
VeszprCmi Egyetem, Miiszaki Informatika Szak

Digitiilis rendszerek 6s Sziimit6gtp architekttiriik I.

Tavaszi f616v, heti (5+1 bra)

ElbadSs jegyzet

0sszeSllitotta:
Katona A ttila

dr. Szolgay Pelter

DEFINITIOW 3 F COMPUTER ARCHITECTURE

. Computer architecture is an .abstraction of
the hardware; it is concarned,with t h e
structure and behavior of the hardware
without regwd to a pwticular s y s t e m .

Architectural attributes include the
functional components a s well a s the internal
form (Le., the structure) of these functional
components .

EXOARCHITECTURE VS. ENDOARCHITECTURE

CONTROL UNIT
DESIGNER'S

VIEW

DEFINITION OF COMPUTER
(cont.)

ARCHITECTURE

J

+ - USER'S VlEW
OPERATING SYSTEM

,

I
COMPILER

M O A R C H ~ C N R E HARDWARE - DESIGNER'S
LEVEL . SYSTEM - VIEW

INOIVIDUML

E N D O A R C H ~ ~ ~ R E COMPONENTS .

m u AND THEIR
INTERCONNECTlONS

CONTROL UNV MICFIOCOOE M I C R O A R C H ~ ~ ~ R E of c?u - pROGF.AMMERIS
LEVEL VIEW

Computer Design
and Architecture

L. HOWARD POLLARD
University of New Mexico

Prentice-Hall International, Inc.
Englewood Cliffs, N. J.

Computers have become a common fixture in today's society, prevalent not only
as a computational tool for scientific use, but also providing the control mechan-
ism for a wide variety of systems. Computers and computer-like devices are
found in appliances, automobiles, supermarket checkout stands, telephones, radios,
and televisions, where they are used to control the function of the device. They
are also found in information systems, such as office computer systems, inventory
control systems, and library reference systems. Computers form the basis for
engineering workstations, personal computers, and intelligent communication sys-
tems. These applications have become reasonable since the cost and size of com-
puter devices have decreased. Not only have computers proliferated into many
different areas, but the power of large "mainframe" computers has continued to
increase. These large machines provide the tools necessary for research and
applied technology in science, engineering, medicine, and many other areas. New
machines with more capabilities~will permit development of new techniques for
analysis and research in many areas.

The field of computer design encompasses a wide variety of disciplines,
each of which forms a necessary part of the whole system. The electrical nature
of the systems is understood through applications of principles of electrical
engineering. Included in this area is the semiconductor technology used to create
the logic, memory, processors, and other devices of a computer system. Different
technologies provide devices with different speeds, different power, and different
capabilities, and the task left to the system architect and computer designer is to
use these devices in reasonable ways to meet the design objectives of the system.

Other areas of electrical engineering are required in computer systems. The
power needed to drive the system must be transported, converted, isolated from
noise, and delivered'to the active devices in the system. Also, steps must be taken
to ensure that the devices do not generate noise which can propagate back into the
power supply system of the machine. The signals used to communicate between

devices also present a number of problems. As time allotted for information
transfer decreases, the connection can no longer be treated strictly as a wire; the
transmission line characteristics of the interconnect must be considered, and steps
taken to reduce any noise which may arise from reflections and impedance
mismatches. In short, all electrical aspects of the system are important in produc-
ing a computer system which will be both functional and reliable.

Another type of information needed to understand computer systems has
traditionally been the domain of computer science. This includes a knowledge of
the operating system, which provides a mechanism for control, not only of the
processor, but also of the input and output (110) system, the memory system, and
the user interface. It includes an understanding of semaphore operations, why
they are needed for resource management within both operating systems and pro-
grams, and the responsibilities of the processor architecture and implementation in
creating and managing semaphores. It includes a working knowledge of data
structures and their applications, both in the operating systems and in application
programs. It includes a knowledge of the operation and function of compilers, the
languages they work with and desirable characteristics of programs and subrou-
tines. It includes a wide variety of ideas and concepts utilized to apply the com-
putational and control capabilities of a computer system to the solution of prob-
lems encountered in different facets of science and industry.

Application of the computational capabilities of a computer system to real
problems also mandates an understanding of numerical analysis. A mathematical
model of a process can be created to provide a vehicle for studying the various
aspects of the problem. Conversion of the mathematical model into a computer
program results in representation of information in a limited fashion. That is, the
computer system can represent a limited number of values, and the user must
ascertain that the limits of the representation mechanisms and the arithmetic
interactions of the variables will not introduce unacceptable errors into the results.

Many of the aspects of the computer system relating to its logical structure,
its speed of operation, and its interconnection mechanisms are the domain of com-
puter engineering. This includes:

The design of the arithmetic elements used in a system, analyzing algorithms
and methods to produce the desired answers within an acceptable time.

The creation of the set.of instructions used to control the system, which define
the apparent structure of the system.

The interconnection methods for arithmetic units, memorys, registers, and other
units, which define the actual structure of the system.

The method used to define and control the data flow between the major por-
tions of the systems.

The techniques used to provide communication between the computer and other
devices, such as disks, tape units, and terminals.

An understanding of these aspects of the computer system provide a basis on
which reasonable decisions can be made - both in the design process, where a
computer system is being created, and in the application process, where the use of
different techniques results in improved performance for various problem areas.

This text has been written to address these computer design issues. Design
techniques and architectural issues for each of the above areas will be discussed

Chap. 1 : Introduction

and tradeoffs will be illustrated. However, before we consider some of the details
of computer systems, let us look at the origin of the modem computer.

1.1. Early Computational Devices

The early history of computers is fascinating, and we will not attempt here to give
a complete list of the machines and activities. This information is available in a
variety of texts [Hayegg, Stal871, as well as the series Annals of the History of
Computing. Since necessity is the mother of invention, computers came into
being to provide a mechanism for removing the drudgery from repeated calcula-
tions. As the techniques were explored, modified, and refined, new ideas and con-
cepts continued to emerge. There has always been tradeoff between the available
technology and the capabilities of the computing machinery (based on that techno-
logies). As the limits of one technique were reached, other ideas were generated
and explored to utilize different techniques to provide faster machines with more
features. As different technologies were used, alternate solutions and new features
were added to machines, and new machines (based on the new technologies) were
developed. This process continues to provide new devices and new capabilities as
the number of available computer systems expands.

One of the earliest calculating devices was created by the French
philosopher/scientist Blaise Pascal around 1642. This device, basically a mechan-
ical counter, was created to automate the,addition and subtraction process.
Numbers were expressed in decimal form on two sets of six wheels, one wheel for
each digit. Thus, the unit had the capability of manipulating six-digit numbers.
The digits of each number were represented by the position of the wheels, each of
which had the ten numerals engraved on it. One set of wheels acted as an accu-
mulator register, and another number was entered onto the second set of wheels.
The two sets were connected by gears, and when one set of wheels was turned,
the other set was incremented accordingly. The principle innovation of the sys-
tem was the creation of a mechanical carry device, which automatically incre-
mented the appropriate wheel position by one when the wheel of one lower
significance rolled over another decade. To handle negative numbers or subtrac-
tion, a complements representatidn was used.

Another mechanical calculating system was created around 167 1 by the Ger-
man philosopher/mathematician Gottfried Leibniz. This unit incorporated the
additionlsubtraction capability of the Pascal device, and extended it to perform
multiplication and division automatically. The multiplication operation was
implemented by using chains and pulleys, deriving the appropriate information
from sets of wheels which were used to identify the multiplier and multiplicand.
Like the Pascal device, this one utilized mechanical mechanisms to provide the
basic functions needed for computation. In fact, one could say that the Leibniz
device was the first four-function calculator.

