event synchronization through flags. The figure
shows two processors concurrently executing two distinct code fragments. For program-
mer intuition to be maintained, it must be the case that the printed value of A is 1 . The
intuition is that because of program order, if flag =1 is visible to process P2, then it must
also be the case that A = 1 is visible to Pz.

PI p2

/*Assume initial value of A is O*/

A = 1; . . .
- - - B A R R I E R ~ ~ I) - - - - - BARRIER(^^)- - - - - - -

p r i n t A;

FIGURE 5.8 Maintaining order among accesses to a location using explicit syn-
chronization through barriers. As in Figure 5.7L!l_the programmer expects the value
printed for A to be 1 since passing the barrier should imply that the write of A by PI has
already completed and is therefore visible to P2.

p1 p2

/*Assume initial values ofA and B are 0*/

(la) A = 1; (2a) p r i n t B;

(lb) B = 2; (2 b) p r i n t 4;

FIGURE 5.9 Order among accesses without synchronization. Here it is less clear
what a programmer should expect since neither a flag nor any other explicit event synchro-
nization is used.

program. Clearly, we need something more than coherence to give a shared address
space a clear semantics, that is, an ordering model that programmers can use to rea-
son about the possible results and hence the correctness of their programs.

A memovy consistency model for a shared address space specifies constraints on the
order in which memory operations must appear to be performed (i.e., to become vis-
ible to the processors) with respect to one another. This includes operations to the
same locations or to different locations and by the same process or different pro-
cesses, so in this sense memory consistency subsumes coherence.

286 C H A P T E R 5 Shared Memory Muhprocessors

5.2.1 Sequential Consistency

In the d~scusslon m Chapter 1 of fundamental deslgn Issues for a communication
architecture, Section 1 4 descr~bed ~nformally a desirable ordering model for a
shared address space the reasonmg that allows a mult~threaded program to work
under any posslble mterleavlng on a uniprocessor should hold when some of the
threads run in parallel on different processors The ordenng of data accesses wthm
a process was therefole the program order, and that across processes was some ~nter-
leavlng of the program orders That IS, the mult~processor case should not be able to
cause values to become vmble to processes in the shared address space m a manner
that no sequentlal ~nterleaving of accesses from different processes can generate
This Intuitwe model was formahzed by Lamport as sequenttal consistency (SC),
wh~ch 1s defined as follows (Lamport 1979)

A multiprocessor is sequentially consistent if the result of any execution is the same as if the
operations of all the processors were executed in some sequential order, and the oper-
ations of each individual processor occur in this sequence in the order specified by its
program

Figure 5.10 depicts the abstraction of memory provided to programmers by a
sequentially consistent system (Adve and Gharachorloo 1996). It is similar to the
machine model we used to introduce coherence, though now it applies to multiple
memory locations. Multiple processes appear to share a single logical memory, even
though in the real machine main memory may be distributed across multiple proces-
sors, each with their own private caches and buffers. Every process appears to issue
and complete memory operations one at a time and atomically in program order;
that is, a memory operation does not appear to be issued until the previous one from
that process has completed. In addition, the common memory appears to service
these requests one at a time in an interleaved manner according to an arbitrary (hut
hopefully fair) schedule. Memory operations appear atomic in this interleaved order;
that is, it should appear globally (to all processes) as if one operation in the consis-
tent interleaved order executes and completes before the next one begins.

As with coherence, it is not important in what order memory operations actually
issue or even complete. What matters for sequential consistency is that they appear
to complete in a manner that satisfies the constraints just described. In the example
in Figure 5.9, under SC the result (0 ,2) for (A, B) would not be allowed-preserv-
ing our intuition-since it would then appear that the writes of A and B by process
PI executed out of program order. However, the memory operations may actually
execute and complete in the order lb, la, 2b, 2a. It does not matter that they actu-
ally complete out of program order since the results of the execution (1,2) are the
same as if the operations were executed and completed in program order. On the
other hand, the actual execution order lb , 2a, 223, la would not be sequentially
consistent since it would produce the result (0, z), which is not allowed under SC.
Other examples illustrating the intuitiveness of sequential consistency can be found

1. Two closely related concepts In software systems are serializabili~y (Papadimitriou 1979) for concurrent
updates to a database and linearizab~lity (Herlihy and Wing 1987) for concurrent objects.

5.2 Memory Cons~stency 287

:I,
The "switch" is randomly
set after each memory
reference

Memory L
FIGURE 5.10 Programmer's abstraction of the memory subsystem under the
sequential consistency model. The model completely hides the underlying concurrency
in the memory system hardware (e.g., the poss~ble existence of distributed main memory,
the presence of caches and write buffers) from the programmer.

in Exercise 5.6. Note that SC does not obviate the need for synchronization. The rea-
son is that SC allows operations from different processes to be interleaved arbitrarily
and does so at the granularity of individual instructions. Synchronization is needed
if we want to preserve atomicity (mutual exclusion) across multiple memory opera-
tions from a process or if we want to enforce constraints on the interleaving across
processes.

The term "program order" also bears some elaboration. Intuitively, program order
for a process is simply the order in which statements appear according to the source
code that the process executes; more specifically, it is the order in which memory
operations occur in the assembly code that results from a straightfonvard translation
of source statements one by one to machine instructions. This is not necessarily the
order in which an optimizing compiler presents memory operations to the hardware
since the compiler may reorder memory operations (within certain constraints, such
as preserving dependences to the same location). The programmer has in mind the
order of statements in the source program, but the processor sees only the order of
the machine instructions. In fact, there is a "program order" at each of the interfaces
in the parallel computer architecture-particularly the programming model inter-
face seen by the programmer and the hardwardsoftware interface-and ordering
models may be defined at each. Since the programmer reasons with the source pro-
gram, it makes sense t6 use this to define program order when discussing memory
consistency models; that is, we will be concerned with the consistency model pre-
sented by the language and the underlying system to the programmer.

Implementing SC requires that the system (software and hardware) preserve the
intuitive constraints defined previously. There are really two constraints. The first is
the program order requirement: memory operations of a process must appear to

288 C H A P T E R 5 Shared blemory Multiprocessors

become visible-to itself and others-in program order. The second constraint
guarantees that the total order or the interleaving across processes is consistent for
all processes by requiring that the operations appear atomic. That is, it should
appear that one operation is completed with respect to all processes before the next
one in the total order is issued (regardless of which process issues it). The tricky
part of this second requirement is making writes appear atomic, especially in a sys-
tem with multiple copies of a memory word that need to be informed on a write.
The write atomicity requirement, included in the preceding definition of sequential
consistency, implies that the position in the total order at which a write appears to
perform should be the same with respect to all processors. It ensures that nothing a
processor does after it has seen the new value produced by a write (e.g., another
write that it issues) becomes visible to other processes before they too have seen the
new value for that write. In effect, the write atomicity required by SC extends the
write serialization required by coherence: while write serialization says that writes
to the same location should appear to all processors to have occurred in the same
order, write atomicity says that all writes (to any location) should appear to all pro-
cessors to have occurred in the same order. Example 5.4 shows why write atomicity
is important.

EXAMPLE 5.4 Consider the three processes in Figure 5.1 1. Show how not preserving
write atomicity violates sequential consistency.

Answer Since P2 waits until A becomes 1 and then sets B to 1, and since P3 waits until
B becomes 1 and only then reads the value of A, from transitivity we would infer
that P, should find the value of A to be 1. If P2 is allowed to go on past the read of
A and write B before it is guaranteed that P3 has seen the new value of A, then P3
may read the new value of B but read the old value of A (e.g., from its cache),
violating our sequentially consistent intuition.

