
Arithmetic Units: Data Manipulation

If one considers that a computer is "one that computes," then perhaps the princi-
ple function of the machine is to operate on data. That is, we want to manipulate
information in a predetermined fashion, according to some rules and methods that
make sense. The earliest computers were built to do arithmetic at a higher rate
than previously attainable, at an accuracy providing the detail needed. These
machines were often used in some military capacity, such as building tables for
ballistics operations. In the last chapter we examined some of the methods for
information representation, and the limitations of those methods. In the next
chapter we will discuss the instructions that the machines utilize, that is, instruc-
tions to manipulate the information and instructions to control the computer sys-
tem itself. In this chapter, we are concerned with the design of the circuitry for
doing the actual data manipulations, that is, hbw does one design circuitry for per-
forming additions, multiplications, and divisions?

Many times in the discussion of a computer system we gather all of these
functions together and consider them to be performed by a single block of logic
called an arithmetic/logic unit (ALU). Such a block is shown in Figure 3.1. This
diagram is directly applicable to LSI ALUs, such as the '181 or '381; however it is
also applicable to dedicated units such as the THCTlOlO Multiplier/Accumulator.
Some ALUs may require additional lines to provide a carry input or to handle
status bits on output. In the figure, the source of the operands is left unknown, as
is the destination of the result. The interconnection of the components is a func-
tion of the type of computer and its intended application, as we will discuss later.
But now our concern is with the ALU. Logical functions are achieved by gating
the appropriate function to the output. For example, the function A AND B is
achieved by having each A, ANDed with the corresponding B, to derive F,, The
logic operations can be achieved with minimal gate delays and is therefore a rela-
tively fast operation. The more interesting operations are those required for the
arithmetic manipulations.

Instruction Arithmetickogic
Information

Figure 3.1. Connections for an
Arithmetic/Logic Unit.

3.1. Addition: the Universal Data Operation

One of the favorite questions asked by instructors teaching basic logic design is.
what is a universal logic gate? The basic premise demonstrated by this question
is that a NAND gate is considered a universal logic gate because all of the basic
functions - AND, OR, EX-OR, and so on - can be derived by different combina-
tions of NAND gates. In a similar fashion. NOR gates are also universal logic
gates. The same type of statement can be made concerning arithmetic operations
and the add function. All of the various arithmetic operations - add, subtract,
multiply, and divide - can be implemented by appropriate combinations of the
add function. First we will look at thefull adderl.and-some variations of it, then

. - .
we will consider the look-ahead carry pmcess that can be used to speed up the
a_dd function. ~ t h e ~ ~ ~ ~ l ~ & o " ~ o f aa-fEct&.,suchasthe carry save adder or
the Wallace tree adder. will be treated with other functions such as multiply.

A basic cell that can be used to perform additions is the full adder (FA).
shown diagrammatically in Figure 3.2(a). As shown, the function of the FA is to
add two bits (Al and BI) and the cany fmm a stage of lower significance (GIN) to
produce a single bit of output (Fl) and a carry out to the next stage of higher
significance (COUT). Thr l~utli table for this function is shown in Figure 3.2(b).
Several observations can be made after examination of the truth table. For exam-
ple, the function of a FA is to take three bits of equal significance - A,, B,, and
GIN- and create two bits, F,, which has the same significance as the three input
bits, and COUT. which is one bit more significant. Another observation is that the
output forms a 2-bit number (COUT, FI) which indicates how many "one" bits there
are in the three input bits. The four possibilities (0. 1, 2. 3) are the permissible
number of asserted bits on the inputs.

Figure 3.2 also contains Kamaugh maps for CoUT and F,, and the resulting
logic equations in sum-of-products form. The sum bit (F,) is also shown in an
exclusive-OR representation. The equations are then implemented with the
appropriate logic. The implementation of the sum bit is shown in the sum-of-
products NAND implementation as well as the exclusive-OR implementation. In
either case, the output bits are formed from two levels of logic. That is, between
any input and an appropriate output there are two gates, and hence two gate
delays. (One set of gates is for the AND function; the other set of gates is for the
OR function.) This is true for any combinational circuit: if one is willing to util-
ize enough gates, each of which has the requisite number of inputs, it is possible

Chap. 3: Arithmetic Units: Data Manipulation

CIN-H 2'P-
A I - H

AI-L .
81-H C I N i .
CIN-H

FI -H

CIN-H

Kj--)J
CIN-L

Figure 3.2. Design of a Full Adder (FA).

Chap. 3: Arlthmetlc Unlts: Data Manlpulatlon

to accomplish any logical function in two gate delays. It may not be desirable or
practicable, but it is possible. We will utilize this fact as we examine the times
required to perfom various functions. Thus, to perform the addition of the two
bits A/ and 8, with carry, requires two gate delays from the time that the inputs are.
stable.

At this point it is useful to comment on the design methodology for combi-
national circuits, which is exemplified by the full adder. The first step in the
design of any combinational system is to understand the problem at hand, which
is a nontrivial quirement. Once the problem is understood, the problem and its
solution can be stated succinctly in prose, identifying the input and output vari-
ables. From the problem statement, truth tables can be established, equations
derived, and gating networks developed. When the solution is complete, simple
tests can be performed to ascertain that the outputs do indeed perform the desired
function, and that the requirements of the initial problem are satisfied.

For the full adder, the basic requirement is the addition of two numbers. As
we discuss the various arithmetic operations in this chapter, we will first seek to
understand the requirements of the underlying process, then proceed to determine
a design which will perform the required work and meet the other needs of the
system. The simplified block diagram shown in Figure 3.2(a) seems innocuous in
appearance, but before progress can be made toward a reasonable design. the pro-
cess which is being performed must be understood. One demonstration of the
understanding required is a correct truth table, as shown in Figure 3.2(b). A
designer's concept of what the device should do is identified by this table. If a
design does not function properly, the usual debugging approach is to see if the
wiring matches the logic as described by equations, and that the equations were
correctly obtained from the truth table/Kamaugh maps. This approach will find
errors that are implementation emrs. However, it is often the case that the logic
is an accurate implementation of the logic equations, and that the logic equations
themselves are incorrect. This may be true not because the Boolean algebra was
done incorrectly, but rather because the designer's understanding of the pmblem
was flawed. And one place where that understanding will be displayed is in the
truth table; thus, this step should also be examined in detail in both the design and
checkout process.

In the design process, the logic equations are derived from the truth table
repre~ntation of the problem. Eacl~ minterm can be written down individually
fiurn the trutli table, and rules of logic utilized to find the minimal form. Or some
other method can be used to find an acceptable logic equation. The Kamaugh
map method is exemplified by Figure 3.2(c). From the equations. the proper
arrangement of logic gates can be derived. The exact implementation techniques
will be dictated by the design constraints established by the problem itself.

Portions of the process - from understanding to truth table to Kamaugh
maps to logic equations to implementation - can be aided by CAE (computer
aided engineering) systems or CAD systems (Computer Aided Design). However.
it is imperative that a designer be able to understand the results of C A W A D sys-
tems, and be able to ascertain correctness of the final result. The computer aided
systems will do a speedy and precise job. but the underlying algorithms used by
the computer system may not coincide with the desires of the system designer.
Therefore, care must be taken to assure that the final results provide a reasonable
solution to the initial problem.

In general, we are not interested in computers operating on a single bit at a
time. Rather, we are concerned with computers that operate on a collection of

Chap. 3: Arlthmetlc Units: Data Manlpulatlon

bits. Full adders can be cascaded to the width of the system, as shown in Figure
3.3. In the figure, two &bit numbers are added to produce an &bit result. An
additional input is the carry in (GIN). which may come from a status register or
other source; and the carry out (CWT) from the addition is available for the sys-
tem.

This is not the fastest method to perform an addition, as we will see, but it
will provide the correct answer. The time required to perform addition by this
method, as measured from the time that all inputs are stable. is directly propor-
tional to the number of bits in the word. This kind of addition process can be
called a ripple carry adder (RCA), since the cany at each stage is propagated to
the next stage. We will label the time required by this type of addition as

and this time is given as:

That is. the time for an N-bit addition is just N times the time for a single bit addi-
tion (TFA). and the time for a single bit of addition is two gate delays. Thus, the
time for a full adder implementation of an addition module is linear in the number
of bits to be added.

The details mentioned above are often hidden inside integrated circuits.
However, in designing or understanding the circuitry embedded in ICs, this infor-
mation may be very beneficial. Full adders can be purchased in IC form, such as
the '80. Or one can consider that four such stages are cascaded in a single unit.
such as the '83, a 4-bit adder. However. if one examines the circuitry internal to
the '83, the carry out of the chip is generated in a different fashion than the FA
method just described. This method is the look-ahead method. which we will
examine later. But first let's apply the add technique described above to a sub-
tractor.

Exampk 3.1: Full subtractor: Using the methods described above, design a
full subtractor (FS).

The first step in this process is to under~tand the requirements of the
design. Figure 3.4(a) is a diagram that indicates the futcliun ol Illc full

Figure 33. A Word Adder Composed of Full Adders.

Chap. 3: Arithmetic Units: Data Manipulation

Borrow--, 0 1 t t 1 0 0 0
X - 1 1 1 0 0 0 1 0

Y - 1 0 1 0 1 1 0 0

X-Y - 0 0 1 1 0 1 1 0

Figure 3.4. Design of a Full Subtractor (FS).

subtractor. Two bits from the data word (X,, YI) are inputs to the FS, as is a
line from the previous stage. This line is the borrow in. BLN. The outputs
are the subtract output for this stage. FI, and the borrow output to the next
stage, BOUT. The algorithm for doing subtraction in base 2 is exactly the
same as the algorithm used for the base 10 taught in grade school. One

Chap. 3: Arithmetic Units: Data Manipulation

"borrows" bits (digits) from places of higher significance as needed to be
able to perform the subtraction of a bit. Figure 3.4(b) is ah example of a
binary subaaction; this example is given becau:;e all of the information
necessary to create the complete truth table is present. Figure 3.4(c) is the
truth table for the full subtractor, which has been derived by examining the
subtraction of Figure 3.4(b) and filling in the table as needed.

A good thing to do in unfamiliar circumstances (base 2 subtraction is
not a daily occurrence for most people) is to convert to a familiar system
and do the subtraction. The base 10 representation of this operation is 226
- 172 = 54; and since 001 101 lo2 = 54,o. we feel much better about the
accuracy of the results. Alternative derivations of an answer provide
methods for checking the results of an algorithm, and should be employed
as necessary to build confidence and pmve correctness.

The Kamaugh maps for the subtractor are shown in Figure 3.4(d). as
well as the resulting logic equations. Finally, the gating function for the
borrow is given in Figure 3.4(e). The gating is not given for the subtract
output since F, = X, $ Y, $BIN is exactly the same formula as the sum out
for a full adder. The same circuitry can be used for both functions. Note
also that the logic equation for the borrow has the same form as the logic
equation for the carry out of the full adder. but the inputs are different.
Thus, with a little ingenuity and some gating functions, the same circuitry
could be used for the A + B, A - B, B -A, and A $ B. The latter function is
achieved by disabling the carry function; forcing the carry to a logical zero
allows A $ B $ C to reduce to A $ B.

The timing for a multiple bit full subtractor is exactly the same as the
timing for the carry propagate adder,

Subtraction of two values can be accomplished by a system of sub-
tractors created as described here. However. a subtraction system can also
be created by using an adder system (composed, for example, of '283s) and
the complement-and-increment method of negating a value. The value to be
subtracted is complemented with a set of inverters, and the increment is sup-
plied by asserting the carry-in of the adder system.

