
Shared Memory Multiprocessors 

The most prevalent form of parallel architecture is the multiprocessor of small to 
moderate scale that provides a global physical address space and symmetric access to 
all of main memory from any processor, often called a symmetric multiprocessor or 
SMP Every processor has its own cache, and all the processors and memory modules 
attach to the same interconnect, which is usually a shared bus. SMPs dominate the 
server market and are becoming more common on the desktop. They are also impor- 
tant building blocks for larger-scale systems. The efficient sharing of resources, such 
as memory and processors, makes these machines attractive as "throughput 
engines" for multiple sequential jobs with varying memory and CPU requirements. 
The ability to access all shared data efficiently from any of the processors using ordi- 
nary loads and stores, together with the automatic movement and replication of 
shared data in the local caches, makes them attractive for parallel programming. 
These features are also very useful for the operating system, whose different pro- 
cesses share data structures and can easily run on different processors. 

From the viewpoint of the layers of the communication architecture in 
Figure 5.1, the shared address space programming model is supported directly by 
hardware. User processes can read and write shared virtual addresses, and these 
operations are realized by individual loads and stores of shared physical addresses. 
In fact, the relationship between the programming model and the hardware opera- 
tion is so close that they both are often referred to simply as "shared memory." A 
message-passing programming model can be supported by an intervening software 
layer-typically a run-time library-that treats large portions of the shared address 
space as private to each process and manages some portions explicitly as per-process 
message buffers. A sendlreceive operation pair is realized by copying data between 
these buffers. The operating system need not be involved since address translation 
and protection on the shared buffers is provided by the hardware. For portability, 
most message-passing programming interfaces have indeed been implemented on 
popular SMPs. In fact, such implementations often deliver higher message-passing 
performance than traditional, distributed-memory message-passing systems-as 
long as contention for the shared bus and memory does not become a bottleneck- 
largely because of the lack of operating system involvement in communication. The 
operating system is still used for inputloutput and multiprogramming support. 

Since all communication and local computation generates memory accesses in a 
shared address space, from a system architect's perspective the key high-level design 
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FIGURE 5.1 Layers of abstraction of the communication architecture for bus-based SMPs. A 
shared address space IS supported d~rectly In hardware, wh~le message passlng IS supported In software 

issue is the organization of the extended memory hierarchy In general, memory 
hierarchies in multiprocessors fall primarily into four categories, as shown in 
Figure 5.2, which correspond loosely to the scale of the multiprocessor being con- 
sidered. The first three are symmetric multiprocessors (all of main memory is 
equally far away from all processors), while the fourth is not. 

In the shared cache approach (Figure 5.2[a]), the interconnect is located between 
the processors and a shared first-level cache, which in turn connects to a shared 
main memory subsystem. Both the cache and the main memory system may be 
interleaved to increase available bandwidth. This approach has been used for con- 
necting very small numbers of processors (2-8). In the mid-1980s, it was a common 
technique for connecting a couple of processors on a board; today, it is a possible 
strategy for a multiprocessor-on-a-chip, where a small number of processors on the 
same chip share an on-chip first-level cache. However, it applies only at a very small 
scale, both because the interconnect between the processors and the shared first- 
level cache is on the critical path that determines the latency of cache access and 
because the shared cache must deliver tremendous bandwidth to the multiple pro- 
cessors accessing it simultaneously. 

In the bus-based shared memory approach (F~gure 5 2[b]), the lnterconnect IS a 
shared bus located between the processor's pnvate caches (or cache h~erarch~es) and 
the shared mam memory subsystem Th~s  approach has been wdely used for small- 
to medlum-scale rnultlprocessors consistmg of up to 20 or 30 processors It is the : 
dom~nant form of parallel machme sold today, and cons~derable deslgn effort has 
been mvested In essentially all modem microprocessors to support "cache-coherent" 
shared memory configurattons For example, the Intel Pentlum Pro processor can 
attach to a coherent shared bus wthout any glue loglc, and low-cost bus-based . 
machines that use these processors have greatly mcreased the popularity of 
approach The scahng lmnt for these machlnes comes pnmar~ly due to b a n d ~ d t h  
limitations of the shared bus and memory system 

The last two approaches are mtended to be scalable to many processing nodes 
The dancehall approach also places the Interconnect between the caches and mal! 
memory, but the lnterconnect is now a scalable polnt-to-pomt network rather thana 
bus, and memory IS dlvlded Into many log~cal modules that connect to loglcall~ 
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ferent points in the interconnect (Figure 5.2[c]). This approach is symmetric-all of 
main memory is uniformly far away from all processors-but its limitation is that all 
of memory is indeedfar away from all processors. Especially in large systems, sev- 
eral "hops" or switches in the interconnect must be traversed to reach any memory 
module from any processor. The fourth approach, distributed-memory, is not sym- 
metric. A scalable interconnect is located between processing nodes, but each node 
has its own local portion of the global main memory to which it has faster access 
(Figure 5.2[d]). By exploiting locality in the distribution of data, most cache misses 
may be satisfied in the local memory and may not have to traverse the network. This 
design is most attractive for scalable multiprocessors, and several chapters are 
devoted to the topic laier in the book. Of course, it is also possible to combine mul- 
tiple approaches into a single machine design-for example, a distributed-memory 
machine whose individual nodes are bus-based SMPs or a machine in which proces- 
sors share a cache at a level of the hierarchy other than the first level. 

In all cases, caches play an essential role in reducing the average data access time 
as seen by the processor and in reducing the bandwidth requirement each processor 
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places on the shared Interconnect and memory system The bandmdth requirement 
u reduced because the data accesses Issued by a processor that are satisfied m the 
cache do not have to appear on the lnterconnect In all but the shared cache 
approach, each processor has at least one level of ~ t s  cache h~erarchy that IS pnvate 
T h ~ s  ralses a cnt~cal challenge-namely, that of caclre coherence The problem anses 
when copies of the same memory block are present m the caches of one or more pro- 
cessors, ~f a processor writes to and hence mod~fies that memory block, then, unless 
spec~al actlon IS taken, the other processors mll  continue to access the old, stale 
copy of the block that IS in the~r  caches 

Currently, most small-scale mult~processors use a shared bus lnterconnect w t h  
per-processor caches and a centralued main memory, whereas scalable systems use 
phys~cally d~stnbuted main memory The dancehall and shared cache approaches are 
employed in relatwely spec~fic settlngs Speclfic organuations may change as technol- 
ogy evolves However, besides bemg the most popular, the bus-based and d~stributed- 
memory organlzatlons also dlustrate the two fundamental approaches to solvmg the 
cache coherence problem, dependmg on the nature of the Interconnect one for the 
case where any transactlon placed on the Interconnect IS vls~ble to all processors (like 
a bus) and the other where the lnterconnect is decentrahzed and a po~nt-to-polnt 
transactlon is vlslble only to the processors at ~ t s  endpoints T h ~ s  chapter focuses on 
the logxal design of protocols that explolt the fundamental properties of a bus to 
solve the cache coherence problem The next chapter expands on the deslgn issues 
associated w t h  reallzmg these cache coherence technques m hardware The baslc 
design of scalable d~stnbuted-memory mult~processors wl l  be addressed In 
Chapter 7, followed by coverage of the Issues specific to scalable cache coherence ~n , 
Chapters 8 and 9 

Secfion 5 1 descnbes the cache coherence problem for shared memory architec- 
tures In detail and descnbes the slmplest example of what are called snoopng cache 
coherence protocols Coherence IS not only a key hardware des~gn concept but IS a 
necessary part of our intulhve notion of the abstract~on of memory. However, paral- 
lel software often makes stronger assumptions than coherence about how memory 
behaves Section 5 2 extends the d~scussion of ordenng begun In Chapter 1 and 
introduces the concept of memory consistency, wh~ch defines the semdntlcs of 
shared address space Thls Issue has become increasingly Important m computer 
arch~tecture and compder design, a large fractlon of the reference manuals for most 
recent mstructlon set architectures IS devoted to the memory consistency model 
Once the abstract~ons and concepts are defined, Sect~on 5 3 presents the deslgn 
space for more reahstic snoopmg protocols and shows how they satisfy the condl- 
tions for coherence as well as fora useful consistency model. It describes the opera- 
don of commonly used protocols at the logical state transition level. The techniques 
used for the quantitative evaluation of several design trade-offs at this level are illus- 
trated in Section 5.4, using aspects of the methodology for workload-driven evalua- 
tion from Chapter 4. 

The latter portions of the chapter examine the implications that cache-coherent 
shared memory architectures have for the software that runs on them. Section 5.5 
examines how the low-level synchronization operations make use of the available 
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hardware primitives on cache-coherent multiprocessors and how algorithms for 
locks and barriers can be tailored to use the machine efficiently. Section 5.6 dis- 
cusses the implications for parallel programming in general, and in particular, it 
discusses how temporal and spatial data locality may be exploited to reduce cache 
misses and traffic on the shared bus. 

CACHE COHERENCE 

Think for a moment about your intuitive model of what a memory should do. It 
should provide a set of locations that hold values, and when a locaaon is read it 
should return the latest value written to that location. This is the fundamental prop- 
erty of the memory abstraction that we rely on in sequential programs, in which we 
use memory to communicate a value from a point in a program where it is computed 
to other points where it is used. We rely on the same property of a memory system 
when using a shared address space to communicate data%etween threads or 
processes running on one processor. A read returns the latest value written to the 
location regardless of which process wrote it. Caching does not interfere because all 
processes see the memory through the same cache hierarchy. We would like to rely 
on the same property when the two processes run on different processors that share 
a memory. That is, we would like the results of a program that uses multiple pro- 
cesses to be no different when the processes run on different physical processors 
than when they run (interleaved or multiprogrammed) on the same physical proces- 
sor. However, when two processes see the shared memory through different caches, 
a danger exists that one may see the new value in its cache while the other still sees 
the old value. 

The Cache Coherence Problem 

The cache coherence problem in multiprocessors is both pervasive and performance 
critical. It is illustrated in Example 5.1. 

EXAMPLE 5.1 Figure 5.3 shows three processors with caches connected via a bus to 
shared main memory. A sequence of accesses to  location u is made by the proces- 
sors. First, processor PI reads u from main memory, bringing a copy into its cache. 
Then processor P3 reads u from main memory, bringing a copy into its cache. Then 
processor P3 writes location u, changing i t s  value from 5 to  7. With a write-through 
cache, this will cause the main memory location to be updated; however, when 
processor PI reads location u again (action 4), it will unfortunately read the stale 
value 5 from i t s  own cache instead of the correct value 7 from main memory. This is  
a cache coherence problem. What happens if the caches are write back instead of 
write through? 

Answer The situation is even worse with write-back caches. P i s  write would merely 
set the dirty (or modified) bit associated with the cache block holding location u 
and would not update main memory right away. Only when this cache block is  
subsequently replaced from Pis cache would its contents be written back to main 
memory. Thus, not only will PI read the stale value, but when processor P2 reads 
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FIGURE 5.3 Example cache coherence problem. The figure shows three processors 
with caches connected by a bus to main memory. u is a location in memory whose contents 
are being read and written by the processors. The sequence in which reads and writes are 
done is md~cated by the number listed inside the circles placed next to the arc. It is easy to 
see that unless special action is taken when P3 updates the value of u to 7, PI will subse- 
quently continue to read the stale value out of ~ t s  cache, and P2 will also read a stale value 
out of main memory. 

location u (action 5), it will miss in its cache and read the stale value of 5 from main 
memory instead of 7. Finally, if multiple processors write distinct values to  location 
u in their write-back caches, the final value that will reach main memory will be 
determined by the order in which the cache blocks containing u are replaced and 
will have nothing t o  do with the order in which the writes t o  u occur. 