More formally, each process's program order imposes a partial order on the set of
all operations; that is, it imposes an ordering on the subset of the operations that are
issued by that process. An interleaving of the operations from different processes
defines a total order on the set of all operations. Since the exact interleaving is not
defined by SC, interleaving the partial (program) orders for different processes may
yield a large number of possible total orders. The following definitions therefore

apply:

Sequentially consistent execution. An execution of a program is said to be se-
quentially consistent if the results it produces are the same as those produced
by any one of the possible total orders (interleavings) as defined earlier. That
is, a total order or interleaving of program orders from processes should exist
that yields the same result as the actual execution.

rn Sequentially consistent systcm. A system is sequentially consistent if any possi-
ble execution on that system is sequentially consistent.

5.2 Memory Cons~stency 289

p1 p2 p3

A=l; -&while (A==O) ;

~ = l ; while (B==O) ;

print A;

FIGURE 5.11 Example illustrating the importance of write atomicity for sequen-
tial consistency

5.2.2 Sufficient Conditions for Preserving Sequential Consistency - *--
Having discussed the definitions and high-level requirements, let us see how a mul-
tiprocessor ~mplementanon can be made to sausfy SC It is possible to define a set of
sufficient conditions that will guarantee sequential conslstency in a multiproces-
sor-whether bus-based or dlstnbuted, cache-coherent or not The following set,
adapted from its onginal form (Dubois, Scheurich, and Bnggs 1986, Scheunch and
Dubois 1987), 1s relatively s~mple

1. Every process issues memory operations in program order.

2. After a write operation is issued, the issuing process waits for the write to
complete before issuing its next operation.

3. After a read operation is issued, the issuing process waits for the read to com-
plete, and for the write whose value is being returned by the read to complete,
before issuing its next operation. That is, if the write whose value is being
returned has performed with respect to this processor (as it must have if its
value is being returned), then the processor should wait until the write has
performed with respect to all processors.

The third condition is what ensures write atomicity and is quite demanding. It is
not a simple local constraint because the read must wait until the logically preceding
write has become globally visible. Note that these are sufficient, rather than neces-
sary, conditions. Sequential consistency can be preserved with less serialization in
many situations, as we shall see.

With program order defined in terms of the source program, it is important that
the compiler should not change the order of memory operations that it presents to
the hardware (processor). Otherwise, sequential consistency from the programmer's
perspective may be compromised even before the hardware gets involved. Unfortu-
nately, many of the optimizations that are commonly employed in both compilers
and processors violate jhese sufficient conditions. For example, compilers routinely
reorder accesses to different locations within a process, so a processor may in fact
issue accesses out of the program order seen by the programmer. Explicitly parallel
programs use uniprocessor compilers, which are concerned only about presening
dependences to the same location. Advanced compiler optimizations that greatly
improve performance-such as common subexpression elimination, constant

290 C H A P T E R 5 Shared Memory Multiprocessors

propagation, register allocation, and loop transformations like loop splitting, loop
reversal, and blocklng (Wolfe 1989)-can change the order in which different loca-
tions are accessed or can even eliminate memory ~ ~ e r a t i o n s . ~ In practice, to con-
strain these compiler optimizations, multithreaded and ~arallel programs annotate
variables or memory references that are used to preserve orders. A particularly strin-
gent example is the use of the volatile qualifier in a variable declaration, which
prevents the variable from being register allocated or any memory operation on the
variable from being reordered with respect to operations before or after it in program
order. Example 5.5 illustrates these issues.

EXAMPLE 5.5 How would reordering the memory operations in Figure 5.7 affect
semantics in a sequential program (only one of the processes running), in a parallel
program running on a multiprocessor, and in a threaded program in which the two
processes are interleaved on the same processor? How would you solve the problem?

Answer The compiler may reorder the writes t o A and flag with no impact on a
sequential program. However, this can violate our intuition for both parallel
programs and concurrent (or multithreaded) uniprocessor programs. In the latter
case, a context switch can happen between the two reordered writes, so the
process switched in may see the update t o flag without seeing the update t o A.
Similar violations of intuition occur i f the compiler reorders the reads of flag and
A. For many compilers, we can avoid these reorderings by declaring the variable
flag t o be of type volatile integer instead of just integer. Other solutions
are also possible and are discussed in Chapter 9.

Even if the compiler preserves program order, modem processors use sophisti-
cated mechanisms like write buffers, interleaved memory, pipelining, and out-of-
order execution techniques (Hennessy and Patterson 1996). These allow memory
operations from a process to issue, execute, andlor complete out of program order.
Like compiler optimizations, these architectural optimizations work for sequential
programs because the appearance of program order in these programs requires that
dependences be preserved only among accesses to the same memory location, as
shown in Figure 5.12. The problem in parallel programs is that the out-of-order
processing of operations to different shared variables by a process can be detected by
other processes.

Preserving the sufficient conditions for SC in multiprocessors is quite a strong
requirement since it limits compiler reordering and out-of-order processing tech-
niques. Several weaker consistency models have been proposed and techniques have
been developed to satisfy SC while relaxing the sufficient conditions. We will exam-
ine these approaches in the context of scalable shared address space machines in
Chapter 9. For the purposes of this chapter, we assume the compiler does not reor-
der memory operations, so the program order that the processor sees is the same as

2. Note that register allocation, performed by modem compilers to eliminate memory operations, can affect
coherence itself, not just memory consistency For the flag synchronization example in Figure 5.7, if the
compiler were to register-allocate the flag variable for process P2, the process could end up spinning
forever: the cache coherence hardware updates or invalidates only the memoly and the caches, not the
registers of the machme, so the write propagation property of coherence is violated.

Write A

Write B

Read A

Read B

5.3 Design Space for Snooping Protocols 291

FIGURE 5.12 Preserving the orders in a sequential
program running on a uniprocessor. Only the orders
corresponding to the two dependence arcs must be pre-
served. The first two operations can be reordered with-
out a problem, as can the last two or the middle two.

that seen by the programmer. On the hardware side, we assume that the sufficient
conditions must be satisfied. To do this, we need mechanisms for a processor to
detect completion of its writes so it may proceed past them (completion of reads is
easy; a read completes when the data returns to the processor) and mechanisms to
satisfy the condition that preserves write atomicity. For all the protocols and systems
considered in this chapter, we see how they satisfy coherence (including write serial-
ization), how they can satisfy sequential consistency (in particular, how write com-
pletion is detected and write atomicity is guaranteed), and what shortcuts can be
taken while still satisfying the sufficient conditions.

For bus-based machines, the serialization imposed by transactions appearing on
the shared bus is very useful in ordering memory operations. It is easy to verify that
the two-state write-through invalidation protocol discussed previously actually pro-
vides sequential consistency-not just coherence-quite easily. The key observation
to extend the arguments made for coherence in that system is that writes and read
misses to all locations, not just to individual locations, are serialized in bus order.
When a read obtains the value of a write, the write is guaranteed to have completed
since it caused a previous bus transaction, thus ensuring write atomicity When a
write is performed with respect to any processor, all previous writes in bus order
have completed.

DESIGN SPACE FOR SNOOPING PROTOCOLS

The beauty of snooping-based cache coherence is that the entire machinery for sol-
ving a difficult problem boils down to applying a small amount of extra interpreta-
tion to events that naturally occur in the system. The processor is completely
unchanged. No explicit coherence operations must be inserted in the program. By
extending the requirements on the cache controller and exploiting the properties of
the bus, the reads and writes that are inherent to the program are used implicitly to
keep the caches coherent, and the serialization provided by the bus maintains con-
sistency. Each cache controller observes and interprets the bus transactions gener-
ated by others to maintain its internal state. Our initial design point with write-
through caches is not very efficient, but we are now ready to study the design space
for snooping protocols that make efficient use of the limited bandwidth of the
shared bus. All of these use write-back caches, allowing processors to write to dif-
ferent blocks in their local caches concurrently without any bus transactions. Thus,

292 C H A P T E R 5 Shared Memory Multiprocessors

extra care is required to ensure that enough information is transmitted over the bus
to maintain coherence.