The similarity between the subtraction process and the addition process is
not really surprising. but it points out a situation that often arises. In many cir-
cuits, both combinational circuits, such as those discussed here, and sequential cir-
cuits, such as direct multiplication methods discussed later, then are opponunit~es
to utilize some of the same elements of the circuit for more than one function.
Here, one set of gates can be utilized for both the addition and subtraction func-
tions. The same concept applies in some sequential circuits, where counters (or
other components) can be reused for different functions. The key to the effective
use of system resources is to achieve a complete understanding of the functions to
be performed by the system, and to combine that with a knowledge of the logic
requited to perform those functions and the capabilities of that logic. This combi-
nation will allow a designer to trade off system resources against system require-
ments to achieve an effective design.

Word adders composed of full adders are an example of a minimal gate
solution to a pmblem, but the time required for the result may provide an

Chap. 3: Arlthmek U*, Data ~anlpula t ion 75

unacceptable limit to system performance. Another approach is to add more com-
plexity to the add process to do the function faster. In order to do this, we look
again at the logic equations for the addition process:

Looking at these equations we make the following observations, some of which
have been made before. The creation of the&sign&qui~ but two ga!e delays
h m stabilization of input t ~ o ~ ~ & & i e . The same can be said for the first
form of the carry equation, but the second form requires three gate delay?. How-
ever, the sL%d-fo& allows the addition process tip&eed in a different
fashion. Here the data inputs (as opposed to the carry input) are grouped into two
terms: AB is called the carry generate (CG) function since if this term is asserted
there will be a carry (hence, the carry is "generated") regardless of the value of
the carry input. The A + B term is called the cany propagate, since if this term is
asse~ted any carry which is supplied to this stage is passed on to the next. (Note
that the function A $ 6 would also be. a valid carry propagate function. Why?)
Arrangement of the add operation to include the carry generate (CG) and carry
pmpagate (CP) functions results in a module which produces:

Figure 3.5(a) shows a diagram of such an adder. Note that the time required to
create the carry generate and carry pmpagate is a single time delay. But more
importantly, note that the carry generate and carry propagate lines are not func-
tions of the carry input. This means that if we arrange several look-ahead carry
adder (LACA) modules as shown in Figure 3.5(b), then all of the CG and CP lines
will be stable one gate delay after the inputs are stable. In Figure 3.5@) these
lines are inputs to another module, called a look-ahead carry generator (LACG).
The LACG has the responsibility of creating the cany for each stage; it does this
by looking at the carry generate and cany propagate signals from all of the stages.
If CW is asserted then Co will be asserted. C1 will be asserted if the carry generate
of the previous stage (CGo) is asserted. OR if CPo is asserted AND CIN is asserted.
As the carries become more significant, the amount of logic needed to generate
the cany becomes larger. But it is important to note that, if the designer of the
LACC is willing to supply a sufficient number of gates, then all of the carries will
be generated in two gate delays. Thus, the addition shown in Figure 3.5(b)
requires 5 gate delays: one to generate the CG and CP for each LACA, two to gen-
erate all of the appropriate carries, and two more to propagate the effect of the
carries to the outputs. This is faster than the 4 x 2 x G = 8 gate delays required
for the FA implementation.

It is apparent that much of the complexity has been moved to the LACG.
which becomes more complex as the number of modules that it services increases.
A LACG that provided the carries for all 64 bits of an adder would be

Chap. 3: Arlthmeiic Units: Data Manipulation

Data I n Carry In

Carry Generate

LACA
--t

Carry Propagate

Look-Ahead Carry Generator

F3 F1 Fo

Figure 3.5. Look-Ahcad Carry Adder (LACA) and its Connection in an Adder Circuit.

prohibitively expensive in terms of numbers of gates, or IC real estate. So, the
LACGs are designed to cascade in exactly the same fashion as the LACAs. That
is, in addition to the carries, the LACG generates a CG and CP that can be utilized
by a second stage of LACG; the process continues as far as necessary to perform
the work required. Such a system is shown in Figure 3.6. This figure shows the
connection of '181s. which are 4-bit ALUs that generate the CG and CP signals
required, and '182s. which are the LACGs. These units are both 4-bit units; that
is, the ALU performs the addition of 4 bits, as well as generating the CP and CG
signals for those 4 bits, and the LACG handles the CG and CP signals from 4
modules. Because of this added complexity in the ALU module, the CG and .;P
signals will require a minimum of two gate delays to cleate, as opposed to the sin-
gle gate delay for a single bit unit. The time required for a carry lookahead addi-
tion is then given by:

where there an N bits to be added, and the number of bits handled by the ALUs
and LACGs is b. When no LACG is needed (up to b bits), then the time required

Chap. 3: Arlthrnetlc Units: Data Manlpulatlon 77

is simply two gate delays. Then. as the number of bits increases, the LACGs are
added in a tree type of structure, where the fanout of each node of the tree is b.
This gives rise to the second term in the above equation. As the number of bits
(n) increases, each time the term logb(N) -1 crosses a b boundary. that is, when
the number of bits to be added crosses an exponential integer (b'), then the depth
of the tree increases by one, and the number of gate delays required increases by
four. By utilizing the look-ahead process, the time required for addition has been
changed from function linear in the number of bits to a process that is logarithmic
in the number of bits. And the base of the logarithm is the number of bits han-
dled by the LACAs and LACG; a larger b results in a faster adder for a given
number of bits. For the adder shown in Figure 3.6, the time would be:

= LO gate delays

The 10 gate delays for the look-ahead process of Figure 3.6 are a limit, which will
not, in general, be fully attained by commercial parts. This is because parts such
as the '181 and '182 will reduce the number of gates required for the final function
by allowing three or four levels of gates, instead of the theoretically possible two.
Nevertheless, the look-ahead method for addition is much faster than addition
with chains of full adders. At this time we will introduce another term for the add
process: carry propagate adder, abbreviated CPA. By this term we indicate that
the carry will propagate all the way through the addition, but the method of carry
implementation, whether ripple carry or carry look-ahead, is not specified.

The addition function provides an example of the tradeoffs available in
creating a system. A carry propagate adder will perform a function with a
minimal number of gates, but the time will be correspondingly long. A carry
look-ahead adder will perform an addition in a minimal amount of time, but the
number of gates required for the function has correspondingly increased. Each
system designer must examine the resources available (time, gates, silicon real
estate, etc.) and allocate those rcaources in an appropiale mannzi.

3.2. Status: Results of Arithmetic Operations

Often when arithmetic operations are performed, some information about the
answer is as important as the answer itself. That is, many operations are per-
formed simply to find out how things compare: is A larger than B? Is A equal to B?
Is A negative? Many of these questions are answerable if certain information is
available concerning arithmetic operations. For example, is A equal to B? Well.
subtract A from B (or B from A); if the result is zero, then A is indeed equal to B.
In general, four pieces of information are produced by these arithmetic operations,
and these pieces can be used to form bits in a status register. The four bits are
zero. sign, overflow, and carry. We should hasten to add that other types of info;-
mation are often available in a status register, and we will deal with this type of
information in Chapter 4. At this time, we are interested in the arithmetic opera-
tions and status that can rcsult from them.

Chap. 3: Arithmetic Units: Data Manipulation 79

The sign bit is perhaps the easiest to generate: it is the sign of the result of
whatever operation was performed by the ALU. For two's complement numbers,
this is the MSB of the result; for most floating point number systems. this is also
the most significant bit. In either case. the sign of the number is fed directly to
the status register. Instructions that manipulate arithmetic values (ADD, SUB-
TRACT, COMPARE, etc.) will modify this bit; instructions that do not do arith-
metic (JUMP. CALL, etc.) will not modify the bit. For a precise list of the instruc-
tions that do modify the various bits of the status register of an existing machine,
the instruction set definition for that machine must be consulted. The opposite is
true for a system architect in the process of creating a set of instructions. That is,
based on the application area of the machine, the arithmetic operations required.
and the number systems utilized, the system designer can, at the time of the
definition of the system, identify which operations will have an effect on the
status register.

In addition to the sign bit, t h h is also readily available from the
ALU. If an arithmetic operation resulted in a carry. then this bit is asserted in the
status register. Again, the instructions modifing the bit are obtained from the
instruction set definition.. The hardware of the system, then, must prevent instruc-
tions that cannot modify the bit (as defined by the instruction set) from actual
modification capability. This is accomplished by disabling the load function of
the status register bit (carry bit, in this case) within the status register.

'J3e zero be is also easy to visualize, conceptually. If the result of the
operation is zero, then the bit should be set. Often this operation will be utilized
by more instructions than strictly the arithmetic ones. For example, in some sys-
tems MOVE instructions will test the value being moved to see if it is zero. As
before, the exact list of instructions that modify the zero bit will be obtained from
the instruction set definition. The logic required is a test on each line to check its
assertion level. For ALUs not providing this information on a separate status line,
then all of the output lines must be checked. However, some ALUs provide a sin-
gle line that will be asserted if any of the ALU lines are not zero. The advantage
of this method is that these lines are constructed with open collector technology,
and can be tied together without external gating. Thus, when all ALU outputs are
zero, none of the lines is asserted, and the recognizable output is high, which is
exactly what is needed by the status register.

,=overflow bit is the condition that requires more than rudimentary logic.
When should the overtlow bit be set? The overflow bit indicates that the opera-
tion performed has exceeded the ability of the number system to represent infor-
mation. Thus, one of the basic pieces of information needed (or assumed) is the
number system being utilized. Our examples will concentrate on the two's com-
plement number system. Other number systems may call for other conditions to
identify an ovetllow. For example. consider an &bit, two's complement number
system. From our previous considerations we know that this number system can
represent values from -128 to +127. If we add 61 10 to 4510:

00111101 Thisis61 inbasel.
00101101 This is 45 in base 2.

Now add them together.
01101010 The result is equivalent to 106. the correct answer.

This operation does not exceed the ability of the number syslem to represent
information. However. if we add 7Sl0 to 581~:

Chop. 3: Arithmetic Units: Data Manipulation

OIOOlOll This is 75 in base 2.
001 11010 This is 58 in base 2.

lOOOOlO1 In 2's complemenl. this is -123.

If the pattern is considered an unsigned integer, then the answer is correct (13310).
But as a two's complement number, the ability of the number system to represent
information has been exceeded. Two positive numbers have been added together,
and the result was a negative number. The same thing will happen if two large
negative numbers are added together: a positive number will be the. apparelt
rewlt. Again, the ability of the system to represent information has been
exceeded: an overflow has occurred. When this happens in an arithmetic opera-
tion, then the overflow bit of the status register will be set. If a number system
other than the two's complement number system is to be used, then a similar set
of operations must be checked, identified by the number system itself.

Example 3.2: Overflow circuit: Design a circuit that will detect the
occurrence of an overflow condition for a two's complement system.

As stated above, the overflow will occur when two positive numbers
are added together and a negative number results, or when two negative
numbers are added together to form a positive result. So the observation
points are the sign bits: if the two input sign bits are positive (zero), and the
output sign bit is negative (one), then an overflow has occurred. Likewise,
if the two input sign bits are negative (one). and the output sign bit is posi-
tive (zero), then an overflow has occurred. A circuit to detect this condition
is shown in Figure 3.7.