Clearly, the behavior described in Example 5.1 violates our intuitive notion of 
what a memory should do. In fact, cache coherence problems arise even in uni- 
processors when VO operations occur. Most VO transfers are performed by direct 
memory access (DMA) devices that move data between memory and the peripheral 
component without involving the processor. When the DMA device writes to a 
location in main memory, unless special action is taken, the processor may continue 
to see the old value if that location was previously present in its cache. With write- 
back caches, a DMA device may read a stale value for a location from main memory 
because the latest value for that location is in the processor's cache. Since VO 
operations are much less frequent than memory operations, several coarse solutions 
have been adopted in uniprocessors. For example, segments of memory space used 
for 110 may be marked as "uncacheable" (i.e., they do not enter the processor 
cache), or the processor may always use uncached load and store operations for 
locations used to communicate with WO devices. For YO devices that transfer large 
blocks of data at a time, such as disks, operating system support is often enlisted to 
ensure coherence. In many systems, the pages of memory f rodto  which the data is 
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to be transferred are flushed by the operating system from the processor's cache 
before the VO is allowed to proceed. In still other systems, all WO traffic is made to 
flow through the processor cache hierarchy, thus maintaining coherence. This, of 
course, pollutes the cache hierarchy with data that may not be of immediate interest 
to the processor. Fortunately, the techniques and support used to solve the multi- 
processor cache coherence problem also solve the V 0  coherence problem. Essen- 
tially all microprocessors today provide support for multiprocessor cache coherence. 

In multiprocessors, reading and writing of shared variables by different proces- 
sors is expected to be a frequent event since it is the way that multiple processes 
belonging to a parallel application communicate with each other. Therefore, we do 
not want to disallow caching of shared data or to invoke the operating system on all 
shared references. Rather, cache coherence needs to be addressed as a basic hardware 
design issue; for example, stale cached copies of a shared location (like the copy of u 
in Pj's cache in Example 5.1) must be eliminated when the location is modified, 
either by invalidating them or updating them with the new value. In fact, the operat- 
ing system itself benefits greatly from transparent, hardware-supported coherence of 
its data structures. 

Before we explore techniques to provide coherence, z i s  useful to define the 
coherence property more precisely Our intuitive notion that "each read should 
return the last value written to that location" is problematic for parallel architecture 
because "last" may not be well defined. Two different processors might write to the 
same location at the same instant, or one processor may read so soon after another 
writes that, due to the speed of light and other factors, there isn't time to propagatc 
the invalidation or update to the reader. Even in the sequential case, "last" is not a 
chronological or physical notion but refers to latest in program order. For now, we 
can think of program order within a process as the order in which memory opera- 
tions occur in the machine language program. The subtleties of program order are 
elaborated further in Section 5.2. The challenge in the parallel case is that, while 
program order is defined for the operations within each individual process, in order 
to define the semantics of a coherent memory system we need to make sense of the 
collection of program orders. 

Let us first review the definitions of some terms in the context of uniprocessor 
memory systems so that we can extend the definitions for multiprocessors. By 
memovy operation, we mean a single read (load), write (store), or read-modify-write 
access to a memory location. Instructions that perform multiple reads and writes, 
such as those that appear in many complex instruction sets, can be viewed as broken 
down into multiple memory operations, and the order in which these memory oper- 
ations are executed is specified by the instruction. These memory operations within 
an instruction are assumed to execute atomically with respect to each other in the 
specified order; that is; all aspects of one appear to execute before any aspect of the 
next. A memory operation issues when it leaves the processor's internal environment 
and is presented to the memory system, which includes the caches, write buffers, 
bus, and memory modules. A very important point for ordering is that the only way 
the processor observes the state of the memory system is by issuing memory opera- 
tions (e.g., reads); thus, for a memory operation to be performed with respect to the 
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processor means that it appears to have taken place, as far as the processor can tell 
from the memory operations it issues. In particular, a write operation is said to per- 
form with respect to the processor when a subsequent read by the processor returns 
the value produced by either that write or a later wTite. A read operation is said to 
perform with respect to the processor when subsequent writes issued by the proces- 
sor cannot affect the value returned by the read. Notice that in neither case do we 
specify that the physical location in the memory chip has been accessed or that spe- 
cific bits of hardware have changed their values. Also, "subsequent" is well defined 
in the sequential case since reads and writes are ordered by the program order. 

The same definitions for memory operations issuing and performing with respect 
to a processor apply in the parallel case; we can simply replace "the processor" with 
"a processor" in the definitions. The problem is that "subsequent" and "last" are not 
yet well defined since we do not have one program order; rather, we have separate 
program orders for every process, and these program orders interact when accessing 
the memory system. One way to sharpen our idea of a coherent memory system is to 
picture what would happen if there were a single shared memory and no caches. 
Every write and every read to a memory location would access the physical location 
at main memory. The operation would be performed with respect to all processors at 
this point and would therefore be said to complete. Thus, the memory would impose 
a serial order on all the read and write operations from all processors to the location. 
Moreover, the reads and writes to the location from any individual processor should 
be in program order within this overall serial order. In this case, then, the main 
memory location provides a natural point in the hardware to determine the order 
across processes of operations to that location. We have no reason to believe that the 
memory system should interleave accesses from different processors in a particular 
way, so any interleaving that preserves the individual program orders is reasonable. 
We do assume some basic fairness; eventually, the operations from each processor 
should be performed. Our intuitive notion of "last" can be viewed as most recent in 
a hypothetical serial order that maintains these properties, and "subsequent" can be 
defined similarly Since this serial order must be consistent, it is important that all 
processors see the writes to a location in the same order (if they bother to look, i.e., 
to read the location). 

The appearance of such a total, serial order on operations to a location is what we 
expect from any coherent memory system. Of course, the total order need not actu- 
ally be constructed at any given point in the machine while executing the program. 
Particularly in a system with caches, we do not want main memory to see all the 
memory operations, and we want to avoid serialization whenever possible. We just 
need to make sure that the program behaves as if some serial order was enforced. 

More formally, we say that a multiprocessor memory system is coherent if the 
results of any execution of a program are such that, for each location, it is possible to 
construct a hypothetical serial order of all operations to the location (i.e., put all 
readslwrites issued by all processes into a total order) that is consistent with the 
results of the execution and in which 

1. operations issued by any particular process occur in the order in which they 
were issued to the memory system by that process, and 
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2. the value returned by each read operation is the value written by the last write 
to that location in the serial order. 

Two properties are implicit in the definition of coherence: write propagation 
means that writes become visible to other processes; write serialization means that 
all writes to a location (from the same or different processes) are seen in the same 
order by all processes. For example, write serialization means that if read operations 
by process PI to a location see the value produced by write wl (from P2, say) before 
the value produced by write w2 (from P3, say), then reads by another process P.+ (or 
Pz or P3) also should not be able to see w2 before w l .  There is no need for an analo- 
gous concept of read serialization since the effects of reads are not visible to any pro- 
cess but the one issuing the read. 

The results of a program can be viewed as the values returned by the read opera- 
tions in it, perhaps augmented with an implicit set of reads to all locations at the end 
of the program. From the results, we cannot determine the order in which opera- 
tions were actually executed by the machine or exactly when birs changed, only the 
order in which they appear to execute. Fortunately, this is all that matters since this 
is all that processors can detect. This concept will become even more important 
when we discuss memory consistency models. 

5.1.2 Cache Coherence through Bus Snooping 

Having defined the memory coherence property, let us examine techniques to solve 
the cache coherence problem. For instance, in Figure 5.3, how do we ensure that PI 
and P2 see the value that Pj  wrote? In fact, a simple and elegant solution to cache 
coherence arises from the very nature of a bus. The bus is a single set of wires con- 
necting several devices, each of which can observe every bus transaction, for exam- 
ple, every read or write on the shared bus. When a processor issues a request to its 
cache, the cache controller examines the state of the cache and takes suitable action, 
which may include generating bus transactions to access memory. Coherence is 
maintained by having all cache controllers "snoop" on the bus and monitor the 
transactions, as illustrated in Figure 5.4 (Goodman 1983). A snooping cache con- 
troller may take action if a bus transaction is relevant to it-that is, if it involves a 
memory block of which it has a copy in its cache. Thus, PI may take an action, such 
as invalidating or updating its copy of the location, if it sees the write from P3. In 
fact, since the allocation and replacement of data in caches is managed at the granu- 
larity of a cache block (usually several words long) and cache misses fetch a block of 
data, most often coherence is maintained at the granularity of a cache block as well. 
In other words, either an entire cache block is in valid state in the cache or none of it 
is. Thus, a cache block is the granularity of allocation in the cache, of data transfer 
between caches, and of coherence. 

The key properties of a bus that support coherence are the following. First, all 
transactions that appear on the bus are visible to all cache controllers. Second, they 
are visible to all controllers in the same order (the order in which they appear on the 
bus). A coherence protocol must guarantee that all the "necessary" transactions in 
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FIGURE 5.4 A snooping cache-coherent multiprocessor. Multiple processors with 
private caches are placed on a shared bus. Each processor's cache controller continuously 
"snoops" on the bus watching for relevant transaction and updates its state suitably to 
keep its local cache coherent. The gray arrows show the transaction being placed on the 
bus and accepted by main memory, as in a uniprocessor system. The black arrow indicates 
the snoop. 

fact appear on the bus, in response to memory operations, and that the controllers 
take the appropriate actions when they see a relevant transaction. 

The simplest illustration of maintaining coherence is a system that has single- 
level write-through caches. It is basically the approach followed by the first commer- 
cial bus-based SMPs in the mid-1980s. In this case, every write operation causes a 
write transaction to appear on the bus, so every cache controller observes every 
write (thus providing write If a snooping cache has a copy of the 
block, it either invalidates or updates its copy. Protocols that invalidate cached cop- 
ies (other than the writer's copy) on a write are called invalidation-based protocols, 
whereas those that update other cached copies are called update-based protocols. In 
either case, the next time the processor with the copy accesses the block, it will see 
the most recent value, either through a miss or because the updated value is in its 
cache. Main memory always has valid data, so the cache need not take any action 
when it observes a read on the bus. Example 5.2 illustrates how the coherence prob- 
lem in Figure 5.3 is solved with write-through caches. 

EXAMPLE 5.2 Consrder the scenarlo presented in Figure 5.3. Assuming write-through 
caches, show how the bus may be used to  provide coherence using an ~nvalidation- 
based protocol 

Answer When processor P3 wrltes 7 to  locatton u, Pj's cache controller generates a 
bus transact~on to  update memory. Observing thts bus transaction as relevant and 
as a wnte transaction, Pl's cache controller invalidates ~ t s  own copy of the block 
contanng u The main memory controller will update the value it has stored for 
location u to  7 Subsequent reads to  u from processors PI and P2 (actlons 4 and 5) 
wtll both mlss in their private caches and get the correct value of 7 from the main 
memory . 
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The check to determine if a bus transaction is relevant to a cache is essentially the 
same tag match that is performed for a request from the processor. The action taken 
may involve invalidating or updating the contents or state of that cache block andlor 
supplymg the latest value for that block from the cache to the bus. 

A snoopy cache coherence protocol ties together two basic facets of computer 
architecture that are also found in uniprocessors: bus transactions and the state tran- 
sition diagram associated with a cache block. Recall that the first component-the 
bus transaction-consists of three phases: arbitration, command/address, and data. 
In the arbitration phase, devices that desire to initiate a transaction assert their bus 
request, and the bus arbiter selects one of these and responds by asserting its grant 
signal. Upon grant, the selected device places the command, for example, read or 
write, and the associated address on the bus command and address lines. All devices 
observe the address and, in a uniprocessor, one of them recognizes that it is respon- 
sible for the particular address. For a read transaction, the address phase is followed 
by data transfer. Write transactions vary from bus to bus according to whether the 
data is transferred during or after the address phase. For most buses, a responding 
device can assert a wait signal to hold off the data transfer until it is ready This wait 
signal is different from the other bus signals because it is a wired-OR across all the 
processors; that is, it is a logical 1 if any device asserts it. The initiator does not need 
to know which responding device is participating in the transfer, only that there is 
one and whether it is ready. I 

The second basic facet of computer architecture leveraged by a cache coherence 
protocol is that each block in a uniprocessor cache has a state associated with it, 
along with the tag and data, which indicates the disposition of the block, (e.g., 
invalid, valid, dirty). The cache policy is defined by the cache bloclz state transition 
diagram, which is a finite state machine specifying how the disposition of a block 
changes. Transitions for a cache block occur upon access to that block or to an 
address that maps to the same cache line as that block. (We refer to a cache block as 
the actual data, and a line as the fixed storage in the hardware cache, in exact anal- 
ogy with a page and a page frame in main memory.) While only blocks that are actu- 
ally in cache lines have hardware state information, logically, all blocks that are not 
resident in the cache can be viewed as being in either a special "not present" state or 
in the "invalid state. In a uniprocessor system, for a write-through, write-no- 
allocate cache (Hennessy and Patterson 1996), only two states are required: valid 
and invalid. Initially, all the blocks are invalid. When a processor read operation 
misses, a bus transaction is generated to load the block from memory and the block 
is marked valid. Writes generate a bus transaction to update memory, and they also 
update the cache block if it is present in the valid state. Writes do not change the 
state of the block. If a bbck is replaced, it may be marked invalid until the memory 
provides the new block, whereupon it becomes val~d. A write-back cache requires an 
additional state per cache line, indicating a "dirty" or modified block. 