Recall that with a write-back cache on a uniprocessor, a processor write miss
causes the cache to read the entire block from memory, update a word, and retain the
block in modijed (or dirty) state so it may be written back to memory on replace-
ment. In a multiprocessor, this modlfied state is also used by the protocols to indi-
cate exclusive ownership of the block by a cache. In general, a cache is said to be the
owner of a block if it must supply the data upon a request for that block (Sweazey
and Smith 1986). A cache is said to have an exclusive copy of a block if it is the only
cache with a valid copy of the block (main memory may or may not have a valid
copy). Exclusivity implies that the cache may modify the block without notifying
anyone else. If a cache does not have exclusivity, then it cannot write a new value
into the block before first putting a transaction on the bus to communicate with
others. The writer may have the block in its cache in a valid state, but since a trans-
action must be generated, it is called a write miss just like a write to a block that is
not present or is invalid in the cache. If a cache has the block in modified state, then
clearly it is the owner and it has exclusivity (The need to distinguish ownership
from exclusivity will become clear soon.)

On a write miss in an invalidation protocol, a special form of transaction called a
read exclusive is used to tell other caches about the impending write and to acquire a
copy of the block with exclusive ownership. This places the block in the cache in
modified state, where it may now be written. Multiple processors cannot write the
same block concurrently since this would lead to inconsistent values. The read-
exclusive bus transactions generated by their writes will be serialized by the bus, so
only one of them can have exclusive ownership of the block at a time. The cache
coherence actions are driven by these two types of transactions: read and read exclu-
sive. Eventually, when a modified block is replaced from the cache, the data is writ-
ten back to memory, but this event is not caused by a memory operation to that
block and is almost incidental to the protocol. A block that is not in modified state
need not be written back upon replacement and can simply be dropped since mem-
ory has the latest copy Many protocols have been devised for write-back caches, and
we examine the basic alternatives.

We also consider update-based protocols. Recall that in update-based protocols,
whenever a shared location is written to by a processor, its value is updated in the
caches of all other processors holding that memory block.3 Thus, when these pro-
cessors subsequently access that block, they can do so from their caches with low
latency, The caches of all other processors are updated with a single bus transac-
tion, thus conserving bandwidth when there are multiple sharers. In contrast, with
invalidation-based protocols, on a write operation the cache state of that memory
block in all other processors' caches is set to invalid, so those processors will have to
obtain the block through a miss and hence a bus transaction on their next read.

3 . This is a wnte-broadcast scenario. Read-broadcast designs have also been investigated, m which the
cache containing the modlfied copy nushes it to the bus when it sees a read on the bus, at which point all
other copies are updated too.

5.3 Design Space for Snooping Protocols 293

However, subsequent writes to that block by the same processor do not create fur-
ther traffic on the bus (as they do with an update protocol) until the block is
accessed by another processor. This is attractive when a single processor performs
multiple writes to the same memory block before other processors access the con-
tents of that memory block. The detailed trade-offs are more complex, and they
depend on the workload offered to the machine; they will be illustrated quantita-
tively in Section 5.4. In general, invalidation-based strategies have been found to be
more robust and are therefore provided as the default protocol by most vendors.
Some vendors provide an update protocol as an option to be used for blocks corre-
sponding to selected data structures or pages.

The choices made for the protocol (update versus invalidate) and the caching
strategies directly affect the choice of states, the state transition diagram, and the
associated actions. Substantial flexibility is available to the computer architect in the
design task at this level. Instead of listing all possible choices, let us consider three
common coherence protocols that will illustrate the design options.

5.3.1 A Three-State (MSI) Write-Back Invalidation Protocol

The first protocol we consider IS a bas~c ~nvahdat~on-based protocol for wr~te-back
caches. It is very similar to the protocol that was used in the Silicon Graphics 4D
series multiprocessor machines (Baskett, Jermoluk, and Solomon 1988). The proto-
col uses the three states required for any write-back cache in order to distinguish
valid blocks that are unmodified (clean) from those that are modified (dirty). Specif-
ically, the states are mod$ed (M), shared (S), and invalid (I). Invalid has the obvious
meaning. Shared means the block is present in an unmodified state in this cache,
main memory is up-to-date, and zero or more other caches may also have an up-to-
date (shared) copy Modified, also called dirty, means that only this cache has a valid
copy of the block, and the copy in main memory is stale. Before a shared or invalid
block can be written and placed in the modified state, all the other potential copies
must he invalidated via a read-exclusive bus transaction. This transaction serves to
order the write as well as cause the invalidations and hence ensure that the write
becomes visible to others (write propagation).

The processor issues two types of requests: reads (PrRd) and writes (PrWr). The
read or write could be to a memory block that exists in the cache or to one that does
not. In the latter case, a block currently in the cache will have to be replaced by the
newly requested block, and if the existing block is in the modified state, its contents
will have to be written back to main memory

We assume that the bus allows the following transactions:

Bus Read (BusRd): This transaction is generated by a PrRd that misses in the
cache, and the processor expects a data response as a result. The cache con-
troller puts the address on the bus and asks for a copy that it does not intend
to modify The memory system (possibly another cache) supplies the data.
Bus Read Exclusive (BusRdX): This transaction is generated by a PrWr to a
block that is either not in the cache or is in the cache but not in the modified

294 CHAPTER 5 Shared Memory Multiprocessors

state. The cache controller puts the address on the bus and asks for an exclu-
sive copy that it intends to modify. The memory system (possibly another
cache) supplies the data. All other caches are invalidated. Once the cache
obtains the exclusive copy, the write can be performed in the cache. The pro-
cessor may require an acknowledgment as a result of this transaction.
Bus Write Back (BusWB): This transaction is generated by a cache controller
on a write back; the processor does not know about it and does not expect a
response. The cache controller puts the address and the contents for the mem-
ory block on the bus. The main memory is updated with the latest contents.

The bus read exclusive (sometimes called read-to-own) is the only new transac-
tion that would not exist except for cache coherence. The new action needed to sup-
port write-back protocols is that, in addition to changing the state of cached blocks,
a cache controller can intervene in an observed bus transaction and flush the con-
tents of the referenced block from its cache onto the bus rather than allowing the
memory to supply the data. Of course, the cache controller can also initiate bus
transactions as described above, supply data for write backs, or pick up data sup-
plied by the memory system.

State Transitions

The state transition diagram that governs a block in each cache in this snooping pro-
tocol is as shown in Figure 5.13. The states are organized so that the closer the state
is to the top, the more tightly the block is bound to that processor. A processor read
to a block that is invalid (or not present) causes a BusRd transaction to service the
miss. The newly loaded block 1s promoted, moved up in the state diagram, from
invalid to the shared state in the requesting cache, whether or not any other cache
holds a copy Any other caches with the block in the shared state observe the BusRd
but take no special action, allowing main memory to respond with the data. How-
ever, if a cache has the block in the modified state (there can only be one) and it
observes a BusRd transaction on the bus, then it must get involved in the transaction
since the copy in main memory is stale. This cache flushes the data onto the bus, in
lieu of memory, and demotes its copy of the block to the shared state (see
Figure 5.13). The memory and the requesting cache both pick up the block. This
can be accomplished either by a direct cache-to-cache transfer across the bus during
this BusRd transaction or by signaling an error on the BusRd transaction and gener-
ating a write transaction to update memory. In the latter case, the original cache will
eventually retry its request and obtain the block from memory. (It is also possible to
have the flushed data picked up only by the requesting cache but not by memory,
leaving memory still out-of-date, but this requires more states [Sweazey and Smith
19861.)