If the internal canies of the addition process are available, this circuit
can be replaced by a single exclusive-OR gate. The exclusive4R gate
would detect a difference between the carry-in and the carry-out of the most
significant stage; these two lines will differ when the overflow condition
exists.

The arithmetic bits included in the status register are set and cleared as
directed by the control logic for the system. That is, not all of the instructions
will be allowed to modify the status bits, and some status bits will be modified by
more instructions than other bits. This will require a system which is capable of
selectively controlling each of the bits. If we limit ourselves to fairly standard
TIT parts, then such a circuit is shown in Figure 3.8. Note that each of the bits is
individually setable and clearable, as well as being reset jointly by a system reset.
If the instruction set does not require the ability to individually set and clear each
of the bits, then the amount of logic required for this function will be reduced.

SIGN-A-H
SIGN-8-H
ALU-SIGN-L r

OVER-FLOW-H

Figure 3.7. Circuit for OverRow Detection (Two's Complement
System).

Chop. 3: Arlthmetlc Units: Data Manlpulotlon

SET-SIGN-BIT-L
I

ALU-SIGN-H 4 S I M - B I T - H

STROBE-SIGN-H
SYS-CLK-L DX P

01

ZERO-BIT-H bLU-ZERO-H 4
STROBE-ZERO-H
SYS-CLK-L M o

SET-CARRY-BI T-L
I

OVER-FLOW-BIT-H OVER-FLOU-H

STROBE-OVR-H
SYS-CLK-L M 9

Figure 3.8. Arithmetic Bit Formation for a Status Register.

Some manufacturers provide many of these functions in a single IC. such as the
AM2904. This reduces the number of chips required but not the control lines: The
AM2904 has 17 control lines associated with this function.

These status bits form both a source and a destination of information in the
performance of computer functions. Arithmetic operations often require a carry
input, which is provided from the status register. Addition operations may change
all four of the bits discussed above. Logical operations can also affect the zem
bit. And program control operations can test status bits to control the flow of
control in the system. Thus. these four bits can form a portion of a status register.
which performs a central function in the overall system operation. We will
include other kinds of status information in the discussion of inshuction sets in
Chapter 4.

3.3. Iterative Multiplication Methods

Fmm the very early days of computers one of the things needed was a multiplica-
tion capability. Many of the early machines were funded by defense needs, such
as calculation of ballistics tables and other strictly computational tasks. For these
tasks a multiply was required, and many early machines had a hardware multiply
inshuction. Later, when memory speeds improved dramatically, subroutines
could be used to do the multiply and still accomplish the function faster than the
previous hardware systems. This allowed a sizeable reduction in hardware for the
computer. Still. hardware multiplication capabilities have been utilized more and
more as the relative cost of hardware has decreased. Let us examine some of the
methods for doing multiplication.

Chap. 3: Arithmetic Unih: Data Manlpulatlon

First, let us define the problem in exact terms, then select a sample problem
to follow through the various methods of multiplication. What we want to find is
the product. P, of two values, A and B.

A and B are called the multiplicand and multiplier; let us assume that they are both
5-bit numbers: A,A3A2A,Ao and B4B3B2BlB,,. We know from Chapter 2 that these
can assume values from 0 to 2' - 1 = 31. So, the largest product would be 31 x
31 = 961. To represent the number 961 requires [lo& (961)1= 10 bits; hence,
we say that the product of two N-bit numbers requires 2 x N bits to represent.
With our assumption of a positional notation system, the p d u c t tau be
represented as:

In practice. we write this as follows:

The five rows labeled PPo to PP, are known as the partial product array. For this
mul~iyiicalioo, the rows of the partial product array are composed of 5 bits, and
each bit is an AND function of a bit from the A input and a bit from the B input.
The product itself (PR) is the sum of the rows of the partial product array. when
the rows have been aligned appropriately for bit significance. The effect of the
multiplication by powers of two in the above equation is accounted for by the
shifting of the rows in the partial product array. This is the same situation as that
taught in grade school for base 10:

In the base 10 example, each mw in the partial product array is the result of the
multiplication of the first number by one digit in the second number. As

Chap. 3: Arithmetic Units: Data Manipulation 83

explained above, in the base 2 system this product is very easy to obtain, since
multiplication in base 2 is accomplished on a bit-by-bit basis. Therefore, the crea-
tion of the partial product array for a base 2 example is very simple: merely AND
each bit in the multiplicand with the appropriate bit in the multiplier. Then the
rows of the partial product m y are summed in some fashion. Let us examine
some methods for accomplishing this.

The most straightforward method for doing the multiply is the traditional
"shift and add" method. One implementation of this is shown in Figure 3.9. 'The
multiplier shown in the figure is set up to do an 8x8-bit multiply. Several

Figure 3.9. Data Path Logic Diagram for Simple Multiplier.

Chop. 3: Arithmetic Unlts: Doto Monlpulotion

observations can be made concerning this system. Fist of all, the adder used is
an &bit adder; this will function properly since the partial product addition is
done from the least significant partial product to the most significant partial pro-
duct. There is nothing magic about the order of partial product addition, so long
as the bits are added in their appropriate significance. That is. for an N-bit multi-
ply, the partial products PPN., to PPo could be added in the order shown (PPo first
to PPN.I last). in the reverse order (PPN.] first to PPO last), or in any order deemed
convenient because of design considerations.

In Figure 3.9, the shifting of the result is accomplished by hard wiring the
accumulating sum to line up with the appropriate bit positions in the partial pro-
duct. And the partial product is crealcd eiactly as S;IUW:I i ~ i UIC a'bove erpmsion
of a binary multiplication: AND gates are used to generate the panial product from
the multiplicand. The multiplier bit to be used is obtained from a shift register.
A timing diagram that will assert the control signals in an appropriate fashion to
do the work is shown in Figure 3.10. The timing diagram shows a set of control
signals that will work in all cases; however, the resul: can be obtained faster in
some circumstances if the control section is modified to look for specific condi-
tions. One such condition is that either the multiplier or the multiplicand is zem;
in such a case, the result is zero, and the answer can be given immediately. A
flow diagram showing such a set of decisions is shown in Figure 3.11. The
design of a control section that will create the appropriate signals is the topic of
Chapter 5 and will not be covered here.

The circuit shown in Figure 3.9 is only one of a variety of implementations
that will accomplish the work of multiplication. Other solutions to the problem
would try to create the "best" design based on some criteria of the designer. For
example, in the design shown in Figure 3.9 two chips are required for the AM)
function; these can be removed by using a slightly more complicated product
register capable of shifting internally as well as loading from an external source.
This reduces the number of chips (and hence board area required) fw the function.
but will necessitate a slightly more complex control. Another type of design may
test for the condition that the remainder of the multiplier is all zero, hence the
multiplication is essentially complete. The challenge in that type of design is to
be sure that the final product bits are in the correct bit positions.

No matter what type of data path is selected, and its appropriate algorithm
devised, the designer is faced with the problem of proving correctness. Several
methods are available to do this, from simulation of the hardware if such a

PROD-CLR-L

PROD-CLK-H

u \ /
Clew Product R e g d hdd Partial Products t o Product Register,
Load Multiplier Shift Multiplier register to next bit

Figure 3.10. Timing of Control Signals for Simple Multiplier.

Chap. 3: Arlthmetlc Units: Data Manlpulatlon

Clear Product
Clear Counter

I

Done

Done Yes
C-

I .
Fiurc 3.11. Flow Diagram for Data Dependent Multiply Algorithm.

simulation system is available, to examples worked through by hand. Before the
design is fabricated, the designer should select several appropriate examples and
show that the system will provide proper results.

Example 3.3: Multiplier Design: Design a data path for a multiplier that
will add the partial products in "reverse" order, from the most significant to
the least significant. What are some of the benefits and penalties of doing
this?

This could be accomplished in a number of ways, one of which is
shown in Figure 3.12. The figure shows the parts and principal interconnec-
tions needed; a more detailed schematic representation is found in Appendix
B. This method requires an adder as wide as the final product. For simpli-
city this is shown as four '283s; faster add times could be attained by using
an adder with lookahead capabilities. The product register is constructed
out of '273s, which are 8-bit edge triggered registers. The bits from this
register are fed back to one set of inputs on the adders. The inputs to the
product registers come from the same bit positions in the adder.

The multiplier register is composed of two '195s which have been
configured to be a shift register. The control section will be responsible for
asserting the clock line (PLIER-CK-H) when data is available to be loaded.
and also when the multiplication is proceeding. The output of the multiplier
register is constantly checked to see if it is zero (PLIER-ERO-L).

The multiplicand register is composed of two types of shift registers:
'195s and a '164. The '195s provide for the load of the multiplicand value,
at the same time clearing the '164 (PCANDLD-L). Again note that the con-
trol section will be responsible for asserting the load and clock lines in the
proper sequence to cause the data to be loaded at the appropriate time, and
then shifted during the execution of the multiplication itself. As the multi-
plicand is shifted out of the '195s. it will be shifted toward lower
significance in the '164. This is the method whereby the stated design

Chap. 3: Arithmetic Units: Data Manipulation

Figure 3.12. Data Path for Multiplier of Example 3.3

objective of "reverse" order of partial products will be accomplished. The
multiplicand can also be checked for a zero value (PCAND-ZERO-L) when it
is loaded, but this will only be effective at the beginning of the algorithm.

A flow diagram for implementation of the multiplication algorithm is
shown in Figure 3.13. This diagram indicates how the algorithm proceeds.
and identifies some of the benefits of this organization. The first step is to
clear the product register; this is the correct answer if the multiplicand is
zero, which is checked next. It is also the correct answer if the initial value

Chap. 3: Arlthmetlc Unlts: Data Manlpulatlon 07

Register w + zero? b n e

Shin Multiplier
and Multtpl~cand

Clock Product Reg
Shift Multiplier

Fiurr 3.13. Flow Diagram for Multiplier of Example 3.3.

in the multiplier is zero, which is the next condition checked. Then the
iterations begin in earnest. The value in the multiplicand register is added
to the value in the product register; this result may or may not be placed
into the product regider. That decision is based on the most significant bit
in the multiplier register (AND-BIT-H); if the bit is asserted. then the pro-
duct register is loaded. In either case. the multiplier and multiplicand regis-
ters are shifted by one bit position. If the number of iterations is N (8 in
this case), then we are done. If not, check the multiplier register to see if
we have added in all of the appropriate values. If we have, then the algo-
rithm is finished. As this description points out, the time required for this
algorithm is data dependent. It is not necessary to check for zems, since the
algorithm would function correctly with an iteration counter and no data
checks. However, by testing the values during execution of the multiply.
the number of iterations will depend on the arrangement of one's and zero's
in the data. By doing the additions in the "reverse" order, the product bits
are in the correct position whenever all the required additions have been
performed. Thus. the time to complete the instruction will vary according
lo the data. which will speed up the processing.

Another benefit fmm this method is the absence of AND gates to do
the individual panial product multiplications. The p a i d product is always

Chap. 3: Arlthmetlc Unlts: Data Manlpulatlon

added to the accumulating product, but this value is conditionally loaded
into the product register, based on the appropriate bit in the multiplier.
Thus the AND function is supplied by control of the product load line, rather
than an AND line on every bit.

One of the obvious tradeoffs with this method is that the speed
benefits and the reduction in gating (no AND gates) have becn obtained at
the expense of a larger adder and multiplicand register. So, before a
designer declares this method betterlworse than another method, he needs to
ascertain the various costs of the method and decide if the tradeoffs match
his system resources.