A prolific scientist in the field of computing was Charles Babbage, an
Englishman who worked on two different computing systems, as well as creating
a wealth of supporting material that was ahead of its time. The first machine,
called the Difference Engine, was created around 1823 to automatically generate
mathematical tables. The machine was to not only calculate a number, but also
directly transfer this information to the plates used for printing the tables. The
only operatim supported was addition, but the addition mechanism could be used
repeatedly to create the desired result, using the method of finite differences to

Chap. 1 : Introduction 3

represent or approximate the functions needed. The Difference Engine consisted
of a number of mechanical registers, each of which stored a decimal number. The
registers were connected in pairs by an mechanical addition mechanism that func-
tioned much like Pasczl's calculator. To form a result, initial values were entered
into the registers, and the system could then be driven by a motor of some kind to
produce the final result. Although some difference engines were built, the unit
proposed by Babbage was never completed, partly because of mechanical diffi-
culties and partly because Babbage became more interested in a new device, the
Analytical Engine.

Whereas the Difference Engine was designed to create answers using the
technique of finite differences, the Analytical Engine was designed to perform any
mathematical function in an automatic fashion. The basic organization of the
Analytical Engine is shown in Figure 1.1; this system bears a striking resemblance
to the computers of today. The principle parts were the store, the mill, the control
section, and the output section. The store was a memory unit composed of sets of
counter wheels; the design called for storage of 1,000 numbers, each consisting of
50 digits. The mill, corresponding to the arithmeticflogic unit (ALU) in more
modem machines, was capable of performing the four basic arithmetic operations.
The output unit was intended to be either printed on paper or punched on cards.
The system was controlled by two sets of punched cards: the operation cards
identified the basic operation that was to be performed by the mill, and the vari-
able cards identified the source of the operands used in the calculation, as well as
the destination of the result. One of the most significant contributions of the
Analytical Engine was a mechanism for altering the sequence of operations
depending on the state of the machine, basically a conditional branch capability.
The testable condition was the sign of a number; if the number was positive, one
course of action was followed; if the number was negative, a different set of
instructions was identified.

Although the system was proposed and the design was worked on for many
years, only a small portion of the system was actually constructed. Had he been
successful in construction of the system, Babbage estimated that the time required
for an addition operation was on the order of a second, and the time required for a
multiplication was on the order of a minute. It is doubtful that a mechanical com-
puter of the size and complexity of the Analytical Engine could ever be built.

The Mill
(Arithmetic1 Printer and
Logic Unit) Card Punch

Instructions

Operation

\
\.. Program Information

Figure 1.1. Block Diagram of Babbage's Analytical Engine.

Chap. 1 : Introduction

A number of mechanical calculators were implemented in the early 1900s,
and these contributed to the general idea of automating the computing proccss.
Other mechanical devices would play a role in the advancement of computing
devices. One of these was the Jacquard Loom, a device that automated the weav-
ing of rugs by using patterns punched on cards. This device was actually opera-
tional by about 1801, and the idea of using cards for controlling machines was
used by Babbage and others. Another card-oriented machine was the punched-
card tabulating machine, invented by an American, Herman Hollerith. One of the
first use of Hollerith's card system was processing data taken in the 1890 census
of the United States. The characteristics of the population were punched on cards,
entered into the system, and counted mechanically. Hollerith formed the Tabulat-
ing Machine Company in 191 1, which later merged with several other companies
into a venture that would become International Business Machines. Card systems
were used for data entry and output in computer systems for many years.

During the late 1930s a German engineering student named Konrad Zuse
created several models of electromechanical computational systems. He chose as
the active unit of the system a mechanical relay, and used a binary number sys-
tem, rather than a decimal system, to represent the numbers. The first model, the
Z1, was a primitive machine, with minimal processing capability and a memory
based on mechanical relays. The third model, the 23, was completed in 1941.
This machine was also based on electromechanical relays, and is perhaps the first
operational program-controlled general purpose computer. The input was through
a punched tape mechanism, which utilized discarded photographic film in which
instructions were represented by hole patterns punched by the programmer. Most
of Zuse's machines were destroyed by the bombing of Berlin, and although Zuse
later received support from IBM and Remington Rand, his efforts did not greatly
influence the other computational systems that followed.

Another electromechanical system was created by Howard Aiken, a physi-
cist and mathematics projessor at Hanard University. Whereas it appears that
Zuse was not aware of the work of Babbage, Aiken did know of the previous
work, and followed some of the ideas presented there. The effort was initiated in
1939, and the Mark I became operational in 1944. Information was stored in
wheels like the Babbage machines, but the computational system was composed
of relays. It could store 72 23-digit decimal numbers, and instructions were input
into the system with a punched paper tape; each instruction contained an operation
and two addresses. Once operational it, could do an addition in 6 seconds and a
division in 12 seconds.

Perhaps the first electronic computer system was created by John V. Atanas-
off, a physicist at Iowa State College, which later became lowa State University.
Between 1937 and 1942 he and a graduate student. Clifford E. Berry, worked on a
system that would perform gaussian elimination solutions for sets of equations.
Their system was totally electronic in nature, and used capacitors to store infor-
mation, in much the same way that dynamic RAMS (random access memories)
store information on capacitors created with semiconductor technology. He also
used a binary number system for information representation, and organized the
functional units by separating the logic and arithmetic portion of the system from
the memory portion, as well as the 110 portion. The resulting computational sys-
tem performed adequately, but the punched card 110 system introduced an error
about once every 10,000 operations. This portion of the system was used exten-
sively in the operation of the unit, and so the errors were unacceptable. However,

Chap. 1 : Introduction

before the source of the problem could be located and corrected, World War I1
interrupted work on the system. and further efforts were suspended.

The Computer Generations: Technology afid lnnovution

The early efforts in devising computing systems inspired the creation of other sys-
tems to perform automatic computation functions. As more experience was
obtained with computing machines, and as the technology changed, different com-
putational systems emerged. One of the ways of classifying the machines that
have followed is to group them into generations, using not only the chronological
position of the system, but also the characteristics and capabilities of the systems.

1.2.1 The first generation (??- 1953)

The first generation includes the early machines, as well as machines created
until the mid-1950s. These machines used either electromechanical elements or
tubes for logic, and a variety of mechanisms for memory. Some of the systems
were organized in a bit serial manner to more effective utilize the expensive
hardware devices. Some of the systems operated on entire words simultaneously.
to provide high speed operation. The first generation systems were primarily for
scientific purposes, with business applications a low priority. For the most part,
these machines were programmed at the machine level, and users of the systems
were expected to provide all data and all of the required program control.

One of the first well-known computers to use electronic components was the
ENIAC system (electronic numerical integrator and calculator). This system was
built at the University of Pennsylvania by John W. Mauchly and J. Presper Eck-
ert. Like many machines of this era, one of the principal motivations for the sys-
tem was the need to generate tables automatically. Work on the ENIAC project
began in 1943, and it was completed in 1946. The system was physically very
large, with over 18,000 vacuum tubes. The electronic nature of the unit resulted
in a system that was considerably faster than any previous computer system, with
an addition time of approximately 3 ms. The data memory of the system con-
sisted of 20 accumulator registers, each of which could store a 10-digit decimal
number with its sign. Each digit of storage required ten flip-flops, which were
organized as a ring counter: the active flip-flop indicated the value of the digit
stored in that digit position. Each of the accumulators in the system combined
arithmetic (addition and subtraction) logic with the storage logic. Hardware units
were also provided for multiplication, division, and square root calculation. As
can be seen from the ENIAC block diagram included in Figure 1.2, data input to
the system was provided by a card reader system, and output was either printed or
punched. The connections within the system were physically made with wires
configured on panels; to connect one accumulator to another, the appropriate
points were manually connected to one another. The programming was also
accomplished manually, setting switches and establishing connections with cables
between control points. In addition, constants used during the computation could
be stored in the function tables and used as needed.