Writing into an invalid block is a write miss, which is seniced by first loading the
entire block and then modifymg the desired bytes within it. The write miss generates
a read-exclusive bus transaction, which causes all other cached copies of the block
to be invalidated, thereby granting the requesting cache exclusive ownership of the

5.3 Design Space for Snooping Protocols 295

FIGURE 5.13 Basic three-state invalidation protocol. M, S , and I stand for modified,
shared, and invalid states, respectively. The notation AIB means that if the controller
observes the event A from the processor side or the bus side, then in addition to the state
change, it generates the bus transaction or action B. "-" means null action. Transitions
due to observed bus transactions are shown in dashed arcs, while those due to local pro-
cessor actions are shown in bold arcs. If multiple AIB pairs are associated with an arc, it sim-
ply means that multiple inputs can cause the same state transition. For completeness, we
should specify actions from each state corresponding to each observable event. If such
transitions are not shown, it means that they are uninteresting and no action needs to be
taken. Replacements and the write backs they may cause are not shown in the diagram for
simplicity.

block. The block of data returned by the read exclusive is promoted to the modified
state, and the desired bytes are then written into it. If another cache later requests
exclusive access, then in response to its BusRdX transaction this block will be inval-
idated (demoted to the invalid state) after flushing the exclusive copy to the bus.

The most interesting transition occurs when writing into a shared block. AS dis-
cussed earlier, this is treated essentially like a write miss, using a read-exclusive bus
transaction to acquire exclusive ownership; we refer to it as a write miss throughout
the book. The data that, comes back in the read exclusive can be ignored in this case,
unlike when writing to an invalid or not present block, since it is already in the
cache. In fact, a common optimization to reduce data traffic in bus protocols is to
introduce a new transaction, called a bus upgrade or BusUpgr, for this situation. A
BusUpgr obtains exclusive ownership just like a BusRdX, by causing other copies to
be invalidated, but it does not cause main memory or any other device to respond
with the data for the block. Regardless of whether a BusUpgr or a BusRdX is used

:HAPTER 5 Shared Memory Multiprocessors

(let us continue to assume BusRdX), the block in the requesting cache transitions to
the modified state. Additional writes to the block while it is in the modified state
generate no additional bus transactions.

A replacement of a block from a cache logically demotes the block to invalid (not
present) by removing it from the cache. A replacement therefore causes the state
machines for two blocks to change states in that cache: the one being replaced
changes from its current state to invalid, and the one being brought in changes from
invalid (not present) to its new state. The latter state change cannot take place
before the former, which requires some care in implementation. If the block being
replaced was in modified state, the replacement transition from M to I generates a
write-back transaction. No special action is taken by the other caches on this trans-
action. If the block being replaced was in shared or invalid state, then it itself does
not cause any transaction on the bus. Replacements are not shown in the state dia-
gram for simplicity

Note that to specify the protocol completely, for each state we must have out-
going arcs with labels corresponding to all observable events (the inputs from the
processor and bus sides) and must show the actions corresponding to them. Of
course, the actions and state transitions can be null sometimes, and in that case we
may either explicitly specify null actions (see states S and M in Figure 5.13), or we
may simply omit those arcs from the diagram (see state 1). Also, since we treat the
not-present state as invalid, when a new block is brought into the cache on a miss,
the state transitions are performed as if the previous state of the block was invalid.
Example 5.6 illustrates how the state transition diagram is interpreted.

EXAMPLE 5.6 Using the MSI protocol, show the state transitions and bus transactions
for the scenario depicted in Figure 5.3.

Answer The results are shown in Figure 5.14.

With write-back protocols, a block can be written many times before the memory
is actually updated. A read may obtain data not from memory but rather from a
writer's cache, and in fact it may be this read rather than a replacement that causes
memory to be updated. In addition, write hits do not appear on the bus, so the con-
cept of a write being ~erformed with respect to other processors is a little different.
In fact, to say that a write is being performed means that the write is being "made
visible." A write to a shared or invalid block is made visible by the bus read-exclu-
sive transaction it triggers. The writer will "observe" the data in its cache after this
transaction. The write will be made visible to other processors by the invalidations
that the read exclusive generates, and those processors will experience a cache miss
before actually observing the value written. Write hits to a modified block are visible
to other processors but again are observed by them only afier a miss through a bus
transaction. Thus, in the MS1 protocol, the write to a nonmodified block is per-
formed or made visible when the BusRdX transaction occurs, and the write to a
modified block is made visible when the block is updated in the writer's cache.

5 3 Design Space for Snoopmg Protocols 297

Processor Action State in P1 State ln Pz State in P3 Bus Act~on Data Supplied By

1 PI reads u S - - BusRd Memory
a

2 P3 reads u S S BusRd Memory -

3. p3 w r i t e s u I - M ~usRdX Memory
4. p1 reads u s - s B U S R ~ P j cache

5. P2 reads u S S S BusRd Memory

FIGURE 5.14 The three-state invalidation protocol in action for processor transactions
-FA- . * shown in Figure 5.3. The frgure shows the state of the relevant memory block at the end of each pro-

- cessor actlon, the bus transactlon generated (if any), and the entlty supplying the data

Satisfying Coherence

Since both reads and writes can take place without generating bus transactions in a
write-back protocol, it is not obvious that it satisfies the conditions for coherence,
much less sequential consistency Let's examine coherence first. Write propagation is
clear from the preceding discussion, so let us focus on write serialization. The read-
exclusive transaction ensures that the writing cache has the only valid copy when
the block is actually written in the cache, just like a write transaction in the write-
through protocol. It is followed immediately by the corresponding write being per-
formed in the cache before any other bus transactions are handled by that cache
controller, so it is ordered in the same way for all processors (including the writer)
with respect to other bus transactions. The only difference from a write-through pro-
tocol, with regard to ordering operations to a location, is that not all writes generate
bus transactions. However, the key here is that between two transactions for that
block that do appear on the bus, only one processor can perform such write hits;
this is the processor (say, P) that performed the most recent read-exclusive bus
transaction w for the block. In the serialization, this sequence of write hits therefore
appears (in program order) between w and the next bus transaction for that block.
Reads by processor P will clearly see them in this order with respect to other writes.
For a read by another processor, there is at least one bus transaction for that block
that separates the completion of that read from the completion of these write hits.
That bus transaction ensures that that read also sees the writes in the consistent
serial order. Thus, reads by all processors see all writes in the same order.

5 Satisfying Sequential Consistency

To see how SC is satisfied, let us first appeal to the definition itself and see how a
consistent global interltaving of all memory operations may be constructed. As with
write-through caches, the serial arbitration for the bus in fact defines a total order on
bus transactions for all blocks, not just those for a single block. All cache controllers
observe read and read-exclusive bus transactions in the same order and perform
invalidations in this order. Between consecutive bus transactions, each processor

298 C H A P T E R 5 Shared Memory Multiprocessors

performs a sequence of memory operations (read and write hits) in program order.
Thus, any execution of a program defines a natural partial order:

A memory operation MI is subsequent to operation Mi if (1) the operations are issued by
the same processor and MI follows Mi in program order, or (2) Mj generates a bus transac-
tion that follows the memory operation for Mi.

