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Arithmetic Units: Data Manipulation

If one considersthat a computer is ™ one that computes,” then perhaps the princi-
ple function of the machineis to operate on data. That is, we want to manipulate
information in a predetermined fashion, according to some rules and methods that
make sense. The earliest computers were built to do arithmetic at a higher rate
than previously attainable, a an accuracy providing the detail needed. These
machines were often used in some military capacity, such as building tables for
ballistics operations. In the last chapter we examined some of the methods for
information representation, and the limitations of those methods. In the next
chapter we will discuss the instructions that the machines utilize, that is, instruc-
tions to manipulate the information and instructionsto control the computer sys-
tem itself. In this chapter, we are concerned with the design of the circuitry for
doing the actua data manipulations, that is, hbw does one design circuitry for per-
forming additions, multiplications, and divisions?

Many timesin the discussion of a computer system we gather al of these
functions together and consider them to be performed by a single block of logic
called an arithmetic/logic unit (ALU). Such a block is shown in Figure 3.1. This
diagram is directly applicableto LSI ALUs, such as the "181 or '381; however it is
also applicable to dedicated units such as the THCT1010 Multiplier/Accumulator.
Some ALUs may require additional lines to provide a carry input or to handle
status bits on output. In the figure, the sourceof the operandsis left unknown, as
is the destinationof the result. The interconnection of the componentsis a func-
tion of the type of computer and its intended application, as we will discuss later.
But now our concern is with the ALU. Logical functionsare achieved by gating
the appropriate function to the output. For example, the function A AND 8 is
achieved by having each A; ANDed with the corresponding B, to derive F;, The
logic operationscan ¢ achieved with minimal gate delaysand is therefore arela-
tively fast operation. The more interesting operations are those required for the
arithmetic manipulations.
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Addition: the Universal Data Operation

One of the favorite questions asked by instructors teaching basic logic design is.
what is a universd logic gate? The basic premise demonstrated by this question
is that a NAND gate is considered a universd logic gate because dl of the basic
functions— AND, OR, EX-OR, and so on — can be derived by different combina-
tions of NAND gates. In a smilar fashion. NOR gates are also universa logic
gates. The same type of statement can be made concerning arithmetic operations
and the add function. All of the various arithmetic operations — add, subtract,
multiply, and divide — can be implemented by appropriate combinations of the
add function. First we will look at the full adder, and some variationsof it, then
we will consider the look-ahead carry process that can be used to speed up the
add function. Other applications of 4dd functions, such as the carry save adder or
the Wallace tree adder. will be treated with other functions such as multiply.

A basic cell that can be used to perform additionsis the full adder (FA).
shown diagrammaticallyin Figure 3.2(a). As shown, the function of the FA is to
add two bits (A; and By) and the carry fmm a stage of lower significance (Cin) to
produce a single bit of output {F} and a carry out to the next stage of higher
significance (Cour). Thr tuth table for this function is shown in Figure 3.2(b).
Severa observationscan be made after examination of the truth table. For exam-
ple, the function of a FA is to take three bits of equa significance — 4, 8,, and
Cin— and create two bits, F;, which has the same significance as the three input
bits, and Coyr, Which is one bit more significant. Another observationis that the
output forms a 2-bit number (Coyr, F3) Which indicateshow many *one" bitsthere
are in the three input bits. The four posshilities (0, 1, 2, 3) are the permissible
number of asserted bits on the inputs.

Figure 3.2 aso contains Kamaugh maps for Coyur and £, and the resulting
logic equations in sum-of-productsform. The sum bit (F;) is aso shown in an
exclusive-OR representation. The equations are then implemented with the
appropriate logic. The implementation of the sum bit is shown in the sum-of-
products NAND implementation as well as the exclusive-OR implementation. In
either case, the output bits are formed from two levels of logic. That is, between
any input and an appropriate output there are two gates, and hence two gate
delays. (One set of gatesisfor the AND function; the other set of gatesis for the
(R function.) Thisis true for any combinationa circuit: if oneis willing to util-
ize enough gates, each of which has the requisite number of inputs, it is possible
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to accomplishany logical function in two gate delays. It may not be desirable or
practicable, but it is possble. We will utilize this fact as we examine the times
required to perform various functions. Thus, to perform the addition of the two
bits4; and 8; with carry, requires two gate delays from the time that theinputsae
stable.

At this point it is useful to comment on the design methodology for combi-
national circuits, which is exemplified by the full adder. The first step in the
design of any combinational system is to understand the problem at hand, which
isa nontrivia requirement. Once the problem is understood, the problem and its
solution can be stated succinctly in prose, identifying the input and output vari-
ables. From the problem statement, truth tables can be established, equations
derived, and gating networks developed. When the solution is complete, smple
tests can be performed to ascertain that the outputsdo indeed perform the desired
function, and that the requirementsof the initial problem are satisfied.

For the full adder, the basic requirement is the addition of two numbers. As
we discuss the various arithmetic operations in this chapter, we will first seek to
understand the requirementsof the underlying process, then proceed to determine
a design which will perform the required work and meet the other needs of the
system. The simplified block diagram shown in Figure 3.2(a) seemsinnocuousin
appearance, but before progresscan be made toward a reasonable design. the pro-
cess which is being performed must be understood. One demonstration of the
understanding required is a correct truth table, as shown in Figure 3.2¢b). A
designer's concept of what the device should do is identified by this téble. If a
design does not function properly, the usual debugging approach is to see if the
wiring matches the logic as described by equations, and tha the equations were
correctly obtained from the truth table/Karnaugh maps. This approach will find
errors that ar e implementation errors. However, it is often the case that the logic
is an accurate implementation of the logic equations, and that the logic equations
themselvesare incorrect. This may be true not because the Boolean agebra was
done incorrectly, but rather because the designer's understanding of the pmblem
was flaved. And one place where that understandingwill be displayed is in the
truth table; thus, this step should also be examined in detail in both the design and
checkout process.

In the design process, the logic equations are derived from the truth table
representation of the problem. Each minterm can be written down individualy
from the truth table, and rules of logic utilized to find the minimal form. Or some
other method can be used to find an acceptable logic equation. The Kamaugh
map method is exemplified by Figure 3.2(c). From the equations. the proper
arrangement of logic gates can be derived. The exact implementation techniques
will be dictated by the design constraints established by the problem itsalf.

Portions of the process — from understanding to truth table to Kamaugh
maps to logic equations to implementation — can be aided by CAE (computer
alded engineering) systemsor CAD systems (Computer Aided Design). However.
it isimperativetha a designer be able to understand the results of CAE/CAD sys-
tems, and be able to ascertain correctness of the final result. The computer aided
systems will do a speedy and precise job. but the underlying algorithms used by
the computer system may not coincide with the desires of the system designer.
Therefore, care mugt be taken to assure that the find results provide a reasonable
solution to the initial problem.

In general, we are not interested in computersoperatingon a single bit at a
time. Rather, we are concerned with computers that operate on a collection of
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bits. Full adders can be cascaded to the width of the system, as shown in Figure
33. In the figure, two 8-bit numbers are added to produce an 8-bit result. An
additional input is the carry in (Cy), which may come from a status register or
other source; and the carry out (Cour) from the addition is availablefor the sys-
tem.

This is not the fastest method to perform an addition, as we will see, but it
will provide the correct answer. The time required to perform addition by this
method, as measured from the time that al inputs are stable. is directly propor-
tiona to the number of bits in the word. This kind of addition process can be
called a ripple carry adder (RCA), since the carry at each stage is propagated to
the next stage. We will label the time required by this type of addition as
TADD,,,» ad thistime is given as:

Taop,, =N X Tpa
=Nx(2xG)

That is. the time for an N-bit addition is just & times the timefor a single bit addi-
tion (Tga). and the time for a single hit of addition is two gate dlays. Thus, the
time for afull adder implementationof an addition module is linear in the number
of bitsto be added.

The details mentioned above are often hidden inside integrated circuits.
However, in designing or understandingthe circuitry embedded in ICs, this infor-
mation may be very beneficial. Full adders can be purchased in IC form, such as
the '80. Or one can consider that four such stagesare cascaded in a single unit.
such as the 83, a 4-bit adder. However. if one examinesthe circuitry internal to
the '83, the carry out of the chip is generated in a different fashion than the FA
method just described. This method is the look-ahead method. which we will
examine later. But first let's apply the add technique described above to a sub-
tractor.

Example 3.1: Full subtractor: Using the methods described above, design a
full subtractor (FS).

The first step in this process is to understand the requirements of the
design. Figure 3.4(a) is a diagram tha indicates the function of the full

B, A B AB AB AB AB AB AB
l‘ Can A 1 Cial ! ! Cin| ! ! Cin| ! ! Cin, ! ! Cin ! B Cin A Cinl T
Fa (i ra (11 ea T Fa (L ea fLE Fa (] Fa L Fa
F F Cot F Cot ¥ Cot 12 Cot F Cat F Cat F
w® & kK R KR & K F

Figure 33. A Word Adder Composed of Ful Adders
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Figure 34. Dedgnd a Full Subtractor (FS).

subtractor. Two bitsfrom the deta word (X;, ¥,) are inputs to the s, asisa
line from the previous stage. This line is the borrow in. Byy. The outputs
are the subtract output for this stage. £, and the borrow output to the next
stage, Bout- The agorithm for doing subtraction in base 2 is exactly the
same as the agorithm used for the base 10 taught in grade school. One
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"borrows™ bits (digits) from places of higher significance as needed to be
able to perform the subtraction of a bit. Figure 3.4(b) is ah example of a
binary subtraction; this example is given because al of the information
necessary to create the complete truth table is present. Figure 3.4(c) is the
truth table for the full subtractor, which has been derived by examining the
subtraction of Figure 3.4(b) and filling in the table as needed.

A good thing to do in unfamiliar circumstances(base 2 subtraction is
not a daily occurrencefor most people) is to convert to a familiar sysem
and do the subtraction. The base 10 representationof this operation is 226
- 172 = 54; and since 00110110, = 54,3, we feel much better about the
accuracy of the results.  Alternative derivations of an answer provide
methods for checking the results of an algorithm, and should be employed
as necessary to build confidence and pmve correctness.

The Kamaugh maps for the subtractor are shown in Figure 3.4(d), as
well as the resulting logic equations. Finaly, the gating function for the
borrow is given in Figure 3.4(e). The gating is not given for the subtract
output since F; =X, @ Y, @ Byy is exactly the same formulaas the sum out
for a full adder. The same circuitry can be used for both functions. Note
also that the logic equation for the borrow has the same form as the logic
equation for the carry out of the full adder. but the inputs are different.
Thus, with a little ingenuity and some gating functions, the same circuitry
could be used for theA + B, A =B, B -A, and A ® B. The latter function is
achieved by disabling the carry function; forcing the carry to a logical zero
alowsA ® B & C toreducetoA & B.

The timing for a multiple bit full subtractor is exactly the same as the
timing for the carry propagateadder,

Tsup=NXTps=NX2xTg.

Subtraction of two vaues can be accomplished by a system of sub-
tractors created as described here. However. a subtraction system can also
be created by using an adder system (composed, for example, of *283s) and
the complement-and-increment method of negatinga value. The value to be
subtracted is complementedwith a set of inverters, and the increment is sup-
plied by asserting the carry-in of the adder system.

The similarity between the subtraction process and the addition process is
not redly surprising. but it points out a situation that often arises. In many cir-
cuits, both combinational circuits, such as those discussed here, and sequential cir-
cuits, such as direct multiplication methods discussed later, there are opportunities
to utilize some of the same elements of the circuit for more than one function.
Here, one set of gates can be utilized for both the addition and subtraction func-
tions. The same concept applies in some sequentia circuits, where counters (or
other components) can be reused for different functions. The key to the effective
use of system resources is to achieve a complete understanding of the functionsto
be performed by the system, and to combine that with a knowledge of the logic
requited to perform those functionsand the capabilitiesd that logic. This combi-
nation will alow a designer to trade off system resources against system require-
ments to achievean effectivedesign.