The ENIAC system was very cumbersome to program, since the program
was actually determined by the physical arrangement of the cables in the system.
The next step was to create a system in which the program would be stored in
memory along with the data, so that the program could be altered by modifying

Chap. 1 : Introduction

1 ca; 1 i 1
Reader and Card

Accumulators

T I
t t t

Master
Control

Unit

:; t
Data
Lines

Y

Figure 1.2. Block Diagram of ENIAC.

the contents of the memory during program execution. It is interesting to note
that, in the Harvard Mark I and other machines (see the block diagram of ENIAC
in Figure 1.2), the data was kept separate from the program. This mechanism,
often called the Harvard architecture, can be found in many systems today, espe-
cially systems like real time digital signal processing units. The benefit is that
there are independent paths to data memory and control memory, and both can be
used simultaneously; this leads to a higher effective system speed. The cost of
this mechanism is that two separate memory units must be provided, with their
data paths, addressing decoders, and other costs. This not only results in a higher
costs associated with the memory, but also imposes different limits on the system.
That is, one program may utilize all of the available program space and need
more, while not making use of all of the data memory; another program may
require very little program memory, but need more data memory than is available.
The next architectural change combined the two memories, which permitted the
program to be modified as mentioned above, but which also allowed the available
memory to be used by program or data as required by the system.

In 1945 John von Nuemann, a Hungarian-born mathematician who was a
consultant working with Mauchly and Eckert on the ENIAC, proposed the creation
of a new system, the EDVAC (electronic discrete variable computer). This system
was to operate on what is called the stored program concept, where the program
and data share the same memory, and thus the program could be modified to
extend the possible execution modes. Although there is evidence that this concept
did not uniquely originate with von Neumann and his colleagues, his name is
most often attached to it. The EDVAC system was developed at the University of
Pennsylvania, and differed in many respects from the previous systems. Like
Atanasoff's machine, it utilized a binary number system to represent the informa-
tion. The storage area was much larger than earlier systems, capable of storing
1,024, or lK, words of information. In addition, the system had a secondary
storage unit capable of storing 20K words. Both of these memories were made
from serial delay lines, the main memory from mercury delay lines, and the larger
storage unit from magnetic delay lines. Because of the serial nature of the delay

Multiplier

Chap. 1 : Introduction 7

4 4 4 4

-
Control lines

Function
Tables

Divider
and

Square
Root
Logic

*1

I

I I

I A2
I
I A20

line storage, and to minimize hardware costs, the arithmetic was performed in a
serial fashion, working on a single bit at a time. The words were 44 bits long,
and there were three basic types on instructions. Arithmetic instructions were of
the form:

The OP identified the operation to be performed (+, -, x, or t), and the Ai
specified the addresses involved. The function was performed on the information
stored at the locations specified by A l and A2, and the result was placed at the
location specified by A3. The next instruction to execute was found at location A4.
The format for the conditional branch instructions was similar:

If the number stored at A l is not less than the number stored at AZ, the next
instruction to execute is located at A3; otherwise, the next instruction to execute is
located at A4. The other type of instruction was an input/output instruction of the
following format:

If the (1,2) choice was a 1, then the words from Al to A3 were stored on the delay
line wire N. If the { 1.2) choice was a 2, then information from delay line wire N
was transferred to locations starting at A l and ending at A3. Again, the next
instruction to execute was located at A4. Actual input and output operations
moved information directly to and from the delay lines.

A number of observations can be made about this system, two of which we
will identify here. First, this was a memory-to-memory architecture, and no regis-
ters were involved in the instructions. Second, there was no default "next"
instruction; each instruction identified the location of the instruction which was to
follow. These architectural decisions resulted in some unique system characteris-
tics, and incurred one set of costs. In comparing architectures, much can be
learned by comparing their use of specific system resources. For example,
instructions that required four separate addresses necessitated instruction words
long enough to include all four identifiers; for 1K locations, this was 10 bits per
address, or 40 bits total for the four addresses. Thus, only four bits were left to
identify the instruction itself.

In 1946, von Neumann, along with Arthur W. Burks and Herman H.
Goldstine, made a proposal to the Army for a new computer system that com-
bined many of the characteristics of the previous machines and added some new
concepts. This machine was called the IAS after the Institute for Advanced Stu-
dies at Princeton, where the work was done. The machine was worked on for
many years, and finally became operational in 1952. This system formed a basis
for many of the computers that followed, so we will describe some of its charac-
teristics.

The unit was constructed from a few basic modules: the memory, the arith-
metic units, the control unit, and the input/output capabilities. Since IAS was
principally a computer, the four primary arithmetic functions were supplied in
specialized hardware. One of the operands required for the arithmetic functions
was located in a predefined register, the other operand was obtained from

Chap. 1 : Introduction

memory, as with EDVAC. The result of the operation was placed in the accumula-
tor. Thus, only one address was reqilired with the instruction, and the instruction
length could be correspondingly smaller. Aiso, instead of having each instruction
identify the location of the subsequent ins:ruction, the next instruction to execute
was assumed to be located in the next location in memory; this further reduced
the address requirement in an instruction. This type of organization became
known as a single address machine, since only one address was required in any
instruction.

The memory of the IAS system was provided by an array of X-Y cathode ray
tubes, each storing a 64x 64 array of bits. Thus, the memory had 4,096 locations
for storage of either data or instructions; an address to specify a unique location in
the memory required 12 bits. Transfer of information between the memory and
the other portions of the system occurred over a parallel path, which provided a
higher speed system than the serial information transfers used in EDVAC.

The word size was selected based on the expected numerical accuracy
required by the workload, in conjunction with the number of bits required to

'

represent the instruction and the address. The formats are shown in Figure 1.3.
Eight bits were selected to represent the operation code of the instruction,
although fewer bits could have been used. The single address required by an
instruction required an additional 12 bits. These two elements could be contained
in a word size of 20 bits, but the arithmetic precision offered by 20-bit words was
not sufficient to solve the problems for which it was intended. Therefore, the
word length was extended to 40 bits, and two instructions were included in each
program word in memory. The data was represented in a fixed point scheme,
with a sign bit, an assumed radix point, and 39 bits of fractional data. This for-
mat also permitted the bits to represent integers, if appropriate assumptions were
made about the data manipulation techniques.

The instructions of IAS are included in Table 1.1; the original nomenclature
has been changed to a more descriptive method similar to the instruction sets of
more recent machines. The instructions identify the manipulations that can be
controlled by a programmer in moving data in the system. A block diagram of
the organization of IAS, its modules and their interconnection paths is given in
Figure 1.4. Table 1.1 identifies several types of instructions that move informa-
tion within the system. The data transfer instructions move information between
the memory and the two data registers: the ACCUMULATOR and the MQ
(multiplier-quotient) register. The arithmetic instructions operate on the data

Sign
Bit

I
I
I

,,,---- Left Instruction ----> . I-

-

I
>. ,'

Right Instruction ---..
lnstruction

I Word

Number
Word

Operation
Code I Address

7'

Operation
Code I Address

d- 8 bits :I: 12 bits L 8 bits :I. 12 bits ----A

Figure 1.3. Data and Instruction Formats for IAS.

Chap. 1 : Introduction

Table 1.1 Instructions for IAS.

Data transfer instructions

Instruction Description

LDA X
LDAM X
ABS X
ABSiM X

LDM X

MQ A
STOR X

Load ACCUMULATOR with value stored at location X.
Load ACCUMULATOR with negative of value stored at location X.
Load ACCUMULATOR with absolute value of number stored at location X.
Load ACCUMULATOR with negative of absolute value of number stored at
location X.
Load MQ register with value stored at location X.
Load ACCUMULATOR with value stored in MQ register.
The value of the ACCUMULATOR is transferred to location X.

Arithmetic instructions

Instruction Description

ADD X Add number stored at location X to ACCUMULATOR.
SUB X Subtract number stored at location X from ACCUMULATOR.
ADDABS X Add absolute value of number stored at location X to ACCUMULATOR.
SUBABS X Subtract absolute value of number stored at location X from

ACCUMULATOR.
MULT X Multiply the number stored in MQ register by value stored in location X,

leave 39 most significant bits in ACCUMULATOR, and leave 39 least
significant bits in MQ register.

DIV X Divide value in ACCUMULATOR by value stored at location X; leave
remainder in ACCUMULATOR and quotient in MQ register.