This partial order looks graphically like that of Figure 5.6, except the local sequence
within a segment has writes as well as reads and both read-exclusive and read bus
transactions play important roles in establishing the orders. Between bus transac-
tions, any interleaving of the sequences of local operations (hits) from different pro-
cessors leads to a consistent total order. For writes that occur in the same segment
between bus transactions, a processor will observe the writes by other processors
ordered by bus transactions that it generates, and its own writes ordered by program
order.

We can also see how SC is satisfied in terms of the sufficient conditions. Write
completion is detected when the read-exclusive bus transaction occurs on the bus
and the write is performed in the cache. The read completion condition, which pro-
vides write atomicity, is met because a read either (1) causes a bus transaction that
follows that of the write whose value is being returned, in which case the write must
have completed globally before the read; (2) follows such a read by the same proces-
sor in program order; or (3) follows in program order on the same processor that
performed the write, in which case the processor has already waited for the write to
complete (become visible) globally. Thus, all the sufficient conditions are easily
guaranteed. We return to this topic when we discuss implementing protocols in
Chapter 6.

Lower-Level Design Choices

To illustrate some of the implicit design choices that have been made in the protocol,
let us examine more closely the transition from the M state when a BusRd for that
block is observed. In Figure 5.13, we transition to state S and flush the contents of
the memory block to the bus. Although it is imperative that the contents are placed
on the bus, we could instead have transitioned to state I, thus giving up the block
entirely. The choice of going to S versus I reflects the designer's assertion that the
original processor is more likely to continue reading the block than the new proces-
sor is to write to the memory block. Intuitively, this assertion holds for mostly read
data, which is common in many programs. However, a common case where it does
not hold is for a flag or buffer that is used to transfer information back and forth
between processes: one processor writes it, the other reads it and modifies it, then
the first reads it and modifies it, and so on. Accumulations into a shared counter
exhibit similar migratory behavior across multiple processors. The problem with
betting on read sharing in these cases is that every write has to first generate an
invalidation, thereby increasing its latency. Indeed, the coherence protocol used in
the early Synapse multiprocessor made the alternate choice of going directly from M
to I state on a BusRd, thus betting the migratory pattern would be more frequent.

5.3 Design Space for Snooping Protocols 299

Some machines (Sequent Symmetry model B and the MIT Alewife) attempt to adapt
the protocol when such a migratory access pattern is observed (Cox and Fowler
1993; Dahlgren, Dubois, and Stenstrom 1994). These choices can affect the perfor-
mance of the memory system, as we see later in the chapter.

5.3.2 A Four-State (MESI) Write-Back Invalidation Protocol

A concern arises with our MSI protocol if we consider a sequential application run-
ning on a multiprocessor. Such multiprogrammed use in fact constitutes the most
common workload on small-scale multiprocessors. When the process reads in and
modifies a data item, in the MSI protocol two bus transactions are generated even
though there are never any sharers. The first is a BusRd that gets the memoqr block
in S state, and the second is a BusRdX (or BusUpgr) that converts the block from S
to M state. By adding a state that indicates that the block is the only (exclusive) copy
but is not modified and by loading the block in this state, we can save the latter
transaction since the state indicates that no other processor is caching the block.
This new state, called exclusive-clean or exclusive-unowned (or even simply "exclu-
sive"), indicates an intermediate level of binding between shared and modified. It is
exclusive, so unlike the shared state, the cache can perform a write and move to the
modified state without further bus transactions; but it does not imply ownership
(memory has a valid copy), so unlike the modified state, the cache need not reply
upon observing a request for the block. Variants of this MESI protocol are used in
many modern microprocessors, including the Intel Pentium, PowerPC 601, and the
MIPS R4400 used in the Silicon Graphics Challenge multiprocessors. It was first
published by researchers at the University of Illinois at Urbana-Champaign (Papa-
marcos and Pate1 1984) and is often referred to as the Illinois protocol (Archibald
and Baer 1986).

The MESI protocol thus consists of four states: modified (M) or dirty, exclusive-
clean (E), shared (S), and invalid (I). M and I have the same semantics as before. E,
the exclusive-clean or exclusive state, means that only one cache (this cache) has a
copy of the block and it has not been modified (i.e., the main memory is up-to-date).
S means that potentially two or more processors have this block in their cache in an
unmodified state. The bus transactions and actions needed are very similar to those
for the MSI protocol.

State Transitions

When thc block is first read by a processor, if a valid copy exists in another cache,
then it enters the protessor's cache in the S state, as usual. However, if no other
cache has a copy at the time (for example, in a sequential application), it enters the
cache in the E state. When that block is written by the same processor, it can directly
transition from E to M state without generating another bus transaction since no
other cache has a copy If another cache had obtained a copy in the meantime, the
state of the block would have been demoted from E to S by the snooping protocol.

300 C H A P T E R 5 Shared Memory Multiprocessors

This protocol places a new requirement on the physical interconnect of the bus.
An additional signal, called the shared signal (S), must be available to the controllers
in order to determine on a BusRd if any other cache currently holds the data. During
the address phase of the bus transaction, all caches determine if they contain the
requested block and, if so, assert the shared signal. This signal is a wired-OR line, so
the controller making the request can observe whether any other processors are
caching the referenced memory block and can thereby decide whether to load a
requested block in the E state or the S state.

Figure 5.15 shows a state transition diagram for a MESI protocol, still assuming
that the BusUpgr transaction is not used. The notation BusRd(S) mezns that the bus
read transaction caused the shared signal S to be asserted; BusRd(S) means S was
unasserted. A plain BusRd means that we don't care about the value of S for that
transition. A write to a block in any state will promote the block to the M state, but
if it was in the E state, then no bus transaction is required. Observing a BusRd will
demote a block from E to S since now another cached copy exists. As usual, observ-
ing a BusRd will demote a block from M to S state and will also cause the block to be
flushed onto the bus; here too, the block may be picked up only by the requesting
cache and not by main memory, but this may require additional states beyond MESI.
(A fifth, owned state may be added, which indicates that even though other shared
copies of the block may exist, this cache [instead of main memory] is responsible for
supplying the data when it observes a relevant bus transaction. This leads to a five-
state MOESI protocol [Sweazey and Smith 19861.) Notice that it is possible for a
block to be in the S state even if no other copies exist since copies may be replaced
(S + I) without notifymg other caches. The arguments for satisfymg coherence and
sequential consistency are the same as in the MSI protocol.

Lower-Level Design Choices

An interesting question for bus-based protocols is who should supply the block for a
BusRd transaction when both the memory and another cache have a copy of it. In
the original (Illinois) version of the MESI protocol, the cache rather than main
memory supplied the data-a technique called cache-to-cache sharing. The argument
for this approach was that caches, being constructed out of SRAM rather than
DRAM, could supply the data more quickly However, this advantage is not necessar-
ily present in modem bus-based machines, in which intervening in another proces-
sor's cache to obtain data may be more expensive than obtaining the data from main
memory. Cache-to-cache sharing also adds complexity to a bus-based protocol: main
memory must wait until it is certain t h a ~ no cache will supply the data before driving
the bus, and if the data resides in multiple caches, then a selection algorithm is
needed to determine which one will provide the data. On the other hand, this
technique is useful for multiprocessors with physically distributed memory (as we
see in Chapter 8) because the latency to obtain the data from a nearby cache may be
much smaller than that for a faraway memory unit. This effect can be especially
important for machines constructed as a network of SMP nodes because caches

5.3 Design Space for Snooping Protocols 301

FIGURE 5.15 State transition diagram for the Illinois MESl protocol. ME51 stands
for the modified (dirty), exclusive, shared, and invalid states, respectively. The notation is
the same as that in Figure 5.1 3. The Estate helps reduce bus traffic for sequential programs
where data is not shared. Whenever feasible, the Illinois version of the ME51 protocol makes
caches, rather than main memory, supply data for BusRd and BusRdX transactions. Since
multiple processors may have a copy of the memory block in their cache, we need to select
only one to supply the data on the bus. Flush' is true only for that processor; the remaining
processors take their usual action (invalidation or no action). In general, Flush' in a state
diagram indicates that the block is flushed only if cache-to-cache sharing is in use and then
only by the cache that is responsible for supplying the data.

w i th in the requestor's SMP node may supply the data. The Stanford DASH mult ipro-
cessor (Lenoski et al. k993) used such cache-to-cache transfers for this reason.