Word adders composed of full adders are an example of a minima gate
solution to a pmblem, but the time required for the result may provide an
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unacceptable limit to system performance. Another approach is to add more com-
plexity to the add process to do the function faster. In order to do this, we look
again at the logic equations for the addition process:

FI=A@B$C[N
Cour = AB + ACyy + BCry
=AB + Cpy- (A + B)

Looking at these equaIi ons we md(e the followi ng observati ons, some of which

form of the carry equation, but the second form requires three gate delay?. How-
ever, the second form allows the addition process to proceed in a different
fashion. Here the data inputs (as opposed to the carry input) are grouped into two
terms: A8 is called the carry generate (CG) function sinceif this term is asserted
there will be a carry (hence, the carry is "'generated") regardlessof the value of
the carry input. TheA + 8 term is called the carry propagate, since if thisterm is
asserted any carry which is supplied to this stage is passed on to the next. (Note
that the functionA @ 6 would also be a vaid carry propagate function. Why?)
Arrangement of the add operation to include the carry generate (CG) and carry
pmpagate(CP) functions results in a module which produces:

=A QB@CIN
CG=AB
CP=A+B

Figure 3.5(a) shows a diagram of such an adder. Note that the time required to
create the carry generate and carry pmpagate is a single time delay. But more
importantly, note that the carry generate and carry propagate lines are not func-
tions of the carry input. This means that if we arrange severa look-ahead carry
adder (LACA) modules as shown in Figure 3.5(b), then all of the CG and CP lines
will be stable one gate delay after the inputs are stable. In Figure 3.5(b) these
linesare inputs to another module, called a look-ahead carry generator (LACG).
The LACG has the responsibility of creating the cany for each stage; it does this
by looking at the carry generateand cany propagate signalsfrom all of the stages.
If Ci is asserted then Cy will be asserted. ¢, will be assertedif the carry generate
of the previous stage (CGy) is asserted. OR if CPg is asserted AND Cyy is asserted.
Asthe carries become more significant, the amount of logic needed to generate
the carry becomes larger. Bt it is important to note that, if the designer of the
LACG is willing to supply a sufficient number of gates, then a!l of the carries will
be generated in two gate delays. Thus, the addition shown in Figure 3.5(b)
requires 5 gate delays: one to generatethe CG and CP for each LACA, two to gen-
erate al of the appropriate carries, and two more to propagate the effect of the
carriesto the outputs. This is faster than the 4 x 2 x G = 8 gate delays required
for the FA implementation.

It is apparent that much of the complexity has been moved to the LACG.
which becomes more complex as the number of modules that it servicesincreases.
A LAGG that provided the carries for al 64 bits of an adder would be
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Figure35 Look-Ahcad Cary Adder (LACA) ad its Connectionin an Adder Circuit.

prohibitively expensive in terms of numbers of gates, or IC red estate. So, the
LACGs are designed to cascade in exactly the same fashion as the LACAs. That
is, in addition to the carries, the LAGG generates a GG and CP that can be utilized
by a second stage of LACG; the process continues as far as necessary to perform
the work required. Such a system is shown in Figure 3.6. This figure shows the
connection of *181s, which are 4-bit ALUs that generate the CG and CP signals
required, and *182s, which are the LACGs These units are both 4-bit units; that
is, the ALU performs the addition of 4 bits, as well as generating the CP and cG
signals for those 4 bits, and the LAGG handles the GG and CP signals from 4
modules. Because of this added complexity in the ALU module, the GG and Cp
signals will requirea minimum of two gatedelaysto cieate, as opposed to thesin-
gle gate delay for a single hit unit. The time required for a carry lookahead addi-
tion is then given by:

Traca =2 +4 x (flogs(W)1 - 1)
where there are N bits to be added, and the number of bits handled by the ALUs
and LACGs isb. When no LAGG is needed (up to b bits), then the time required
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3.2.

issmply two gate delays. Then. as the number of bits increases, the LACGs are
added in a tree type of structure, where the fanout of each node of the tree is b.
This gives rise to the second term in the above equation. As the number of bits
(n) increases, each time the term log,(¥) —1 crosses a b boundary. that is, when
the number of bits to be added crosses an exponential integer ("), then the depth
of the tree increases by one, and the number of gate delays required increasesby
four. By utilizing the look-ahead process, the time required for addition has been
changed from function linear in the number of bitsto a process that is logarithmic
in the number of bits. And the base of the logarithm is the number of bits han-
died by the LACAs and LACG; a larger b results in a faster adder for a given
number of bits. For the adder shown in Figure 3.6, the time would be:

Traca =2+ 4 x ( flogs(64)] - 1)
=2+4x(3-1)
=10 gatedelays

The 10 gate delays for the look-ahead process of Figure3.6 are alimit, which will
not, in general, be fully attained by commercia parts. This is because parts such
as the "181 and '182 will reduce the number of gatesrequired for the final function
by alowing three or four levelsof gates, instead of the theoretically possible two.
Nevertheless, the look-ahead method for addition is much faster than addition
with chains of full adders. At thistime we will introduceanother term for the add
process. carry propagate adder, abbreviated CPA. By this term we indicate that
the carry will propagatedl the way through the addition, but the method of carry
implementation,whether ripple carry or carry look-ahead,is not specified.

The addition function provides an example of the tradeoffs available in
creating a system. A carry propagate adder will perform a function with a
minimal number of gates, but the time will be correspondingly long. A carry
look-ahead adder will perform an addition in a minimal amount of time, but the
number of gates required for the function has correspondingly increased. Each
system designer must examine the resources available (time, gates, silicon red
estate, etc.) and allocate those rcapurcesin an appropriate manner.

Status: Results of Arithmetic Operations

Often when arithmetic operations are performed, some information about the
answer is as important as the answer itsdf. That is, many operations are per-
formed smply to find out how things compare: is A larger than B? IS A equal to B?
IS A negative? Many of these questions are answerableif certain information is
available concerning arithmetic operations. For example, is A equa to B? Well.
subtract A from B (or 8 from A); if the result is zero, then A is indeed equal to B.
In general, four piecesof information are produced by these arithmetic operations,
and these pieces can be used to form bits in a status register. The four bits are
zero. sign, overflow, and carry. We should hasten to add that other types of infor-
mation are often available in a status register, and we will deal with this type of
information in Chapter 4. At this time, we are interested in the arithmetic opera-
tions and statusthat can result from them.
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The sign hit is perhapsthe easiest to generate; it is the sign of the result of
whatever operation wes performed by the ALU. For two's complement numbers,
this is the MBB of the result; for most floating point number systems. this is aso
the most significant bit. In either case. the sign of the number is fed directly to
the status register. Instructions that manipulate arithmetic values (ADD, SUB-
TRACT, COMPARE, etc.) will modify this bit; instructions that do not do arith-
metic( JUMP. CALL, etc)) will not modify the bit. For a preciselist of the instruc-
tions that do modify the various bits of the status register of an existing machine,
the ingtruction set definition for that machinemust be consulted. The oppositeis
true for a system architect in the processof creating a set of ingtructions. That is,
based on the application area of the machine, the arithmetic operations required.
and the number systems utilized, the system designer can, at the time of the
definition of the system, identify which operations will have an effect on the
status register.

In additionto thesign bit,t  h  his adso readily available from the
ALU. If an arithmetic operation resultedin acarry. then thisbit is asserted in the
status register. Again, the instructions modifing the bit are obtained from the
instruction set definition.. The hardware of the system, then, must prevent instruc-
tions that cannot modify the bit (as defined by the instruction set) from actual
modification capability. This is accomplished by disabling the load function of
the status register bit (carry bit, in this case) within the status register.

The zero bit is also easy to visuaize, conceptually. If the result of the
operation is zero, then the bit should be set. Often this operation will be utilized
by more ingtructions than strictly the arithmeticones. For example, in some sys-
tems MOVE instructions will test the value being moved to see if it is zero. As
before, the exact list of instructionsthat modify the zero bit will be obtained from
the ingtruction set definition. The logic required is a test on each line to check its
assertion level. For ALUs not providing this information on a separatestatus line,
then al of the output lines must be checked. However, some ALUs providea sin-
gle line that will be asserted if any of the ALU lines are not zero. The advantage
of this method is that these lines are constructed with open collector technology,
and can be tied together without external gating. Thus, when all ALU outputsare
zero, none of the lines is asserted, and the recognizable output is high, which is
exactly what is needed by the status register.

The overflow hit is the condition that requires more than rudimentary logic.
When should the overflow bit be set? The overflow bit indicates that the opera-
tion performed has exceeded the ability of the number system to represent infor-
mation. Thus, one of the basic pieces of information needed (or assumed) is the
number system being utilized. Our examples will concentrateon the two's com-
plement number system. Other number systems may call for other conditionsto
identify an overflow. For example. consider an 8-bit, two's complement number
system. From our previous considerationswe know that this number system can
represent values from -128 to +127. If we add 61, to 45;¢:

00111101 This is 61 in base 2.

00101101  Thisis45in bese 2.

— Now add them together.

01101010  The reauit is equivaent to 106, the correct answer.

This operation does not exceed the ability of the number sysem to represent
information. However. if we add 75, to 58,¢:
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01001011  Thisis7s in base 2
00111010 Thisis 58 in base 2

10000101 In 2s complemen. thisis- 123.

If the pattern is consideredan unsigned integer, then the answer is correct (133;q).
But as a two's complement number, the ability of the number system to represent
information has been exceeded. Two positive numbers have been added together,
and the result was a negative number. The same thing will happen if two large
negative numbers are added together: a positive number will be the apparent
result. Again, the ability of the system to represent information has been
exceeded: an overflow has occurred. When this happens in an arithmetic opera-
tion, then the overflow bit of the status register will be set. If a number system
other than the two's complement number system is to be used, then a similar set
of operationsmust be checked, identified by the number system itself.

Example 32 Overflow circuit: Design a circuit that will detect the
occurrenceof an overflow condition for a two's complement system.

As stated above, the overflow will occur when two positive numbers
are added together and a negative number results, or when two negative
numbers are added together to form a positive result. So the observation
pointsare the sign hits: if the two input sign bitsare positive (z¢ro), and the
output sign bit is negative (one), then an overflow has occurred. Likewise,
if the two input sign bits are negative (one). and the output sign bit is posi-
tive (zero), then an overflow has occurred. A circuit to detect this condition
is shown in Figure 3.7.

If the internal carries of the addition process are available, this circuit
can be replaced by a single exclusve-OR gate. The exclusive-OR gate
would detect a difference between the carry-inand the carry-out of the most
significant stage; these two lines will differ when the overflow condition
exists.

The arithmetic bits included in the status register are set and cleared as
directed by the control logic for the system. That is, not al of the instructions
will be allowed to modify the status bits, and some status bits will be modified by
more instructions than other bits. This will requirea system which is capable o
selectively controlling each of the bits. If we limit ourselves to fairly standard
TTL parts, then such acircuit is shown in Figure 3.8. Note that each of the bitsis
individually setable and clearable, as well as being reset jointly by a system reset.
If the instruction set does not require the ability to individualy set and clear each
of the bits, then the amount of logic required for this function will be reduced.

SGNHAH
SIGN_B-H
ALU_SIGN-L v
' OER A.OVH
SIGN_A-L v
STGN_B-L v
ALU_SIGN-R

Figure37. Circuit for Overflow Detection (Two's Complement
System).
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Figure38 Arithmetic Bit Formation for a Status Regider.

Some manufacturersprovide many of these functions in a single IC, such as the
AM2904. This reducesthe number of chips required but not the control lines: The
AMZ904 has 17 control lines associated with this function.

These status bits form both a source and a destinationof information in the
performance of computer functions. Arithmetic operations often require a carry
input, which is provided from the status register. Addition operationsmay change
al four of the bits discussed above. Logica operationscan also affect the zero
bit. And program control operations can test status bits to control the flow of
control in the system. Thus. thesefour bits can form a portion of a status register.
which performs a central function in the overall system operation. We will
include other kinds of status informationin the discussion of instruction sets in
Chapter 4.

Iterative Multiplication Methods

Fmm the very early days of computersone of the things needed was a multiplica
tion capability. Many of the early machines were funded by defense needs, such
as calculation of ballisticstables and other strictly computational tasks. For these
tasks a multiply was required, and many early machines had a hardware multiply
instruction. Later, when memory speeds improved dramatically, subroutines
could be used to do the multiply and till accomplish the function faster than the
previoushardware systems. This alowed a sizeable reduction in hardwarefor the
computer. Still. hardware multiplication capabilitieshave been utilized more and
more as the relativecost of hardware has decreased. Let us examine some of the
methodsfor doing multiplication.
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First, let us define the problem in exact terms, then select a sample problem
to follow through the various methods of multiplication. What we want to find is
the product. P, of two values,A and B.