LFTSHFT . Multiply the number in the ACCUMULATOR by 2, leaving it there.
RGTSHFT Divide the number in the ACCUMULATOR by 2, leaving it there.

Jump instructions
- - - - -

Instruction Description

JMPL X Next instruction to execute is in most significant half of location X.
JMPR X Next instruction to execute is in least significant half of location X.

Conditional branch instructions

Instruction Description

BRANCHL X If number in ACCUMULATOR is nonnegative, next instruction to execute
is in most significant half of location X.

BRANCHR X If number in ACCUMULATOR is nonnegative, next instruction to execute
is in least significant half of location X.

Address modification instructions

Instruction Description

CADRL X The address bits (12 least significant bits) of the most significant half of
location X are replaced with the 12 least significant bits of the
ACCUMULATOR.

CADRR X The address bits (12 least significant bits) of the least significant half of
location X are replaced with the 12 least significant bits of the
ACCUMULATOR.

located in the data registers; operands are retrieved f rom memory as needed, and
the results are left in the registers. T h e jump instructions and the branch instruc-
tions allow program control to be moved to another location in the memory by

Chap. Introduction

. , . ,,
Central Processing Unit

I ArithmeticILogic
Unit I

* I

I Data Register I

InputIOutput
Equipment

Figure 1.4. Block Diagram Representation of IAS.

I I I I

modifying the contents of the control registers. The address modificatiori instruc-
tions allow a program to dynamically modify the instruction stream. The registers
in the program control portion of the system include the program counter (PC), the
address register (AR), the instruction register (IR), and the instruction buffer regis-
ter (IBR). The PC is responsible for identifying the location in memory where the
next instruction will be found. The contents of the PC and the instruction stream
are used by the AR, which specifies the address to be used in main memory.
Memory interaction is accomplished by transferring information to and from the
data register. When an instruction pair is extracted from memory, the active
instruction is directed to the IR, and the other instruction is sent to the IBR to
await the time of execution. Note that instructions listed do not support
input/output operations; transferring information to and from IAS was accom-
plished by moving blocks of data to and from main memory via the registers in
the data processing unit.

Note that the instruction set had three different ways to deal with the loca-
tions in memory. If the location was used in a data transaction, the entire word
was used. If the location was used as the target of a jump or a conditional branch,
then the appropriate half of the word was utilized. Finally, modification of the
address bits of one the two instructions is possible.

I

Chap. 1 : Introduction 11

IBR PC
A

Main
Memory

v

AR 1

Control Addresses
System

Program Control Unit

m

v

A

T

Although this machine was more capable in many respects than the earlier
machines, a number of shortcomings became evident as the machine was used.
The address modification mechanism was awkward to utilize in an efficient way,
and later machines extended the accessing methods to facilitate identification of
operands. One of the obvious omissions is a method of structuring programs, that
is, a subroutine call-return mechanism. This would facilitate using a single sec-
tion of code to implement often occurring functions. The scientific nature of the
expected workload is evident from the instruction set; programming logical or
nonnumerical types of operations was somewhat difficult to accomplish. Systems
that handled these problems in a different way, as well as those using different
technologies, became more prevalent as new systems moved into another genera-
tion of machines.

1.2.2 The second generation (1 952- 1963)

Many of the first machines were single systems, created for a specific prob-
lem or set of problems. As the possible applications of the systems became evi-
dent, commercial systems were created. IBM and Sperry enjoyed the most com-
mercial success, being joined later by other firms. The second generation of
machines brought to light the methods and lessons learned earlier, together with
new technology for both functional units and storage. The transistor, invented in
the late 1940s, became one of the principle active devices in computer systems,
although tubes continued to play a role. The use of transistors greatly reduced the
power required to run a computer system, as well as increasing the speed of
operation. Core memories provided a faster, more reliable storage medium for the
main memories needed in the new systems. New methods were used to identify
the location of operands used in the transactions in the machine. Floating point
arithmetic was introduced to remove from the computer user the burden of scaling
all of the data and arithmetic to fit the available operations. This period also saw
the start of computer languages, such as Fortran and Cobol, which allowed the
users of the machines to create programs without knowing all of the details of the
internal operations of the machines. Independent input/output processors removed
the time-consuming transfer of information to and from the system from the CPU
(central processing unit) itself; this allowed the CPU to spend its time doing useful
work. These systems also provided the user with some system software: batch
processing facilities, libraries, and compilers.

The influence of the first generation on the machines of the second genera-
tion is evident by comparing block diagrams of machines from each era. Figure
1.5 gives a block diagram representation,of the IBM 7094. The IBM 709X series
of machines were 36-bit systems, with the data formats shown in Figure 1.6. The
system is a single address machine, but with this system the address register can
specify information based not only on the contents of the program counter, but
also on the content of index registers and combinations of registers. This addi-
tional capability adds to the flexibility of the system, but it also requires additional
complexity in the control unit and in the specification method. The instruction
format has expanded to fill the entire 36-bit word; the operation code must not
only identify the desired function, but also the manner in which the address must
be treated to identify the location of the operand. This requires several bits of the
operation code to identify one of the eight index registers, and the manner in
which the address is to be constructed. In addition to the instruction format, Fig-
ure 1.6 identifies two different data formats, one for integer data, and one for

Chap. 1 : Introduction

Data Register 1

Memory Control

Operator's Unit

Console (Multiplexer)

Magnetic
Drum

Storage

lndex
Registers

I 4

I IBR Index
Adders

V v I TI T I
IR AR

I PC

T
A

- Card

I "
Reader

Drum-Disk Magnetic-
Control Tape

Unit Storage

I T P
v I ,

I10 I10
Processor Processor
(Channel) (Channel)

I I 1 ' 1 1

I I

Control
System

Printer Magnetic
Diak

Storage

Main
Memory

(36 x 32768)

-

I

Addresses

Figure 1.5. Block Diagram Representation of the IBM 7094.

floating point data. The integer capability allows for "normal" incremental func-
tions, and the floating point capability provides for a combination of large and
small values to be used with minimal user worry. Also, a double precision float-
ing point format provides for a double length mantissa.

The IBR in this system is an instruction backup register, but it serves the
same purpose as the IBR in the IAS. However, in this case, the provision arises
not because two instructions can fit into the characteristic word length of the sys-
tem, but rather because the data path from main memory to the central processing
unit is 72 bits wide, and so two transfers can be effected simultaneously. The AR
and the PC specify the address and the location in memory where the program is
executing. The AC and MQ registers provide a similar function to the correspond-
ing registers in the IAS system.

Another difference in the system capabilities is evident by examining the
peripheral devices and their communication paths to the system. The 110 proces-
sors, called channels, have the responsibility of coordinating the transfer of

Chap. 1 : Introduction 13

i' 36 Bits ------I

Sign
Bit
I Exponent Mantissa

\p ,, \ / \

I I 8 Bits ! 27 Bits

Opcode Address --, /

Figure 1.6. Data and Instruction Formats for IBM 709X.

\/

information to and from the mass storage devices and the inputloutput devices.
These transfers are initiated by action of the CPU, but are camed out by the chan-
nels. When the transfer has been completed, the channel has the capability to
interrupt the action of the CPU, which will indicate the completion of the specified
action.

The more elaborate I/O system also added to the flexibility and efficiency of
the system. In earlier systems, the operation of the device was strictly single user
- whoever had physical access to the machine controlled the operation of the
system. The system then was dedicated to the task of one user, until that user
finished and relinquished the machine. This resulted in a large amount of dead
time when the system was idle. With the second generation systems, programs
were collected together into a "batch," and then fed one at a time into the memory
and executed. This increased the apparent speed of the machine, because it
minimized the time the central processing system was idle.