5.3.3 A Four-State (Dragon) Write-Back Update Protocol

Let us n o w examine a basic update-based protocol for write-back caches. This proto-
col was first proposed b y researchers at Xerox PARC for their Dragon multiprocessor
system (McCreight 1984; Thacker, Stewart, and Satterthwaite 19881, a n d an

302 C H A P T E R 5 Shared Memory Multlprocessors

enhanced verslon of ~t IS used ~n the Sun SparcServer mult~processors (Catanzaro
1997)

The Dragon protocol consists of four states. exclusive-clean (E), shared-clean
(Sc), shared-modified (Sm), and mod~fied (M) Exclus~ve-clean (or exclusive) has
the same meanmg and the same motwation as before only one cache (thls cache)
has a copy of the block, and ~t has not been moddied (I e , the mam memory is up-
to-date) Shared-clean means that potenhally two or mole caches (mcluding this
one) have t h ~ s block, and mam memory may or may not be up-to-date Shared-
mod~fied means that potentially two or more caches have t h ~ s block, main memory 1s
not up-to-date, and it is t h ~ s cache's respons~billty to update the mam memory at the
time thls block IS replaced from the cache (I e , this cache IS the owner) A block
may be in Sm state in only one cache at a tlme However, ~t IS qulte poss~ble that one
cache has the block m Sm state, while others have ~t m Sc state Or it may be that no
cache has ~t in Sm state, but some have ~t m Sc state Thls IS why, when a cache has
the block ~n Sc state, memory may or may not be up-to-date, ~t depends on whether
some other cache has ~t in Sm state M slgn~fies exclusive ownership as before the
b l o ~ k IS moddied (duty) and present In thls cache alone, maln memory is stale, and
~t IS t h ~ cache's respons~b~l~ty to supply the data and to update mam memory on
replacement Note that there is no explicit Invalid (I) state as in the prevlous proto-
cols Thls is because Dragon IS an update-based protocol, the protocol always keeps
the blocks in the cache up-to-date, so lt is always okay to use the data present m the
cache ~f the tag match succeeds However, if a block IS not present m a cache at all, lt
can be imagined in a special invalid or not-present state.4

The processor requests, bus transactions, and actions for the Dragon protocol are
similar to the Illinois MESI protocol. The processor is still assumed to issue only
read (PrRd) and write (PrWr) requests. However, since we do not have an invalid
state, to specify actions on a tag mismatch we add two more request types: processor
read miss (PrRdMiss) and write miss (PrWrMiss). As for bus transactions, we have
bus read (BusRd), bus write back (BusWB), and a new transaction called bus update
(BusUpd). The BusRd and BusWB transactions have the usual semantics. The
BusUpd transaction takes the specific word (or bytes) written by the processor and
broadcasts it on the bus so that all other processors' caches can update themselves.
By broadcasting only the contenrs of the specific modified word rather than the
whole cache block, it is hoped that the bus bandwidth is more efficiently utilized.
(See Exercise 5.4 for reasons why this may not always be the case.) As in the MESI
protocol, to support the E state, a shared signal (S) is available to the cache control-
ler. Finally, the only new capability needed is for the cache controller to update a
locally cached memory block (labeled an Update action) with the contents that are
being broadcast on the bus by a relevant BusUpd transaction.

4. Logically, there 1s another state as well, but it 1s rather crude and is used to bootstrap the protocol. A
"miss mode" bit is provided with each cache line to force a miss when that block is accessed. Initializa-
tion software reads data into every line in the cache with the miss mode hit turned on to ensure that the
processor will miss the first time it references a block that maps to that line. After this first miss, the miss
mode bit is turned off and the cache operates normally.

5.3 Deslgn Space for Snooping Protocok 303

FIGURE 5.16 State transition diagram for the Dragon update protocol. The four states are
exclusive (E), shared-clean (Sc), shared-modified (Srn), and modified (M). There is no invalid (I) state
because the update protocol always keeps blocks in the cache up-to-date.

State Transitions

Figure 5.16 shows the state transition diagram for the Dragon update protocol. To
take a processor-centric view, we can explain the diagram in terms of actions taken
when a cache incurs a read miss, a write (hit or miss), or a replacement (no action is
ever taken on a read hit).

Read miss: A BusRd transaction is generated. Depending on the status of the
shared signal (S), the block is loaded in the E or Sc state in the local cache. If
the block is in M or Sm states in one of the other caches, that cache asserts the
shared signal and supplies the latest data for that block on the bus, and the
block is loaded in the local cache in Sc state. If the other cache had it in state
M, it changes its state to Sm. If the block is in Sc state in other caches, memory
supplies the data, and it is loaded in Sc state. If no other cache has a copy, then
the shared line remains unasserted, the data is supplied by the main memory,
and the block is loaded in the local cache in E state.
Write: If the block is in the M state in the local cache, then no action needs to
be taken. If the block is in the E state in the local cache, then it changes to M
state and again no further action is needed. If the block is in Sc or Sm state,

304 C H A P T E R 5 Shared Memory Multiprocessors

however, a BusUpd transaction is generated. If any other caches have a cop)' of
the data, they assert the shared signal, update the corresponding bytes in their
cached copies, and change their slate to Sc if necessary. Thc local cache also
updates its copy of the block and changes its state to Sm if necessary. Main
memory is not updated. If no other cache has a copy of the data, the shared
signal remains unasserted, the local copy is updated, and the state is changed
to M. Finally, if on a write the block is not present in the cache, the write is
treated simply as a read-miss transaction followed by a write transaction.
Thus, first a BusRd is generated. If the block is also found in other caches, a
BusUpd is generated, and the block is loaded locally in the Sm state; other-
wise, the block is loaded locally in the M state.
Replacement: On a replacement (arcs not shown in the figure), the block is
written back to memory using a bus transaction only if it is in the M or Sm
state. If it is in the Sc state, then either some other cache has it in Sm state or
none does, in which case it is already valid in main memory.

Example 5.7 illustrates the transitions for a familiar scenario.

EXAMPLE 5.7 Using the Dragon update protocol, show the state transitions and bus
transactions for the scenario depicted in Figure 5.3.

Answer The results are shown in Figure 5.17. We can see that, whereas for processor
actions 3 and 4 only one word is transferred on the bus in the update protocol, the
whole memory block is transferred twice in the invalidation-based protocol. Of
course, it is easy to construct scenarios in which the invalidation protocol does
much better than the update protocol, and we discuss the detailed trade-offs in
Section 5.4. W

Lower-Level Design Choices

Again, many implicit design choices have been made in this protocol. For example,
it is feasible to eliminate the shared-modified state. In fact, the update protocol used
in the DEC Firefly multiprocessor does exactly that. The rationale is that every time
the BusUpd transaction occurs, main memory can also update its contents along
with the other caches holding that block; therefore, shared clean suffices, and a
shared-modified state is not needed. The Dragon protocol is instead based on the
assumption that the SRAM caches are much quicker to update than the DRAM main
memory, so it is inappropriate to wait for main memory to be updated on all BusUpd
transactions. Another subtle choice relates to the action taken on cache replace-
ments. When a shared-clean block is replaced, should other caches be informed of
that replacement via a bus transaction so that if only one cache remains with a copy
of the memory block, it can change its state to exclusive or modified? The advantage
of doing this would be that the bus transaction upon the replacement might not be
in the critical path of a memory operation, whereas the later bus transaction that i t
saves might be.