In a multiprocessor system, a block has a state in each cache, and these cache 
states change according to the state transition diagram. Thus, we can think of a 
block's cache state as being a vector of p states instead of a single state, where p is the 
number of caches. The cache state is manipulated by a set of distributed finite state 
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machines, implemented by the cache controllers. The state machine or state transi- 
tion diagram that governs the state changes is the same for all blocks and all caches, 
but the current state of a block in different caches is different. As before, if a block is 
not present in a cache we can assume it to be in a special "not present" state or even 
in the invalid state. 

In a snooping cache coherence scheme, each cache controller receives two sets of 
inputs: the processor issues memory requests, and the bus snooper informs about 
bus transactions from other caches. In response to either, the controller may update 
the state of the appropriate block in the cache according to the current state and the 
state transition diagram. It may also take an action. For example, it responds to the 
processor with the requested data, potentially generating new bus transactions to 
obtain the data. It responds to bus transactions by updating its state and sometimes 
intervenes in completing the transaction. Thus, a snooping protocol is a distributed 
algorithm represented by a collection of cooperating finite state machines. It is spec- 
ified by the following components: 

the set of states associated with memory blocks in the local caches 
the state transition diagram, which takes as inputs the current state and the 
processor request or observed bus transaction and produces as output the next 
state for the cache block 
the actions associated with each state transition, which are determined in part 
by the set of feasible actions defined by the bus, the cache, and the processor 
design 

The different state machines for a block are coordinated by bus transactions. 
A simple invalidation-based protocol for a coherent write-through, write-no- 

allocate cache is described by the state transition diagram in Figure 5.5. As in the 
uniprocessor case, each cache block has only two states: invalid (I) and valid (V) 
(the "not present" state is assumed to be the same as invalid). The transitions are 
marked with the input that causes the transition and the output that is generated 
with the transition. For example, when a controller sees a read from its processor 
miss in the cache, a BusRd transaction is generated, and upon completion of this 
transaction the block transitions up to the valid state. Whenever the controller sees a 
processor write to a location, a bus transaction is generated that updates that loca- 
tion in main memory with no change of state. The key enhancement to the unipro- 
cessor state diagram is that when the bus snooper sees a write transaction on the bus 
for a memory block that is cached locally, the controller sets the cache state for that 
block to invalid, thereby effectively discarding its copy. (Figure 5.5 shows this bus- 
induced transition with a dashed arc.) By extension, if any processor generates a 
write for a block that is cached by any of the others, all of the others will invalidate 
their copies. Thus, multiple simultaneous readers of a block may coexist without 
generating bus transactions or invalidations, but a write will eliminate all other 
cached copies. 

To see how this simple write-through invalidation protocol provides coherence, 
we need to show that for any execution under the protocol a tola1 order on the mem- 
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FIGURE 5.5 Snoopy coherence for-a multiprocessor with write-through, write- 
no-allocate caches. There are two states, valid (V) and invalid ( I ) ,  with intuitive semantics. 
The notation ,415 (e.g., PrRdIBusRd) means if A is observed, then transaction B is generated. 
From the processor side, the requests can be read (PrRd) or write (PrWr). From the bus side, 
the cache controller may obse~efgenerate transactions bus read (BusRd) or bus write 
(BusWr). 

ory operations for a location can be constructed that satisfies the program order and 
write serialization conditions. Let us assume for the present discussion that both bus 
transactions and the memory operations are atomic. That is, only one transaction is 
in progress on the bus at a time: once a request is placed on the bus, all phases of the 
transaction, including the data response, complete before any other request from any 
processor is allowed access to the bus (such a bus with atomic transactions is called 
an atomic bus). Also, a processor waits until its previous memory operation is com- 
plete before issuing another memory operation. With single-level caches, it is also 
natural to assume that invalidations are applied to the caches, and hence the write 
completes during the bus transaction itself. (These assumptions will be continued 
throughout this chapter and will be relaxed when we look at protocol implementa- 
tions in more detail and study high-performance designs with greater concurrency in 
Chapter 6.) Finally, we may assume that the memory handles writes and reads in the 
order in which they are presented by the bus. 

In the write-through protocol, all writes appear on the bus. Since only one bus 
transaction is in progress at a time, in any execution all writes to a location are seri- 
alized (consistently) by the order in which they appear on the shared bus, called the 
bus order. Since each snooping cache controller performs the invalidation during the 
bus transaction, invalidations are ~erformed by all cache controllers in bus order. 
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Processors "see" writes through read operations, so for write serialization we 
must ensure that reads from all processors see the writes in the serialized bus order. 
However, reads to a location are not completely serialized since read hits may be per- 
formed independently and concurrently in their caches without generating bus 
transactions. To see how reads may be inserted in the serial order of writes, consider 
the following scenario. A read that goes on the bus (a read miss) is serialized by the 
bus along with the u~i tes ;  it will therefore obtain the value written by the most 
recent write to the location in bus order. The only memory operations that do not go 
on the bus are read hits. In this case, the value read was placed in the cache by either 
the most recent write to that location by the same processor or by its most recent 
read miss (in program order). Since both these sources of the value appear on the 
bus, read hits also see the values produced in the consistent bus order. Thus, under 
this protocol, bus order together with program order provide enough constraints to 
satisfy the demands of coherence. 

More generally, we can construct a (hypothetical) total order that satisfies coher- 
ence by observing the following partial orders imposed by the protocol: 

A memory operation M2 is subsequent to a memory operatlon MI ~f the opera- 
tions are issued by the same processor and M2 follows MI in program order 

rn A read operation is subsequent to a wrlte operation W d the read generates a 
bus transaction that follows that for W 

rn A wnte operation is subsequent to a read or wrlte operatlon M if M generates a 
bus transaction and the bus transactlon for the wnte follows that for M 

rn A wnte operatlon is subsequent to a read operation lf the read does not gener- 
ate a bus transactlon (IS a hit) and is not already separated from the wnte by 
another bus transactlon. 

Any serial order that preserves the resulting partial order is coherent. The "subse- 
quent" ordering relationship is transitive. An illustration of the resulting partial 
order is depicted in Figure 5.6. where the bus transactions associated with writes 
segment the individual program orders. The partial order does not constrain the 
ordering of read bus transactions from different processors that occur between two 
write transactions, though the bus will likely establish a particular order. In fact, any 
interleaving of read operations in the segment between two writes is a valid serial 
order, as long as it obeys program order. 

Of course, the problem with this simple write-through approach is that every 
store instruction goes to memory, which is why most modern microprocessors use 
write-back caches (at least at the level closest to the bus). This problem is exacer- 
bated in the multiprocessor setting, since every store from every processor consumes 
precious bandwidth on the shared bus, resulting in poor scalability, as illustrated by 
Example 5.3. 

EXAMPLE 5.3 Cons~der a superscalar RlSC processor issuing two instruct~ons per cycle 
runnmg at 200 MHz Suppose the average CPI (clocks per instruction) for thls pro- 
cessor is 1, 15% of all instruct~ons are stores, and each store writes 8 bytes of data. 
How many processors w ~ l l  a 1-GB/s bus be able to  support without becoming satu- 
rated? 
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FIGURE 5.6 Partial order of memory operations for an execution with the write- 
through invalidation protocol. Write bus transactions define a global sequence of 
events between which individual processors read locations in program order. The execution 
is consistent with any total order obtained by interleaving the processor orders within each 
segment. 

Answer A single processor will generate 30 million stores per second (0.1 5 stores per 
instruction x 1 instruction per cycle x 1,000,000/200 cycles per second), so the total 
write-through bandwidth is 240 MB of data per second per processor. Even ig- 
noring address and other information and ignoring read misses, a 1-GBls bus will 
therefore support only about four processors. W 

For most applications, a write-back cache would absorb the vast majority of the 
writes. However, if writes do not go to memory, they do not generate bus transac- 
tions, and it is no longer clear how the other caches will observe these modifications 
and ensure write propagation. Also, when writes to different caches are allowed to 
occur concurrently, no obvious ordering mechanism exists to sequence the writes. 
We will need somewhat more sophisticated cache coherence protocols to make the 
"critical" events visible to the other caches and to ensure write serialization. 

The space of protocols for write-back caches is quite large. Before we examine it, 
let us step back to the more general ordering issue alluded to in the introduction to 
this chapter and examine the semantics of a shared address space as determined by 
the memory consistency model. 

MEMORY CONSISTENCY 

Coherence, on which we have focused so far, is essential if information is to be 
transferred between processors by one writing to a location that the other reads. 
Eventually, the value written will become visible to the reader-indeed to all read- 
ers. However, coherence says nothing about when the write will become visible. 
Often in writing a parallel program, we want to ensure that a read returns the value 
of a particular write; that is, we want to establish an order between a write and a 
read. Typically, we use some form of event synchronization to convey this depen- 
dence, and we use more than one memory location. 
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Consider, for example, the code fragments executed by processors PI and P2 In 
Flgure 5 7, which we saw when d~scussmg pomt-to-pomt event synchron~zat~on in a 
shared address space m Chapter 2 It 1s clear that the programmer Intends for pro- 
cess P2 to spm ldly untd the value of the shared vanable f l ag  changes to 1 and then 
to pnnt the value of rar~able A as 1, slnce the value of A was updated before that of 
f l a g  by process P1 In t h ~ s  case, we use accesses to another locat~on ( f l ag )  to pre- 
serve a des~red order of d~fferent processes' accesses to the same locat~on (A) In par- 
t~cular, we assume that the wnte of A becomes vls~ble to P2 before the wnte to f l a g  
and that the read of f l a g  by P2 that breaks ~t out of ~ t s  whde loop completes before 
its read of A (a pnnt operatton is essent~ally a read) These program orders wthm 
P1 and Pis accesses to d~fferent locat~ons are not imphed by coherence, wh~ch, for 
example, only requires that the new value for A eventually become visible to process 
P2, not necessardy before the new value of flag IS observed 

The programmer m~ght  try to avo~d th~s  Issue by uslng a barr~er or other expl~c~t  
event synchronuat~on, as shown m F~gure 5 8 We expect the value of A to be 
prmted as 1 since A was set to 1 before the barr~er Even t h ~ s  approach has two 
potenttal problems, however First, we are addmg assumptions to the meanmg of the 
barner not only do processes Walt at the barr~er unul all of them have amved, they 
also Walt untll all wntes ~ssued prlor to the barrier have become ms~ble to the other 
processors Second, a barner 1s often bulk usmg reads and wrltes to ord~nary shared 
vanables (e g , bl In the figure) rather than w t h  spec~al~zed hardware support In 
thls case, as far as the machme is concerned, ~t sees only accesses to d~fferent shared 
vanables m the compiled code, not a special barner operation Coherence does not 
say anything at all about the order among these accesses 

Clearly, we expect more from a memory system than to "return the last value 
written" for each locat~on To estabhsh order among accesses to the same locanon 
(say, A) by dtfferent processes, we sometimes expect a memory system to respect the 
order of reads and wntes to dtfferent locat~ons (A and f l a g  or A and bl) issued by 
the same process Coherence says nothmg about the order m wh~ch wrltes to d~ffer- 
ent locat~ons become visible S~m~larly, ~t says nothlng about the order m wh~ch the 
reads ~ssued to d~fferent locations by P2 are performed w t h  respect to PI Thus, 
coherence does not in Itself prevent an answer of 0 from bemg pnnted by e~ther 
example, wh~ch IS certa~nly not what the programmer had In m ~ n d  

In other sltuatlons, the programmer's lntentlon may not be so clear Cons~der the 
example m Flgure 5 9 The accesses made by process PI are ord~nary wntes, and A 

and B are not used as flags or synchron~zatton vanables Should we mtuit~vely 
expect that ~f the value prmted for B IS 2, then the value printed for A 1s 1 7  Whatever 
the answer, the two pnnt statements read d~fferent locations and coherence says 
nothmg about the order m whlch the wntes by P1 become vis~ble to P2 T h ~ s  exam- 
ple IS m fact a fragment from Dekker's algor~thm (Tanenbaum and Woodhull 1997) 
to determ~ne wh~ch of two processes arnves first at a cr~tical point as a step m ensur- 
mg mutual exclus~on The algorlthm rehes on wrltes to dlstmct locattons by a pro- 
cess becommg mstble to other processes m the order m wh~ch they appear In the 
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PI p2 

/*Assume initial value of A andflag is 0*/ 

A = 1; while (flag == 0) ; l"spinidly*l 

flag = 1; p r i n t  A; 

FIGURE 5.7 Requirements of event synchronization through flags. The figure 
shows two processors concurrently executing two distinct code fragments. For program- 
mer intuition to be maintained, it must be the case that the printed value of A is 1 .  The 
intuition is that because of program order, if flag =1 is visible to process P2, then it must 
also be the case that A = 1 is visible to Pz. 