The creation of the transistor and related technology provided higher perfor-
mance in a much smaller package. The availability of these devices prompted
efforts to create machines capable of much higher execution rates than the "nor-
mal" computer systems. These machines are called supercomputers, and involve
a variety of techniques to improve the processing speed. One of the first efforts
was the LARC system (Livermore Atomic Research Computer), made by UNIVAC.
Another early system was the IBM 7030, also called the Stretch. These systems
pushed the technology to create faster systems, and also explored the use of paral-
lelism to increase system speed.

The parallelism at this stage took two basic forms: overlapped instruction
execution and the use of parallel processing elements. Overlapping the fetch and
execute portions of the computational process resulted in an apparent speed
increase by doing more than one thing at at time. While one instruction was
being executed, the next instruction was being fetched from memory. Higher
degrees of overlap could be achieved by dividing !he processing into even smaller
pieces, The use of multiple processors allowed one program to execute on one

21 Bits

Chap. 1 : Introduction

15 Bits I

processor while another executed on a second processor. The benefit came when
the systems resources (memory, I t0 processors, disks, etc.) were more fully util-
ized because of the increased processing. These early attempts at supercomputing
led the way to further advances in the next set of computers.

1.2.3 The third generation (1 962- 1975)

Early in the 1960s the promise of semiconductor technology began to make
itself felt. Integrated circuits, which combined many transistors in a single chip,
reduced the size and cost of computer systems. Not only did the integrated cir-
cuits have a great impact on the logic, but semiconductor memories became a
significant factor in the creation of computer systems. These memories would
eventually replace core memories as the primary memory element in a computer.
The high speed memories provided the needed technology to implement a tech-
nique known as microprogramming. This technique had been proposed by Mau-
rice Wilkes in England as early as 1951, but the technology was not available to
effectively utilize it. However, with memory speeds an order of magnitude faster
than the main memory speed, microprogramming was widely used. The regular-
ity involved in microprogramming allowed the complexity of the instruction sets
increase, without an undue increase in the complexity of the control system
needed to assert the control signals of the system.

The utilization of a CPU was raised above that of the second generation sys-
tems by means of multiprogramming, in which the system resources are shared
among several programs on "time-shared" basis. This resulted in part from the
advances made in'the set of programs that controlled the operation of the system,
which have become known as the operating system (0s). Operating systems con-
tinue to provide additional capabilities, such as improved compilers, shared
libraries, utilities, and accounting information.

The concurrent use of hardware segments in parallel or pipelined processing
was utilized in a variety of ways. Again, the objective of the mechanism was to
increase the apparent speed of the system. Along with the increased processing
speeds, a new technique for numerical programming was introduced, which is
called vector processing. A vector processor seeks to enhance system speed by
organizing the information into uniform sets called vectors, and applying the same
operation to all of the elements of the vector. This saves time because a single
instruction is used to specify many operations, and because the hardware can be
organized to take advantage of the one-after-another nature of the operands being
used in the vector operations.

One of the most prolific systems of this period was the IBM 360. This sys-
tem is interesting from a number of aspects, one of which is the manner in which
it came into existence. In 1964 an article in the IBM Jozirnal [AmB164] described
the various members of the 360 family. To this point in time, and in many cases
after, members of a "family" of computers came into existence as newer technol-
ogy made speed improvements possible, and as a customer base made investment
in the new machines reasonable. However, with the announcement of the 360
series of computers, the various members of the family were identified, and their
specific characteristics enumerated. Thus, if a customer wanted one level of per-
formance, one machine was purchased; a different level of performance, either
higher or lower, dictated a different choice. However, from the view of an assem-
bly language programmer, the systems were identical. This initiated into the com-
puter jargon the phrase, "instruction set architecture," which refers to the

Chap. 1 : Introduction 15

Main
Memory

appearance of the machine, not as defined by the functional units and interconnec-
tions of the hardware, but rather the apparent functional units and interconnections
that are activated or controlled by the instruction set. This leaves the hardware
designer free to create a system that uses whatever techniques are economically or
technically justifiable to create a system with a certain set of characteristics.

From the creation of the notion of an instruction set architecture, there have
been two uses of the term "architecture": one is to describe the actual functional
elements of a system and their interconnections; the other is to describe the
apparent structure of the machine as defined by the instruction set. In this text we
will be examine the instructions used to define a system, but also the interconnec-
tion methods and some of their implications.

A system level block diagram of a typical IBM 360 installation is shown in
Figure 1.7. The system is controlled by the CPU, which not only manipulates the
data in the main memory, but also controls the action of the UO channels. The
channels transfer information directly to and from the memory, and the CPU is
informed of the completion of the specified operation by use of an interrupt. Two
different types of channels are indicated, one for high speed operation (selector
channel), and one for low to medium speed operation (multiplexer channel). The
channels handle device specific 110 requirements, and communicate with each
device over a common set of interface lines.

The instruction set architecture of an IBM 360 system is shown in Figure
1.8. The fundamental size of the system is 32 bits, which was chosen for a
number of pragmatic reasons. This width is a multiple of 4 bits, which is the size
of the representation of BCD (binary coded decimal) digits; instructions are

171 T4 Fl Storage Storage Storage

Disk
Control

Unit
Control

Unit

1 ' InputlOutput
(Selector -

Memory
C- Channel) 110 Interface Bus

Control
Unit

I - InputlOutput I t0 Interface Bus
(Multiplexer - Channel)

T I v * Y

Control Control Control

I :nil U: , , U ~ i t ,
I Console I 1 card 1 1 Line /

Reader Printer

Figure 1.7. Block Diagram Representation of an IBM 360 Installation.

Chap. 1 : Introduction

16
32-bit
General

Registers
4 64-bit

Floating Point
Registers

Fixed-point Floating Point
Arithmetic

I C
Internal Data Paths

Data Reg &&;
Program Status

Word , I 1 ,
> Memory

Control Main
Unit Memory

Figure 1.8. Instruction Set Architecture of an IBM 360 CPU.

available to operate on BCD digits. It is also a multiple of eight bits, which is
used for character storage. Integers can be represented with either one or two
words, for single or double precision information. Floating point numbers can be
represented with one, two, or four words, for a variety of numerical capabilities.
Finally, instructions are composed of two, four, or six bytes, and will fit easily
into a 32-bit format.

The instruction set processor of an IBM 360 identifies 16 registers used for
storage of general purpose values. These can hold data to be used in normal cal-
culations, or they can be used to hold addresses that identify the location of
operands in main memory. In addition to the general registers, there are four 64-
bit floating point registers. These are used to hold operands in the execution of
floating point operations. The AR is used to identify the location of information
in main memory, which is accessed via the memory control unit. The 1R holds
the instruction being executed, and the PC is used to identify locations in the exe-
cution of the program. The PC is considered part of a set of information known
as the program status word (PSW). The PSW contains not only the PC, but also
information about the current status of the system, such as whether the last opera-
tion resulted in a positive or negative number, and so on. Also shown in the
figure are the apparent communication paths connecting the various units. These
connections may or may not be extant, which also applies to the functional units.
In smaller systems the functional units appear to be there, because the instructions
function as expected. However, the actions may be orchestrated by a micropro-
grammed control system which utilizes a single arithmeticflogic unit to accom-
plish all of the various capabilities of the system. However, on the higher end
models the functional units are there as expected, providing additional speed to
the system.

Chap. 1 : Introduction 17

Along with the advances in hardware, operating system advances continued
to modify the manner in which users interacted with the computer systems. Dur-
ing this time, concepts were developed that led to the implementation of virtual
memory systems. These systems present a uniform view to user programs of the
available system memory, and then map address requests in the user space (virtual
addresses) into the actual location of the information (real addresses). The operat-
ing system also presented to users an easily manageable access to the file system
for program and data storage, to the system utilities (editors, file manipulation,
etc.), and to the workhorse programs (compilers, etc.) As the systems became
more readily controlled and managed, the application areas in which computers
were utilized expanded.