P=AXB
Aand B are called the multiplicandand multiplier; let us assumethat they are both
5-bit numbers: A4A;424,4¢ and B;B838,B8,B,. We know from Chapter 2 that these
can assume values from 0 to 2° = 1=31. So, the largest product would be 31 x
31=961. To represent the number 961 requires [log, (9611 = 10 bits; hence,
we say that the product of two N-bit numbers requires2 x N bits to represent.

With our assumption of a postiona notation system, the product can be
represented as:

P=AXB
=AXB4ByB; B By
C=AXB X2 +AXB;xD+
AXByx2 +AxB x2' +
AxByx2®
In practice. we writethis asfollows:

Ay Ay A; A A

x B, B B, B B
PPy— A;By AyBy AyBy ABy, AgBy
PPy — AyBy AyB, AyB, A;'B, AyB,
PP, AcBy AyBy AyB, A;B, AyB,

PPy — AyBy AyB; AyB; ABy AyBy

PPy AyBy AyBy AyBy A'B, AyB,

PR Sum of all rows

The five rows labeled PP, to PP, are known as the partial product array. For this
multipiication, the rows of the partial product array are composed of 5 bits, and
each bit is an AND function of a bit from the A input and a bit from the & input.
The product itsdf (PR) is the sum of the rows of the partial product array. when
the rows have been aligned appropriately for bit significance. The effect of the
multiplication by powers of two in the above equation is accounted for by the
shifting of the rowsin the partia product array. This is the same Situation as that
taught in grade school for base 10:

1324
2435
6620

3972
5296
2648
3223940

In the base 10 example, each mw in the partial product array is the result of the
multiplication of the first number by one digit in the second number. As
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MULTIPLIER(7:0)~H

explained above, in the base 2 system this product is very easy to obtain, since
multiplication in base 2 is accomplished on a bit-by-bit basis. Therefore, the crea-
tion of the partial product array for a base 2 example is very simple: merely AND
each bit in the multiplicand with the appropriate bit in the multiplier. Then the
rows of the partial product array are summed in some fashion. Let us examine
some methods for accomplishing this.

The most straightforward method for doing the multiply is the traditional
"shift and add™ method. One implementationof this is shown in Figure 39. The
multiplier shown in the figure is set up to do an 8x8-bit multiply. Severa

WIER_CLK-H ~

MIER_LD-L

MULTIPLICAND(7:0)-H

[T] uYK E g ] Cl1I65E F &6 N
(shif e9)
Ly ]
Y

* VRN ® 3 K2 6 Cin AL v a2 D—EZL
1283 (adder) 1283 (adder)
R AP £ 2 A
PROD_CLK-H
PROD_CLR-L e B e R el I
V4442}7 7 N B W B R 0] [V o8 wauEs8enwn
ok ax
\ 1273 {register) \ Y273 (register)
VeE MR R aw 7w se e w
3 ol
PRODUCT (15:0)~H s

Figure 39. Data Path Logic Diagram for Smple Multiplier.
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observationscan be made concerning this system. Fist of al, the adder used is
an 8-bit adder; this will function properly since the partial product addition is
done from the least significant partial product to the most significant partial pro-
duct. Thereis nothing magic about the order of partial product addition, so long
as the bitsare added in their appropriate significance. That is. for an N-bit multi-
ply, the partial productsePy., to PPy could be added in the order shown (PP, first
to PPy, last). in the reverseorder (PPy.; first to PP, last), or in any order deemed
convenient because of design considerations.

In Figure 3.9, the shifting of the result is accomplished by hard wiring the
accumulating sum to line up with the appropriate bit positionsin the partial pro-
duct. And the partial product is created exactly as shows in the above expiasion
of abinary multiplication: AND gates are used to generate the partial product from
the multiplicand. The multiplier bit to be used is obtained from a shift register.
A timing diagram that will assert the control signalsin an appropriate fashion to
do the work is shown in Figure 3.10. The timing diagram showsa set of control
signals that will work in all cases; however, the resul: can be obtained faster in
some circumstances if the control section is modified to look for specific condi-
tions. One such condition is that either the multiplier or the multiplicand is zero;
in such a case, the result is zero, and the answer can be given immediately. A
flow diagram showing such a set of decisions is shown in Figure 3.11. The
design of a control section that will create the appropriate signals is the topic of
Chapter 5 and will not be covered here.

The circuit shown in Figure 39 is only one of a variety of implementations
that will accomplish the work of multiplication. Other solutions to the problem
would try to create the "best” design based on some criteria of the designer. For
example, in the design shown in Figure 3.9 two chips are required for the AND
function; these can be removed by using a dightly more complicated product
register capable of shifting internally as well as loading from an external source.
This reduces the number of chips (and hence board arearequired) for the function.
but will necessitatea slightly more complex control. Another type of design may
test for the condition that the remainder of the multiplier is al zero, hence the
multiplicationis essentially complete. The challengein that type of design is to
be sure that the final product bitsare in the correct bit positions.

No matter what type of data path is selected, and its appropriate algorithm
devised, the designer is faced with the problem o proving correctness. Severa
methods are available to do this, from simulation of the hardware if such a

PROD-CLR-L l |

Clear Product Re
Load Multiplier

_/ \ /
% | Add Partial Products to Product Register,
L Shift Multiplier register to next bit

Figure 310, Timingof Control Signalsfor Smple Multiplier.
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Figure 311 How Diagram for Data Dependent Multiply Algorithm.

simulation system is available, to examples worked through by hand. Before the
design is fabricated, the designer should select several appropriate examples and
show that the system will provide proper results.

Example 3.3: Multiplier Design: Design a data path for a multiplier that
will add the partia products in "reverse" order, from the most significant to
the least significant. What are some of the benefits and pendlties of doing
this?

This could be accomplished in a number of ways, one of which is
shown in Figure3.12. The figure shows the parts and principal interconnec-
tions needed; a more detailed schematic representation is found in Appendix
B. This method requires an adder as wide as the final product. For simpli-
city this is shown as four "283s; faster add times could be attained by using
an adder with lookahead capabilities. The product register is constructed
out of "273s, which are 8-bit edge triggered registers. The bits from this
register are fed back to one set of inputs on the adders. The inputs to the
product registerscome from the same bit positionsin the adder.

The multiplier register is composed of two '195s which have been
configured to be a shift register. The control section will be responsiblefor
asserting the clock line (PLIER_CK-H) when data is available to be loaded.
and a so when the multiplication is proceeding. The output of the multiplier
register is constantly checked to see if it is zero (PLIER_ZERO-L).

The multiplicand register is composed of two types of shift registers:
'195s and a ’164. The "195s provide for the load of the multiplicand value,
at the same time clearing the '164 (PCAND_LD-L). Again note that the con-
trol section will be responsible for asserting the load and clock linesin the
proper sequence to cause the data to be loaded a the appropriatetime, and
then shifted during the execution of the multiplicationitself. As the multi-
plicand is shifted out of the ’195s, it will be shifted toward lower
significance in the "164. This is the method whereby the stated design
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Figure312 DataPath for Multiplier of Example 33

objective of "reverse” order of partia products will be accomplished. The
multiplicand can aso be checked for a zero value (PCAND_ZEROQ-L) when it
isloaded, but this will only be effectiveat the beginningof the algorithm.

A flow diagram for implementation of the multiplicationalgorithmis
shown in Figure 313, This diagram indicates how the agorithm proceeds.
and identifies somé of the benefitsof this organization. The first step is to
clear the product register; this is the correct answer if the multiplicand is
zero, which is checked next. It is also the correct answer if the initial vaue
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Figure 313 H ow Diagram for Multiplierd Example 33.

in the multiplier is zero, which is the next condition checked. Then the
iterations begin in earnest. The vaue in the multiplicand register is added
to the value in the product register; this result may or may not be placed
into the product register. That decisionis based on the most significant bit
in the multiplier regiger(AND-BI T-H); if the bit is asserted. then the pro-
duct registeris loaded. In either case. the multiplier and multiplicand regis-
ters are shifted by one bit position. If the number of iterationsis N (8 in
this case), then we are done. If not, check the multiplier register to see if
we have added in al of the appropriatevalues. If we have, then the algo-
rithm is finished. As this description points out, the time required for this
agorithm is data dependent. It is not necessary to check for zeros, since the
agorithm would function correctly with an iteration counter and no data
checks. However, by testing the values during execution of the multiply.
the number of iterations will depend on the arrangement of one's and zero's
in the data. By doing the additionsin the "reverse” order, the product bits
are in the correct postion whenever al the required additions have been
performed. Thus. the time to complete the instruction will vary according
lo the data. which will speed up the processing.

Another benefit fmm this method is the absence of AND gates to do
the individual partial product multiplications. The partial product is always
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added to the accumulating product, but this vaue is conditionally loaded
into the product register, based on the appropriate bit in the multiplier.
Thus the AND function is supplied by control of the product load line, rather
than an AND line on every bit.

One of the obvious tradeoffs with this method is that the speed
benefits and the reduction in gating (no AND gates) have been obtained at
the expense of a larger adder and multiplicand register. So, before a
designer declares this method better/worse than another method, he needs to
ascertain the various costs of the method and decide if the tradeoffs match
his system resources.

The multiplication methode disenssed to (ki paint ~= [ aave ingids: bic
same adder system is used a number of times until the correct result is obtained.
One of the questions to be addressed is the time required for the multiplication.
The time that we worry about here does not include the time requiredto load the
multiplier and multiplicand registers, and, in an actua implementation, those
times need to be included in any timing estimates. The multiplication time.
TwuLt, can be grouped into two contributing factors: the setup time. Tsgqyp, and
the iterationtime. Tyrggr.

Tymuct = Tsgrup + N X Trrer

The setup time includes the time required to clear the product register and per-
form any initial checks identified by the agorithm. This is reflected in the "is
multiplicand zero'™ condition in the algorithm of Example 3.3. The iteration time
is the time required to create the partial product (perform the AND function), to
add the partial product to the running sum, and to load the resulting value into the
product register. These times are reflected in the following equation:

Trrer = Tanp + Tsum + Tre

The first term (Tanp) is the time needed by the algorithm to form the partid pro-
duct. Note that in some algorithms, such as that described in Example 3.3, this
time will be zero, since the same effect is obtained by conditionally loading the
product register. The second term (Tsum) accountsfor the time required to form
the sum of the partial product with the product register. This time will be deter-
mined by the adders being used and the interconnectionmethod (carry propagate
adders or carry look-ahead adders). The term should reflect the time required
fmm all datainputs stable to al outputs stable. The last term Tggg is @ combina-
tion of the times required for the register being used, which can be obtained from
the data sheet for the device. These include the setup time (the time that the data
must be stable prior to the assertionof the clock), the hold time (the time the data
must be stable after the assertion of the clock), and propagation delay (the time
for stable outputs, from the assertion of the clock). All of these times must be
accounted for in deciding on the time required for the clock cycle of the unit.
However, if a designer is willing to provide for nonequal clock times, then the
time required by the system of Example 33 can be reduced. That is, if the
AND_BIT-H iS not asserted, then the add will not be needed, and the system can
move on to the next bit (shift multiplier and multiplicand) without waiting for
Tsym-
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These multiplicationmethods can be used to build multipliersout of com-
mercidly available parts, such as the system shown in Figure 3.12. Or they can
be used to implement multiplicationsby using resources (adders, registers, and
data paths) intemal to a chip. such as a microprocessor. Since these methodsare
iterative in nature, they can be readily implemented with microcode methods. We
will lwk more closely at microcode in Chapter 5, but an understanding of the
iterative nature of the system helps to explain why some manufacturersidentify
the times required by multiplicationinstructionsin numbers of cycles. And why
some multiplication instructionsindicate that the time for instruction completion
is dependenton the data being used.

Before we move on to direct methods of multiplication,we will note that in
the considerations thus far we have carefully avoided any mention of negative
numbers. Without any modification, the techniques mentioned will not function
for negative numbers. A number of techniques have been used to allow use of
negative as well as positive numbers. The technique we will describe here is
called Bog_d}'s algorithm, after a pair of British  th but similar tech-
liques are used elsewhere.” These technialiesare classified as recoding techniavies.
since the multiplicationis modified by a recoding scheme. Let us see how this is
applicableto the problem of multiplicationof signed numbers.