PI  p2 

/*Assume initial value of A is O*/ 

A = 1; . . . 
- - - B A R R I E R ~ ~ I )  - - - - -  BARRIER(^^)- - - - - - - 

p r i n t  A; 

FIGURE 5.8 Maintaining order among accesses to a location using explicit syn- 
chronization through barriers. As in Figure 5.7L!l_the programmer expects the value 
printed for A to be 1 since passing the barrier should imply that the write of A by PI has 
already completed and is therefore visible to P2. 

p1 p2 

/*Assume initial values ofA and B are 0*/ 

(la) A = 1; (2a) p r i n t  B; 

(lb) B = 2; ( 2 b )  p r i n t  4; 

FIGURE 5.9 Order among accesses without synchronization. Here it is less clear 
what a programmer should expect since neither a flag nor any other explicit event synchro- 
nization is used. 

program. Clearly, we need something more than coherence to give a shared address 
space a clear semantics, that is, an ordering model that programmers can use to rea- 
son about the possible results and hence the correctness of their programs. 

A memovy consistency model for a shared address space specifies constraints on the 
order in which memory operations must appear to be performed (i.e., to become vis- 
ible to the processors) with respect to one another. This includes operations to the 
same locations or to different locations and by the same process or different pro- 
cesses, so in this sense memory consistency subsumes coherence. 
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5.2.1 Sequential Consistency 

In the d~scusslon m Chapter 1 of fundamental deslgn Issues for a communication 
architecture, Section 1 4 descr~bed ~nformally a desirable ordering model for a 
shared address space the reasonmg that allows a mult~threaded program to work 
under any posslble mterleavlng on a uniprocessor should hold when some of the 
threads run in parallel on different processors The ordenng of data accesses wthm 
a process was therefole the program order, and that across processes was some ~nter- 
leavlng of the program orders That IS, the mult~processor case should not be able to 
cause values to become vmble to processes in the shared address space m a manner 
that no sequentlal ~nterleaving of accesses from different processes can generate 
This Intuitwe model was formahzed by Lamport as sequenttal consistency (SC), 
wh~ch 1s defined as follows (Lamport 1979) 

A multiprocessor is sequentially consistent if the result of any execution is the same as if the 
operations of all the processors were executed in some sequential order, and the oper- 
ations of each individual processor occur in this sequence in the order specified by its 
program 

Figure 5.10 depicts the abstraction of memory provided to programmers by a 
sequentially consistent system (Adve and Gharachorloo 1996). It is similar to the 
machine model we used to introduce coherence, though now it applies to multiple 
memory locations. Multiple processes appear to share a single logical memory, even 
though in the real machine main memory may be distributed across multiple proces- 
sors, each with their own private caches and buffers. Every process appears to issue 
and complete memory operations one at a time and atomically in program order; 
that is, a memory operation does not appear to be issued until the previous one from 
that process has completed. In addition, the common memory appears to service 
these requests one at a time in an interleaved manner according to an arbitrary (hut 
hopefully fair) schedule. Memory operations appear atomic in this interleaved order; 
that is, it should appear globally (to all processes) as if one operation in the consis- 
tent interleaved order executes and completes before the next one begins. 

As with coherence, it is not important in what order memory operations actually 
issue or even complete. What matters for sequential consistency is that they appear 
to complete in a manner that satisfies the constraints just described. In the example 
in Figure 5.9, under SC the result (0 ,2 )  for (A, B) would not be allowed-preserv- 
ing our intuition-since it would then appear that the writes of A and B by process 
PI executed out of program order. However, the memory operations may actually 
execute and complete in the order lb, la, 2b, 2a. It does not matter that they actu- 
ally complete out of program order since the results of the execution (1,2) are the 
same as if the operations were executed and completed in program order. On the 
other hand, the actual execution order lb ,  2a, 223, la would not be sequentially 
consistent since it would produce the result (0, z), which is not allowed under SC. 
Other examples illustrating the intuitiveness of sequential consistency can be found 

1. Two closely related concepts In software systems are serializabili~y (Papadimitriou 1979) for concurrent 
updates to a database and linearizab~lity (Herlihy and Wing 1987) for concurrent objects. 
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:I, 
The "switch" is randomly 
set after each memory 
reference 

Memory L 
FIGURE 5.10 Programmer's abstraction of the memory subsystem under the 
sequential consistency model. The model completely hides the underlying concurrency 
in the memory system hardware (e.g., the poss~ble existence of distributed main memory, 
the presence of caches and write buffers) from the programmer. 

in Exercise 5.6. Note that SC does not obviate the need for synchronization. The rea- 
son is that SC allows operations from different processes to be interleaved arbitrarily 
and does so at the granularity of individual instructions. Synchronization is needed 
if we want to preserve atomicity (mutual exclusion) across multiple memory opera- 
tions from a process or if we want to enforce constraints on the interleaving across 
processes. 

The term "program order" also bears some elaboration. Intuitively, program order 
for a process is simply the order in which statements appear according to the source 
code that the process executes; more specifically, it is the order in which memory 
operations occur in the assembly code that results from a straightfonvard translation 
of source statements one by one to machine instructions. This is not necessarily the 
order in which an optimizing compiler presents memory operations to the hardware 
since the compiler may reorder memory operations (within certain constraints, such 
as preserving dependences to the same location). The programmer has in mind the 
order of statements in the source program, but the processor sees only the order of 
the machine instructions. In fact, there is a "program order" at each of the interfaces 
in the parallel computer architecture-particularly the programming model inter- 
face seen by the programmer and the hardwardsoftware interface-and ordering 
models may be defined at each. Since the programmer reasons with the source pro- 
gram, it makes sense t6 use this to define program order when discussing memory 
consistency models; that is, we will be concerned with the consistency model pre- 
sented by the language and the underlying system to the programmer. 

Implementing SC requires that the system (software and hardware) preserve the 
intuitive constraints defined previously. There are really two constraints. The first is 
the program order requirement: memory operations of a process must appear to 
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become visible-to itself and others-in program order. The second constraint 
guarantees that the total order or the interleaving across processes is consistent for 
all processes by requiring that the operations appear atomic. That is, it should 
appear that one operation is completed with respect to all processes before the next 
one in the total order is issued (regardless of which process issues it). The tricky 
part of this second requirement is making writes appear atomic, especially in a sys- 
tem with multiple copies of a memory word that need to be informed on a write. 
The write atomicity requirement, included in the preceding definition of sequential 
consistency, implies that the position in the total order at which a write appears to 
perform should be the same with respect to all processors. It ensures that nothing a 
processor does after it has seen the new value produced by a write (e.g., another 
write that it issues) becomes visible to other processes before they too have seen the 
new value for that write. In effect, the write atomicity required by SC extends the 
write serialization required by coherence: while write serialization says that writes 
to the same location should appear to all processors to have occurred in the same 
order, write atomicity says that all writes (to any location) should appear to all pro- 
cessors to have occurred in the same order. Example 5.4 shows why write atomicity 
is important. 

EXAMPLE 5.4 Consider the three processes in Figure 5.1 1. Show how not preserving 
write atomicity violates sequential consistency. 

Answer Since P2 waits until A becomes 1 and then sets B to 1, and since P3 waits until 
B becomes 1 and only then reads the value of A, from transitivity we would infer 
that P, should find the value of A to be 1. If P2 is allowed to go on past the read of 
A and write B before it is guaranteed that P3 has seen the new value of A, then  P3 
may read the new value of B but read the old value of A (e.g., from its cache), 
violating our sequentially consistent intuition. 

More formally, each process's program order imposes a partial order on the set of 
all operations; that is, it imposes an ordering on the subset of the operations that are 
issued by that process. An interleaving of the operations from different processes 
defines a total order on the set of all operations. Since the exact interleaving is not 
defined by SC, interleaving the partial (program) orders for different processes may 
yield a large number of possible total orders. The following definitions therefore 

apply: 

Sequentially consistent execution. An execution of a program is said to be se- 
quentially consistent if the results it produces are the same as those produced 
by any one of the possible total orders (interleavings) as defined earlier. That 
is, a total order or interleaving of program orders from processes should exist 
that yields the same result as the actual execution. 

rn Sequentially consistent systcm. A system is sequentially consistent if any possi- 
ble execution on that system is sequentially consistent. 
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p1 p2 p3 

A=l; -&while (A==O) ; 

~ = l ;  while (B==O)  ; 

print A; 

FIGURE 5.11 Example illustrating the importance of write atomicity for sequen- 
tial consistency 

5.2.2 Sufficient Conditions for Preserving Sequential Consistency - *-- 
Having discussed the definitions and high-level requirements, let us see how a mul- 
tiprocessor ~mplementanon can be made to sausfy SC It is possible to define a set of 
sufficient conditions that will guarantee sequential conslstency in a multiproces- 
sor-whether bus-based or dlstnbuted, cache-coherent or not The following set, 
adapted from its onginal form (Dubois, Scheurich, and Bnggs 1986, Scheunch and 
Dubois 1987), 1s relatively s~mple 

1. Every process issues memory operations in program order. 

2. After a write operation is issued, the issuing process waits for the write to 
complete before issuing its next operation. 

3. After a read operation is issued, the issuing process waits for the read to com- 
plete, and for the write whose value is being returned by the read to complete, 
before issuing its next operation. That is, if the write whose value is being 
returned has performed with respect to this processor (as it must have if its 
value is being returned), then the processor should wait until the write has 
performed with respect to all processors. 

The third condition is what ensures write atomicity and is quite demanding. It is 
not a simple local constraint because the read must wait until the logically preceding 
write has become globally visible. Note that these are sufficient, rather than neces- 
sary, conditions. Sequential consistency can be preserved with less serialization in 
many situations, as we shall see. 

With program order defined in terms of the source program, it is important that 
the compiler should not change the order of memory operations that it presents to 
the hardware (processor). Otherwise, sequential consistency from the programmer's 
perspective may be compromised even before the hardware gets involved. Unfortu- 
nately, many of the optimizations that are commonly employed in both compilers 
and processors violate jhese sufficient conditions. For example, compilers routinely 
reorder accesses to different locations within a process, so a processor may in fact 
issue accesses out of the program order seen by the programmer. Explicitly parallel 
programs use uniprocessor compilers, which are concerned only about presening 
dependences to the same location. Advanced compiler optimizations that greatly 
improve performance-such as common subexpression elimination, constant 
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propagation, register allocation, and loop transformations like loop splitting, loop 
reversal, and blocklng (Wolfe 1989)-can change the order in which different loca- 
tions are accessed or can even eliminate memory ~ ~ e r a t i o n s . ~  In practice, to con- 
strain these compiler optimizations, multithreaded and ~arallel  programs annotate 
variables or memory references that are used to preserve orders. A particularly strin- 
gent example is the use of the volatile qualifier in a variable declaration, which 
prevents the variable from being register allocated or any memory operation on the 
variable from being reordered with respect to operations before or after it in program 
order. Example 5.5 illustrates these issues. 

EXAMPLE 5.5 How would reordering the memory operations in Figure 5.7 affect 
semantics in a sequential program (only one of the processes running), in a parallel 
program running on a multiprocessor, and in a threaded program in which the two 
processes are interleaved on the same processor? How would you solve the problem? 

Answer The compiler may reorder the writes t o  A and flag with no impact on a 
sequential program. However, this can violate our intuition for both parallel 
programs and concurrent (or multithreaded) uniprocessor programs. In the latter 
case, a context switch can happen between the two  reordered writes, so the 
process switched in may see the update t o  flag without seeing the update t o  A. 
Similar violations of intuition occur i f  the compiler reorders the reads of flag and 
A. For many compilers, we can avoid these reorderings by declaring the variable 
flag t o  be of type volatile integer instead of just integer. Other solutions 
are also possible and are discussed in Chapter 9. 