As a result of the use of semiconductor technology to reduce the space and
power requirements required by computer logic, small computers could be created
with very useful capabilities. The result was the minicomputer, which provided
computational and control capabilities for a variety of applications. These sys-
tems utilized the same concepts as the larger machines, but worked on smaller
quantities of information, such as 12- or 16-bit words. This proliferation of
machines made the capabilities of computing systems available to a larger com-
munity of users. The computer lost some of its mystery, and became an inexpen-
sive, useful tool in the solution of a large variety of problems in science, industry.
business, and education.

1.2.4 Additional generations of computers (1 974-?)

Each advance in technology brings with it computer systems with more
capabilities. As the amount of logic and memory contained in a single integrated
circuit continued to increase, a new generation of computers emerged. This is
sometimes called the fourth generation of computers. These computers utilize
semiconductor devices almost exclusively for main memory as well as the active
logic required in the CPU and 110 controllers. The use of virtual memory systems
has become a standard feature of systems, in both large and small computers. The
proliferation of active devices and semiconductor memories has allowed the vir-1
tual memory techniques to be applied to high speed memories, called cache
memories. These units provide a relatively small high speed memory between the
CPU and main memory. The net result is an increase in the apparent system
speed, since the amount of time that a processor is idle decreases.

As the relative cost of the hardware portion of a system continues to
decrease, techniques that were at one time reserved for high performance
machines are routinely applied to smaller systems. The complexity available in
integrated circuits has allowed creating entire systems on a single chip. These
processors have progressed from the 4- or 8-bit processing elements, which were
available in the mid-1970s, to systems with complete 32-bit computer systems on
a single chip, such as the Motorola 68000 series of processors, which form a popu-
lar 32-bit processor system. Contained within the chip are not only the registers
and arithmetic units of a complex processing element, but also the virtual memory
facility and the interface to the physical system memory. Along with the
immense amount of processing capability, memory technology also provides
storage capacities unavailable in previous systems. In the !ate 1980s. a single
chip can now provide up to 4 megabits of storage capability, and 16-megabit
memories are in the experimental stage.

Chap. 1 : Introduction

The availability of low cost, high performance processors and memory dev-
ices resulted in personal computers for the home or office, in workstation comput-
ers for engineering and scientific use, and in multiprocessing systems useful in
many areas of computing. With the proliferation of computers have come dif-
ferent ways to provide communication between processors, such as token ring net-
works, collision detection, common wire networks, broadcast networks, and direct
connection networks. Fiber optics have opened new dimensions in speeds and
capabilities, and other communication mechanisms continue to evolve. Each of
these advances opens new doors to computer architects, and application of the
new technologies will result in even more exciting systems.

Another generation of computers, sometimes called the fifth generation, is
the target of different research and development efforts. This generation of
machines is not identified by the technology used to implement it, but rather by
the capabilities of the machine. The target is to create a system that is oriented to
human interaction, so that minimal specific knowledge on the part of the user is,
necessary to make use of the system. This "user friendly" type of a system will
result in improved abilities to use computers to meet needs in all endeavors which
can make use of computers. In addition, this new generation will be capable of
handling immense amounts of data. This will facilitate not only the traditional
mathematically intense programming, but also areas such as artificial intelligence
and natural language translation.

As advances in technology continue to give us new capabilities and
improved tools to work with, our challenge is to create systems that will not only
solve an immediate need, but which will also be capable of growth to solve future
needs.

Computer Design and Architecture:
The Organization of This Book

The preceeding brief history highlights the fact that the various architectures and
design techniques used in system implementation change and grow as more
experience is gained and as the available technology changes. A number of dif-
ferent design issues are involved in any design, and what is a good design or a
good architecture will not be the same from one implementation to another. How
"good" a design or an architecture is depends on how well it matches the goals of
the system, and the intended application area of the system will have a great
impact on the characteristics of the unit. To compare one technique against
another requires that a metric or a set of metrics be chosen, and that the relative
performance of the systems be compared using the chosen metrics as a measure of
how "good" the system is. The number and type of metrics chosen will directly
impact the comparison method and results of the evaluation. We will not try to
establish a specific set of metrics; rather, we will present different rnetrics
throughout the text to provide a basis for evaluation. The task of a system archi-
tect is to select the set of metrics that most closely reflects the goals for the sys-
tem.

An example of the evaluation mechanism and the metrics involved is avail-
able with the numerical calculation of the Fourier transform. The Fourier
transform can be used as a tool in a number of areas of research, and it has pro-
vided a wealth of knowledge in a variety of fields. The transform is simply
defined, and utilizes a set of input values to create a set of output values. The

Chap. 1 : Introduction 19

complexity arises because each of the input values must interact with all other
input values, which results in a computation requiring on the order of N~ multipli-
cations, which we represent as o (N ~) . In the mid-1960s a number of researchers
independently developed iin algorithm, or a set of algorithms, known as the fast
fourier transform (FFT). The FFT follows a carefully planned pattern to allow the
interaction between inputs required by the Fourier transform, but the operations
are done in such a way that some values are used a number of times. The net
result is a reduction in the number of multiplications required, from an algorithm
that requires 0(lV2) multiplies, to an algorithm which requires only 0(Nxlog2 N)
multiplies. This greatly increased the size of transforms that could be economi-
cally produced, since it reduced the amount of computer time required for the cal-
culation of a transform. The choice of the number of multiplies as the metric was
reasonable in 1965, since the multiply was the most time-consuming portion of
the algorithm. However, in today's technology, the multiply can be done very
rapidly with inexpensive hardware, so other metrics could be more useful and
result in algorithms that exhibit better performance than the straightforward FFT
algorithm. For example, instead of using a base 2 radix algorithm, a base 4 radix
algorithm could be used. This would actually result in more multiplies, but fewer
data transfers would be required to complete the calculation. By using both the
multiply time and the data transfer time, and the number of each required, better
choices can be made for the architecture of an algorithm or a computer system
created to do W s . A clearer picture of the overall response of the system will be
obtained as more metrics are included in the evaluation.

The design process involves application of basic principles to solve
engineering problems. In the process of learning the basic principles of computer
design and the application of those principles to solve the problems posed by
computer systems, it is not enough to simply explain the principle and to assume
that the application of the principle will automatically follow. For that reason,
this text makes extensive use of examples to illustrate the principles being dis-
cussed. It is hoped that the examples chosen and the design methods used will
illustrate not only the principle, but the application of that principle as well.
Thus, not only do the examples include block diagram representations of a solu-
tion, but the example will also, where appropriate, carry the application of the
principle to a hardware level, so that a real implementation is presented. In some
cases, the hardware included in the example is extensive, and the actual schemat-
ics and further explanations are included in Appendix B.

The design examples follow the ideas detailed by Fletcher [FletSO] in his
design text. Uniform application of these ideas will result in designs that are not
only functionally correct, but are also easily understood and debugged. Some of
the specific ideas we will mention here include the consistent use of:

The shape of gates to identify function.

The use of polarized mnemonics.

The use of logical state indicators.

The use of incompatibility triangles.

All of these ideas are related to one another, and all deal with the issue of com-
munication of ideas.

In the creation of a design to perform a specific function, a designer can
implement a system that performs the desired work and matches all system

Chap. 1 : Introduction

criteria. But if the designer is unable to communicate these ideas and this design
to anyone else, then no benefit is derived. One of the greatest challenges encoun-
tered by technica!ly oriented people is to communicate their ideas not only to their
colleagues, but also, perhaps more importantly, to the people who would benefit
from application of those ideas. By following a consistent method for providing
drawings and presenting designs, the ideas and concepts can be more readily
understood.