First of all, weneed o rememberfrom Chapter 2 that the bitsin the number
have a different meaning for signed numbers. That is, the most significant bit has
adifferentmeaning. The five bit numbers which were used earlier for an example
hed the form and meaning:

B=B433323| Bo
=B x2 +B;x 2 +B,x22 +
B, x2' +By;x2°
=By;X 16 +B3 X8+ By x4+
By x2+Byx1
The differencefor a two's complement number is shown in the followingfashion:
Byscomp =By X (-16) + B3 x 8 + By x4 +
B, X 2+ Byx1
As can be seen from the equation, the most significant bit is different in its
weighting formulation and must be treated accordingly. The Booth's algorithm
approach can be understood by first doing some agebra on the number. In a
step-by-step fashion. we can express the two's complement number in a new
form:
Byscomp = (—lé)x& +8xBy+4xB, +

2xB; + 1xBy

=(-16)XBy + (16-8)xB3 + (8-4)x B,y +
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(4-2)xB; + (2~ 1)xBy
= (-16)xBy + 16 XB; — 8XB; + §xB, — 4xB; +

4XxBy ~2XB; +2XBy~ 1xBg
=/C16x(54—s,) ~ 8X(B;—By) — 4% (B,~B,) — 2X (B; ~Bg) — 1 X (By—0)

The valuesin parenthesesin the above equation are composed of the subtraction
of two hits. and can have the values +1, 0, or —-1. Note that the weightsare what
we would expect in that al are powersof two. Therefore, multiplication by the
weighting factorscan be. achieved by the shifting used in the first dgorithm. The
complexity comes in that now, instead of strictly adding, we need the ability to
add, subtract, or do nothing. However. once a subtraction (addition) has been per-
formed, the next operation will be an addition (subtraction). (This can be easily
seen by examining possible bit patterns and the resulting order d operations))
This aternate nature of the operations guarantees that the size of the
adder/subtractor will be limited to N bits. The easiest way to visudize this pro-
cessis to work through an example:

Example 3.4: Signed multiplication with recoding: Utilize the Booth's algo-
rithm recoding scheme to perform the multiplication: 254 x —191¢.
The bit patterns for the two numbersare:

011001 Let A = 25, be themultiplicand.
101101, Ard & = ~199 be the multiplier.

The recoding algorithm workson pairs of bits a. shown below. Note that
the product is sequentially formed; the steps shown below to form £, to P,
correspond to the cumulationof the partial products to that point.

-1x (bp-0) s -1 Subtract A from 0 to fom &,
2x(by=by) = +2 Add2xatoP,tofomep,
-4x(by~ b)) = -4 Subtract 4 xA from P, tofom p,.
8x(by-by) = 0 Py=P,

—16X(bs-b3) = +16 Adl 16 x A 10 P, to form P,.
-Rx(bs=by) = -2 Subtract R x A from P, to fom Py

These steps can be followed as identified to ascertain that the answer is
475 as expected. The multiplication by powers of two called for hereis
achieved by the appropriate shift of the operand A. The hardware that
would perform this kind of a multiplicationcan be visuaized &s shown in
the following example.

Example 3.5: Hardware for recoding multiplication: Design the data path
for a multiplier that will perform multiplication according tc Boath’s ago-
rithm. Assumethat the input values are 8 bitseach.

One solution to the problem is shown in Figure 3.14. The multipli-
cand register and the product register are formed using *273s, which are
8-hit registers. The multiplier is loaded into a *165, which is a paralld-
inherial-out shift register. Note that, when the muwltiplier is loaded, the
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3.4.

flipflop for storing the previous bit in sequence is cleared. The
add/subtract/do—nothing requirement of the algorithm is handled by a pair of
*181s, which are capable of performing all of the functions. The determina-
tion of the function of the '181s is handled by the arithmetic select lines
(S3-90), and the desired function is identified by the bits of the multiplier,
&5 seen in the previous example. The appropriatebits arecalled simply Bo-
H and BI-H in the diagram. As the multiplier shifts through the register
during the execution of the algorithm, the appropriate bits will appear on
theselines. The function of the *181s should then be determined by the fol-

lowing table:
'Plicr Bits AL Se! Function
Bl-H BOH S3H SZ-H St-H SO-H
0o 0 0o 0 o0 0 Pass product vlue:
[ 0o 0 | Product plus multiplicend.
0 0 t 1 0  Product minusmultiplicand.
I 1 0 0 0 0 Pessproductvdue

This logic is implemented in the few gates in Figure 3.14. Like the first
multiplication method, this one will require a fixed number of clock pulses
on the control lines to complete. Of course, it would be possible to check
for a zero input condition, but it will not function properly if it is stopped in
the middleof a multiply.

As can be seen from the example, the logic required for multiplication of
negativeas well as positive numbers does not greatly increase, but more care must
be taken in the design and verification of the system. Nevertheless, the iterative
approach will produce the proper result if enough caution is used in its implemen-
tation. Some of the many references for design techniquesand examplesof itera-
tive methodsof multiplication are listed a the end of this chapter. Thisis by no
means intended to be an exhaustive explanation of multiplication methods, but
rather it should identify some practical systems that can be used to perform the
needed operations. For systems requiring morespeed, then are faster methodsfor
accomplishingthe multiply, as we see in the next section.

Direct MultiplicationMethods

All of the above methods require that the product be formed by combining the
partial product with a vaue that will eventually form the final result. One of the
reasons that an iterative approach is desirablefrom a resourcesstandpoint is that it
requiresa single adder to perform the entire multiplication. The tradeoff has been
made to sacrifice speed in favor of minima logic resources. But in what way
could more resources be applied to the problen? That is, given the situation
where a designer is willing for purposes of speed to include a great number of
gates, how should those gates be configured? We have already seen that, by exa-
mining the addition problem and using a different technique, the addition time
could be changed from a linear function to a logarithmicfunction. Now we will
analyze the multiplication function and identify methods that can be used to
decrease the multiplicationtime.
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Consider the following multiplication:

Multiplier -» 01101001
Multiplicand — 01011010
PPy 00000000
PP 4 . 01101001
PP, 00000000
PP, o 01101001
PP, o 01101001

PPy — 00000000

PP¢— 01101001

P -4 00000000
Product =  0010010011101010

The multiplication process requires two separate functions: forming of the partial
products and adding al of the partial products together. The formation of al the
partid products (PP; = PPg) can be done in a single gate delay from the time that
the data is stable. The hardware cost in the above exampleis 64 two-input AND
gates, but, with that gate investment, the partial product array can be generatedin
parallel. Once the partial productsare available, they can be summed as before.
However, our objective here is speed, so rather than have a single adder and
iterate to a regigter, let's use multiple adders and feed the result of one adder
directly into another. The system resulting from this is shown in Figure 3.15(a),
and it would requireN-1 addersfor N rowsof partial products.

In the previous section, Tyyrr Was a function of a setup time and a multiple
number of iteration times, Trgr. The System shown in Figure 3.15(a) reduces the
time by changing Tyyeg to be simply the add time, Tgym. The adders shown in the
figure are carry look-ahead adders, but any kind could be used. The point hereis
that the time for a direct method with a linear connectionof adders. Tmuyv7ypecr n

isgiven by:
TMULTppcrane = NV~ 1D XTsym

The time is linear in the number of rows (bits), which is a situation that will only
get worsefor more bits. The obvious solution is to get a time reduction to aloga-
rithmic function by arranging the adders in a tree fashion, such as that shown in
Figure 3.15(b). This would changg the time from a linear function to a loga-
rithmic function: Ty, = [logs (N)] x Tgy Wherethereare N bitsin the
multiplier. This system Wil indeed obtain the product in a smaller time then the
linear system, but other methods can achieveeven higher speed.

The next method to consider has received several names, but we will call it
row reduction. To understand what is going on, let us return to a simple example,
a4x4-bit multiplication for positive vauesonly. The problem setup is exactly as
we have seen' it before, with the elements of the partial product array being
formed as the AND o the appropriate bits. Here we want to emphasize the rows
formed in the partia product array, so we will consider the multiplication by
labeling elements in the partial product array as Ryy, where X gives the row
number and ¥ is the dlement in the row. Thus, @ 4-bit multiplication becomes
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UM o partial products

Each row of the partial product array forms a more significant portion of the final
product. as seen by the shifting nature of the information. Now let's put together
aset of full addersto do this multiplicationaccording to the above setup. That is,
we will do a multiplicationin the method of Tpirecr.Lin @b0Ove, but use full adders
for thissimple case. Thisisshown in Figure 3.16. As expected, the partia pro-
duct bits (Ryy) are added into the product by shifting them appropriately and
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Figure 315, Multiplication by Direct Methods: Linear and Tree.
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Figure316. Partial Product Addition with Full Adders.

using full adders to add to the running sum. Now we ask the question, what is
the function of thefull adder? We often sse a symbol for a full adder as shown:

We mentioned earlier that the outputs form a 2-bit number that gives the number
of on€'s on the input lines. The three inputs (A. 8, Cy) al have the same
significance; the sum output has the same significance, and the carry out has a
significanceof one higher bit position. There is no reason that the carry needs to
be added into the sum in rhe same row that it is generated; that is, the carry can
be saved for the next level of adders. The benefit of passing the carry to the next
set of addersis that the work accomplished by the first stage no longer requiresa
time based on the number of bitsin the word; the time is awaystwo gate delays.
The policy of saving the carry to the next stage gives rise to the name “carry save
adder.” or CSA. The multiplier of Figure3.16 is redone to utilize this feature, and
theresult is shown in Figure 3.17.
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Figure3.17. Partial Product Addition With Carry Save Adders

The use of carry save adders to speed up the addition process reduces the
time required for the intermediate steps to two gate delays. but the carry process
cannot be put off forever. The find stageof such a system must be an adder that
implementsthe carry process the width of the fina rssult. The effect is that the
intermediate stages can be designed with a relaxed resource criteria, and more
design effort can be directed toward speeding up the find stage. One way of look-
ing a what is happeningis to recognize that using adders as shown above (saving
the carry to the next level of addition) reduces the number of rows that need to be
added. The carry save adder, then, is a 3-row-to-2-row reduction unit: 3 rows of
bits are reduced to an equivaent operation that requiresonly 2 rows. For exam-
ple, in the first level of CSAs in Figure 317. 3 mwsof bits fmm the partia pro-
duct array (Rg Ry and Ry,) are reduced to 2 mws of bits. Then, the 2 rows of
bits obtained by that process, plus the remaining row of bitsfrom the partia pro-
duct array (R;,) are reduced to 2 rows of bits. Finaly, these 2 mws form the
input to a set of full adders, which does the final addition. Thus, Figure 3.17
shows an implementation of two 3-2 (3-row-to-2-row) reduction units and a fina
CPA stage.

The output for any bit position of a row reduction unit containsa vaue that
identifies the number of "ones” found in that bit position of a number of mws.
Thus. a row reduction unit with k outputs will be able to represent numbers from
zeroto 2X = 1. Hence. a row reduction unit with k outputs will be able to reduce
2%—1 rows, therefore, 7-3, 15-4, 31-5, and so on, are al possible configurations
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however. that the complexity of the 15-4 reduction units will be much larger
than the carry save adders, which form the 3-2 reduction stage. The fina
stage is a carry look-ahead adder that will produce the 112-bit result. \We
will assume that each row reduction unit requires only two gate delays.
Thus, the time required for signals to propagate from the data inputs to the
find addition stage is 9 gate delays (one for formation of partial products,
two each for the four stages of row reduction units). From the equation for
time required for carry 1ook-ahead addition, the fina addition process will
require

Tiaca =2 + 4 x ( flogs(112] - 1)
=2+4x(3-1)
= 10 gatedelays

So, the find result will require 19 gate delays. The cost of doing thisisan
enormousamount of hardware. Thisis not redly practical in systems made
of individua gates; however, this could be done in a reasonable fashion
internal to an integrated circuit.

To better understand the multiplication mechanism, let us consider what is
happening at each stage of the above process. The action being performed is to
group portions of the partiad product array together, and to then provide a number
that isa count of the number of *1”s in the gppropriate columns. This sectioning
of the partial product array can be done in any manner that will produce the same
results as the lengthy "norma"™ process. Thus, portions of the partial product
array can be formed and summed, and then these intermediate sums combined to
produce the find result. Any consistent mechanism can be used to identify por-
tions of the multiply process for sectioning. The simplest example of this is the
3-2 reduction unit (CSA), which provides a count on the two output lines of the
number of “1”’s on the input lines. Other types of sectioning can be performed by
using special purpose ICs, or by using similar techniquesin multipliers that are
internal to processor chips.