The multiplicxtion methml~ d;cwwpd *r I!.;? +nt -- ;...,d,,v; ~ , & , . r t i ~ : L;,L

same adder syslem is used a number of times until the correct result is obtained.
One of the questions to be addressed is the time required for the multiplication.
The time that we worry about here does not include the time required to load the
multiplier and multiplicand registers, and, in an actual implementation, those
times need to be included in any timing estimates. The multiplication time.
TMULT. can be gmuped into two contributing factors: the setup time. TSmp. and
the iteration time. TmR.

The setup time includes the time required to clear the product register and per-
form any initial checks identified by the algorithm. This is reflected in the "is
multiplicand zero" condition in the algorithm of Example 3.3. The iteration time
is the time required to create the partial product @erform the AND function), to
add the partial product to the ~ n n i n g sum, and to load the resulting value into the
product register. These times are reflected in the following equation:

The first term (TAND) is the time needed by the algorithm to form the. partial pro-
duct. Note that in some algorithms, such as that described in Example 3.3, this
time will be zero, since the same effect is obtained by conditionally loading the
product register. The second term (TSUM) accounts for the time required to form
the sum of the partial product w~th the product register. This time will be deter-
mined by the adders being used and the interconnection method (cany propagate
adders or cany look-ahead adders). The term should reflect the time required
fmm all data inputs stable to all outputs stable. The last term TREG is a combina-
tion of the times required for the register being used, which can be obtained from
the data sheet for the device. These include the setup time (the time that the data
must be stable prior to the assertion of the clock), the hold time (the time the data
must be stable after the assertion of the clock), and propagation delay (the time
for stable outputs, from the assertion of the clock). ~ l l of these times must be
accounted for in deciding on the time required for the clock cycle of the unit.
However, if a designer is willing to provide for nonequal clock times, then the
time required by the system of Example 3.3 can be reduced. That is, if the
AND-BlT-H is not asserted, then the add will not be needed, and the system can
move on to the next bit (shift multiplier and multiplicand) without waking for
T~~~

Chap. 3: Arithmetk Unlts: Dota Manlpulatlon 89

These multiplication methods can be used to build multipliers out of com-
mercially available parts, such as the system shown in Figure 3.12. Or they can
be used to implement multiplications by using resources (adders, registers, and
data paths) internal to a chip. such as a microprocessor. Since these methods are
iterative in nature, they can be readily implemented with microcode methods. We
will lwk more closely at microcode in Chapter 5, but an understanding of the
iterative nature of the system helps to explain why some manufacturers identify
the times required by multiplication instructions in numbers of cycles. And why
some multiplication instructions indicate that the time for instruction completion
is dependent on the data being used.

Before we move on to direct methods of multiplication, we will note that in
the considerations thus far we have carefully avoided any mention of negative
numbers. Without any modification, the techniques mentioned will not function
for negative numbers. A number of techniques have been uscd to allow use of
negative as well as positive numbers. The techniaue we will describe here is -
called B w t h ' s r i t h m , after a pair of British mathematicians, but similar tech-
niaues ke%sed elsewh&7-These techniaues are classified as recoding techniaues.
since the multiplication is modified by a-recoding scheme. Let us see how &is is
applicable to the problem of multiplication of signed numbers.

First of all, we n e x t 0 remember from Chapter 2 that the bits in the number
have a different meaning for signed numbers. That is, the most significant bit has
a different mazning. The five bit numbers which were used earlier for an example
had the form and meaning:

The difference for a two's complement number is shown in the following fashion:

As can be seen from the equation, the most significant bit is different in its
weighting formulation and must be treated accordingly. The Booth's algorithm
approach can be understood by first doing some algebra on the number. In a
step-by-step fashion. we can express the two's complement number in a new
fomi:

Chop. 3: Arlthmetic Units: Data Manipulation

The values in parentheses in the ahove cqmtion are composed of the subtraction
of two bits. and can have the values +LO, or -1. Note that the weights are what
we would expect in that all are powers of two. Therefore, multiplication by the
weighting factors can be. achieved by the shifting used in the first algorithm. The
complexity comes in that now, instead of strictly adding, we need the ability to
add, subtract, or do nothing. However. once a subtraction (addition) has been per-
formed, the next operation will be an addition (subtraction). (This can be easily
seen by examining possible bit patterns and the resulting order of operations.)
This alternate nature of the operations guarantees that the size of the
adderlsubtractor will be limited to N bits. The easiest way to visualize this pro-
cess is to work through an example:

Example 3.4: Signed mulfiplication with recoding: Utilize the Booth's algo-
rithm recoding scheme to perform the multiplication: 2510 x -1910.

The bit patterns for the two numbers are:

01 1001 Lel A = 25,~, be the multiplicand.
101 101. And B = -19,, be the multiplier.

The recoding algorithm works on pairs of bits a . shown below. Note that
the product is sequentially formed; the steps shown below to form Po to P,
correspond to the cumulation of the partial products to that point.

-1 x (bo - 0) 5 -1 Subtmct A fmm 0 10 form Po'
-2x(bl - bo) = +2 Add2x.A toPo to form PI.
4 x (b2 - b,) = -4 Subtract 4 x A from P, to form Pl.
-8x(bl-b2) = 0 P,=P,.

-16x(b4-b3) = +I6 Add 16xAtoP,toformP4.
-32 x(b5 - b4) = -32 Subtract 32 * A from P, to form PI.

These steps can be followed as identified to ascertain that the answer is
4 7 5 as expected. The multiplication by powers of two called for here is
achieved by the appropriate shift of the operand A. The hardware that
would perform this kind of a multiplication can be visualized as shown in
the following example.

Example 3.5: Hardware for recoding multiplication: Design the data path
for a multiplier that will perform multiplication according tc Bmth's algo-
rithm. Assume that the input values are 8 bits each.

One solution to the problem is shown in Figure 3.14. The multipli-
cand register and the product register are formed using '273s. which are
8-bit registers. The multiplier is loaded into a '165, which is a parallel-
inherial-out shift register. Note that, when the n~ultiplier is loaded, the

Chap. 3: Arlthmetlc Units: Data Manlpulatlon 91

flip-flop for storing the previous bit in sequence is cleared. The
add/subtracUdo-nothing requirement of the algorithm is handled by a pair of
'181s. which are capable of performing all of the functions. The determina-
tion of the function of the '181s is handled by the arithmetic select lines
(S3-SO), and the desired function is identified by the bits of the multiplier,
as seen in the previous example. The appropriate bits are called simply BO-
H and BI-H in the diagram. As the multiplier shifts through the register
during the execution of the algorithm, the appropriate bits will appear on
these lines. The function of the '181s should then be determined by the fol-
lowing table:

'Plicr Bit! Af.11 Scl Funclion
81-H BO-H S3-H SZ-H Sl-H SO-H

0 0 0 0 0 0 Pass product value.
0 I I 0 0 I Product plus multiplicand.
I 0 0 1 1 0 Roduct minus multiplicand.
I 1 0 0 0 0 Pass product value.

This logic is implemented in the few gates in Figure 3.14. L i e the first
multipl~cation method, this one will require a fixed number of clock pulses
on the control lines to complete. Of course, it would be possible to check
for a zero input condition, but it will not function properly if it is stopped in
the middle of a multiply.

As can be seen from the example, the logic required for multiplication of
negative as well as positive numbers does not greatly increase, but more care must
be taken in the design and verification of the system. Nevertheless, the iterative
approach will produce the proper result if enough caution is used in its implemen-
tation. Some of the many references for design techniques and examples of itera-
tive methods of multiplication are listed at the end of this chapter. This is by no
means intended to be an exhaustive explanation of multiplication methods, but
rather it should identify some practical systems that can be used to perform the
needed operations. For systems requiring more speed, then are faster methods for
accomplishing the multiply, as we see in the next section.

3.4. Direct Multiplication Methods

All of the above methods require that the product be formed by combining the
partial product with a value that will eventually form the final result. One of the
reasons that an iterative approach is desirable from a resources standpoint is that it
requires a single adder to perform the entire multiplication. The eadeoff has been
made to sacrifice speed in favor of minimal logic resources. But in what way
could more resources be applied to the problem? That is, given the situation
where a designer is willing for purposes of speed to include a great number of
gates, how should those gates be configured? We have already seen that, by exa-
mining the addition problem and using a different technique, the addition time
could be changed from a linear function to a logarithmic function. Now we will
analyze the multiplication function and identify methods that can be used to
decrease the multiplication time.

Chap. 3: Arithmetic Units: Data Manlpulatlon 93

Consider the following multiplication:

Multiplier +
Multiplicand -+

PPo '
PP, -4

PP2 '
PP3 '
PP, '
PP, '
PP, -+
PP, -4

m u c t -+

The multiplication process requires two separate functions: forming of the partial
products and adding all of the partial products together. The formation of all the
partial products (PP, - PPo) can be done in a single gate delay from the time that
the data is stable. The hardware cost in the above example is 64 two-input AND
gates, but, with that gate investment, the partial product array can be generated in
parallel. Once the partial products are available, they can be summed as before.
However, our objective here is speed, so rather than have a single adder and
iterate to a register, let's use multiple adders and feed the result of one adder
directly into another. The system resulting from this is shown in Figure 3.15(a).
and it would require N-1 adders for N rows of partial products.

In the previous section, TMULT was a function of a setup time and a multiple
number of iteration times, TITER. ?he system shown in Figure 3.1S(a) reduces the
time by changing T, to be simply the add time, TSuM The adders shown in the
figure are cany look-ahead adders, but any kind could be used. The point here is
that the time for a direct method with a linear connection of adders. TMULTm,,,
is given by:

The time is linear in the number of rows @its), which is a situation that will only
get worse for more bits. The obvious solution is to get a time reduction to a loga-
rithmic function by arranging the adders in a tree fashion, such as that shown in
Figure 3.15(b). This would chan e the time from a linear function to a loga-
rithmic function: TnuLT,, = Flog* (Nil x q U M where there are N bits in the
multiplier. This system will indeed obtain the product in a smaller time than the
linear system, but other methods can achieve even higher speed.

The next method to consider has received several names, but we will call it
row reduction. To understand what is going on, let us return to a simple example,
a 4x4-bit multiplication for positive values only. The problem setup is exactly as
we have seen' it before, with the elements of the partial product array being
formed as the AND of the appropriate bits. Here we want to emphasize the rows
formed in the partial product array, so we will consider the multiplication by
labeling elements in the partial product array as RX,y, where X gives the row
number and Y is the element in the row. Thus, a 4-bil multiplication becomes:

Chap. 3: Arithmetic Units: Data Manipulation

Sum of panial products

Each row of the partial product array forms a more significant portion of the final
product. as seen by the shifting nature of thc information. Now let's put together
a set of full adders to do this multiplication according to the above setup. That is,
we will do a multiplication in the method of TD,,,,,, above, but use full adders
for this simple case. This is shown in Figure 3.16. As expected, the partial pro-
duct bits (R,,,) are added into the product by shifting them appropriately and

PPO

PP 1

PRODUCT

Figure 3.15. Multiplication by Direct Methods: Linear and Tree.