Even if the compiler preserves program order, modem processors use sophisti- 
cated mechanisms like write buffers, interleaved memory, pipelining, and out-of- 
order execution techniques (Hennessy and Patterson 1996). These allow memory 
operations from a process to issue, execute, andlor complete out of program order. 
Like compiler optimizations, these architectural optimizations work for sequential 
programs because the appearance of program order in these programs requires that 
dependences be preserved only among accesses to the same memory location, as 
shown in Figure 5.12. The problem in parallel programs is that the out-of-order 
processing of operations to different shared variables by a process can be detected by 
other processes. 

Preserving the sufficient conditions for SC in multiprocessors is quite a strong 
requirement since it limits compiler reordering and out-of-order processing tech- 
niques. Several weaker consistency models have been proposed and techniques have 
been developed to satisfy SC while relaxing the sufficient conditions. We will exam- 
ine these approaches in the context of scalable shared address space machines in 
Chapter 9. For the purposes of this chapter, we assume the compiler does not reor- 
der memory operations, so the program order that the processor sees is the same as 

2. Note that register allocation, performed by modem compilers to eliminate memory operations, can affect 
coherence itself, not just memory consistency For the flag synchronization example in Figure 5.7, if the 
compiler were to register-allocate the flag variable for process P2, the process could end up spinning 
forever: the cache coherence hardware updates or invalidates only the memoly and the caches, not the 
registers of the machme, so the write propagation property of coherence is violated. 
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FIGURE 5.12 Preserving the orders in a sequential 
program running on a uniprocessor. Only the orders 
corresponding to the two dependence arcs must be pre- 
served. The first two operations can be reordered with- 
out a problem, as can the last two or the middle two. 

that seen by the programmer. On the hardware side, we assume that the sufficient 
conditions must be satisfied. To do this, we need mechanisms for a processor to 
detect completion of its writes so it may proceed past them (completion of reads is 
easy; a read completes when the data returns to the processor) and mechanisms to 
satisfy the condition that preserves write atomicity. For all the protocols and systems 
considered in this chapter, we see how they satisfy coherence (including write serial- 
ization), how they can satisfy sequential consistency (in particular, how write com- 
pletion is detected and write atomicity is guaranteed), and what shortcuts can be 
taken while still satisfying the sufficient conditions. 

For bus-based machines, the serialization imposed by transactions appearing on 
the shared bus is very useful in ordering memory operations. It is easy to verify that 
the two-state write-through invalidation protocol discussed previously actually pro- 
vides sequential consistency-not just coherence-quite easily. The key observation 
to extend the arguments made for coherence in that system is that writes and read 
misses to all locations, not just to individual locations, are serialized in bus order. 
When a read obtains the value of a write, the write is guaranteed to have completed 
since it caused a previous bus transaction, thus ensuring write atomicity When a 
write is performed with respect to any processor, all previous writes in bus order 
have completed. 

DESIGN SPACE FOR SNOOPING PROTOCOLS 

The beauty of snooping-based cache coherence is that the entire machinery for sol- 
ving a difficult problem boils down to applying a small amount of extra interpreta- 
tion to events that naturally occur in the system. The processor is completely 
unchanged. No explicit coherence operations must be inserted in the program. By 
extending the requirements on the cache controller and exploiting the properties of 
the bus, the reads and writes that are inherent to the program are used implicitly to 
keep the caches coherent, and the serialization provided by the bus maintains con- 
sistency. Each cache controller observes and interprets the bus transactions gener- 
ated by others to maintain its internal state. Our initial design point with write- 
through caches is not very efficient, but we are now ready to study the design space 
for snooping protocols that make efficient use of the limited bandwidth of the 
shared bus. All of these use write-back caches, allowing processors to write to dif- 
ferent blocks in their local caches concurrently without any bus transactions. Thus, 
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extra care is required to ensure that enough information is transmitted over the bus 
to maintain coherence. 

Recall that with a write-back cache on a uniprocessor, a processor write miss 
causes the cache to read the entire block from memory, update a word, and retain the 
block in modijed (or dirty) state so it may be written back to memory on replace- 
ment. In a multiprocessor, this modlfied state is also used by the protocols to indi- 
cate exclusive ownership of the block by a cache. In general, a cache is said to be the 
owner of a block if it must supply the data upon a request for that block (Sweazey 
and Smith 1986). A cache is said to have an exclusive copy of a block if it is the only 
cache with a valid copy of the block (main memory may or may not have a valid 
copy). Exclusivity implies that the cache may modify the block without notifying 
anyone else. If a cache does not have exclusivity, then it cannot write a new value 
into the block before first putting a transaction on the bus to communicate with 
others. The writer may have the block in its cache in a valid state, but since a trans- 
action must be generated, it is called a write miss just like a write to a block that is 
not present or is invalid in the cache. If a cache has the block in modified state, then 
clearly it is the owner and it has exclusivity (The need to distinguish ownership 
from exclusivity will become clear soon.) 

On a write miss in an invalidation protocol, a special form of transaction called a 
read exclusive is used to tell other caches about the impending write and to acquire a 
copy of the block with exclusive ownership. This places the block in the cache in 
modified state, where it may now be written. Multiple processors cannot write the 
same block concurrently since this would lead to inconsistent values. The read- 
exclusive bus transactions generated by their writes will be serialized by the bus, so 
only one of them can have exclusive ownership of the block at a time. The cache 
coherence actions are driven by these two types of transactions: read and read exclu- 
sive. Eventually, when a modified block is replaced from the cache, the data is writ- 
ten back to memory, but this event is not caused by a memory operation to that 
block and is almost incidental to the protocol. A block that is not in modified state 
need not be written back upon replacement and can simply be dropped since mem- 
ory has the latest copy Many protocols have been devised for write-back caches, and 
we examine the basic alternatives. 

We also consider update-based protocols. Recall that in update-based protocols, 
whenever a shared location is written to by a processor, its value is updated in the 
caches of all other processors holding that memory block.3 Thus, when these pro- 
cessors subsequently access that block, they can do so from their caches with low 
latency, The caches of all other processors are updated with a single bus transac- 
tion, thus conserving bandwidth when there are multiple sharers. In contrast, with 
invalidation-based protocols, on a write operation the cache state of that memory 
block in all other processors' caches is set to invalid, so those processors will have to 
obtain the block through a miss and hence a bus transaction on their next read. 

3 .  This is a wnte-broadcast scenario. Read-broadcast designs have also been investigated, m which the 
cache containing the modlfied copy nushes it to the bus when it sees a read on the bus, at which point all 
other copies are updated too. 
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However, subsequent writes to that block by the same processor do not create fur- 
ther traffic on the bus (as they do with an update protocol) until the block is 
accessed by another processor. This is attractive when a single processor performs 
multiple writes to the same memory block before other processors access the con- 
tents of that memory block. The detailed trade-offs are more complex, and they 
depend on the workload offered to the machine; they will be illustrated quantita- 
tively in Section 5.4. In general, invalidation-based strategies have been found to be 
more robust and are therefore provided as the default protocol by most vendors. 
Some vendors provide an update protocol as an option to be used for blocks corre- 
sponding to selected data structures or pages. 

The choices made for the protocol (update versus invalidate) and the caching 
strategies directly affect the choice of states, the state transition diagram, and the 
associated actions. Substantial flexibility is available to the computer architect in the 
design task at this level. Instead of listing all possible choices, let us consider three 
common coherence protocols that will illustrate the design options. 

5.3.1 A Three-State (MSI) Write-Back Invalidation Protocol 

The first protocol we consider IS a bas~c ~nvahdat~on-based protocol for wr~te-back 
caches. It is very similar to the protocol that was used in the Silicon Graphics 4D 
series multiprocessor machines (Baskett, Jermoluk, and Solomon 1988). The proto- 
col uses the three states required for any write-back cache in order to distinguish 
valid blocks that are unmodified (clean) from those that are modified (dirty). Specif- 
ically, the states are mod$ed (M), shared (S), and invalid (I). Invalid has the obvious 
meaning. Shared means the block is present in an unmodified state in this cache, 
main memory is up-to-date, and zero or more other caches may also have an up-to- 
date (shared) copy Modified, also called dirty, means that only this cache has a valid 
copy of the block, and the copy in main memory is stale. Before a shared or invalid 
block can be written and placed in the modified state, all the other potential copies 
must he invalidated via a read-exclusive bus transaction. This transaction serves to 
order the write as well as cause the invalidations and hence ensure that the write 
becomes visible to others (write propagation). 

The processor issues two types of requests: reads (PrRd) and writes (PrWr). The 
read or write could be to a memory block that exists in the cache or to one that does 
not. In the latter case, a block currently in the cache will have to be replaced by the 
newly requested block, and if the existing block is in the modified state, its contents 
will have to be written back to main memory 

We assume that the bus allows the following transactions: 

Bus Read (BusRd): This transaction is generated by a PrRd that misses in the 
cache, and the processor expects a data response as a result. The cache con- 
troller puts the address on the bus and asks for a copy that it does not intend 
to modify The memory system (possibly another cache) supplies the data. 
Bus Read Exclusive (BusRdX): This transaction is generated by a PrWr to a 
block that is either not in the cache or is in the cache but not in the modified 
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state. The cache controller puts the address on the bus and asks for an exclu- 
sive copy that it intends to modify. The memory system (possibly another 
cache) supplies the data. All other caches are invalidated. Once the cache 
obtains the exclusive copy, the write can be performed in the cache. The pro- 
cessor may require an acknowledgment as a result of this transaction. 
Bus Write Back (BusWB): This transaction is generated by a cache controller 
on a write back; the processor does not know about it and does not expect a 
response. The cache controller puts the address and the contents for the mem- 
ory block on the bus. The main memory is updated with the latest contents. 

The bus read exclusive (sometimes called read-to-own) is the only new transac- 
tion that would not exist except for cache coherence. The new action needed to sup- 
port write-back protocols is that, in addition to changing the state of cached blocks, 
a cache controller can intervene in an observed bus transaction and flush the con- 
tents of the referenced block from its cache onto the bus rather than allowing the 
memory to supply the data. Of course, the cache controller can also initiate bus 
transactions as described above, supply data for write backs, or pick up data sup- 
plied by the memory system. 

State Transitions 

The state transition diagram that governs a block in each cache in this snooping pro- 
tocol is as shown in Figure 5.13. The states are organized so that the closer the state 
is to the top, the more tightly the block is bound to that processor. A processor read 
to a block that is invalid (or not present) causes a BusRd transaction to service the 
miss. The newly loaded block 1s promoted, moved up in the state diagram, from 
invalid to the shared state in the requesting cache, whether or not any other cache 
holds a copy Any other caches with the block in the shared state observe the BusRd 
but take no special action, allowing main memory to respond with the data. How- 
ever, if a cache has the block in the modified state (there can only be one) and it 
observes a BusRd transaction on the bus, then it must get involved in the transaction 
since the copy in main memory is stale. This cache flushes the data onto the bus, in 
lieu of memory, and demotes its copy of the block to the shared state (see 
Figure 5.13). The memory and the requesting cache both pick up the block. This 
can be accomplished either by a direct cache-to-cache transfer across the bus during 
this BusRd transaction or by signaling an error on the BusRd transaction and gener- 
ating a write transaction to update memory. In the latter case, the original cache will 
eventually retry its request and obtain the block from memory. (It is also possible to 
have the flushed data picked up only by the requesting cache but not by memory, 
leaving memory still out-of-date, but this requires more states [Sweazey and Smith 
19861.) 

Writing into an invalid block is a write miss, which is seniced by first loading the 
entire block and then modifymg the desired bytes within it. The write miss generates 
a read-exclusive bus transaction, which causes all other cached copies of the block 
to be invalidated, thereby granting the requesting cache exclusive ownership of the 
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FIGURE 5.13 Basic three-state invalidation protocol. M, S ,  and I stand for modified, 
shared, and invalid states, respectively. The notation AIB means that if the controller 
observes the event A from the processor side or the bus side, then in addition to the state 
change, it generates the bus transaction or action B. "-" means null action. Transitions 
due to observed bus transactions are shown in dashed arcs, while those due to local pro- 
cessor actions are shown in bold arcs. If multiple AIB pairs are associated with an arc, it sim- 
ply means that multiple inputs can cause the same state transition. For completeness, we 
should specify actions from each state corresponding to each observable event. If such 
transitions are not shown, it means that they are uninteresting and no action needs to be 
taken. Replacements and the write backs they may cause are not shown in the diagram for 
simplicity. 

block. The block of data returned by the read exclusive is promoted to the modified 
state, and the desired bytes are then written into it. If another cache later requests 
exclusive access, then in response to its BusRdX transaction this block will be inval- 
idated (demoted to the invalid state) after flushing the exclusive copy to the bus. 