An exampleof the concept of subdividing the partial product array into sec-
tions can be found in the stepwise creation of the final result by considering only
portions of the origina problem. That is, using special purpose integrated cir-
cuits, portionsof the partial product array are formed (the ANDing is done inside
the chips) and the resulting elements combined in the fashion described above.
The output of thesechipsis a number that is a sum of partsof the partial product
array. Conceptualy, thisis shown in Figure 3.19. The figureindicates that some
of the bits of the partial product array are formed, and then summed in an initial
step in the multiplication process. These partial sums are then combined together
to produce the final result. Using these techniques, large multiplierscan be built
using multipliersthat work only on portions of the input values, as shown by the
following example.

Example 3.7: Multiplication with sectioning: Design an 8x8 multiplier.
using 74284 and 74285 4x4-bit multipliers.

These devicesjointly form the 8-bit product of two 4-bit numbers: the
*285 produces the four least significant bits; the 284 produces the four most
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PARTIPL
PRODUCT

ROWS

for row reduction units. One additional benefit of row reduction is the ability to
do portionsof the partia product addition in paralel. That is, sinceal of the par-
tial products can be generated simultanwusly, the row reduction process can

begin immediately to reduce the ¥ rows of bits to 2 rows, which will then be

added to form the final result. And independent row reduction units can operate
on different rows of the partial product array simultaneously. This is demon-
strated in the following example:

Example 3.6: Multiplication with row reduction: The DEC floating point
number system has a double precision configurationwith a mantissa length
of 56 bits(including the hidden bit). Design a high speed multiplier to do a
56x56-bit multiply. Assume that the largest row reduction unit you have to
work with is a 15-4 row reduction unit. Also assume that there is an adder
at the last stage organized in 8-bit units for carry generate and carry pro-
pagate. How long will the multiplicationtake?

The formation of the partial product results in 56 rows of bits that
need to be added together. These are then fed into row reduction units to
reduce the total number of rows from 56 to 2. The overall design approach
for this system, using 15-4, 7-3, and 3-2 reduction units, is shown in Figure
3.18. Ascan be seen from the figure. this requires two stages of 15-4 mw
reduction units, one stage of 7-3 row reduction, and a stage of 3-2 row
reduction. These steps can all be accomplished in 8 gate delays. Note,

15-4

3

15-4

|
=

15-4

PRODUCT

'”_T]

15-4

Figure 318 56-Bit Multiplication Using Row Reduction.

Chap. 3: Arithmetic Units: Data Maniputation



MULTIPLICAND
X MULTIPLIER

[ E— Intermediate
Partial / S Partial

Product ™ Product Sums

Formed in
ArT /
) / Parallel
t

/ hen Summed

o

PRODUCT

Figure 319, Partial Product Reduction by Sectioning.

significant bits. Therefore, an 8x8 multiply will be able to effectively use
four pairs of devices. First, let's look at what one pair will produce:

Xy X; X, Xp
X N, N, ¥ Y
Ros Roz Ro,y Rop
Ry Ry Ry Rip
Rys Ry Ry Ry
Ry3 Ryy Ry Rso
P Pg Ps Py P35 Py Py Py

So, the organization of an 8x8 multiply will be exemplified by the follow-

ing configuration:
01014101,
{o 11470 01 ¥
0101-1101
0t o011 101
000OCO0OO0O0CO
-0 0000000
~0 1011101
01011101
01011101
00 00O0O0OO0O0
0101001110001 11

Note that the pattern established above is utilized four times, and tha the
various portions of the partial product overlap. So some type of an adder
tree would be needed to do the summation of the partial products. Thisis
accomplished with a carry save adder stage (3-2 reduction) and an adder.
The schematic for thisis shown in Figure 3.20. This works rather well, but
doesn't handle large multiplications without a corresponding large number
of chips. Texas Instruments is no longer making this part; however, this
same method of building portionsof the partial product array can be utilized
using larger multipliers. For example, several manufacturers make a 16x16
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3.5.

multiplier (like TDCt010), which could be cascaded in exactly this fashion
to createa 32x32-bit multiply.

This example works on the basis of a "norma" partia product array; tk
respective portions of the array are generated internal to the multiplier chips, and
partid sums formed. Then these sums can be combined to form the appropriake
result. This same type of organization, forming portions of the partial product
array from multiplicand and multiplier bits, can also use the recoding ideas in—
duced with Booth's agorithm. Indeed. the 74261 is a 2x4-bit multiplier tha
requires three bitsof the multiplier in order to do the recoding necessary. But the
system handles both positive and negative numbers, and the results are correct
two's complement numbers. Like the system of Example 3.7, several sectionsd
the parts can be combined to handlelarger numbers.

All of these agorithms for high speed multiplies attempt to form fe
appropriateportions of the partial product array in parallel, then do as much of te
partial product addition in parallel as possible. This includesdelaying the find
stage of the addition, where the carry will need to propagateall of the way across
the output, as long as possible. Therefore, much of the design emphasis can be
placed on this stage, which will be the speed bottleneck.

The multiplication process, then, adds into the fina result the appropriax
number of copiesdf the multiplicand. Thiscan be accomplished by using a single
adder and a register, and iterating through the necessary calculations. Thistyped
system consumes considerable time resources (takes a relatively long time), but
few hardware resources. One advantage to this approach is that it can be easily
incorporated into a microprogranmed machine. Another multiplicationmethod &
to organizethe caculation to use parallel application of partial product generation
hardware. and then sum the final result with mw reduction elements and high
speed adders. Thisdesign consumeslittle time, but requires many hardware der-
ices. The type of design selected will be dictated by the intended application. and
the relativecost of system resources.

Direct Division: Basic Division Algorithm

Whereasmultiplication finds the sum of multiplecopies of an operand, division &
concerned with finding out how many times one vaue can be found in another
value. The numbersinvolved are the divisor, Dg, the dividend. Dp, the quotient,
Q, and the remainder R. Mathematically, these elementsare easly related to aee
another:

Dp=QXDs+R

The division operation determines the quotient and the remainder. One of the
assumed requirementson R is that it has a smaller magnitudethan Ds. In the p-
cessof designinga system to do division, care must be taken to provide hardwase
that will do the work required by the system. That is, magnitudesshould be coe-
sidered, the number of bits to be provided in the operands, the bits required in the
answers, and the placement of the radix point. All of this information must be
consideredin the design process.

One of the mogt straightforward methods to use in the approach to the
design of the system is to mimic the operations of paper-and-pencil long divisioa
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for positive numbers. Consider, for example, the steps required for dividing 58
by 5:

1011 Quotient, @
Divisor.pg = 101 ) 111010« dividend, Dp
101 0, X Dg

10010 R > Dy, continue
000 Q,x Dy, shifted
10010 R > Dy, continue
101 Q. x Dy, shifted
1000 R > Dy, continue
101 Qy x D, shifted
11 R <D;, done

This operation proceeds in the same fashion as paper-and-pencil, long division.
The base 10 agorithm with which we are familiar will produce a new base 10
digit at each iteration; the base 2 equivalent exemplified here will produce a new
base 2 digit (bit) a each iteration. This is accomplished by subtracting the
appropriate shifted divisor from the remainder value. The result of the subtraction
determinesthe value of the bit in the quotient. A block diagramof such adivider
is shown in Figure 3.21. The division processinvolvesrepetitiveshiftsand arith-
metic operations, so the hardwareis organized to accomplish that. The operation
begins by placing the divisor in the register marked Dy, the dividend in the Q
register, clearing the R register. In each iteration another bit of the answer is
created, and this bit is shifted into the Q register as the dividend s shifted into the
R register to be used in the calculations. As seen in the above example. the most
significant bits are used in the first comparisons, so the shifting is configured to
do least-to-most significant shifts. And thisis exactly what is needed for the final
result, since the quotient is generated most significant bit first and shifted into Q
one hit at a time. At the completion of the process, the remainder will be found
in R, and the quotient will bein Q.

The basic agorithmfor the direct divide is very smple. After the operands
are in place, the division process begins by subtracting the divisor from the vaue
in R, which is the accumulating remainder. If the subtraction would result in a
positive number, that number is loaded back into theR register and conditionsare
set up to introduce a “1™ into the Q register. Otherwise, the R register is not
changed and a “0" is readied for the Q register. Then the Q and R registers are
shifted left, and the processis continued. We make the observation that since we

IN?JT INTUT
contral
i 4
ALU . P . .
(subtract Termination: Quatientin Q
Remander n R

Figure321. Block Diagram for Basic Divison.
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are working with positive numbersin this system, the subtraction will not change
the bitsin the lesser significant places. This observation indicateswhy the results
of the subtraction areloaded only i nto theR register,and do not affect the Q regis-
ter. Thus, the only information loaded into the Q register, once the process has
begun, arethe individual bitsas they are generated and shifted in.

A flow chart for the divide operation is given in Figure 3.22. As can be
seen from the flow chart, two decisions need to be made in the execution of the
operation. The firgt concernsthe action at the R register: should the value avail-
able from the subtraction be loaded into the R register or not? This decision is
made based on the results of the subtraction: if the result is a positive number,
then it is loaded and a"'1" is setup for loading into the Q register. Otherwise, the
result is not loaded, and a *‘0” is readied for loading. Then a count is checked to
seeif we are done with the operation.

The algorithm shown in Figure 3.22 conditionally loads the results of the
subtraction (R — Dp — R) based on the value to be loaded. Thisiseasily accom-
plished if the hardware is set up specifically to accomplish the divide. However.
note that the hardwareto do the direct multiply is very similar t o that required for
the divide. Hence, some systems are so configured that the ALUs and registers
can be used for either function, and the control is dightly more complicated. In

Load Dg, Q@
clear Count
clear R

(oo ]

shift Q.R
left one bit
inc countt

repare 0 prepare 1
r'f’or’i] reg for Q reg
R=R-Dg

A

Done

Figure 322. How Diagram for Divison Operation.
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such a system. it may be that the subtraction result must be stored( ALU out - R)

in order to set bits to be tested by microcode, or some other control mechanism.
The agorithm shown in Figure 3.22 must then be changed accordingly. The net
effect is that as well as setting up to put a “0” in Q, the value which was sub-
tracted out must be restored, requiring another addition operation. This kind of an
algorithm is called a restoring agorithm; another algorithm, called the nonrestor-
ing divide, is so configured that the value is not restored, but set up to contribute
the appropriatevalue for the next iteration of the process. The net result is fewer
overall ALU operations.

Example 3.8: Hardware system for direct division: Design a set of
hardware that will accept data fivm a bus aid perform a 16-bit division
using the operationsidentified by the flow chart of Figure 3.22.

The block diagram for one solution to this problem is shown in Figure
3.23. The actual logic diagram is found in Appendix B. Here the bus pro-
videsinput for three registers: Dg, Q, and R. The divisor register is made of
two *S64s. Since the operation needed is to subtract the divisor, this is an
inverting register. Two's complement subtraction can be accomplished by
inverting the divisor (hence the inverting register), incrementing the result,
and then adding the other operand, which in this ease is the remainder.
Here the remainder (R) register is made of two *198s, which can load or
shift. The remainder register can be initialized to the dividend (Dp) valie
from the bus by using the *157s multiplexors. Findly. a pair of '198s are
used for the Q register. The R = Dy subtraction is accomplished by using
adders; theR value comesdirectly from the & register, and the inverse of Dy
provides the other input. And the increment part of the *'complement and
increment" two's complement negation is done by asserting the carry ia of
the adders. The result of this subtraction is returned to the R register
through the MUXs, which allows the control to load the bus value of the
subtraction value as required. That is, the bus provides the informaticn for
initialization, and from the adder comes any parallel load information
required in the execution of the process. If the parallel load is required by
the agorithm, then the control section causes the load. Then the "198s car
be shifted simultaneously, with the control"section providing the correct bit
as input to the @ register. Missing from this diagram is the counter needed
to identify the termination conditions. The control design methods required
will be coveredin Chapter 5.

The direct division mechanisms here can be implemented with individua
adders as demonstrated by Example 3.8. Also, networks of divider cells can be
constructed to produce results faster than the divide algorithms described above,
since time is not required for storing and shifting operations. But the basic con-
cepts of those division mechanisms are the same. Most high speed computers.
however, do division by repeated multiplication,as shown in the next section.