Chap. 3: Arlthmeffc Unb: Data Manlpulatlon

PRODUCT

Figure 3.16. Partial Product Addition with Full Adders.

using full adders to add to the running sum. Now we ask the question, what is
the function of the full adder? We often see a symbol for a full adder as shown:

We mentioned earlier that the outputs form a 2-bit number that gives the number
of one's on the input lines. The three inputs (A. B. GIN) all have the same
significance; the sum output has the same significance, and the carry out has a
significance of one higher bit position. There is no reason that the carry needs to
be added into the sum in the same row that it is generated; that is, the carry can
be saved for fhe next level of adders. The benefit of passing the cany to the next
set of adders is that the work accomplished by the first stage no longer requires a
time based on the number of bits in the word; the time is always two gate delays.
The policy of saving the carry to the next stage gives rise to the name "cany save
adder." or CSA. The multiplier of Figure 3.16 is redone to utilize this feature, and
the result is shown in Figure 3.17.

Chap. 3: Arlthmetlc Unlts: Data Manlpulatlon

"5 "4

Figure 3.17. Panial F'roduct Addilion with Carry Save Adders.

The use of carry save adders to speed up the addition process reduces the
time required for the intermediate steps to two gate delays. but the carry process
cannot be put off forever. The final stage of such a system must be an adder that
implements the carry process the width of the final r.:sult. The effect is that the
intermediate stages can be designed with a relaxed resource criteria, and more
design effort can be directed toward speeding up the final stage. One way of look-
ing at what is happening is to recognize that using adders as shown above (saving
the carry to the next level of addition) reduces the number of rows that need to be
added. The carry save adder, then, is a 3-row-to-2-row reduction unit: 3 rows of
bits are reduced to an equivalent operation that requires only 2 rows. For exam-
ple, in the first level of CSAs in Figure 3.17. 3 mws of bits fmm the partial pro-
duct array (Ro,, R,,, and R2$ are reduced to 2 mws of bits. 'Ihen. the 2 rows of
bits obtained by that process, plus the remaining row of bits from the partial pm-
duct array (R,,) are reduced to 2 rows of bits. Finally, these 2 mws form the
input to a set of full adders, which does the final addition. Thus, Figure 3.17
shows an implementation of two 3-2 (3-row-to-2-row) reduction units and a final
CPA stage.

The output for any bit position of a row reduction unit contains a value that
identifies the number of "ones" found in that bit position of a number of mws.
Thus. a row reduction unit with k outputs will be able to represent numbers from
zero to 2k - 1. Hence. a row reduction unit with k outputs will be able to reduce
2k- 1 rows; therefore, 7-3, 15-4, 31-5, and so on, are all possible configurations

Chap. 3: Arithmetic Units: Data Manlpulatlon 97

however. that the complexity of the 15-4 reduction units will be much larger
than the carry save adders, which form the 3-2 reduction stage. The final
stage is a carry look-ahead adder that will produce the 112-bit result. ,We
will assume that each row reduction unit requires only two gate delays.
Thus, the time required for signals to propagate from the data inputs to the
final addition stage is 9 gate delays (one for formation of partial products,
two each for the four stages of row reduction units). From the equation for
time required for carry look-ahead addition, the final addition process will
require

= 10 gate delays

So, the final result will require 19 gate delays. The cost of doing this is an
enormous amount of hardware. This is not really practical in systems made
of individual gates; however, this could be done in a reasonable fashion
internal to an integrated circuit.

To better understand the multiplication mechanism, let us consider what is
happening at each stage of the above process. The action being performed is to
group portions of the partial product array together, and to then provide a number
that is a count of the number of "1"s in the appropriate columns. This sectioning
of the partial product array can be done in any manner that will produce the same
results as the lengthy "normal" process. Thus, portions of the partial product
array can be formed and summed, and then these intermediate sums combined to
produce the final result. Any consistent mechanism can be used to identify por-
tions of the multiply process for sectioning. The simplest example of this is the
3-2 reduction unit (CSA). which provides a count on the two output lines of the
number of "1"s on the input lines. Other types of sectioning can be performed by
using special purpose ICs, or by using similar techniques in multipliers that are
internal to processor chips.

An example of the concept of subdividing the partial product array into sec-
tions can be found in the stepwise creation of the final result by considering only
portions of the original problem. That is, using special purpose integrated cir-
cuits, portions of the partial product array are formed (the ANDing is done inside
the chips) and the resulting elements combined in the fashion described above.
The output of these chips is a number that is a sum of parts of the partial product
array. Conceptually, this is shown in Figure 3.19. The figure indicates that some
of the bits of the partial product array are formed, and then summed in an initial
step in the multiplication process. These partial sums are then combined together
to produce the final result. Using these techniques, large multipliers can be built
using multipliers that work only on portions of the input values, as shown by the
following example.

Example 3.7: Multiplication with sectioning: Design an 8x8 multiplier.
using 74284 and 74285 4x4-bit multipliers.

These devices jointly form the 8-bit product of two 4-bit numbers: the
'285 produces the four least significant bits; the '284 produces the four most

Chap. 3: Arlthmetlc Unlts: Data Manlpulatlon 99

for row reduction units. One additional benefit of row reduction is the ability to
do portions of the partial product addition in parallel. That is, since all of the par-
tial products can be generated simultanwusly, the row reduction process can
begin immediately to reduce the N rows of bits to 2 rows, which will then be
added to form the final result. And independent row reduction units can operate
on different rows of the partial product m a y simultaneously. This is demon-
strated in the following example:

Example 3.6: Multiplicarion with row reduction: The DEC floating point
number system has a double precision configuration with a mantissa length
of 56 bits (including the hidden bit). Design a high speed multiplier to do a
56x56-bit multiply. Assume that the larecut row reduction unit you hwe to
work with is a 15-4 row reduction unit. Also assume that there is an adder
at the last stage organized in &bit units for carry generate and carry pro-
pagate. How long will the multiplication take?

The formation of the partial product results in 56 rows of bits that
need to be added together. These are then fed into row reduction units to
reduce the total number of rows from 56 to 2. The overall design approach
for this system, using 15-4.7-3, and 3-2 reduction units, is shown in Figure
3.18. As can be seen from the figure. this requires two stages of 15-4 mw
reduction units, one stage of 7-3 row reduction, and a stage of 3-2 row
reduction. These steps can all be accomplished in 8 gate delays. Note,

56
PARTIPL
PRODUCT RODUCT

ROWS

Figure 3.18. 56-Bit Multiplication Using Row Reduction.

Chap. 3: Arithmetic Units: Data Manlpulatlon

Intermediate

Array /

-a1 L l d l
Partial

then Summed

PRODUCT

Figure 3.19. Partial Product Reduction by Sectioning.

significant bits. Therefore, an 8x8 multiply will be able to effectively use.
four pairs of devices. First, let's look at what one pair will produce:

So, the organization of an 8x8 multiply will be exemplified by the follow-
ing configuration:

Note that the pattern established above is utilized four times, and that the
various portions of the partial product overlap. So some type of an adder
tree would be needed to do the summation of the partial products. This is
accomplished with a carry save adder stage (3-2 reduction) and an adder.
The schematic for this is shown in Figure 3.20. This works rather well, but
doesn't handle large multiplications without a corresponding large number
of chips. Texas Instruments is no longer making this part; however, this
same method of building portions of the partial product m y can be utilized
using larger multipliers. For example, several manufacturers make a 16x16

Chap. 3: Arlthrnetlc Units: Data Manlpulatlon

multiplier (like TDC1010). which could be cascaded in exactly this fashim
to create a 32x32-bit multiply.

This example works on the basis of a "normal" partial product array; tk
respective portions of the array are generated internal to the multiplier chips, ant
partial sums formed. Thcn these sums can be combined to form the appropriaks
result. This same type of organization, forming portions of the partial pmdud
array from multiplicand and multiplier bits, can also use the recoding ideas in-
duced with Booth's algorithm. Indeed. the 74261 is a 2x4-bit multiplier ttvP
requires three bits of the multiplier in order to do the recoding necessary. But tk
system handles both positive and negative numbers, and the results are c o w
two's complement numbers. Like the system of Example 3.7, several sections d
the parts can be combined to handle larger numbers.

All of these algorithms for high speed multiplies attempt to form Br
appropriate portions of the partial product array in parallel, then do as much of tk
partial product addition in parallel as possible. This includes delaying the find
stage of the addition, where the carry will need to propagate all of the way acroo
the output, as long as possible. Therefore, much of the design emphasis can be
placed on this stage, which will be the speed bottleneck.

The multiplication process, then, adds into the final result the appropriar
number of copies of the multiplicand. This can be accomplished by using a sin&
adder and a register, and iterating through the necessary calculations. This t yped

- '

system consumes considerable time resources (takes a relatively long time), b
few hardware resources. One advantage to this approach is that it can be e a s b
incorporated into a microprogrammed machine. Another multiplication method 6

to organize the calculation to use parallel application of partial product generatim
hardware. and then sum the final result with mw reduction elements and hi&
speed adders. This design consumes little time, but requires many hardware der-
ices. The type of design selected will be dictated by the intended application. lad
the relative cost of system resources.

3.5. Direct Division: Basic Division Algorithm

Whereas multiplication finds the sum of multiple copies of an operand, division k ,
concerned with finding out how many times one value can be found in another
value. The numbers involved are the divisor, Ds, the dividend. DD. the quoti*
Q, and the remainder R. Mathematically, these elements are easily related to aac
another:

The division operation determines the quotient and the remainder. One of &
assumed requirements on R is that it has a smaller magnitude than Ds. In the p-
cess of designing a system to do division, care must be taken to provide hardwn
that will do the work required by the system. That is, magnitudes should be um-
sidered. the number of bits to be provided in the operands, the bits required in lk
answers, and the placement of the radix point. All of this information must bc
considered in the design process.

One of the most straightforward methods to use in the approach to &
design of the system is to mimic the operations of paper-and-pencil long divisim

Chap. 3: Arithmetic Units: Data Manipulatlon

for positive numbers. Consider, for example, the steps required for dividing 58
by 5:

101 1 Quotient, Q

Divisor. D, -1 101 1111010 + dwidend. DD
101 QJXDS

1W1O R > D,, continue
000 Q, x 0,. shifted -
1W1O R >Dl. continue
101 Q , x D,. shifted -
IOOO R > D,, continue
101 Q, x D,. shifted -

11 R <D,. done

This operation proceeds in the same fashion as paper-and-pencil, long division.
The base 10 algorithm with which we are familiar will produce a new base 10
digit at each iteration; the base 2 equivalent exemplified here will produce a new
base 2 digit (bit) at each iteration. This is accomplished by subtracting the
appropriate shifted divisor from the remainder value. The result of the subtraction
determines the value of the bit in the quotient. A block diagram of such a divider
is shown in Figure 3.21. The division process involves repetitive shifts and arith-
metic operations, so the hardware is organized to accomplish that. The operation
begins by placing the divisor in the register marked Ds, the dividend in the Q
register, clearing the R register. In each iteration another bit of the answer is
created, and this bit is shifted into the Q register as the dividend is shifted into the
R register to be used in the calculations. As seen in the above example. the most
significant bits are used in the first comparisons, so the shifting is configured to
do least-to-most significant shifts. And this is exactly what is needed for the final
result, since the quotient is generated most significant bit first and shifted into Q
one bit at a time. At the completion of the process, the remainder will be found
in R, and the quotient will be in Q.

The basic algorithm for the direct divide is very simple. After the operands
are in place, the division process begins by subtracting the divisor from the value
in R, which is the accumulating remainder. If the subtraction would result in a
positive number, that number is loaded back into the R register and conditions are
set up to introduce a "1" into the Q register. Otherwise, the R register is not
changed and a " 0 is readied for the Q register. Then the Q and R registers are
shifted left, and the process is continued. We make the observation that since we

INPUT INPUT
I I

control

Termination: Quotient in Q

Remainder in R

Figure 3.21. Block Diagram for Basic Division.