Since all writes appear on the bus in an update protocol, write serialization, write
completion detection, and write atomicity are all quite straightforward with a simple

5.4 Assessing Protocol Design Trade-offs 305

Processor Action State in PI State in Pz State in P3 Bus Action Data Supplied By

1. PI reads u E - - BusRd Memory

2. P3 reads u Sc Sc BusRd Memory -

3. Pj writes u S c Sm BusUpd P3 cache -

4. PI reads u Sc Sm null - -

5. Pz reads u Sc S c Sm BusRd P3 cache

FIGURE 5.17 The Dragon update protocol in action for the processor actions shown in
Figure 5.3. The figure shows the state of the relevant memory block at the end of each processor
action, the bus transaction generated (if any), and the entity supplying the data.

atomic bus, a lot like they were in the write-through case. However, with both
invalidation- and update-based protocols, we must address many subtle implemen-
tation issues and race conditions, even with an atomic bus and a single-level cache.
We discuss this next level of protocol and hardware design in Chapter 6, as well as
more realistic scenarios with pipelined buses, multilevel cache hierarchies, and
hardware techniques that can reorder the completion of memory operations. None-
theless, we can quantify many protocol trade-offs even at the state diagram level that
we have been considering so far.

ASSESSING PROTOCOL DESIGN TRADE-OFFS

Like any other complex system, the design of a multiprocessor requires many inter-
related decisions to be made. Even when a processor has been p~cked, we must
decide on the maximum number of processors to be supported by the system, vari-
ous parameters of the cache hierarchy (e.g., number of levels in the hierarchy, and
for each level the cache size, associativity, block size, and whether the cache is write
through or write back), the design of the bus (e.g., width of the data and address
buses, the bus protocol), the design of the memory system (e.g., interleaved memory
banks or not, width of memory banks, size of internal buffers), and the design of the
I/O subsystem. Many of the issues are similar to those in uniprocessors (Smith 1982)
but accentuated. For example, a write-through cache standing before the bus may be
a poor choice for multiprocessors because the bus bandwidth is shared by many pro-
cessors, and memory may need to be more greatly interleaved because it services
cache misses from multiple processors. Greater cache associativity may also be use-
ful in reducing conflict misses that generate bus traffic.

The cache coherence protocol is a crucial new design issue for a multiprocessor.
It includes protocol class (invalidation or update), protocol states and actions, and
lower-level implementation trade-offs. Protocol decisions interact with all the other
design issues. On the one hand, the protocol influences the extent to which the
latency and bandwidth characteristics of system components are stressed; on the
other, the performance characteristics as well as the organization of the memory and
communication archirecture influence the choice of protocols. As discussed in

306 C H A P T E R 5 Shared Memory Multiprocessors

Chapter 4, these design decisions need to be evaluated relative to the behavior of
real programs. Such evaluation was very common in the late 1980s, albeit using an
immature set of ~arallel programs as workloads (Archibald and Baer 1986; Aganval
and Gupta 1988; Eggers and Katz 1988,1989a, 198913).

Making design decisions in real systems is part art and part science. The art
draws on the past experience, intuition, and aesthetics of the designers, and the sci-
ence is based in workload-driven evaluation. The goals are usually to meet a cost-
performance target and to have a balanced system, so that no individual resource is
a performance bottleneck yet each resource has only minimal excess capacity. This
section illustrates some key protocol trade-offs by putting the workload-driven
evaluation methodology from Chapter 4 into action.

5.4.1 Methodology

The basic strategy is as follows. The workload is executed on a simulator of a multi-
processor architecture, as described in Chapter 4. By observing the state transitions
encountered in the simulator, we can determine the frequency of various events
such as cache misses and bus transactions. We can then evaluate he effect of proto-
col choices in terms of other design parameters such as latency and bandwidth
requirements.

Choosing parameters according to the methodology of Chapter 4, this section
first establishes the ba;ic state transition characteristics generated by the set of appli-
cations for the four-state IlIinois MESI protocol. It then illustrates how to use these
frequency measurements to obtain a preliminary quantitative analysis of the design
trade-offs raised by the example protocols above, such as the use of the exclusive
state in the MESI protocol and the use of BusUpgr rather than BusRdX transactions
for the S M transition. This section also illustrates more traditional design issues,
such as how the cache block size-the granularity of both coherence and communi-
cation-impacts the latency and bandwidth needs of the applications. To under-
stand this effect, we classify cache misses into categories such as cold, capacity, and
sharing misses, examine the effect of block size on each category, and explain the
results in light of application characteristics. Finally, this understanding of the appli-
cations is used to illustrate the trade-offs between invalidation-based and update-
based protocols, again in light of latency and bandwidth implications.

The analysis in this section is based on the frequency of various important events,
not on the absolute times taken or, therefore, the performance. This approach is
common in studies of cache architecture because the results transcend particular
system implementations and technology assumptions. However, it should be viewed
as only a preliminary analysis since many detailed factors that might affect the per-
formance trade-offs in real systems are abstracted away. For example, measuring
state transitions provides a means of calculating miss rates and bus traffic, but realis-
tic values for latency, overhead, and occupancy are needed to translate the rates into
the actual bandwidth requirements imposed on the system. To obtain an estimate of
bandwidth requirements, we may artificially assume that every reference takes a
fixed number of cycles to complete. However, the bandwidth requirements them-

5.4 Assessing Protocol Design Trade-ofk 307

selves do not translate into performance directly but only indirectly by increasing
the cost of misses due to contention. Contention is very difficult to estimate because
it depends on the timing parameters used and on the burstiness of the traffic, which
is not captured by the frequency measurements. Contention, timing, and hence per-
formance are also affected by lower-level interactions with hardware structures (like
queues and buffers) and policies.

The simulations used in this section do not model contention. Instead, they use a
simple PRAM cost model: all memory operations are assumed to complete in the
same amount of time (here a single cycle) regardless of whether they hit or miss in
the cache. There are three main reasons for this. First, the focus is on understanding
inherent protocol behavior and trade-offs in terms of event frequencies, not so much
on perEormance. Second, since we are experimenting with different cache block sizes
and organizations, we would like the interleaving of references from application pro-
cesses on the simulator to be the same regardless of these choices; that is, all proto-
cols and block sizes should see the same trace of references. With the execution-
driven rather than trace-driven simulation we use, this is only possible if we make the
cost of every memory operation the same in the simulations. Otherwise, if a reference
misses with a small cache block but hits with a larger one, for example, then it will be
delayed by different amounts in the interleaving in the two cases. It would therefore
be difficult to determine which effects are inherently due to the protocol and which
are due to the particular parameter values chosen. Third, realistic simulations that
model contention take much more time. The disadvantage of using this simple model
even to measure frequencies is that the timing model may affect some of the frequen-
cies we observe; however, this effect is small for the applications we study.

The illustrative workloads we use are the six parallel programs (from the
SPLASH-2 suite) and one multiprogrammed workload described in Chapters 3 and
4. The parallel programs run in batch mode with exclusive access to the machine
and do not include operating system activity in the simulations, whereas the multi-
programmed workload includes operating system activity The number of applica-
tions used is relatively small, but the applications are primarily for illustration as
discussed in Chapter 4; the emphasis here is on choosing programs that represent
important classes of computation and with widely varying characteristics. The fre-
quencies of basic operations for the applications appear in Table 4.1. We now study
them in more detail to assess design trade-offs in cache coherency protocols.