High Speed Division: the Iterative Approach
We know from the definition o division that a reciprocal relationship holds for

the values involved. One of the design approachesto the problem is to recognize
the reciproca relationship, and to utilize that to build a faster system. A great
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Figure 3.23. Lagic for Divide Operation.

ded of effort has gone into making the multiply operation as fast as possible; is
there some way that the multiplier can be utilized to do the division, so that the
process benefits from the speed mechanisms availablein the multiply? One way
for the hardware for the multiplier to be used to do the division is to utilize the
Newton-Raphsoniteration:

Hiat 20 fioe)

We know that for a well behaved function f, and an appropriateinitial value xo.
this iteration system can deliver a desired result, which is the root of f (x)=0.
Thus, to find the reciprocal vaue, we first select a well behaved function which
has aroot at the reciprocal. We will choose to let
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1
f= Pl
The mot of thisequation will bex = llw. [ff (x) =(1/x)~w, then
PRI
fo=-—
and the iteration system will be
1

—~w
x;

Xisy = X =

L
2
X
= 2
=x; + (x; ~wXx;°)

=2xx - wXE?

=x;X(2~wxx)

Therefore. the operation A + B can becomeA x (1/B), and the system hardware can
produce 1/B according to the above equation using only the multiplier, and a sub-
tractor for other operation required in the iteration. The Taylor series expansion
of the function shows quadratic convergence, which indicates that the number of
correct bits doubles every iteration. Therefore, the desired precision can be
approached by using the proper number of iterations.

Division by the above process first finds the reciprocal (1/8), and then using
that value to multiply by the other operand to get the final result. Some commer-
cialy available devices include al of the capabilities needed to do the iteration
described above, and hence can be used to perform the iterativedivide algorithm.
See, for example, the AM29C325 by Advanced Micm Devices.

Another similar approach to iterativedivision is to form the result directly.
rather than specifically calculate a reciprocal. In this approach, we assume that
the numbers in question are normalized floating point numbers. This means that
the dividend and divisor will be expressed as a fraction (at least, the mantissais a
normalized fraction). Now we want to find the quotient Q, where

D
=20
Q Ds
To achieve this we will multiply both the dividend and the diviscr by the same
factor, f}:

. DpXfoXfiXfoaXf3x -+ -
DX foXfixfaxfax -+

We want the result of the various multiplicationsto appreach the correct answer,
Q. so we will choose the f; in such a way that the denominator approachesunity.
This will result in the numerator approaching the correct answer 2. Since we
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know that the part of Dg that we are working with is a normatized fraction, then
let us represent this fraction as:

where. the value of x is determined by the particular Ds. But sinceDs is less than
1,x isasolessthan |. Now, choose

fo=l+x
= l + (1 — Dyg)
=2-Dg
But notice that the product of Dg and fp is:

Dy x fo =(1~xXt+x)

=1-2x2

which is closer to 1 than Dg is. Each iteration both numerator and denominator
are multiplied by f;, and each iteration the result gets closer to Q. With Dg X f5
= | - x2, |et uschoose f; so that

fi=1+x*
With this condition, then
Dsxfoxfi=h-x*

which is even closer to the correct answer. And so the iterations continue, each
time getting the answer closer to the correct value. One of the questions to be
addressed is how to find the succeeding values of f,. We know f; in termsof x.
but we only know .x in termsof Ds and fp:

fi=1+x?
=1+ (1 - Dyxfy)
=2-~Dyxfy

Thus, each new f; is formed by taking the two's complement of the multiplication
of the fi.; and the denominator result to that point. Within a computer. then, the
valuesare presented to the divide hardware, and the iterationscarried out until the
answer is a the desired precision. The number of iterations required is deter-
mined by the value of fi; when f; is close enough to “1,” the result will be close
enough to the correct answer. How close is* close enough' will be determined by
the application and the number of bitsin the representation. However, rather than
test each f; to determine when to stop. generaly a fixed number of iterationsis
used. Therefore, to assure that the process converges sufficiently close to the
correct answer under dl conditions, rather than use 2 = Dg to calculatefy, a ROM
is used to find an appropriate value for fo. Providing the initial "seed" vauein
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this fashion guaranteesthat the results will be acceptableafter a fixed number of
iterations.

A block diagram of the hardware required to do this operationis shown in

Figure 3.24. The divisor and dividend are presented to the divide hardware, and
thequotient is iteratively generated. each stage getting closer to the desired value.
The ROM is used to be sure that the initial precision of fy is close enough to com-
plete the process in a reasonable number of iterations.

Do

Dg

Example39: Iterative divide operations: For the divider shown in Figure
3.24, show the valuesd the numerator, the denominator, and the f; at each
step dong the way for the following calculations: 0.4 /0.7, 0.7/0.4.
0.1/0.15. Give the values for Six iterations, rather than the three shown in
the figure. Assume that the f, is calculated as 2-D; rather than to use a
ROM

The division operation begins by calculating fy, then multiplying this
value times the D, and Dg, as shown in Figure 3.24. For the calculation
0.4 10.7. the calculation proceedsin the following fashion:

D, 04000000  p; 0700000  fp 13000000
Dy, 05200000  Dg 09099999  f; 1.0900000
D, 0.5668000  Ds 09918999  f, 1.0081000
D, 05713011  Dg 0.9999344  f; 10000656

1

Dp, 05714286 D, 0999990 £, 1.0000000
Dy, 0.5714286  pg 10000000  f5 1.0000000
Dp 0.5714286  Ds, 1.0000000

With an x vaue of 0.3, this calculation approachesthe correct vaue within
four iterations. The next requested calculation is 0.710.4, which is the
inverse of the calculation just done:

D, 07000000 Dg 04000000  f, 1.5999999

Dy 11199999 D, 06400000  f, 13599999

D, 15231999  p; 08704000  f, 1.1295999

Dy  1.7206066 - Dg 09832038 fi 10167962

Y

Dy 1.7495062 Ds  0.9997178 fu 10002821

.

D, 17499998  Dg 09999999  f5 1.0000001

Dy 1.7499999 Ds, 1.0000000

o

This calculation takes longer to approach the correct value, since the initial
x was0.6. Note that the result in this case ended up greater than one, which

mult mult — mult Q
) 2s |h 2's _J

ROM comp comp
mult mult

Figure324 B ock Disgram for Iterdtive Divide Operation.
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3.7,

is to be expected and must be handled by the hardware. That is, with nor-
malized fractions for initial values, there is a limit that the results will not
exceed, but the hardware must be able to generate aumbers to that limit.
Thefind calculationfor thisexampleis0.1/0.15.

Dy 01000000 D 01500000  f, 18499999
Dy, 01850000  Dg 02775000  f; 1.72249%9
D, 03186625 Dy 04779938  f, 15220062
D, 04850063 . Dg 07275094  f, 12724%05
D, 06171659 = Dy 09257489  f, 10742511
Dp, 06629912  D; 09944868  f5 1.0055132
Dy, 06666464 D5 09999696

This calculation doesn't quite get to the desired value, even with six itera-
tions. This highlights the fact that in order to approach a desired precision
within a specific number of iterations,a ROM is needed in theinitial stage.

The iterative gpproach to the divide operation alows the hardware associ-
ated with the multiply to be used for more than one type of operation. For pro-
cessors with single instruction stream capability the same hardware may be util-
ized for both operations. But since several stepsare required for the divide opera-
tion, these instructionswill generally take three to live times longer to execute
than a multiply instruction.

Floating PointArithmetic

In the previous sections we have looked a the problem of designing hardware to
do the basic arithmetic operations: add/subtract, multiply, and divide. Storing
information in a floating point format compounds the complexity of the problem
and requires additional hardware to complete the operations. Let's first examine
addition and some issues raised by addition, then look at multiplicationand divi-
son. The floating point addition also includes subtraction, since the
sign/magnitude method of storing information necessitates that the hardware be
capable of both.

3.7.1 Floating point addition

The difficulty when adding two floating point numbers stems from the fact
that the mantissas, in general, have different significance. That is, unless the
exponents of the two numbers are the same, the most significant digit of one
mantissa has a different magnitude associated with it than does the most
significantdigit of the other mantissa. Therefore, before the two numbers can be
properly added together, the mantissas must be aligned. This involves determin-
ing which operand value is smaller, and then aligning the mantissaof thav operand
appropriately with the mantissa of the larger operand. The alignment is accom-
plished by .shifting the mantissa of the smaller operand a number of positionsto
the right, hence making the digits of the smaller operand line up with the digits of
the same significance in the larger operand. The amount of the alignment, the
number of positions to shift, is determined by the differencein the exponents.
The addition element then receivesthe mantissa directly from the larger operand.
and the aligned mantissafrom the smaller operand.
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To demonstrate this process, assume tha A, 8, and C are floating point
numbers, and find A = 8 + C. Furthermore, assume that 8 < C. (Also, for simpli-
city, assume 8 and C are positive numbers.)

A=B+C
= M,,xrf' + Mcxr,E‘
= Mpxr,F e ¢ MoyxrEe

With the assumption that 8 < C, the value of Eg = E¢ in the above equation is
nzgative. and multiplying Mz by rE2E s nothi ng more than shifting the
mantissaMj, to the right £g = E¢ places. Note that we have said nothing about the
radix of the system; this applies to base 10, base 2, or any other base. The shift
for alignment is accomplished by moving the value the appropriate number of
digit positions.

A block diagram for floating point addition is given in Figure 3.25. This
diagram shows the arithmetic portion & an ADD/SUBTRACT unit, instead of
strictly an add operation. The reason for this is that floating point numbers are
amost dways stored in sign-magnitude form; hence there is no sign associated
with the mantissaitself. Therefore. if two numbers are to be added together, and
one of the numbers has a negative sign, then what should actually be perfornied is
a subtraction. Thus, the arithmetic unit associated with the floating point adder
must be capable of doing both addition and subtraction.

The selection of the appropriate mantissa to be aligned (fmm the smaller
number) is made based on a comparison of the magnitude of the two exponents.
Thus, the result of this comparison directs the SELECT multiplexersto select the
unaligned mantissa, and the same signal directs the ALIGN network to select the
other mantissa and align it by shifting the appropriatenumber of positions. These
two results, one unaligned mantissa and one aligned mantissa, are then fed to the

lExponent AJ [Exponentg‘ LMantissaA] Iﬂtissa B]

Select and

ﬁ Select align

Exponent I l
Compare L
Add/Subtract

Evnanant i 1 l
Expenent Post Normdization

Adjust —[___‘
Result Exponent Result Mantissa

Figure325. Blodk Diagram for Hodting Point Addition.
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ADD/SUBTRACT unit for the actual calculation. The resulting number is then
provided to the POST NORMALIZATION unit.

The function to be provided in a post normalization step is to be sure that
the final result is itself a normalized number. This unit must be capable of shift-
ing to the right to take care of examples like the following base 10 examples (the
same principleshold in any base):

08045  InputA is normdized.
+ 07132 Input 8 isnormdlized.

1.5177 Reaultis not normdlized.

Thus the post normalization unit must be capableof a shift of at least one position
to lesser significance. The unit must also be capable of shifts of many positions
to higher significance:

0.8045  Input A is normdized.
- 08033 Input 8 is normalized.
00012 Resultisnot normalized.

The result of this example must be shifted left two positionsto be properly nor-
malized. Note that two N-digit floating point numbers, when subtracted. may
result in a required post normalization alignment of N—1 positions. This post nor-
malization network must then be capable of adjusting the size of the exponent to
reflect any normalization. At the end of this process, the result will have been
properly formed and ready for any additional operation required of it.

Floating point addition, then, requires many more operations, and hence
more hardware, than its integer counterpart. The addition techniques examined
earlier will apply in the arithmetic unit inside a floating point adder, but other
functionsare also required.

Example 3.10: Mantissa alignmentfor floating point add: Design the net-
work used to aign the smaller mantissa to be added to the larger mantissa
in Figure 325. Use readily availableICs, and assume that the mantissais
24 bits, base 2.