Chap. 3: Arithmetic Units: Data Manipulation

are working with positive numbers in this system, the subtraction will not change
the bits in the lesser significant places. This observation indicates why the results
of the subtraction are loaded only into the R register, and do not affect the Q regis-
ter. Thus, the only information loaded into the Q register, once the process has
begun, are the individual bits as they are generated and shifted in.

A flow chart for the divide operation is given in Figure 3.22. As can be
seen from the flow chart, two decisions need to be made in the execution of the
operation. The first concerns the action at the R register: should the value avail-
able from the subtraction be loaded into the R register or not? This decision is
made based on the results of the subtraction: if the result is a positive number,
then it is loaded and a "1" is setup for loading into the Q register. Otherwise, the
result is not loaded, and a 'V is readied for loading. Then a count is checked to
see if we are done with the operation.

The algorithm shown in Figure 3.22 conditionally loads the results of the
subtraction (R - DD -t R) based on the value to be loaded. This is easily accom-
plished if the hardware is set up specifically to accomplish the divide. However.
note that the hardware to do the direct multiply is very similar to that required for
the divide. Hence, some systems are so configured that the ALUs and registers
can be used for either function, and the control is slightly more complicated. In

clear R

shin Q.R
lee one b~t
inc wunn

Figure 3.22. Flow Diagram for Division Operation.

Chap. 3: Arlthmetlc Unlts: Data Manipulation

such a system. it may be that the subtraction result must be stored (ALU out --f R)
in order to set bits to be tested by microcode, or some other control mechanism.
The algorithm shown in Figure 3.22 must then be changed accordingly. The net
effect is that as well as setting up to put a "0" in Q, the value which was sub-
tracted out must be restored, requiring another addition operation. This kind of 3n
algorithm is called a restoring algorithm; another algorithm, called the nonrestor-
ing divide, is so configured that the value is not restored, but set up to contribute
the appropriate value for the next iteration of the process. The net result is fewer
overall ALU operations.

Example 3.8: Hardware system for direct division: Design a set of
hardware U~di will ll~cepl d& Cirini a bus acd pcrform a 16-bit division
using the operations identified by the flow chart of Figure 3.22.

The block diagram for one solution to this problem is shown in Figure
3.23. The actual logic diagram is found in Appendix B. Here the bus pro-
vides input for three registers: Ds, Q, and R. The divisor register is made of
two '564s. Since the operation needed is to subtract the divisor, this is an
inverting register. Two's complement subtraction can be accomplished by
inverting the divisor (hence the inverting register), incrementing the result,
and then adding the other operand, which in this ease is the remainder.
Here the remainder (R) register is made of two '198s. which can load or
shift. The remainder register cq-be_&itiali.wd to the dividend (DD! vahe
from the bus by uhng the '.157s multiplexors. Finally. a pair of '198s are
used for the Q register. The R - Ds subtraction is accomplished by using
adders; the R value comes directly from the R register, and the inverse of DS
provides the other input. And the increment p m of the "complement and
increment" two's complement negation is done by asserting the carry ia of
the adders. The result of this subtraction is returned to the R register
through the MU%, which allows the control to load the bus value of the
subtraction value as required. That is, the bus provides the informaticn for
initialization, and from the adder comes any parallel load information
required in the execution of the process. If the parallel load is required by
the algorithm, then the control section causes the load. Then the '198s car,
be shifted simultaneously, with the control'section providing the correct bit
as input to the Q register. Missing from this diagram is the counter needed
to identify the termination conditions. The control design methods rcquired
will be covered in Chapter 5.

The direct division mechanisms here can be implemented with individual
adders as demonstrated by Example 3.8. Also, networks of divider cells can be
constructed to produce results faster than the divide algorithms described above,
since time is not required for storing and shifting operations. But the basic con-
cepts of those division mechanisms are the same. Most high speed computers.
however, do division by repeated multiplication, as shown in the next section.

3.6. High Speed Division: the Iterative Approach

We know from the definition of division that a reciprocal relationship holds for
the values involved. One of the design approaches to the problem is to recognize
the reciprocal relationship, and to utilize that to build a faster system. A great

Chap. 3: Arithmetic Units: Data Manipulation 105

16 Blt parallell
serlal shift reg p

0 Reg~ster
16

TO
CONTROL
SECTION

Figure 3.23. Logic for Divide Operation.

1
,lb

deal of effort has gone into making the multiply operation as fast as possible; is
there some way that the multiplier can be utilized to do the division, so that the
process benefits from the speed mechanisms available in the multiply? One way
for the hardware for the multiplier to be used to do the division is to utilize the
Newton-Raphson iteration:

f G)
x,,, = x , - -

f ' (x ,)

0-REG-WT-L

R-REG-WT-L

We know that for a well behaved function f. and an appropriate initial value y),

this iteration system can deliver a desired result, which is the root o f f (x) = 0.
Thus, to find the reciprocal value, we first select a well behaved function which
has a root at the reciprocal. We will choose to let

Chap. 3: Arithmetic Unlts: Data Manipulation

I I , "I

b I i cII

B 2
-

p 4 K '283
16 Blt
Adder

s
2 x 3 2 4 4 i

I6 Blt Bus
Driver 5

e
2 ~ ' 2 4 4 5

I6 Blt Bus
klver 5

Subtractor 0 g
16 (complement done

by '564's)
I

I
DATA-eusr 1s:or -H

, P I , P

The mot of this equation will be x = l lw . Iff (x) = (llx)-w. then

and the iteration system will be

Therefore. the operation A * B can become A x (ID), and the system hardware can
produce I/B according to the above equation using only the multiplier, and a sub-
tractor for other operation required in the iteration. The Taylor series expansion
of the function shows quadratic convergence, which indicates that the number of
correct bits doubles every iteration. Therefore, the desired precision can be
approached by using the proper number of iterations.

Division by the above process first finds the reciprocal (IIB), and then using
that value to multiply by the other operand to get the final result. Some commer-
cially available devices include all of the capabilities needed to do the iteration
described above, and hence can be used to perform the iterative divide algorithm.
See, for example, the AM29C325 by Advanced Micm Devices.

Another similar approach to iterative division is to form the result directly.
rather than specifically calculate a reciprocal. In this approach, we assume that
the numbers in question are normalized floating point numbers. This means that
the dividend and divisor will be expressed as a fraction (at least, tbe mantissa is a
normalized fraction). Now we want to find the quotient Q, where

To achieve this we will multiply both the dividend and the diviscr by the same
factor, fi:

We want the result of the various multiplications to apprc~ach the correct answer,
Q. so we will choose theh in such a way that the denominator approaches unity.
This will result in the numerator approaching the correct answer (2. Since we

Chap. 3: Arithmetic Units: Data Manipulation 107

know that the part of Ds that we are working with is a normalized fraction, then
let us represent this fraction as:

where. the value of x is determined by the particular Ds. But since Ds is less than
1, x is also less than I. Now, choose

But notice that the product of Ds and fo is:

which is closer to 1 than Ds is. Each iteration both numerator and denominator
are multiplied by h, and each iteration the result gets closer to Q. With Ds x fo
= I - x2, let us choosefi so that

With this condition, then

which is even closer to the correct answer. And so the iterations continue, each
time getting the answer closer to the correct value. One of the questions to be
addressed is how to find the succeeding values of h. We know f, in terms of x.
but we only know x in terms of Df and fo:

Thus, each new fk is formed by taking the two's complement of the multiplication
of the fk., and the denominator result to that point. Within a computer. then, the
values are presented to the divide hardware, and the iterations carried out until the
answer is at the desired precision. The number of iterations required is deter-
mined by the value of fk; when fk is close enough to "1," the result will be close
enough to the correct answer. How close is "close enough" will be determined by
the application and the number of bits in the represencation. However, rather than
test each fk to determine when to stop. generally a fixed number of iterations is
used. Therefore, to assure that the process converges sufficiently close to the
correct answer under all conditions, rather than use 2 - Ds to calculate fO, a ROM
is used to find an appropriate value for fo. Providing the initial "seed" value in

Chap. 3: Arithmetic Units: Doto Manlpulation

this fashion guarantees that the results will be acceptable after a fixed number of
iterations.

A block diagram of the hardware required to do this operation is shown in
Figure 3.24. The divisor and dividend are presented to the divide hardware, and
the quotient is iteratively generated. each stage getting closer to the desired value.
The ROM is used to be sure that the initial precision of fo is close enough to com-
plete the process in a reasonable number of iterations.

Example 3.9: Iterative divide operations: For the divider shown in Figure
3.24, show the values of the numerator, the denominator, and the fk at each
step along the way for the following calculations: 0.4 10.7, 0.7 10.4.
0. I t0.15. Give the valtres for six iterations, rather than the three shown in
the figure. Assume that the fo is calculated as 2-Ds rather than to use a
ROM.

The division operation begins by calculating fo, then multiplying this
value times the DD and Ds, as shown in Figure 3.24. For the calculation
0.4 10.7. the calculation proceeds in the following fashion:

DD 0.4000000 0.7000000 fo 1.3000000 DO: 0 3 2 W i: O.POW999 f l 1.09KW3
DD~ 0.5668000 Dsa 0.9918999 f i 1.0081000

0.5713911 Ds, 0.9999344 A 1.0000656 2 037l4286 Ds, 0.9999999 f4 l.0000000
DD, 0.5714286 Ds, 1.0000000 f5 1.0000000
Do, 0.5714286 Dq 1.0000000

With an x value of 0.3, this calculation approaches the comct value within
four iterations. The next requested calculation is 0.7 10.4, which is the
inverse of the calculation just done:

This calculation takes longer to approach the correct value, since the initial
x was 0.6. Note that the result in this case ended up greater than one, which

Figure 3.24. Block Diagram for Iterative Divide Operation.

Chap. 3: Arlthmetlc Unlts: Data Manlpulatlon

is to be expected and must be handled by the hardware. That is, with nor-
malized fractions for initial values, there is a limit that the ~ s u l t s will not
exceed, but the hardware must be able to generate numbers to that limit.
The final calculation for this example is 0.1 / 0. IS.

This calculation doesn't quite get to the desired value, even with six itera-
tions. This highlights the fact that in order to approach a desired precision
within a specific number of iterations, a ROM is needed in the initial stage.

The iterative approach to the divide operation allows the hardware associ-
ated with the multiply to be used for more than one type of operation. For pro-
cessors with single instruction stream capability the same hardware may be util-
ized for both operations. But since several steps are nquired for the divide opera-
tion, these instructions will generally take three to live times longer to execute
than a multiply instruction.

3.7, Floating Point Arlthrnetic

In the previous sections we have looked at the problem of designing hardwan to
do the basic arithmetic operations: add/subtract, multiply, and divide. Storing
information in a floating point format compounds the complexity of the problem
and requires additional hardware to complete the operations. Let's first examine
addition and some issues raised by addition, then look at multiplication and divi-
sion. The floating point addition also includes subtraction, since the
sign/magnitude method of storing information necessitates that the hardware be
capable of both.