The most interesting transition occurs when writing into a shared block. AS dis- 
cussed earlier, this is treated essentially like a write miss, using a read-exclusive bus 
transaction to acquire exclusive ownership; we refer to it as a write miss throughout 
the book. The data that, comes back in the read exclusive can be ignored in this case, 
unlike when writing to an invalid or not present block, since it is already in the 
cache. In fact, a common optimization to reduce data traffic in bus protocols is to 
introduce a new transaction, called a bus upgrade or BusUpgr, for this situation. A 
BusUpgr obtains exclusive ownership just like a BusRdX, by causing other copies to 
be invalidated, but it does not cause main memory or any other device to respond 
with the data for the block. Regardless of whether a BusUpgr or a BusRdX is used 
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(let us continue to assume BusRdX), the block in the requesting cache transitions to 
the modified state. Additional writes to the block while it is in the modified state 
generate no additional bus transactions. 

A replacement of a block from a cache logically demotes the block to invalid (not 
present) by removing it from the cache. A replacement therefore causes the state 
machines for two blocks to change states in that cache: the one being replaced 
changes from its current state to invalid, and the one being brought in changes from 
invalid (not present) to its new state. The latter state change cannot take place 
before the former, which requires some care in implementation. If the block being 
replaced was in modified state, the replacement transition from M to I generates a 
write-back transaction. No special action is taken by the other caches on this trans- 
action. If the block being replaced was in shared or invalid state, then it itself does 
not cause any transaction on the bus. Replacements are not shown in the state dia- 
gram for simplicity 

Note that to specify the protocol completely, for each state we must have out- 
going arcs with labels corresponding to all observable events (the inputs from the 
processor and bus sides) and must show the actions corresponding to them. Of 
course, the actions and state transitions can be null sometimes, and in that case we 
may either explicitly specify null actions (see states S and M in Figure 5.13), or we 
may simply omit those arcs from the diagram (see state 1). Also, since we treat the 
not-present state as invalid, when a new block is brought into the cache on a miss, 
the state transitions are performed as if the previous state of the block was invalid. 
Example 5.6 illustrates how the state transition diagram is interpreted. 

EXAMPLE 5.6 Using the MSI protocol, show the state transitions and bus transactions 
for the scenario depicted in Figure 5.3. 

Answer The results are shown in Figure 5.14. 

With write-back protocols, a block can be written many times before the memory 
is actually updated. A read may obtain data not from memory but rather from a 
writer's cache, and in fact it may be this read rather than a replacement that causes 
memory to be updated. In addition, write hits do not appear on the bus, so the con- 
cept of a write being ~erformed with respect to other processors is a little different. 
In fact, to say that a write is being performed means that the write is being "made 
visible." A write to a shared or invalid block is made visible by the bus read-exclu- 
sive transaction it triggers. The writer will "observe" the data in its cache after this 
transaction. The write will be made visible to other processors by the invalidations 
that the read exclusive generates, and those processors will experience a cache miss 
before actually observing the value written. Write hits to a modified block are visible 
to other processors but again are observed by them only afier a miss through a bus 
transaction. Thus, in the MS1 protocol, the write to a nonmodified block is per- 
formed or made visible when the BusRdX transaction occurs, and the write to a 
modified block is made visible when the block is updated in the writer's cache. 
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Processor Action State in P1 State ln Pz State in P3 Bus Act~on Data Supplied By 

1 PI reads  u S - - BusRd Memory 
a 

2 P3 reads  u S S BusRd Memory - 

3. p3 w r i t e s  u I - M ~usRdX Memory 
4. p1 reads  u s - s B U S R ~  P j  cache 

5. P2 reads  u S S S BusRd Memory 

FIGURE 5.14 The three-state invalidation protocol in action for processor transactions 
-FA- . * shown in Figure 5.3. The frgure shows the state of the relevant memory block at the end of each pro- 

- cessor actlon, the bus transactlon generated (if any), and the entlty supplying the data 

Satisfying Coherence 

Since both reads and writes can take place without generating bus transactions in a 
write-back protocol, it is not obvious that it satisfies the conditions for coherence, 
much less sequential consistency Let's examine coherence first. Write propagation is 
clear from the preceding discussion, so let us focus on write serialization. The read- 
exclusive transaction ensures that the writing cache has the only valid copy when 
the block is actually written in the cache, just like a write transaction in the write- 
through protocol. It is followed immediately by the corresponding write being per- 
formed in the cache before any other bus transactions are handled by that cache 
controller, so it is ordered in the same way for all processors (including the writer) 
with respect to other bus transactions. The only difference from a write-through pro- 
tocol, with regard to ordering operations to a location, is that not all writes generate 
bus transactions. However, the key here is that between two transactions for that 
block that do appear on the bus, only one processor can perform such write hits; 
this is the processor (say, P )  that performed the most recent read-exclusive bus 
transaction w for the block. In the serialization, this sequence of write hits therefore 
appears (in program order) between w and the next bus transaction for that block. 
Reads by processor P will clearly see them in this order with respect to other writes. 
For a read by another processor, there is at least one bus transaction for that block 
that separates the completion of that read from the completion of these write hits. 
That bus transaction ensures that that read also sees the writes in the consistent 
serial order. Thus, reads by all processors see all writes in the same order. 

5 Satisfying Sequential Consistency 

To see how SC is satisfied, let us first appeal to the definition itself and see how a 
consistent global interltaving of all memory operations may be constructed. As with 
write-through caches, the serial arbitration for the bus in fact defines a total order on 
bus transactions for all blocks, not just those for a single block. All cache controllers 
observe read and read-exclusive bus transactions in the same order and perform 
invalidations in this order. Between consecutive bus transactions, each processor 
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performs a sequence of memory operations (read and write hits) in program order. 
Thus, any execution of a program defines a natural partial order: 

A memory operation MI is subsequent to operation Mi if (1) the operations are issued by 
the same processor and MI follows Mi in program order, or (2) Mj generates a bus transac- 
tion that follows the memory operation for Mi. 

This partial order looks graphically like that of Figure 5.6, except the local sequence 
within a segment has writes as well as reads and both read-exclusive and read bus 
transactions play important roles in establishing the orders. Between bus transac- 
tions, any interleaving of the sequences of local operations (hits) from different pro- 
cessors leads to a consistent total order. For writes that occur in the same segment 
between bus transactions, a processor will observe the writes by other processors 
ordered by bus transactions that it generates, and its own writes ordered by program 
order. 

We can also see how SC is satisfied in terms of the sufficient conditions. Write 
completion is detected when the read-exclusive bus transaction occurs on the bus 
and the write is performed in the cache. The read completion condition, which pro- 
vides write atomicity, is met because a read either (1) causes a bus transaction that 
follows that of the write whose value is being returned, in which case the write must 
have completed globally before the read; (2) follows such a read by the same proces- 
sor in program order; or (3) follows in program order on the same processor that 
performed the write, in which case the processor has already waited for the write to 
complete (become visible) globally. Thus, all the sufficient conditions are easily 
guaranteed. We return to this topic when we discuss implementing protocols in 
Chapter 6. 

Lower-Level Design Choices 

To illustrate some of the implicit design choices that have been made in the protocol, 
let us examine more closely the transition from the M state when a BusRd for that 
block is observed. In Figure 5.13, we transition to state S and flush the contents of 
the memory block to the bus. Although it is imperative that the contents are placed 
on the bus, we could instead have transitioned to state I, thus giving up the block 
entirely. The choice of going to S versus I reflects the designer's assertion that the 
original processor is more likely to continue reading the block than the new proces- 
sor is to write to the memory block. Intuitively, this assertion holds for mostly read 
data, which is common in many programs. However, a common case where it does 
not hold is for a flag or buffer that is used to transfer information back and forth 
between processes: one processor writes it, the other reads it and modifies it, then 
the first reads it and modifies it, and so on. Accumulations into a shared counter 
exhibit similar migratory behavior across multiple processors. The problem with 
betting on read sharing in these cases is that every write has to first generate an 
invalidation, thereby increasing its latency. Indeed, the coherence protocol used in 
the early Synapse multiprocessor made the alternate choice of going directly from M 
to I state on a BusRd, thus betting the migratory pattern would be more frequent. 
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Some machines (Sequent Symmetry model B and the MIT Alewife) attempt to adapt 
the protocol when such a migratory access pattern is observed (Cox and Fowler 
1993; Dahlgren, Dubois, and Stenstrom 1994). These choices can affect the perfor- 
mance of the memory system, as we see later in the chapter. 

5.3.2 A Four-State (MESI) Write-Back Invalidation Protocol 

A concern arises with our MSI protocol if we consider a sequential application run- 
ning on a multiprocessor. Such multiprogrammed use in fact constitutes the most 
common workload on small-scale multiprocessors. When the process reads in and 
modifies a data item, in the MSI protocol two bus transactions are generated even 
though there are never any sharers. The first is a BusRd that gets the memoqr block 
in S state, and the second is a BusRdX (or BusUpgr) that converts the block from S 
to M state. By adding a state that indicates that the block is the only (exclusive) copy 
but is not modified and by loading the block in this state, we can save the latter 
transaction since the state indicates that no other processor is caching the block. 
This new state, called exclusive-clean or exclusive-unowned (or even simply "exclu- 
sive"), indicates an intermediate level of binding between shared and modified. It is 
exclusive, so unlike the shared state, the cache can perform a write and move to the 
modified state without further bus transactions; but it does not imply ownership 
(memory has a valid copy), so unlike the modified state, the cache need not reply 
upon observing a request for the block. Variants of this MESI protocol are used in 
many modern microprocessors, including the Intel Pentium, PowerPC 601, and the 
MIPS R4400 used in the Silicon Graphics Challenge multiprocessors. It was first 
published by researchers at the University of Illinois at Urbana-Champaign (Papa- 
marcos and Pate1 1984) and is often referred to as the Illinois protocol (Archibald 
and Baer 1986). 

The MESI protocol thus consists of four states: modified (M) or dirty, exclusive- 
clean (E), shared (S), and invalid (I). M and I have the same semantics as before. E, 
the exclusive-clean or exclusive state, means that only one cache (this cache) has a 
copy of the block and it has not been modified (i.e., the main memory is up-to-date). 
S means that potentially two or more processors have this block in their cache in an 
unmodified state. The bus transactions and actions needed are very similar to those 
for the MSI protocol. 

State Transitions 

When thc block is first read by a processor, if a valid copy exists in another cache, 
then it enters the protessor's cache in the S state, as usual. However, if no other 
cache has a copy at the time (for example, in a sequential application), it enters the 
cache in the E state. When that block is written by the same processor, it can directly 
transition from E to M state without generating another bus transaction since no 
other cache has a copy If another cache had obtained a copy in the meantime, the 
state of the block would have been demoted from E to S by the snooping protocol. 
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This protocol places a new requirement on the physical interconnect of the bus. 
An additional signal, called the shared signal (S), must be available to the controllers 
in order to determine on a BusRd if any other cache currently holds the data. During 
the address phase of the bus transaction, all caches determine if they contain the 
requested block and, if so, assert the shared signal. This signal is a wired-OR line, so 
the controller making the request can observe whether any other processors are 
caching the referenced memory block and can thereby decide whether to load a 
requested block in the E state or the S state. 

Figure 5.15 shows a state transition diagram for a MESI protocol, still assuming 
that the BusUpgr transaction is not used. The notation BusRd(S) mezns that the bus 
read transaction caused the shared signal S to be asserted; BusRd(S) means S was 
unasserted. A plain BusRd means that we don't care about the value of S for that 
transition. A write to a block in any state will promote the block to the M state, but 
if it was in the E state, then no bus transaction is required. Observing a BusRd will 
demote a block from E to S since now another cached copy exists. As usual, observ- 
ing a BusRd will demote a block from M to S state and will also cause the block to be 
flushed onto the bus; here too, the block may be picked up only by the requesting 
cache and not by main memory, but this may require additional states beyond MESI. 
(A fifth, owned state may be added, which indicates that even though other shared 
copies of the block may exist, this cache [instead of main memory] is responsible for 
supplying the data when it observes a relevant bus transaction. This leads to a five- 
state MOESI protocol [Sweazey and Smith 19861.) Notice that it is possible for a 
block to be in the S state even if no other copies exist since copies may be replaced 
(S + I) without notifymg other caches. The arguments for satisfymg coherence and 
sequential consistency are the same as in the MSI protocol. 