Bandwidth Requirement under the MESI Protocol

We begin by using the default 1-MB, single-level caches per processor, as discussed
in Chapter 4. These are large enough to hold the important working sets for the
default problem sizes, which is a realistic scenario for all applications. We use four-
way set associativity (with LRU replacement) to reduce conflict misses and a 64-byte
cache block size for realism. Driving the workloads through a cache simulator that
models the Illinois MESI protocol generates the state transition frequencies shown
in Table 5.1. The data is presented as the number of state transitions of a particular
type per 1,000 references issued by the processors. Note in the table that a new state,

308 C H A P T E R 5 Shared Memory Multiprocessors

Ocean

E g E 0 0000 0.0000 0.0153 0.0002 0.0010
LL

S 0.0029 0.2130 0 97.1712 0.1253

M 0.0013 0.0010 0 0.1277 902.782

NP 0 0 0.0000 0.6593 0.001 1

1 0.0000 0 0 0.0002 0.0003

E g E 0.0000 0 0.4454 0.0004 0.2164
LI

S 0.0339 0.0001 0 302.702 0.0000

M 0.0001 0.0007 0 0.2164 697.129

NP 0 0 1.2484 0.9565 1.6787

I 0.6362 0 0 1.8676 0.001 5
E E 0.2040 0 14.0040 0.0240 0.9955
LL

S 0.4175 2.4994 0 134.71 6 2.2392

M 2.6259 0.0015 0 2.2996 843.565

Radiosity NP 0 0 0.0068 0.2581 0.0354

I 0.0262 0 0 0.5766 0.0324

Radix

M 0.044232 11.53127 0 4.031 57 802.282

continued

5 4 Assessmg Protocol Des~gn Trade-offs 309

. .
Table 5.1 State Transitions per 1,000 Data Memory References Issued by the Applications

To
, -
, A Application NP I E S M

Raytrace

Multiprog
User Data
References

Multiprog
User
Instruction
References

Multiprog
Kernel Data
References

Multiprog NP 0 0 2.1799 26.5124 0
Kernel

I 0 0 0 0 0
lnstruction
References

E
E 0.8829 0 5.21 56 1.2223 0

u
S 24.6963 0 0 1,075.2158 0

M 0 0 0 0 0

The data assumes 16 processors (except for Multiprog, which is for 8 processors), 1 -MB four-way set-
associative caches, 64-byte cache bldcks, and the Illinois MESl coherence protocol.

310 CHAPTER 5 Shared Memory Multiprocessors

NP (not present), is introduced. This addition helps clarify transitions where, on a
cache miss, one block is replaced (creating a transition from one of I, E, S, or M to
NP) and a new block is brought in (creating a transition from NP to one of I, E, S, or
M). The sum of state transitions can be greater than 1,000 even though we are pre-
senting averages per 1,000 references because some references cause multiple state
transitions. For example, a write miss can cause two transitions in the local proces-
sor's cache (e.g., 5 4 NP for the old block and NP 4 M for the incoming block), in
addition to transitions in other caches due to invalidations (l/yS/M 4 I). This state
transition frequency data is very useful for answering "what if' questions. Example
5.8 shows how we can determine the bandwidth requirement these workloads
would'place on the memory system.

EXAMPLE 5.8 Suppose that the integer-intensive applications run at a sustained 200
MIPS per processor and the floating-point-intensive applications at 200 MFLOPS per
processor. Assuming that cache block transfers move 64 bytes on the data bus lines
and that each bus transaction involves 6 bytes of command and address on the
address lines, what is the traffic generated per processor?

Answer The first step i s t o calculate the amount of traffic per instruction. We
determine what bus action is taken for each of the possible state transitions and
therefore how much traffic is associated with each transaction. For example, an M
+ NP transition indicates that, due t o a miss, a modified cache block needs t o be
written back. Similarly, an S -t M transition indicates that an upgrade request must
be issued on the bus. Flushing a modified block response t o a bus transaction (e.g.,
the M + S or M + I transition) leads t o a BusWB transaction as well. The bus
transactions for all possible transitions are shown in Table 5.2. All transactions
generate 6 bytes of address bus traffic and 64 bytes of data traffic, except BusUpgr,
which only generates address traffic. We can now compute the traffic generated.
Using Table 5.2, we can convert the state transitions per 1,000 memory references
in Table 5.1 t o bus transactions per 1,000 memory references and convert this t o
address and data traffic by multiplying by the traffic per transaction. Then, using
the frequency of memory accesses in Table 4.1, we can convert this t o traffic per
~nstruction. Finally, multiplying by the assumed processing rate, we get the address
and data bandwidth requirement for each application. The result of this
calculation is shown by the leftmost bar for each application in Figure 5.18.~

5. For the Multiprog workload, to speed up the simulations, a 32-KB instruction cache is used as a filter
before passmg the instruction references to the 1-MB unified insuucuon and data cache. The state transi-
tion frequencies for the instruction references are computed based only on those references that missed
in the L1 instruction cache. This filtering does not affect how we compute data traffic, but it means that
instruction traffic is computed differently. In addition, for Multiprog we present data separately for kernel
instructions, kernel data references, user instructions, and user data references. A given reference,may
produce transit~ons of multiple types for user and kernel data. For example, if a kernel instrucuon miss
causes a modified user data block to be written back, then we will have one transition for kernel instruc-
tions from NP 4 WS and another transition for the user data reference category from M 4 NP

5.4 Assessing Protocol Design Trade-offs 311

Table 5.2 Bus Actions Corresponding t o State Transitions in Illinois MESI Protocol

NP - - BusRd BusRd BusRdX

I A - BusRd BusRd BusRdX

E - - A - - e E
L L

S A - Not possible - BusUpgr

M BusWB BusWB Not possible BusWB -

The calculation in the preceding example gives the average bandwidth require-
ment under the assumption that the bus bandwidth is enough to allow the proces-
sors to execute at full speed. (In practice, bandwidth limitations may slow
processors and events down, which in turn would lead to lower traffic per unit
time.) This calculation provides a useful basis for sizing the number of processors
that a system can support without saturating the bus. For example, on a machine
such as the SGI Challenge with 1.2 GB/s of data bandwidth, the bus provides suffi-
cient average bandwidth to support 16 processors on all the applications other than
Radix for these problem sizes. A typical rule of thumb might be to leave 50% "head-
room" to allow for burstiness of data transfers. If the Ocean and Multiprog work-
loads were also excluded, the bus could support up to 32 processors. If the
bandwidth is not sufficient to support the application, the application will slow
down. Thus, we would expect the speedup curve for Radix to flatten out quite
quickly as the number of processors grows. In general, a multiprocessor is used for a
variety of workloads, many with low per-processor bandwidth requirements, so the
designer will choose to support configurations of a size that would overcommit the
bus on the most demanding applications.

5.4.3 Impact of Protocol Optimizations
C

Gwen this base deslgn polnt, we can evaluate protocol trade-offs under common
machine parameter assumptions, as illustrated in Example 5 9.

EXAMPLE 5.9 We have described two invalidation protocols in this chapter-the
basic three-state MSI protocol and the Illinois MESI protocol. The key difference i s
that the MESI protocol includes the existence of the exclusive state. How large is
the bandwidth savings due t o the E state?

Answer The main advantage of the E state is that no traffic need be generated
when going from E + M. A three-state protocol would have t o generate a BusUpgr
transaction t o acquire exclusive ownership for the memory block. To compute
bandwidth savings, all we have t o do is put a BusUpgr for the E + M transition in
Table 5.2 and recompute the traffic as before. The middle bar in Figure 5.18 shows
the resulting bandwidth requirements. .