3.7.1 Floating point addition

The difficulty when adding two floating point numbers stems from the fact
that the mantissas, in general, have different significance. That is, unless the
exponents of the two numbers are the same, thq most significant digit of one
mantissa has a different magnitude associated with it than does the most
significant digit of the other mantissa. Therefore, before the two numbers can be
properly added together, the mantissas must be aligned. This involves determin-
ing which operand value is smaller, and then aligning the mantissa of that operand
appropriately with the mantissa of the larger operand. The alignment is accom-
plished by .shifting the mantissa of the smaller operand a number of positions to
the right, hence making the digits of the smaller operand line up with the digits of
the same significance in the larger operand. The amount of the alignment, the
number of positions to shift, is determined by the difference in the exponents.
The addition element then receives the mantissa directly from the larger operand.
and the aligned mantissa from the smaller operand.

Chap. 3: Arithmetic Units: Data Manipulation

To demonstrate this process, assume that A. 6, and C are floating point
numbers, and find A = 6 + C. Furthermore, assume that 6 < C. (Also, for simpli-
city, assume 6 and C are positive numbers.)

With the assumption that 6 < C, the value of En - Ec in the above equation is
nzgative. and multiplying MB by rsEn-Ec is nothing more than shifting the
mantissa M8 to the right En - EC places. Note that we have said nothing about the
radix of the system; this applies to base 10, base 2, or any other base. The shift
for alignment is accomplished by moving the value the appropriate number of
digit positions.

A block diagram for floating point addition is given in Figure 3.25. This
diagram shows the arithmetic portion as an ADDISUBTRACT unit, instead of
shictly an add operation. The reason for this is that floating point numbers are
almost always stored in sign-magnitude form; hence there is no sign associated
with the mantissa itself. Therefore. if two numbers are to be added together, and
one of the numbers has a negative sign, then what should actually be perfomred is
a subtraction. Thus, the arithmetic unit associated with the floating point adder
must be capable of doing both addition and subtraction.

The selection of the appropriate mantissa to be aligned (fmm the smaller
number) is made based on a comparison of the magnitude of the two exponents.
Thus, the result of this comparison directs the SELECT multiplexers to seIect the
unaligned mantissa, and the same signal directs the ALIGN network to select the
other mantissa and align it by shifting the appropriate number of positions. These
two results, one unaligned mantissa and one aligned mantissa, an then fed to the

Post Normalization

Result Exponent Result Mantissa

Figure 3.25. Block Diagram for Floating Point Addition.

Chap. 3: Arithmetic Units: Data Manipuiatlon

A D D ~ S U B T R A ~ unit for the actual calculation. The resulting number is then
provided to the POST NORMALIZATION unit.

The function to be provided in a post normalization step is to be sure that
the final result is itself a normalized number. This unit must be capable of shift-
ing to the right to take care of examples like the following base 10 examples (the
same principles hold in any base):

0.8045 Input A is normalized.
+ 0.7132 Input B is normalized.

1.5177 Result is not normalized.

Thus the post normalization unit must be capable of a shift of at least one position
to lesser significance. The unit must also be capable of shifts of many positions
to higher significance:

0.8045 Input A is normalized.
- 0.8033 Input B is normalized.

0.0012 Result is not normalized.

The result of this example must be shifted left two positions to be properly nor-
malized. Note that two Ndigit floating point numbers, when subtracted. may
result in a required post normalization alignment of N-1 positions. This post nor-
malization network must then be capable of adjusting the size of the exponent to
reflect any normalization. At the end of this process, the result will have been
properly formed and ready for any additional operation required of it.

Floating point addition, then, requires many more operations, and hence
more hardware, than its integer counterpart. The addition techniques examined
earlier will apply in the arithmetic unit inside a floating point adder, but other
functions are also required.

Example 3.10: Mantissa alignment for floating point add: Design the net-
work used to align tl~e snlaller nlanlissa to be added to tlir larger miu:tis:a
in Figure 3.25. Use readily available ICs, and assume that the mantissa is
24 bits, base 2.

A mantissa of 24 bits is a fairly common size for 32-bit floating point
number system. Since the number system is base 2, the alignment network
must be capable of shifting any number of bits. from 0 to 24. Figure 3.26
shows that one way of accomplishing this is to use a number of 2-1 multi-
plexers. The figure shows the logic in a block diagram form; a logic
diagram of the system is found in Appendix B. The assumption here is that
the adders used to compare the exponents provide a binary number (size: 0
to 24; hence 5 bits) which indicates how far the number needs to be shifted
in the alignment process. The MSB of this number is then used by the first
level of MUXs to shift the number by 16 bits (the I condition), or provide
no shift at all (the 0 condition). Similarly, the second MSB of the number is
used by the second set of MUXs to shift the number provided by the first set
of MUXs by 8 (the I condition) or provide no shift at all (the 0 condition).
This process continues, with each level of multiplexers shifting the number
by some power of 2, until all 5 bits have been utilized. The result is an

Chap. 3: Arithmetic Units: Data Manlpulatlon

DATA123:O)-H

8 LSBs are OAT-I DATA(23:Ol -H

8 risk set t o O:
16 LSBs are OUTlbl23:8I -

4 n s h set t o O:
20 LSBs are W z I

2 nSBs set to O:
22 LSBs are OUT4123:2) -

RSB set t o 0:
23 LSBs are OUT2(23:8) - r-l 0UT2123:01-H

Figure 3.26. Logic for Alignment Shift Network.

Chap. 3: Arlthmetlc Units: Data Manipulation

output that has been shifted the number of bit positions identified by the 5-
bit control number.

This network can be used to illustrate some interesting characteristics
of the system. The network of Figure 3.26 has been configured to place
zeros to the left of the aligned bits. This could be changed to align with
sign bit (not needed here, but possible in some applications of shift net-
works) by asserting the unspecified inputs of the the multiplexers with the
sign bit of the aligned number, rather than facing them to zero. Another
observation concerns the amount of logic needed for the alignment function.
This network has been set up to do the alignment required by a base 2
number, such as the DEC or IEEE floating point system. However, if the
floating point system has a different base, such as the base I6 1BM floating
point system, then not all of the above levels are needed. Notice that the
base 16 system does not need to align to each bit position, but rather to each
digit position, which is every four bits. Thus, the last two of the five levels
of logic shown in the figure would not be necessary, with a resulting in less
overall logic and a speed enhancement of 40%. Thus a floating point sys-
tem that does not use base 2 results in a greater range and smaller logic
requirements for some of its constituent parts.

3.7.2 Handling the extra Mh

Two problems are illustrated by the example of floating point addition. both
of which deal with what to do with the exm bits. The first "extra" bit problem is
identified by the following example. Assume a 6-bit mantissa for a base 2
number system, and assume that the second number has been shifted two bit posi-
tions to allow the exponents to agree. Then the mantissa addition may be some-
thing like:

1OlOlO Larger mantissa.
+ IlOOlO Smaller mantissa. aligned.

1101 1010 Addition results in 8 bits.

There are more bits than can be dealt with in the result, so something must be
done with the extra bits. Several ways have been proposed and used to deal with
these bits. The first and most obvious method is merely to ignore them; this is
called truncation. and the unwanted bits are truncated from the result. This results
in an error, since the final mantissa (call it MF) differs from the real result. MR. by
whatever bits happen to be in those bit positions. This results in a truncation
error, ERRmUNC, which will result in an bias, or offset. after a number of opera-
tions have been performed. For purposes of comparison with other methods of
handling extra bits, let us define the enor as the difference between the real result
and the final mantissa:

We will also define the bias as the sum of the ERRTRUNC over a span of possible
results. The span we will use is all possible combinations of 2 bits, for two itera-
tions. Thus the bias for truncation would be calculated as follows (let the decimal
point mark the number of bits storablelusable by the machine):

Chap. 3: Arithmetic Unls: Data Manipulation

The bias is the sum of all the enors over this span. Adding all of the elements in
the ERRTRUNC column results in a bias of +1 1.02, or +310. Obviously. if we chose
fewer elements within a span, such as only one extra bit instead of two, the bias
would be less. Or if more points were selected the bias would be greater. Note
that, if we included three extra bits instead of two, there would be twice as many
values in the above table, all contributing to the error. But as we compare trunca-
tion with other methods we will be careful to utilize the same set of MR so that the
comparison will be valid. Truncation always throws away information, which
results in a positive bias: the number stored is smaller than the actual number to
be represented. Thus, over many calculations results will tend to be smaller than
the true value.

Another method of handling the extra bits is to try to reduce the bias by
adding half the value of the least significant bit position to the number before
truncation. This method is exemplified by the following operation:

101010 Larger mantissa.
+ 110010 Smaller mantissa, aligned.

I101 1010 Addition results in 8 bits.
+ OOOOOOlO Now add half of the LSB position.

1101 1100 Final result. now mncate.

This method is called rounding, and the answers result in errors that have both
positive and negative values:

Mx + 'h LSB

Note here that the last entries g and h above have had a carry propagate into the
word, a fact that is indicated by the xy in lieu of u for the value in the table.
Whatever value was represented by u is incremented to be q, and any carry
which results continues to propagate into the word. The bias here is -1.0. The
error in this method is always smaller than truncation, but the bias does not disap-
pear.

Chap. 3: Arlthmetic Unlts: Data Manipulation

One of the methods utilized to minimize the error of calculations is to create
a rounding scheme that will result in a zero bias solution. These schemes have
different names. such as round-to-zero or R* rounding. One such method operates
according to the following rule: whenever the value to be truncated has a "1" in
the most significant bit, and "0" in all other bits, that a "I" is forced into the least
significant bit of Up This scheme results in a bias which is zero over many cal-
culations:

The two values in the above set that are. handled differently from "normal" round-
ing are entries c and g. In both cases, a "1" is forced into the least significant bit
position of the value saved. Although both entry c and entry g are handled in this
way, only entry g ends up with a value different from the "normal" rounding sys-
tem. The bias with this method totals zero, and over many calculations will tend
to smaller errors than other techniques.

At this point, we will mention two other techniques. The first is called jam-
ming, and was proposed by von Neumann as a good method to reduce overall
errors; that is, it is better than truncation. The method is to "jam" a 1 into the
least significant bit of the result. regardless of the values of the extra bits. This
method results in larger errors than other methods, but over time it has the same
bias as rounding. Thus, it is as fast as truncation (no time required for rounding
step. since LSB is always forced to I), but has a smaller bias.

Another method centers on the ability to look at the extra bits and the least
significant bits to be retained, and using this information make an educated deci-
sion as to the value to be added. This step is carried out by using a ROM or other
method of looking at several 5:s for thc dwlsinn p c c v : . The r w n n for doing
this is to construct the value added in the rounding step in such a way that there is
no carry to propagate into the higher bit positions. This will speed the rounding
step, since the method guarantees no carry beyond the least significant bits. But
since the choice of the value to add in this step is ma& judiciously. the bias is
controlled, and again over time the bias should be zero.

The errors resulting from the various methods of handling extra bits are
graphically depicted in Figure 3.27. Note that the shape of the envelope of error
is the same for truncation and munding, one being offset from the other. How-
ever, the rounding process has made the overall bias smaller. Note also that jam-
ming has the same shape, but that the variations are greater. The zero bias
schemes, round-to-zero and ROM rounding, have shapes that reflect their
approaches to achieving their results. In both cases. the bias is minimized by
intelligent handling of the extra bits involved in the action.

The second "extra bit" problem deals with the number of bits that need to
be retained in the alignment process. That is, if the resulting mantissa is going to
be 24 bits, must we construct adders and alignment networks capable of 48 bits or
more? If the difference in the exponents is greater than 24, what should happen

Chap. 3: Arithmetic Units: Data Manipulation

Fiiure 3.27. Erron in Handling Exha Bits.

to the aligned operand? These questions must be addressed by the designer to
create a properly functioning system. Let us look at the problem with some
examples.