Lower-Level Design Choices 

An interesting question for bus-based protocols is who should supply the block for a 
BusRd transaction when both the memory and another cache have a copy of it. In 
the original (Illinois) version of the MESI protocol, the cache rather than main 
memory supplied the data-a technique called cache-to-cache sharing. The argument 
for this approach was that caches, being constructed out of SRAM rather than 
DRAM, could supply the data more quickly However, this advantage is not necessar- 
ily present in modem bus-based machines, in which intervening in another proces- 
sor's cache to obtain data may be more expensive than obtaining the data from main 
memory. Cache-to-cache sharing also adds complexity to a bus-based protocol: main 
memory must wait until it is certain t h a ~  no cache will supply the data before driving 
the bus, and if the data resides in multiple caches, then a selection algorithm is 
needed to determine which one will provide the data. On the other hand, this 
technique is useful for multiprocessors with physically distributed memory (as we 
see in Chapter 8) because the latency to obtain the data from a nearby cache may be 
much smaller than that for a faraway memory unit. This effect can be especially 
important for machines constructed as a network of SMP nodes because caches 
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FIGURE 5.15 State transition diagram for the Illinois MESl protocol. ME51 stands 
for the modified (dirty), exclusive, shared, and invalid states, respectively. The notation is 
the same as that in Figure 5.1 3. The Estate helps reduce bus traffic for sequential programs 
where data is not shared. Whenever feasible, the Illinois version of the ME51 protocol makes 
caches, rather than main memory, supply data for BusRd and BusRdX transactions. Since 
multiple processors may have a copy of the memory block in their cache, we need to select 
only one to supply the data on the bus. Flush' is true only for that processor; the remaining 
processors take their usual action (invalidation or no action). In general, Flush' in a state 
diagram indicates that the block is flushed only if cache-to-cache sharing is in use and then 
only by the cache that is responsible for supplying the data. 

w i th in  the requestor's SMP node may supply the data. The Stanford DASH mult ipro- 
cessor (Lenoski et al. k993) used such cache-to-cache transfers for this reason. 

5.3.3 A Four-State (Dragon) Write-Back Update Protocol 

Let us n o w  examine a basic update-based protocol for write-back caches. This proto- 
col was first proposed b y  researchers at Xerox PARC for their Dragon multiprocessor 
system (McCreight  1984; Thacker, Stewart, and  Satterthwaite 19881, a n d  an  
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enhanced verslon of ~t IS used ~n the Sun SparcServer mult~processors (Catanzaro 
1997) 

The Dragon protocol consists of four states. exclusive-clean (E), shared-clean 
(Sc), shared-modified (Sm), and mod~fied (M) Exclus~ve-clean (or exclusive) has 
the same meanmg and the same motwation as before only one cache (thls cache) 
has a copy of the block, and ~t has not been moddied (I e , the mam memory is up- 
to-date) Shared-clean means that potenhally two or mole caches (mcluding this 
one) have t h ~ s  block, and mam memory may or may not be up-to-date Shared- 
mod~fied means that potentially two or more caches have t h ~ s  block, main memory 1s 
not up-to-date, and it is t h ~ s  cache's respons~billty to update the mam memory at the 
time thls block IS replaced from the cache (I e , this cache IS the owner) A block 
may be in Sm state in only one cache at a tlme However, ~t IS qulte poss~ble that one 
cache has the block m Sm state, while others have ~t m Sc state Or it may be that no 
cache has ~t in Sm state, but some have ~t m Sc state Thls IS why, when a cache has 
the block ~n Sc state, memory may or may not be up-to-date, ~t depends on whether 
some other cache has ~t in Sm state M slgn~fies exclusive ownership as before the 
b l o ~ k  IS moddied (duty) and present In thls cache alone, maln memory is stale, and 
~t IS t h ~  cache's respons~b~l~ty to supply the data and to update mam memory on 
replacement Note that there is no explicit Invalid (I) state as in the prevlous proto- 
cols Thls is because Dragon IS an update-based protocol, the protocol always keeps 
the blocks in the cache up-to-date, so lt is always okay to use the data present m the 
cache ~f the tag match succeeds However, if a block IS not present m a cache at all, lt 
can be imagined in a special invalid or not-present state.4 

The processor requests, bus transactions, and actions for the Dragon protocol are 
similar to the Illinois MESI protocol. The processor is still assumed to issue only 
read (PrRd) and write (PrWr) requests. However, since we do not have an invalid 
state, to specify actions on a tag mismatch we add two more request types: processor 
read miss (PrRdMiss) and write miss (PrWrMiss). As for bus transactions, we have 
bus read (BusRd), bus write back (BusWB), and a new transaction called bus update 
(BusUpd). The BusRd and BusWB transactions have the usual semantics. The 
BusUpd transaction takes the specific word (or bytes) written by the processor and 
broadcasts it on the bus so that all other processors' caches can update themselves. 
By broadcasting only the contenrs of the specific modified word rather than the 
whole cache block, it is hoped that the bus bandwidth is more efficiently utilized. 
(See Exercise 5.4 for reasons why this may not always be the case.) As in the MESI 
protocol, to support the E state, a shared signal (S) is available to the cache control- 
ler. Finally, the only new capability needed is for the cache controller to update a 
locally cached memory block (labeled an Update action) with the contents that are 
being broadcast on the bus by a relevant BusUpd transaction. 

4. Logically, there 1s another state as well, but it 1s rather crude and is used to bootstrap the protocol. A 
"miss mode" bit is provided with each cache line to force a miss when that block is accessed. Initializa- 
tion software reads data into every line in the cache with the miss mode hit turned on to ensure that the 
processor will miss the first time it references a block that maps to that line. After this first miss, the miss 
mode bit is turned off and the cache operates normally. 
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FIGURE 5.16 State transition diagram for the Dragon update protocol. The four states are 
exclusive (E), shared-clean (Sc), shared-modified (Srn), and modified (M). There is no invalid ( I )  state 
because the update protocol always keeps blocks in the cache up-to-date. 

State Transitions 

Figure 5.16 shows the state transition diagram for the Dragon update protocol. To 
take a processor-centric view, we can explain the diagram in terms of actions taken 
when a cache incurs a read miss, a write (hit or miss), or a replacement (no action is 
ever taken on a read hit). 

Read miss: A BusRd transaction is generated. Depending on the status of the 
shared signal (S), the block is loaded in the E or Sc state in the local cache. If 
the block is in M or Sm states in one of the other caches, that cache asserts the 
shared signal and supplies the latest data for that block on the bus, and the 
block is loaded in the local cache in Sc state. If the other cache had it in state 
M, it changes its state to Sm. If the block is in Sc state in other caches, memory 
supplies the data, and it is loaded in Sc state. If no other cache has a copy, then 
the shared line remains unasserted, the data is supplied by the main memory, 
and the block is loaded in the local cache in E state. 
Write: If the block is in the M state in the local cache, then no action needs to 
be taken. If the block is in the E state in the local cache, then it changes to M 
state and again no further action is needed. If the block is in Sc or Sm state, 
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however, a BusUpd transaction is generated. If any other caches have a cop)' of 
the data, they assert the shared signal, update the corresponding bytes in their 
cached copies, and change their slate to Sc if necessary. Thc local cache also 
updates its copy of the block and changes its state to Sm if necessary. Main 
memory is not updated. If no other cache has a copy of the data, the shared 
signal remains unasserted, the local copy is updated, and the state is changed 
to M. Finally, if on a write the block is not present in the cache, the write is 
treated simply as a read-miss transaction followed by a write transaction. 
Thus, first a BusRd is generated. If the block is also found in other caches, a 
BusUpd is generated, and the block is loaded locally in the Sm state; other- 
wise, the block is loaded locally in the M state. 
Replacement: On a replacement (arcs not shown in the figure), the block is 
written back to memory using a bus transaction only if it is in the M or Sm 
state. If it is in the Sc state, then either some other cache has it in Sm state or 
none does, in which case it is already valid in main memory. 

Example 5.7 illustrates the transitions for a familiar scenario. 

EXAMPLE 5.7 Using the Dragon update protocol, show the state transitions and bus 
transactions for the scenario depicted in Figure 5.3. 

Answer The results are shown in Figure 5.17. We can see that, whereas for processor 
actions 3 and 4 only one word is transferred on the bus in the update protocol, the 
whole memory block is transferred twice in the invalidation-based protocol. Of 
course, it is  easy to construct scenarios in which the invalidation protocol does 
much better than the update protocol, and we discuss the detailed trade-offs in 
Section 5.4. W 

Lower-Level Design Choices 

Again, many implicit design choices have been made in this protocol. For example, 
it is feasible to eliminate the shared-modified state. In fact, the update protocol used 
in the DEC Firefly multiprocessor does exactly that. The rationale is that every time 
the BusUpd transaction occurs, main memory can also update its contents along 
with the other caches holding that block; therefore, shared clean suffices, and a 
shared-modified state is not needed. The Dragon protocol is instead based on the 
assumption that the SRAM caches are much quicker to update than the DRAM main 
memory, so it is inappropriate to wait for main memory to be updated on all BusUpd 
transactions. Another subtle choice relates to the action taken on cache replace- 
ments. When a shared-clean block is replaced, should other caches be informed of 
that replacement via a bus transaction so that if only one cache remains with a copy 
of the memory block, it can change its state to exclusive or modified? The advantage 
of doing this would be that the bus transaction upon the replacement might not be 
in the critical path of a memory operation, whereas the later bus transaction that i t  
saves might be. 

Since all writes appear on the bus in an update protocol, write serialization, write 
completion detection, and write atomicity are all quite straightforward with a simple 
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Processor Action State in PI State in Pz State in P3 Bus Action Data Supplied By 

1. PI reads u E - - BusRd Memory 

2. P3 reads u Sc Sc BusRd Memory - 

3. Pj writes u S c Sm BusUpd P3 cache - 

4. PI reads u Sc Sm null - - 

5. Pz reads u Sc S c Sm BusRd P3 cache 

FIGURE 5.17 The Dragon update protocol in action for the processor actions shown in 
Figure 5.3. The figure shows the state of the relevant memory block at the end of each processor 
action, the bus transaction generated (if any), and the entity supplying the data. 

atomic bus, a lot like they were in the write-through case. However, with both 
invalidation- and update-based protocols, we must address many subtle implemen- 
tation issues and race conditions, even with an atomic bus and a single-level cache. 
We discuss this next level of protocol and hardware design in Chapter 6, as well as 
more realistic scenarios with pipelined buses, multilevel cache hierarchies, and 
hardware techniques that can reorder the completion of memory operations. None- 
theless, we can quantify many protocol trade-offs even at the state diagram level that 
we have been considering so far. 

ASSESSING PROTOCOL DESIGN TRADE-OFFS 

Like any other complex system, the design of a multiprocessor requires many inter- 
related decisions to be made. Even when a processor has been p~cked, we must 
decide on the maximum number of processors to be supported by the system, vari- 
ous parameters of the cache hierarchy (e.g., number of levels in the hierarchy, and 
for each level the cache size, associativity, block size, and whether the cache is write 
through or write back), the design of the bus (e.g., width of the data and address 
buses, the bus protocol), the design of the memory system (e.g., interleaved memory 
banks or not, width of memory banks, size of internal buffers), and the design of the 
I/O subsystem. Many of the issues are similar to those in uniprocessors (Smith 1982) 
but accentuated. For example, a write-through cache standing before the bus may be 
a poor choice for multiprocessors because the bus bandwidth is shared by many pro- 
cessors, and memory may need to be more greatly interleaved because it services 
cache misses from multiple processors. Greater cache associativity may also be use- 
ful in reducing conflict misses that generate bus traffic. 

The cache coherence protocol is a crucial new design issue for a multiprocessor. 
It includes protocol class (invalidation or update), protocol states and actions, and 
lower-level implementation trade-offs. Protocol decisions interact with all the other 
design issues. On the one hand, the protocol influences the extent to which the 
latency and bandwidth characteristics of system components are stressed; on the 
other, the performance characteristics as well as the organization of the memory and 
communication archirecture influence the choice of protocols. As discussed in 
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Chapter 4, these design decisions need to be evaluated relative to the behavior of 
real programs. Such evaluation was very common in the late 1980s, albeit using an 
immature set of ~arallel programs as workloads (Archibald and Baer 1986; Aganval 
and Gupta 1988; Eggers and Katz 1988,1989a, 198913). 