A mantissadf 24 bitsis a fairly common size for 32-bit floating point
number system. Since the number system is base 2, the alignment network
must be capable of shifting any number of bits. from 0 to 24. Figure 3.26
shows that one way of accomplishing thisis to use a number of 2-1 multi-
plexers. The figure shows the logic in a block diagram form; a logic
diagram of the system is found in Appendix B. The assumption here is that
the adders used to compare the exponents provide a binary number (sze: 0
to 24; hence 5 bits) which indicates how far the number needs to be shifted
in the alignment process. The M3B of this number is then used by the first
level of MUXs to shift the number by 16 bits (the | condition), or provide
no shift at all (the 0 condition). Similarly, the second MSB of the number is
used by the second set of MUXs to shift the number provided by thefirst set
of MUXs by 8 (the | condition) or provide no shift at al (the 0 condition).
This process continues, with each level of multiplexersshifting the number
by some power of 2, until al 5 bits have been utilized. The result is an
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Figure3.26. Logic for Alignment Shift Network.
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output that has been shifted the number of bit positionsidentified by the 5-
bit control number.

This network can be used to illustrate some interesting characteristics
of the system. The network of Figure 326 has been configured to place
zeros to the left of the aligned bits. This could be changed to aign with
sign bit (not needed here, but possible in some applicationsof shift net-
works) by asserting the unspecified inputs of the the multiplexers with the
sign bit of the aligned number, rather then forcing them to zero. Another
observation concernsthe amount of logic needed for the alignment function.
This network has been set up to do the alignment required by a base 2
number, such as the DEC or IEEE floating point system. However, if the
floating point system has a different base, such as the base 16 1BM floating
point system, then not al of the above levels are needed. Notice that the
base 16 system does not need to align to each bit position, but rather to each
digit position, which is every four bits. Thus, the last two of the five levels
of logic shown in the figure would not be necessary, with a resulting in less
overall logic and a speed enhancement of 40%. Thus a floating point sys-
tem that does not use base 2 resultsin a greater range and smaller logic
requirementsfor some of its constituent parts.

3.7.2 Handlingthe extra bits

Two problemsare illustrated by the exampleof floating point addition. both
of which ded with what to do with the extra bits. Thefirst "extra" bit problemis
identified by the following example. Assume a 6-bit mantissa for a base 2
number system, and assume that the second number has been shifted two bit posi-
tions to alow the exponentsto agree. Then the mantissa addition may be some-
thing like:

101010 Larger mantissa
+ 110010 Smdler mantissa digned.

11011010  Addtion resultsin 8 hits

There are more bits than can be dealt with in the result, so something must be
done with the extra bits. Several ways have been proposed and used to deal with
these bits. The first and most obvious method is merely to ignore them; this is
called truncation. and the unwanted bitsare truncated from the result. This results
in an error, since the final mantissa(cal it Mg) differsfrom the red result. Mg, by
whatever bits happen to be in those bit positions. This results in a truncation
error, ERRrrune: Which will result in an bias, or offset. after a number of opera-
tions have been performed. For purposes of comparison with other methods of
handling extra bits, let us define the error as the differencebetween the real result
and the final mantissa:

ERRygync = Mp—Mr
We will aso define the bias as the sum of the ERRrync OVer @ span of possible
results. The span we will useis all possible combinationsof 2 bits, for two itera-

tions. Thusthe biasfor truncation would be calculatedas follows (let the decimal
point mark the number of bits storable/usable by the machine):
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Mg Mg ERRppyne

x0.00 0 0.00
x00f 0  +001
00.10 00 +0.10
0011 x0 +0.11
xi 00 xxl 0.00
1.0l xxl +0.01
xx1.10 xxl +0.10
xel il xxl +0.11

b T S T N, S Y

The biasis the sum of all the errors over thisspan. Adding all of the elementsin
the ERRygyne column results in abias of +11.0, or +31g. Obvioudly. if we chose
fewer elements within a span, such as only one extra bit instead of two, the bias
would be less. Or if more points were selected the bias would be greater. Note
that, if we included three extra bits instead of two, there would be twice as many
values in the above table, al contributing to the error. But as we comparetrunca
tion with other methods we will be careful to utilize the same set of 41, so that the
comparison will be valid. Truncation aways throws away information, which
results in a positive bias: the number stored is smaller than the actual number to
be represented. Thus, over many calculationsresults will tend to be smaller than
the true value.

Another method of handling the extra bits is to try to reduce the bias by
adding haf the value of the least significant bit postion to the number before
truncation. This method is exemplified by the following operation:

101010 Larger mantissa

+ 110010 Smadler mantissa, digned.
11011010  Addition results in 8 hits.

+ 00000010 Now add hdlf of the L$B podition.
11011100  FAnd result. now truncate.

This method is called rounding, and the answers result in errors that have both
positive and negative values:

My Myt '2LSB My ERRgounp

a 0000 10.10 00 0.00
b 001 0.1 0 +0.01
¢ u010 1,00 xrl -0.10
d o011 xx.01 xxl 00t
e xxi00 .10 el 0.00
f om0l 11l xl +0.01
g xl.10 00.00 %0 010 ~
A oLl 0.0 0 -0.01

Note here that the last entries g¢ and h above have had a carry propagate into the
word, a fact that is indicated by the xy in lieu of xx for the vaue in the table.
Whatever value was represented by U is incremented to be xy, and any carry
which results continues to propagate into the word. The bias here is -1.0. The
error in this method is alwayssmaller than truncation, but the bias does not disap-

pear.
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Oneof the methods utilized to minimizethe error of calculationsis to create
a rounding scheme that will result in a zero bias solution. These schemes have
different names. such as round-to-zero or R* rounding. One such method operates
according to the following rule: whenever the value to be truncated has a “1” in
the most significant bit, and "0" in al other bits, that a “1" is forced into the least
significant bit of Mg. This scheme resultsin a bias which is zero over many cal-
culations:

My Mg+'1LSB My  ERRzgpopiasrad

a  x0.00 0.10 0 0.00
b 0001 x0.11 pi] +0.01
¢ x0.10 xxl... xxl -0.10
d 011 xx1.01 xxl -001
e xx1.00 xx1.10 xx} 0.00
[ x101 ol 11 ot +0.01
g xU.10 xxl... - xad +0.10
A xxiit xel.1d x0 -0.01

The two vauesin the above set that are. handled differently from “normal” round-
ing are entries ¢ and g. In both cases, a “1” is forced into the least significant bit
position of the valuesaved. Although both entry ¢ and entry g are handled in this
way, only entry g ends up with a value different from the"*norma" rounding sys-
tem. The bias with this method totals zero, and over many calculationswill tend
to smaller errors than other techniques.

At this point, we will mention two other techniques. Thefirst is called jam-
ming, and was proposed by von Neumann as a good method to reduce overall
errors; that is, it is better than truncation. The method is to "jam™ a 1 into the
least significant bit of the result. regardiess of the values of the extra bits. This
method results in larger errors than other methods, but over time it has the same
bias as rounding. Thus, it is as fast as truncation (no time required for rounding
step. since LSB is alwaysforced to 1), but has a smaller bias.

Another method centerson the ability tol ook at the extra bits and the least
significant bits to be retained, and using this information make an educated deci-
sion as to the vaueto be added. Thisstep is carried out by using a ROM or other
method of looking at scveral bits for the derision pracess. The reacon for doing
thisis to construct the value added in the rounding step in such a way that there is
no carry to propagate into the higher bit positions. This will speed the rounding
step, since the method guarantees no carry beyond the least significant bits. But
since the choice of the value to add in this step is made judicioudy. the bias is
controlled, and again over time the bias should be zero.

The errors resulting from the various methods of handling extra bits are
graphically depicted in Figure 3.27. Note that the shape of the envelope of error
is the same for truncation and munding, one being offset from the other. How-
ever, the rounding process has made the overall bias smaller. Note also that jam-
ming has the same shape, but tha the variations are greater. The zero bias
schemes, round-to-zero and ROM rounding, have shapes that reflect their
approaches to achieving their results. In both cases. the bias is minimized by
intelligent handling of the extra bitsinvolved in the action.

The second "extra bit" problem deals with the number of bits that need to
be retained in the alignment process. That is, if the resulting mantissais going to
be 24 bits, must we construct addersand alignment networks capable of 48 bits or
more? If the difference in the exponents is greater than 24, wha should happen
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Figure 327. Errors in Handling Extra Bits.

to the aigned operand? These questions must be addressed by the designer to
create a properly functioning system. Let us look & the problem with some
examples.

As we have noted before, the aignment process takes the mantissa of
smaller significanceand shifts (aligns) it the proper number of places, which is the
difference in exponents. Let the amount the alignment be represented by a, and
then consider somecases. We will use mantissas which consist of 5 bits. First of
dl, if a =0, then no alignment is necessary in the problem setup, but post normal-
ization may be necessary. such as:

0.10000
= 0.10001
= 0.00001 Post normdization
necessay of 4 places|eft.

Now consider some examples where aignment is necessary. We will consider
subtracting an aigned version of the largest mantissa representable from the smal -
lest mantissa. The smallest mantissafor this system is just 0.10000, while the
largest mantissa has a vaue of 0.11111. Thus for the problem 0.10000 X 2° -
011111 x 2° the value of a will be I. and the addition problem can be
represented:

0.10000 O
- 001111 ¢

0.00000 1 Pod normélization
necessary 5 places|eft.
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This is perhaps the worst case for post normalization. However, note that the
problem required a single bit wider than the 5 hits of the norma mantissa. The
Stuation when 0 =2 is depicted in Figure 3.28, as is the situation with other
vauesof a First we point out that in each of the situations depicted in Figure
3.28 there is a leading zero in the result, which will need to be removed in post
normalization. The next observation concerns the hits retained by the system in
the computation. These bits are underlined in the figure. Note that, for any
rounding scheme (except jamming) to work properly. at least one more bit than
the (end of the) underlined bits must be retained. For example, if truncation is to
be used, which is the simplest of the methods mentioned above, the answer would
be different if that one additional bit is not included in the calculation. Finaly.
we observe that the answerswould al be the sameif only one ! bit were retained
to theright of the vertical lines in the figure. Wecall this bit a"sticky" bit, and it
has the characteristicthat if any 1 bit were to be shifted through that position in
the process of alignment, then the bitisset to a |. This allows the results to turn
out as expected.

Thus, three digits are needed beyond the number required by the number
system. (This has been shown in binary, but is true in any radix.) One digit is
needed for post normaization, at least one digit is needed for the rounding
method, and onedigit is used as the" sticky hit."

Handling the additional bits involves making reasonabledecisions about the
bits that result when operationsgenerate more hitsthan can he retained in a result.
This involves hits generated in multiplication and division, since both of these
operationsgenerate more bits than can be retained in a floating point number with
the same characteristicsas the input values. For example, multiplicationof two
24-bit mantissas will result in a 48-bit vaue, which must then be reduced | o 24
bits by an appropriate algorithm. Additiona bits to be concerned about in the
design process include the bits in the dignment process for floating point addi-
tion. In each case, the system architect and designer need to identify the goals of
the system, and based on those goals make appropriate decisionson the number of
bitsto retain and the rounding agorithm to produce a desired result.

With the adoption of the IEEE floating point number system, many of these
decisions have been dealt with by the specification. That is, different types of
rounding schemes are available, and the user has the option of specifying the
mechanism that will be most appropriate for the calculationsto be done.

0.10000 0.10000
~ 0.00111 1] a=2 - 0.00011 1)1 a=3
0.01000 0] 0.01100 041
0.10000 0.10000
- 0.00001 11011 a=4 ~ 0.00000 14111 a=5
0.01110 1 0.0111i 1
A —t
0.10000, 0.10000 0000000
— 0.00000 OIl111  a=6 ~ 0.00000 0411111 a=7
0.01111 1 1 0.01 111 1100001
—— —

Figure 328 Subtractionwith Alignment of Operands
(Alignment is done by a shift of a hits)
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3.7.3 Flodating Point Multiplication

Floating point multiplication is perhaps the smplest floating point operation
in terms of the required operations. That is, there is no alignment of operands
required before initiating the operation, and minimal 1ormalization is required at
theend of the transaction. The required operationsare simply stated:

A=BXC

E,
= Myxr,™ x Mcxr,F

= (MgxMc)xr,*Ee

That is, the mantissa of the result is the product of the mantissasof the two input
operands, and the exponent of the result is the sum of the exponentsof the input
operands. A block diagram of this operation is shown in Figure 3.29. The basic
operations shown in the block diagram are identical to those indicated in the
above equations: the operands are separated into their constituent parts, the
exponents are added, and the mantissasare multiolied The only difficultiesare
implementation specific. once the floating point representation has been selected.
For example, the IEEE 32-bit floating point system calls for representing the
exponent in an excess 127 code; therefore, the exponent adder must be so
designed to correctly present the result in excess 127 code. The other block in
Figure3.29 that is not obvious from the above equationsis the post normalization
block. This block has the responsibility of checking the output of the multiplier
to ascertain if the result is a normalized number. If it is not, then it must be
adjusted accordingly, and the exponent modified. To identify the number of digit
positions that can be involved in this process, let's look at the two extremes: the

[Exponent BI IExponent CI lMantiﬁBl ILManti&aCi

Exponent
Add
Multiply
Exponent N~
- Post Normalization
Adjust
Result Exponent Result Mantissa

Figure329. Blodk Diegram for a FHoeting Paint Multiply
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product of the largest legal mantissas, and the product of the smallest lega
mantissas.