Random logic is used extensively in computer design, not only to create the
functional units of a system, such as adders and registers, but also to test condi-
tions and create control signals. The logic provides an active function, and is not
simply created to check for "true" or "false" conditions. This active nature of
logic is reflected in the creation of the designs used in this book. We do not refer
to signals as "true" or "false," but rather, a signal is either ASSERTED or
UNASSERTED. A signal will be ASSERTED when the conditions required for the
appropriate action are satisfied. If these conditions are not satisfied, then the sig-
nal will be UNASSERTED. In order to identify the action of the signal, polarized
mnemonics will be used; that is, the names used to identify a signal will also
identify its function. For example, a signal used to enable a data value onto a bus
might be called DATA-ENABLE. If a name is too long, it can be shortened in a
manner that will maintain the information. For example, the previous name could
be shortened to D-ENBL. The other information that needs to be added to the
name is an indication of the binary level at which the signal will be ASSERTED.
This is done by appending to the end of the name a polarization indicator. If the
signal is ASSERTED when the voltage of the line is high, then a hyphen and the
letter H is added to the name. If the signal is ASSERTED when the voltage of the
line is low, then a hyphen and the letter L is added to the name. If the data enable
line is asserted low, then the name could be D-ENBL-L. The consistent use of
polarized mnemonics will provide a basis for better understanding of the design
and for better communication. It also will help the designer when, six months
later, the design is revisited.

When representing the gates used to perform the logic work in a digital sys-
tem, the shape of the gate should indicate the function being performed. The
three basic shapes are the AND shape, the OR shape, and the BUFFER shape:

AND shape OR shape BUFFER shape

Like the names of signal lines, the inputs and outputs of a logic gate should iden-
tify the assertion levels involved. This is done by the use of logical state indica-
tors, which are the "bubbles" appearing on some of the leads of a gate or a logical
block. If a. logical state indicator is present, then that line is asserted low. If a
logical state indicator is not present, then that line is asserted high. For example,
consider the equation used to implement the carry of a full adder:

We know from basic digital derign implementations that this can be implemented
with two levels of NAND gates, one for the ANDing function and one for the

Chap. 1 : Introduction 2 1

ORing function. However, when the shape of the gate, the use of polarized
mnemonics, and the use of logical state indicators all come into play, then the gat-
ing will appear like:

Polarization agrees
with absense o f

logical state indicator
Polarized r n n e y A-H /

B-H

C-IN-H

4-H

AND shape for first
level of logic

The various configurations for the basic gates is shown in Figure 1.9. Each can
be used in either an ANDing or an ORing function, and the buffer can provide
level conversion or not, as needed by the logic.

As can be seen from the gating for the carry shown above, the normal situa-
tion is for an output with a logical state indicator to supply a signal to an input

NAND gate in ANDing function NAND gate in ORing function

NOR gate in ANDing function NOR gate in ORing function

AND gate in ANDing function AND gate in ORing function

OR gate in ANDing function OR gate in ORing function

Inverter to change from Inverter to change from
HIGH assertion level to LOW assertion level ta
LOW assertion level HIGH assertion level

Figure 1.9. Basic Gates in and Their DcMorgan Representations.

Chap. 1 : Introduction

with a logical state indicator. Also, an output with no logical state indicator will
normally drive inputs that do not have a logical state indicator. However, some-
times this does not happen, and this condition is called an incompatibility. There
are two times when this incompatibility will occur: at the input of an ANDing
function and at the input of an ORing function. Consider the two functions below:

OUT-H

ENBL-H

OUT-H

DISABL-L 9-
The first function shows an incompatible signal at the input of an OR function.
When the signal (ENBL-H) is asserted, then the output (OUT-H) will be the logical
OR of the remaining inputs. When the signal is not asserted, then OUT-H will be
asserted, regardless of the level of the other inputs. Thus, an incompatibility at
the input of an ORing function provides an enabling action: when the signal is
asserted, the OR function is enabled; when the signal is not asserted, the OR func-
tion is disabled. The second function shows an incompatible signal at the input of
an AND function. This time the incompatibility provides a disabling function.
When the signal is asserted, the AND function is disabled, and the output will not
be asserted, regardless of the level of the other inputs. When either of these cases
arise, the fact that the designer created the incompatibility on purpose is indicated
by the use of the small incompatibility triangle at the input. This is a signal from
the creator of the design to anyone looking at the circuit that a high asserted sig-
nal feeding a low 'asserted input, or a low asserted signal that provides input to a
high asserted signal, is not an oversight or a mistake, but rather a result of the
design process.

These simple procedures will lead to systems that are easily understood and
implemented. As an example, consider the task of creating a gating circuit to
detect the address 7760008 on an address bus that consists of 18 lines. One logic
circuit to do this is shown in Figure 1.10. The drawings used in this book make
extensive use of buses, which are merely a collection of wires. The name of the
bus should follow the same polarized mnemonic convention mentioned above.
The width of the bus and the range of the elements contained in it are identified
by the use of the pair of numbers in parentheses: the ADDRESS(17:O)-H nomencla-
ture identifies that the address lines range from ADDRESS(17)-H to ADDRESS(0)-H.
The H on the end identifies the fact that the assertion level is high for this bus.
Note also that the elements that are split off from the bus will identify which wire
of the bus is involved. The gates used to detect the address include two NAND
gates used in an ANDing function, and two OR gates, also used in an ANDing
function. The incompatibility triangles identify the fact that the high asserted bus
is knowingly directed to the low asserted input. The AND shape of the lower gate
indicates that the output will be asserted (high) if ADDRESS(0)-H is not asserted,
AND ADDRESS(1)-H is not asserted, AND ADDRESS(2)-H is not asserted, AND
ADDRESS(3)-H is not asserted, AND ADDRESS(4)-H is not asserted. The shape of
all of the gates in this book can be similarly interpreted to identify the function
performed.

As mentioned above, information transfer within a computer system is often
performed on a collection of wires called a bus. To provide an additional piece of
information about the transfer of information on the bus, the direction of informa-
tion flow will sometimes be indicated with a small arrow, as shown with the

Chap. 1 : Introduction 23

Range of bus identified
\

Assertion level of bus

ADDRESS (17: 0) -H

Bus is indicated by
heavy 'bus1 connection 14

Splitter
member of bus

/
Incompatibility triangles

Figure 1.10. Implementation of an Address Decode Logic Circuit.

address bus above. If information can be transferred in both directions along a
bus, this is indicated with a double ended arrow.

Since buses will be very important in the structure of systems, and in the
logic used to implement examples in the text, a brief word about their function is
in order. Buses can be created with a number of techniques, but we will mention
only two, both diagramatically shown in Figure 1.1 1.

The first technique shown in the figure is the open collector method, in
which the collector of the final transistor of a gate (or a functional block, such as
a register) is not connected internally to any element. The effect of this mechan-
ism is that, when the transistor is tumed "on," the output will sink current, and the
output voltage will go to a small value, usually near 0.4V. When the output
transistor is not turned "on," no current is requested from the output, and the out-
put voltage level is not influenced by that transistorlgate. Thus, an external pullup
of some kind must be provided, so that the output voltage will go high when there
is no transistor pulling it down. This mechanism will allow multiple outputs to be
connected together; the level of this common node will be allowed to go high
only if all output transistors are tumed "off." This ability can be used effectively
in a number of circumstances, as we shall see. A gate is often identified as an
open collector gate by the presence of a mark at the output of the gate, as shown
in Figure 1.1 1.

The other prevalent mechanism used for busing is also shown in Figure
1.1 1. This is called a tri-state capability, so named because the output can assume
one of three states. Two of the states are the "no~mal" states of a 'ITL gate: low

Chap. 1 : Introduction

Uncommitted ("open"

Logic o f gate collector
/

Logic o f

Open collector indicated
by mark at output

function
I

\: I

I
1 a
L - - - - - J r---- $

Output of
tri-state
device

Figure 1.11. Busing Configurations: Open Collector and Tri-state.

and high. The output will be low when the logic of the function creates a situa-
tion in which transistor "a" is turned "on." and transistor "b" is turned "off'; the
output will be high when transistor "a" is turned "off' and transistor "b" is turned
"on." The third state occurs when the logic of the function creates a situation
where both transistors "a" and "b" are turned off. In this case, the output is
electrically disconnected from the system, since the paths through transistor "a"
and through transistor "b" present an extremely high impedance. This third, high
impedance state is usually created by an enable (or disable) input to the function.