Making design decisions in real systems is part art and part science. The art 
draws on the past experience, intuition, and aesthetics of the designers, and the sci- 
ence is based in workload-driven evaluation. The goals are usually to meet a cost- 
performance target and to have a balanced system, so that no individual resource is 
a performance bottleneck yet each resource has only minimal excess capacity. This 
section illustrates some key protocol trade-offs by putting the workload-driven 
evaluation methodology from Chapter 4 into action. 

5.4.1 Methodology 

The basic strategy is as follows. The workload is executed on a simulator of a multi- 
processor architecture, as described in Chapter 4. By observing the state transitions 
encountered in the simulator, we can determine the frequency of various events 
such as cache misses and bus transactions. We can then evaluate  he effect of proto- 
col choices in terms of other design parameters such as latency and bandwidth 
requirements. 

Choosing parameters according to the methodology of Chapter 4, this section 
first establishes the ba;ic state transition characteristics generated by the set of appli- 
cations for the four-state IlIinois MESI protocol. It then illustrates how to use these 
frequency measurements to obtain a preliminary quantitative analysis of the design 
trade-offs raised by the example protocols above, such as the use of the exclusive 
state in the MESI protocol and the use of BusUpgr rather than BusRdX transactions 
for the S M transition. This section also illustrates more traditional design issues, 
such as how the cache block size-the granularity of both coherence and communi- 
cation-impacts the latency and bandwidth needs of the applications. To under- 
stand this effect, we classify cache misses into categories such as cold, capacity, and 
sharing misses, examine the effect of block size on each category, and explain the 
results in light of application characteristics. Finally, this understanding of the appli- 
cations is used to illustrate the trade-offs between invalidation-based and update- 
based protocols, again in light of latency and bandwidth implications. 

The analysis in this section is based on the frequency of various important events, 
not on the absolute times taken or, therefore, the performance. This approach is 
common in studies of cache architecture because the results transcend particular 
system implementations and technology assumptions. However, it should be viewed 
as only a preliminary analysis since many detailed factors that might affect the per- 
formance trade-offs in real systems are abstracted away. For example, measuring 
state transitions provides a means of calculating miss rates and bus traffic, but realis- 
tic values for latency, overhead, and occupancy are needed to translate the rates into 
the actual bandwidth requirements imposed on the system. To obtain an estimate of 
bandwidth requirements, we may artificially assume that every reference takes a 
fixed number of cycles to complete. However, the bandwidth requirements them- 
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selves do not translate into performance directly but only indirectly by increasing 
the cost of misses due to contention. Contention is very difficult to estimate because 
it depends on the timing parameters used and on the burstiness of the traffic, which 
is not captured by the frequency measurements. Contention, timing, and hence per- 
formance are also affected by lower-level interactions with hardware structures (like 
queues and buffers) and policies. 

The simulations used in this section do not model contention. Instead, they use a 
simple PRAM cost model: all memory operations are assumed to complete in the 
same amount of time (here a single cycle) regardless of whether they hit or miss in 
the cache. There are three main reasons for this. First, the focus is on understanding 
inherent protocol behavior and trade-offs in terms of event frequencies, not so much 
on perEormance. Second, since we are experimenting with different cache block sizes 
and organizations, we would like the interleaving of references from application pro- 
cesses on the simulator to be the same regardless of these choices; that is, all proto- 
cols and block sizes should see the same trace of references. With the execution- 
driven rather than trace-driven simulation we use, this is only possible if we make the 
cost of every memory operation the same in the simulations. Otherwise, if a reference 
misses with a small cache block but hits with a larger one, for example, then it will be 
delayed by different amounts in the interleaving in the two cases. It would therefore 
be difficult to determine which effects are inherently due to the protocol and which 
are due to the particular parameter values chosen. Third, realistic simulations that 
model contention take much more time. The disadvantage of using this simple model 
even to measure frequencies is that the timing model may affect some of the frequen- 
cies we observe; however, this effect is small for the applications we study. 

The illustrative workloads we use are the six parallel programs (from the 
SPLASH-2 suite) and one multiprogrammed workload described in Chapters 3 and 
4. The parallel programs run in batch mode with exclusive access to the machine 
and do not include operating system activity in the simulations, whereas the multi- 
programmed workload includes operating system activity The number of applica- 
tions used is relatively small, but the applications are primarily for illustration as 
discussed in Chapter 4; the emphasis here is on choosing programs that represent 
important classes of computation and with widely varying characteristics. The fre- 
quencies of basic operations for the applications appear in Table 4.1. We now study 
them in more detail to assess design trade-offs in cache coherency protocols. 

Bandwidth Requirement under the MESI Protocol 

We begin by using the default 1-MB, single-level caches per processor, as discussed 
in Chapter 4. These are large enough to hold the important working sets for the 
default problem sizes, which is a realistic scenario for all applications. We use four- 
way set associativity (with LRU replacement) to reduce conflict misses and a 64-byte 
cache block size for realism. Driving the workloads through a cache simulator that 
models the Illinois MESI protocol generates the state transition frequencies shown 
in Table 5.1. The data is presented as the number of state transitions of a particular 
type per 1,000 references issued by the processors. Note in the table that a new state, 
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Ocean 

E g E 0 0000 0.0000 0.0153 0.0002 0.0010 
LL 

S 0.0029 0.2130 0 97.1712 0.1253 

M 0.0013 0.0010 0 0.1277 902.782 

NP 0 0 0.0000 0.6593 0.001 1 

1 0.0000 0 0 0.0002 0.0003 

E g E 0.0000 0 0.4454 0.0004 0.2164 
LI 

S 0.0339 0.0001 0 302.702 0.0000 

M 0.0001 0.0007 0 0.2164 697.129 

NP 0 0 1.2484 0.9565 1.6787 

I 0.6362 0 0 1.8676 0.001 5 
E E 0.2040 0 14.0040 0.0240 0.9955 
LL 

S 0.4175 2.4994 0 134.71 6 2.2392 

M 2.6259 0.0015 0 2.2996 843.565 

Radiosity NP 0 0 0.0068 0.2581 0.0354 

I 0.0262 0 0 0.5766 0.0324 

Radix 

M 0.044232 11.53127 0 4.031 57 802.282 

continued 
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. . 
Table 5.1 State Transitions per 1,000 Data Memory References Issued by the Applications 

To 
, -  
, A Application NP I E S M 

Raytrace 

Multiprog 
User Data 
References 

Multiprog 
User 
Instruction 
References 

Multiprog 
Kernel Data 
References 

Multiprog NP 0 0 2.1799 26.5124 0 
Kernel 

I 0 0 0 0 0 
lnstruction 
References 

E 
E 0.8829 0 5.21 56 1.2223 0 

u 
S 24.6963 0 0 1,075.2158 0 

M 0 0 0 0 0 

The data assumes 16 processors (except for Multiprog, which is for 8 processors), 1 -MB four-way set- 
associative caches, 64-byte cache bldcks, and the Illinois MESl coherence protocol. 
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NP (not present), is introduced. This addition helps clarify transitions where, on a 
cache miss, one block is replaced (creating a transition from one of I, E, S, or M to 
NP) and a new block is brought in (creating a transition from NP to one of I, E, S, or 
M). The sum of state transitions can be greater than 1,000 even though we are pre- 
senting averages per 1,000 references because some references cause multiple state 
transitions. For example, a write miss can cause two transitions in the local proces- 
sor's cache (e.g., 5 4 NP for the old block and NP 4 M for the incoming block), in 
addition to transitions in other caches due to invalidations (l/yS/M 4 I). This state 
transition frequency data is very useful for answering "what if' questions. Example 
5.8 shows how we can determine the bandwidth requirement these workloads 
would'place on the memory system. 

EXAMPLE 5.8 Suppose that the integer-intensive applications run at a sustained 200 
MIPS per processor and the floating-point-intensive applications at 200 MFLOPS per 
processor. Assuming that cache block transfers move 64 bytes on the data bus lines 
and that each bus transaction involves 6 bytes of command and address on the 
address lines, what is the traffic generated per processor? 

Answer The first step i s  t o  calculate the amount of traffic per instruction. We 
determine what bus action is taken for each of the possible state transitions and 
therefore how much traffic is associated with each transaction. For example, an M 
+ NP transition indicates that, due t o  a miss, a modified cache block needs t o  be 
written back. Similarly, an S -t M transition indicates that an upgrade request must 
be issued on the bus. Flushing a modified block response t o  a bus transaction (e.g., 
the M + S or M + I transition) leads t o  a BusWB transaction as well. The bus 
transactions for all possible transitions are shown in Table 5.2. All transactions 
generate 6 bytes of address bus traffic and 64 bytes of data traffic, except BusUpgr, 
which only generates address traffic. We can now compute the traffic generated. 
Using Table 5.2, we can convert the state transitions per 1,000 memory references 
in Table 5.1 t o  bus transactions per 1,000 memory references and convert this t o  
address and data traffic by multiplying by the traffic per transaction. Then, using 
the frequency of memory accesses in Table 4.1, we can convert this t o  traffic per 
~nstruction. Finally, multiplying by the assumed processing rate, we get the address 
and data bandwidth requirement for each application. The result of this 
calculation is shown by the leftmost bar for each application in Figure 5.18.~ 

5. For the Multiprog workload, to speed up the simulations, a 32-KB instruction cache is used as a filter 
before passmg the instruction references to the 1-MB unified insuucuon and data cache. The state transi- 
tion frequencies for the instruction references are computed based only on those references that missed 
in the L1 instruction cache. This filtering does not affect how we compute data traffic, but it means that 
instruction traffic is computed differently. In addition, for Multiprog we present data separately for kernel 
instructions, kernel data references, user instructions, and user data references. A given reference,may 
produce transit~ons of multiple types for user and kernel data. For example, if a kernel instrucuon miss 
causes a modified user data block to be written back, then we will have one transition for kernel instruc- 
tions from NP 4 WS and another transition for the user data reference category from M 4 NP 
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Table 5.2 Bus Actions Corresponding t o  State Transitions in Illinois MESI Protocol 

NP - - BusRd BusRd BusRdX 

I A - BusRd BusRd BusRdX 

E - - A - - e E 
L L  

S A - Not possible - BusUpgr 

M BusWB BusWB Not possible BusWB - 

The calculation in the preceding example gives the average bandwidth require- 
ment under the assumption that the bus bandwidth is enough to allow the proces- 
sors to execute at full speed. (In practice, bandwidth limitations may slow 
processors and events down, which in turn would lead to lower traffic per unit 
time.) This calculation provides a useful basis for sizing the number of processors 
that a system can support without saturating the bus. For example, on a machine 
such as the SGI Challenge with 1.2 GB/s of data bandwidth, the bus provides suffi- 
cient average bandwidth to support 16 processors on all the applications other than 
Radix for these problem sizes. A typical rule of thumb might be to leave 50% "head- 
room" to allow for burstiness of data transfers. If the Ocean and Multiprog work- 
loads were also excluded, the bus could support up to 32 processors. If the 
bandwidth is not sufficient to support the application, the application will slow 
down. Thus, we would expect the speedup curve for Radix to flatten out quite 
quickly as the number of processors grows. In general, a multiprocessor is used for a 
variety of workloads, many with low per-processor bandwidth requirements, so the 
designer will choose to support configurations of a size that would overcommit the 
bus on the most demanding applications. 

5.4.3 Impact of Protocol Optimizations 
C 

Gwen this base deslgn polnt, we can evaluate protocol trade-offs under common 
machine parameter assumptions, as illustrated in Example 5 9. 

EXAMPLE 5.9 We have described two  invalidation protocols in this chapter-the 
basic three-state MSI protocol and the Illinois MESI protocol. The key difference i s  
that the MESI protocol includes the existence of the exclusive state. How large is 
the bandwidth savings due t o  the E state? 

Answer The main advantage of the E state is that no traffic need be generated 
when going from E + M. A three-state protocol would have t o  generate a BusUpgr 
transaction t o  acquire exclusive ownership for the memory block. To compute 
bandwidth savings, all we have t o  do is put a BusUpgr for the E + M transition in 
Table 5.2 and recompute the traffic as before. The middle bar in Figure 5.18 shows 
the resulting bandwidth requirements. . 