Largest X largest

Base 2 Base 10
01111 0.9999
x 01111 x 09999
01110 09998  Aligned properly.

D postnormalization,
Smallest x smallest

Base 2 Base 10
0.1000 0.1000
x 0.1000 x0.l000
0.0100 00100  Not digned properly.
" postnormalization of
onedigit postion.

For many of the multiplicationsperformed, no alignment will be needed in the
post normalizationstage. The worst case will be a post normaization of one digit
position. If this occurs, then the exponent must be decremented by one before the
operation is complete. It is interestingto note that the base 10 and base 2 prob-
lems are exactly the same for the smallest case (this would be true of any radix).
but that the number of bits required to represent these valuesis not the same.

The above calculationsalso point out the fact that the final mantissais com-
posed of only portions of the result out of the multiplier. For example, the com-
plete bit pattern resulting from the largest base two multiplication above is
11100001. But sincethe resultis handled in the same number of bits as the origi-
na operands, the same questions arise as those discussed in connection with float-
ing point addition: should the result be rounded? Truncated? Or what? Also,
need al of the partial product array be created in the process of generating the
result, or only portions of it? These questionsmust be addressed by the system
designer in the creation of an appropriatemultiplicationunit.

3.7.4 Floating point division

The division operation in floating point contains amost the same steps as
the multiplicationoperation:

A=B/C

= (Mpxr®) 1 (Mcxr )

= (Mp ! Mc)xr, 5

A block diagram of the hardware required to accomplish this would look very
similar to the multiplication system of Figure329. The only differencesare that
the exponent addition would actually be subtraction, and that the multiplication
block would be replaced by a divider. This division could be handled by either
direct or iterative methods. The result of the mantissadivision may then require
post normalization in the oppositedirectionof the multiplier:
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Largest / smallest

Base 2 Base 10
01111 0.9999
+ 0.1000 + _0.1000
11110 9.9990  Na digned properly,
postnormalization of
digit position.
Smallest / largest
Base 2 Base 10
0.1000 0.1000
+ 0.1111 + 0.9999
0.1000 01000  Aligned properly.

O postnormalization.

Again the questions of rounding' methods and number of places to calculate are
raised, and the system decisions made will reflect the resource constraintsplaced
on the system.

3.7.5 Hoating point status

We discussed earlier the various status bits normaly found in the status
register of a computer. In general, these bits are controlled by the *normal"
instructions in a computer, floating point instructions have their own conditions
that add additional system status information. That is. the bits discussed previ-
ously do not form a sufficient set to reflect the conditionsassociated with floating
point arithmetic. Thus, floating point systems often provide for indication of the
following conditions:

Overflow. This is similar to the overflow discussed earlier: the result has
exceeded the ability of the system to represent information. because the result
to be represented is too large. This can result from adding two numbers
aready at the maximum representable by the system, or, more generally. by
multiplying two numbers whose exponents add to an exponent not represent-
able in the system. Division can aso cause overflow, dividing a very large
number by a very small one.

Underflow. This results when a number is too small to represent in the number
system. This will occur when two very small numbers are multiplied, and the
resulting exponent cannot be represented in the system. Similarly, divisionof a
small number by a large one can cause the same condition to exist.

Zero. Like the integer counterpart, this condition indicates that the specified
operation resulted in a value of zero.

Sign. The sign of the result can be the MBB of the word. like the integer case,
or accessed by whatever method is indicated by the number system. This can
then be used in the same fashion as the sign of an integer number.

Some manufacturers also provide additional information when building a
floating point arithmetic unit:
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e NAN (not a number). After the hardware performs the operation requested by
the ingtruction. the result is not a lega number in the floating point number
system. This could be an operand resewed by the manufacturer, or the IEEE
Not-a-Number value.

e /nexact. This condition arises when the operation specified results in a value
not infinitely precise, due to rounding. This can be used as an indication of
truncation or mundoff error.

e Invalid. Thel EEE floating point system utilizes specific patterns for representa-
tion of +—and — Theinvalid flag of a system indicates that an operation has
been performed which wasinvalid, such as e x 0.

These status conditionscan be incorporatedin a register with the **'norma” status
bits, or they can form a separate status register accessiblein a different manner.
The implementation details will differ with design constraints and system
definition.

Summary

Many books and articles have been written about performing arithmetic on com-
puters, and designing hardware 10 do the actual arithmetic. What we have looked
at are some of the basic concepts utilized in the design of arithmetic units. Addi-
tion is perhaps the most basic. since it is used in the other types of operations.
We found that addition can be done in a time linear in the number of bits to be
added (with full adders) or in a time that is logarithmicin the number of bitsto be
added (with carry look-aheed). Thus, the addition process can be made faster at
theexpenseof additional gates or integrated circuit red estate.

Multiplication is a simple operation that can be done in a fashion similar to
paper and pencil methods, using a single adder and a register to maintain the sum
of the partial products. However, if speed is a mgor consideration, then other
methods can be utilized to reduce the time required at the expense of additional
hardware. We looked at methods using carry-saveaddersand mw reduction tech-
niques. as well as methodsthat would reduce the number of mws actually needed
in the partial product array. This latter method utilized parts that not only per-
formed t he generation of partial product bits, but combined those bits into partial
results. The amount of useful parallelism will be decided by the system designer
as heor she considersthe relative cost of system resources.

Division is another operation that can be done with direct methods, such as
paper and pencil methodsor with iterative techniques. We have looked a some
of each of these techniques. e featureof the iterative methodsis the ability to
use the multiplication hardwarein performing the division. This justifiessome of
the additional design effort and hardwarecostsof a high speed multiplier.

Finaly. we looked at some of the consderations introduced by combining
the adders, multipliers, and dividers into systems for floating point arithmetic.
The floating point systems introduced a number of issues related to the storage
and manipulaion o information. The manner in which a designer addressesthese
issues will have an impact in the complexity of the hardware constructed, and it
will aso have an impact in the complexity of any software required to effectively
utilize the hardware.
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3.9. Problems

3.1 Design a circuit that will accept as input a BCD digit and produce a 7-bit

32

33

34

output thet is the squareof the input digit.

Design a circuit that accepts as input two 2-bit numbers. A and 6. The out-
put is a 3-bit number, which is the sum of the two input vaues. modulo 5.

Design a 2-bit adder that functionsin no more than 3 gate delays. Inputs
include two 2-bit numbers and a carry in. Outputsarethe 2-bit sum, a carry
generatc, and a carry propagate.

Design a 2-hit subtractor. Inputs are two 2-bit numbersand a borrow. Out-
puts include the 2-bit differenceout and the borrow output.

35 Create the logic equations that demonstrate the look-ahead process for sub-

36

37

38

39
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traction. That is, show (with logic equations) how a subtractor could be
built so that it uses a'*look-ahead borrow" technique.

Design a circuit that accepts as input two 2-bit numbers. A and 8, and pro-
duces three outputs: A>B, A=B, and A<B. Assume an unsigned binary
representation for the numbers.

Repeat Problem 3.6, but include A>B, A=8, and A<B inputs. How should
these devices cascade? Show how these devices could be used to compare
8-bit numbers.

Prove that the overflow bit for a two's complementadditionis the exclusive
OR of thecarry in and the carry out of the most significant stage of the addi-
tion.

Design a carry look-ahead generator circuit for 4 bits. Inputsincludea carry
in. as well as propagate and generate signals from four adders. Outputsare
three carries, a propagate out, and a generate out. Compare your solution
with the 745182. How are they the same? How are they different? Why?

Design the logic necessary to create the status bits for a system that requires
the following bitsin the status register: zero, overflow, carry. sign. Assume
that the carry bit out of the ALU is available.

Row reduction can be used to speed up the multiplication process. A 3-2
row reduction unit for a single bit position is a carry-save-adder, which has
the same logic equation as a full adder. A 7-3 row reduction unit can be
created from 3-2 row reduction units, or from random logic. Design a 7-3
row reduction unit using both methods and compare the result from the

aspect of gate count and speed of operation.

Give a logic diagram for the data path of a multiplier that will produce the
product of two 24-bit numbers. Use the standard shift-and-add agorithm
(partial products added least significant to most significant). Use a shift
register for the product register and no AND gates. Also, create a flow chart
that specifies the action of the system. Be sure you know which lines go
where and why.

Give a logic diagram for a multiplier system that uses the shift-and-add
algorithm for partial products added in the reverse order (from most
significant partial product to least significant). Use '283s for adders; use
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3.16

3.17

3.18
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*198s for the register functions needed. Identify the control signals on the
individual parts that must be -asserted to do the work. and the levels (or
edges) that cause the action to occur. Include a flow chart for the action of
the system.

Creste alogic diagram for a 16x16 multiplier using Booths algorithm. Use
*382s for the arithmetic element, and whatever registers and shift registers
are needed. Include the logic required to control the function lines for the
addition/subtraction/do nothing performed by the '382s.

Creste alogic design for the data path to divide a 16-bit number by an 8-bit
number to give an 8-bit result and an 8bit remainder. Be sure you know
why the connections are made as you specify in your design. Use '382s to
perform the arithmetic. Give a Row chart that identifiesthe work to be done
and the assertion levelsof the signals required to do the work.

Designa 2x4-bit multiplier with a maximum delay from input to output of 3
gatedeays.

Creste an 8x8-bit multiplier system using 2x4-bit multipliers, carry save
adders, and adder systemsas needed.

Give a block diagram for a 32x32-bit multiply system using 7-3 row reduc-
tion units. 3-2 row reduction units, with the finad stage being a carry pro-
pagate add system. Estimate the speed of the system in gatedelays.

Design a floating point adder system for the floating point format given in
Problem 2.10.

Obtain a data sheet for the Am29C325 floating point multiplier, and identify
the steps which can be used to perform a divide operation.

**Create the logic diagrams needed for the data path of a 32-bit floating
point multiplication system. Assume that the inputs have been loaded into
two 32-hit registers, and that the output will be loaded into a third 32-bit
register. Assumethat the floating point format is a normalized format with
the radix of the system equal to 2, the mantissa stored in fractiona form
using the hidden bit technique, and the 8-bit exponent stored in excess 128.
The multiplier must use a shift-and-add algorithm. In addition, provide a
status register with bits for the sign of the result, underflow, overflow, and
result equdl to zero. Identify the control points, and the levelsaf the control
signast o do the work. Give a flow chart that identifiesthe proper levelsfor
the signal assertions.

Multiply problem. Design a multiplier for a 24x24-bit multiply. You have
three types of parts to work with: 3-2 mw reduction elements, 4-bit carry
look-aheed adders. and 4-hit carry look-ahead generators. Construct a data
path block diagram of the multiply process. starting with rows of the partia
product array. Show all of the interconnectionsnecessary a the row reduc-
tion stage, but not a the CLAA stage. Assuming two gate delays for al of
the functions (that is, assume that the row reduction elements. the CLAAs,
and the CLAGs all take two gate delays to do their work), how much timeis
required for the multiply? How many individual CSAs are needed for this
function?
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323 One method for performing the iterative divide operation is described as foi-
lows:

can becalculated by:

0= Dpxfoxfixfaxfyx -
Dgxfoxfixfoxfyx -

if the successive f;'s are chosen so that the denominator approacies one.
The numerator iteration for this method is Dp_,, = Dp, X f,. The denomina-
tor iteration is used to calculate the s, and is fy4 = 2= Dg X f,. Assume
that a ROM is provided to choose an appropriate fq, which is correct to 8
bits. Create a block diagram of a system that will follow the iteration sys-
tem. Assume that you have one multiplier available, and one two's comple-
ment unit available. as well as the initial value ROM and whatever registers
you need. With the block diagram include a description of how a divide
will proceed. How many steps to get a result correct to 56 bits?
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