The enable line used to control the tri-state capabilities of a gate of function
can be included with a simple gate or with more complex functions. Figure 1.12
includes several examples of tri-state functions. Figure 1.12(a) shows a buffer
shape (from the basic shapes shown above), which also has an enable line. From
the presence of the logical state indicator on the enable line, it is evident that the
buffer function will occur when the enable line is asserted low; if the enable line
is high, then the buffer is electrically disconnected from the wire connected to the
output. The buffer shown in Figure 1.12(b) operates in exactly the same fashion,
except that the assertion level for the enable line is high. To require an enable
line for each output would be excessive, so often a single enable line is used for
an entire IC. Such is the situation depicted in Figure 1.12(c), which is often called
a tri-state driver: eight buffers are packaged in a single IC, and the enable lines (in
this case, asserted low enable lines) are connected together and made available on
a single pin. Finally, since it is possible to transfer information in both directions
through a tri-state port, Figure 1.12(d) shows a device configured to provide this
capability. The device is a transceiver, and both an enable input and a direction
input are used. Internal to the transceiver, two tri-state buffers are used for each
line, one in either direction (A to B, or B to A). When the enable line is not
asserted, the transceiver is electrically disconnected from both the A lines and the
B lines. However, when the enable line is asserted, the direction line will deter-
mine which set of buffers is enabled.

Chap. 1 : Introduction 25

Before continuing, we will mention one final set of devices to be used again
and again in the text. These are the register and the latch:

Register

m a

CU(

Latch

01

M) a

Em

Like the buffer of Figure 1.12(c), the register contains several elements
ganged together for a common function. In this case, the joined elements are
flip-flops, and in this configuration they are capable of storing a byte, or 8 bits.
The clock lead on the register is marked with a special symbol that indicates that
the function (in this case, a storage function) occurs on the rising edge of the
clock. That is, when a low-to-high transition occurs on the clock line, informa-
tion available at the input is transferred to the output. The next time at which a

T r i - s t a t e Bu f fe r T r i - s t a t e Buf fe r
w i t h Low True Enable w i t h High True Enable

(a) (b)

A1

DIR -
Driver : E i sh t T r i - s t a t e

~ u f f e r s - i n s i n g l e
package w i t h common

Low True Enable

Transceiver: T r i - s t a t e
Buf fe res packaged

back- t o-back t o prov ide
data f low i n - b o t h d i r e c t i o n s
Low True Enable asser ts data;
D I R l i n e s p e c i f i e s d i r e c t i o n

o f data f l ow

(d l

Figure 1.12. Tri-state Buffer Configurations.

Chap. 1 : Introduction

data inpilt can have an effect on its corresponding output is when the clock again
makes a low-to-high transition.

The latch function. as shown above, can also store a byte. Note, however,
that there is no dynamic indication on the enable line of the latch. The latch func-
tion is described as follows: as long as the enable line is NOT ASSERTED (a low
voltage level for this example), the outputs will be maintained at the value previ-
ously entered. So long as the enable line is ASSERTED (a high voltage level for
this example), the output will follow the input, until the enable line is
DEASSERTED, at which point the information will be stored in the latch. Thus, a
register, as used in this text, is an edge-triggered function, while the latch is a
level-sensitive function. (Note that latches can be created in other configurations
than 8 bits, such as a single bit latch.)

Registers and tri-state devices can be packaged together, which can save
board space and power. Registers, tri-state drivers, buffers, and transceivers will
be used extensively in the examples in this text. The elements will be identified
by their TTL device numbers, but the same functions are often available in other
technologies as well. The open collector and tri-state capabilities can be provided
with CMOS and other technologies, and the functions shown in the examples are
often available in device libraries for designing functions on a single IC chip.

From the days of Pascal to the present, computers have been used to work
with information, to do arithmetic, and to manipulate a variety of quantities.
Some of the machines have implemented schemes to do the work with decimal
quantities, but most of them use binary systems to represent the information. In
Chapter 2 we look at the representation of information, as well as mechanisms
that can be utilized to present different kinds of information. Not all number
schemes are created equal, and different methods will lead to different characteris-
tics in the ability of a system to represent values and in the amount of logic
required to work in a number system. Once a designer or a system architect
knows the limits to the various representations and schemes, then reasonable
engineering choices can be made about the use of number systems.

The techniques used to manipulate data is the subject of Chapter 3. Here
we examine techniques for doing not only addition and subtraction, but multipli-
cation and division as well. All of the basic operations can be implemented in
more than one way, and we will examine some of the assorted implementations.
Each method will present a different set of characteristics, and so the choice of a
metric will determine which type of algorithm or structure will be best suited for
an application.

Armed with the number systems and the arithmetic methods, we are ready
to consider the mechanisms used to specify work to be done by a computer.
Thus, Chapter 4 looks at instruction specification: what is both useful and neces-
sary at the instruction set level of a computer. Here we also introduce a register
transfer language (RTL), which can be used to specify the elementary operations
used to accomplish the work of the instruction. Again, the use of metrics, such as
the time and number of steps required, provides a basis on which to compare dif-
ferent ideas or implementation techniques. One of the instruction set ideas to be
examined is the ongoing debate on the complexity of the instruction set.

The control section of the computer coordinates the action of the various
modules making up the machine, the buses, arithmetic units, registers, and so on.
The action of the instruction set and the basic register transfers required ta imple-
ment i t are discussed in Chapter 4, and the creation of a control system to imple-
ment the instruction set is discussed in Chapter 5. Here we look at different

Chap. 1 : Introduction 27

techniques that can be utilized to assert the control signals required to move data
throughout the system. Again, these techniques are represented as both principles
and specific examples.

The subject of Chapter 6 is the input/output process - the techniques and
methods used to move information to and from the computer. From the earliest
days of computing machinery, this has been a requirement: how does the informa-
tion get transferred to the machine to start a computation, and what is required to
get the information out of the system? A number of methods are available, from
the simple programmed 110 to the more complex direct memory access. The
methods and their relative merits are presented, along with a discussion of dif-
ferent bus techniques utilized in the 110 process.

The storage and retrieval of the information required by a computer system
is discussed in Chapter 7. As the technology of memories has changed over the
years, the implementations have also changed. Memories have become larger,
and this trend will continue for the foreseeable future. In order to inaintain all of
the information needed in a system, a hierarchical memory system is utilized. At
one end of this system are the registers and cache memory systems needed to
keep pace with a high speed processor. At the other end of the system are the
slow speed devices, such as tape systems, where immense amounts of information
are maintained. In Chapter 7 we will discuss not only the implementation of
memories, but also some of the methods used in this hierarchy of storage devices,
such as virtual memory techniques and cache memory systems.

The desire for higher performance always pushes designers and system
architects to select approaches that most effectively utilize the overall system
resources. One mechanism for obtaining higher performance is to utilize con-
current events. That is, if two things can happen simultaneously, then the overall
system speed should increase. One method of doing this would be to have paral-
lel computer systems, which greatly increases the complexity of the hardware and
software problems needed to utilize a computer system. Another method to
achieve some of the benefits of parallel processing is to create a pipeline of
events. That is, the processing required by a system is divided into sections, and
independent operations are carried out in hardware created to perform each of the
sections. This technique is called pipelining, and in Chapter 8 we will examine
some of the issues involved. Pipelining will result in performance benefits, but
only if we are successful in keeping the pipe busy.

The following chapters provide some insights into the design process, along
with some techniques for comparing the benefits of one technique with another.
These techniques and ideas will be valid only when fully understood and applied
in reasonable ways.

1.4. References and Readings

LAmB1641 Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr., "Architecture of the IBM
Systeml360," IBM Jo~rrnnl of Rpsearcli und De\.elopment. Vol. 8, No. 2, April 1964,
pp. 87-101.

[B a d 4 1 Baer, J. L., "Computer Architecture," Compirrer. Vol. 17, NO. 10, October 1084,
pp. 77-87.

[BaerSO] Baer, J. L., Comp~rter Systems Architecture. Rockville, M D : Computer Science
Press. 1980.

Chap. 1 : Introduction