As we have noted before, the alignment process takes the mantissa of
smaller significance and shifts (aligns) it the proper number of places, which is the
difference in exponents. Let the amount the alignment be represented by a, and
then consider some cases. We will use mantissas which consist of 5 bits. First of
all, if a = 0, then no alignment is necessary in the problem setup, but post normal-
ization may be necessary. such as:

0.10000
- 0.10001
- 0.00001 Post normalization

necessary of 4 places left.

Now consider some examples where alignment is necessary. We will consider
subtracting an aligned version of the largest mantissa representable from the smal-
lest mantissa. The smallest mantissa for this system is just 0.10000, while the
largest mantissa has a value of 0.11 11 1. Thus for the problem 0.10000 x 2' -
0.1 11 11 x 2'. the value of a will be I. and the addition problem can be
represented:

0.10000 0
- 0.01111 1

0.00000 1 Post normalization
necessary of 5 places left.

Chap. 3: Arlthmetic Unlts: Data Manipulation

This is perhaps the worst case for post normalization. However, note that the
problem required a single bit wider than the 5 bits of the normal mantissa. The
situation when o = 2 is depicted in Figure 3.28, as is the situation with other
values of a. First we point out that in each of the situations depicted in Figure
3.28 there is a leading zero in the result, which will need to be removed in post
normalization. The next observation concerns the bits retained by the system in
the computation. These bits are underlined in the figure. Note that, for any
rounding scheme (except jamming) to work properly. at least one more bit than
the (end of the) underlined bits must be retained. For example, if truncation is to
be used, which is the simplest of the methods mentioned above, the answer would
be different if that one additional bit is not included in the calculation. Finally.
we observe that the answers would all be the same if only one 1 bit were retained
to the right of the vertical lines in the figure. We call this bit a "sticky" bit, and it
has the characteristic that if any 1 bit were to be shifted through that position in
the process of alignment, then the bit is set to a I. This allows the results to turn
out as expected.

Thus, three digits are needed beyond the number required by the number
system. (This has been shown in binary, but is true in any radix.) One digit is
needed for post normalization, at least one digit is needed for the rounding
method, and one digit is used as the "sticky bit."

Handling the additional bits involves making reasonable decisions about the
bits that result when operations generate more bits than can he retained in a result.
This involves bits generated in multiplication and division, since both of these
operations generate more bits than can be retained in a floating point number with
the same characteristics as the input values. For example, multiplication of two
24-bit mantissas will result in a 48-bit value, which must then be reduced lo 24
bits by an appropriate algorithm. Additional bits to be concerned about in the
design process include the bits in the alignment process for floating point addi-
tion. In each case, the system architect and designer need to identify the goals of
the system, and based on those goals make appropriate decisions on the number of
bits to retain and the rounding algorithm to produce a desired result.

With the adoption of the IEEE floating point number system, many of these
decisions have been dealt with by the specification. That is, different types of
rounding schemes are available, and the user has the option of specifying the
mechanism that will be most appropriate for the calculations to be done.

Figure 3.28. Subtraction with Alignment of Operands.
(Alignment is done by a shift of a bits.)

Chap. 3: Arithmetic Units: Data Manipulation

3.7.3 Floatlng Point MuHipllcation

Floating point multiplication is perhaps the simplest floating point operation
in terms of the required operations. That is, there is no alignment of operands
required before initiating the operation, and minimal lormalization is required at
the end of the transaction. The required operations are simply stated:

That is, the mantissa of the result is the product of the mantissas of the two input
operands, and the exponent of the result is the sum of the exponents of the input
operands. A block diagram of this operation is shown in Figure 3.29. The basic
operations shown in the block diagram are identical to those indicated in the
above equations: the operands are separated into t k i r ccnstituerrt parts, the
exponents are added, and the mantissas are multiolied The only difficulties are
implementation specific. once the floating point representation has been selected.
For example, the EEE 32-bit floating point system calls for representing the
exponent in an excess 127 code; therefore, the exponent adder must be so
designed to correctly present the result in excess 127 code. The other block in
Figure 3.29 that is not obvious from the above equations is the post normalization
block. This block has the responsibility of checking the output of the multiplier
to ascertain if the result is a normalized number. If it is not, then it must be
adjusted accordingly, and the exponent modified. To identify the number of digit
positions that can be involved in this process, let's look at the two exmmes: the

Mantissa B Mantissa C

Multiply

L

Post Normalization

Result Exponent Result Mantissa

Figure 3.29. Block Diagram for a Floating Point Multiply

Chap. 3: Arithmetic Unns: Data Manipulation

product of the largest legal mantissas, and the product of the smallest legal
mantissas.

Lorgesr x largest

Base 2 Base I0
- ~

0.1111 0.9999
x u x 0.9999

0.1110 0.9998 Aligned properly.
no postnonnalization.

Smallest x smallest

Bust 2 Base 10

0.1000 0.1000
~0.1000 xO.lOOO

0.0100 0.0100 Not aligned properly.
' postnormalization of
one digit position.

For many of the multiplications performed, no alignmen1 will be needed in the
post normalization stage. The worst case will be a post normalization of one digit
position. If this occurs, then the exponent must be decremented by one before the
operation is complete. It is interesting to note that the base 10 and base 2 p m b
lems are exactly the same for the smallest case (this would be true of any radix).
but that the number of bits required to represent these values is not the same.

The above calculations also point out the fact that the final mantissa is com-
posed of only portions of the result out of the multiplier. For example, the com-
plete bit pattern resulting from the largest base two multiplication above is
11 100001. But since the result is handled in the same number of bits as the origi-
nal operands, the same questions arise as those discussed in connection with float-
ing point addition: should the result be rounded? Truncated? Or what? Also,
need all of the partial product array be created in the process of generating the
result, or only portions of it? These questions must be addressed by thc system
designer in the creation of an appropriate multiplication unit.

3.7.4 Flooting point division

The division operation in floating point contains almost the same steps as
the multiplication operation:

A block diagram of the hardware required to accomplish this would look very
similar to the multiplication system of Figure 3.29. The only differences are that
the exponent addition would actually be sublraction, and that the multiplication
block would be replaced by a divider. This division could be handled by either
direct or iterative methods. The result of the mantissa division may then require
post normalization in the opposite direction of the multiplier:

Chop. 3: Arithmetic Unlts: Data Manlpulatlon

Largest I smalle.rl

Base 2 Base 10

0.1111 0.9999
+0.1000 +0.1000

1.1110 9.9990 Not aligned properly,
postnomalizalion of
digit posilion.

Smalle~t I largest

Base 2 Base 10

0.1000 0.1000
+- + 0.9999

0.1000 0.1000 Aligned properly.
no poslnormalization.

Again the questions of rounding' methods and number of places to calculate are
raised, and the system decisions made will reflect the resource constraints pla~ed
on the system.

3.7.5 Floating point status

We discussed earlier the various status bits normally found in the status
register of a computer. In general, these bits are controlled by the "normal"
instructions in a computer, floating point instructions have their own conditions
that add additional system status information. That is. the bits discussed previ-
ously do not form a sufficient set to reflect the conditions associated with floating
point arithmetic. Thus, floating point systems often provide for indication of the
following conditions:

Overjlow. This is similar to the overllow discussed earlier: the result has
exceeded the ability of the system to represent information. betause the result
to be represented is too large. This can result from adding two numbers
already at the maximum representable by the system, or, more generally. by
multiplying two numbers whose exponents add to an exponent not represent-
able in the system. Division can also cause overflow, dividing a very large
number by a very small one.

Underflow. This results when a number is too small to represent in the number
system. This will occur when two very small numbers are multiplied, and the
resulting exponent cannot be represented in the system. Similarly, division of a
small number by a large one can cause the same condition to exist.

Zero. Like the integer counterpart, this condition indicates that the specified
operation resulted in a value of zero.

Sign. The sign of the result can be the MSB of the word. like the integer case,
or accessed by whatever method is indicated by the number system. This can
then be used in the same fashion as the sign of an integer number.

Some manufacturers also provide additional information when building a
floating point arithmetic unit:

Chap. 3: Arithmetic Units: Data Manlpulotlon 121

NAN (not a number). After the hardware performs the operation requested by
the instruction. the result is not a legal number in the floating point number
system. This could be an operand resewed by the manufacturer, or the IEEE
Not-a-Number value.

inexucr. This condition arises when the operation specified results in a value
not infinitely precise, due to rounding. This can be used as an indication of
auncation or mundoff error.

Invalid. The IEEE floating point system utilizes specific patterns for representa-
tion of +- and --. The invalid flag of a system indicates that an operation has
been performed which was invalid, such as - x 0.

These status conditions can be incorporated in a register with the "normal" status
bits, or they can form a separate status register accessible in a different manner.
The implementation details will differ with design constraints and system
definition.

Many books and articles have been written about performing arithmetic on com-
puters, and designing hardware- lo do the actual arithmetic. What we have looked
at are some of the basic concepts utilized in the design of arithmetic units. Addi-
tion is perhaps the most basic. since it is used in the other types of operations.
We found that addition can be done in a time linear in the number of bits to be
added (with full adders) or in a time that is logarithmic in the number of bits to be
added (with carry look-ahead). Thus, the addition process can be made faster at
the expense of additional gates or integrated circuit real estate.

Multiplication is a simple operation that can be done in a fashion similar to
paper and pencil methods, using a single adder and a register to maintain the sum
of the partial products. However, if speed is a major consideration, then other
methods can be utilized to reduce the time required at the expense of additional
hardware. We looked at methods using carry-save adders and mw reduction tech-
niques. as well as methods that would reduce the number of mws actually needed
in the partial product array. This latter method utilized parts that not only per-
formed the generation of partial product bits, but combined those bits into partial
results. The amount of useful parallelism will be decided by the system designer
as he or she considers the relative cost of system resources.

Division is another operation that can be done with direct methods, such as
paper and pencil methods or with iterative techniques. We have looked at some
of each of these techniques. One feature of the iterative methods is the ability to
use the multiplication hardware in performing the division. This justifies some of
the additional design effort and hardware costs of a high speed multiplier.

Finally. we looked at some of the considerations introduced by combining
the adders, multipliers, and dividers into systems for floating point arithmetic.
The floating point systems introduced a number of issues related to the storage
and manipulation of information. The manner in which a designer addresses these
issues will have an impact in the complexity of the hardware constructed, and it
will also have an impact in the complexity of any software required to effectively
utilize the hardware.

Chap. 3: Arithmetic Units: Data Monipulotion

3.9. Problems

3.1 Design a circuit that will accept as input a BCD digit and produce a 7-bit
output that is the square of the input digit.

3.2 Design a circuit that accepts as input two 2-bit numbers. A and 6 . The out-
put is a 3-bit number, which is the sum of the two input values. modulo 5.

3.3 Design a 2-bit adder that functions in no more than 3 gate delays. Inputs
include two 2-bit numbers and a carry in. Outputs are the 2-bit sum, a carry
generatc, and a carry propagate.

3.4 Design a 2-bit subtractor. Inputs are two 2-bit numbers and a borrow. Out-
puts include the 2-bit difference out and the borrow output.

35 Create the logic equations that demonstrate the look-ahead process for sub-
traction. That is, show (with logic equations) how a subtractor could be
built so that it uses a "look-ahead borrow" technique. ,

3.6 Design a circuit that accepts as input two 2-bit numbers. A and 6 , and pro-
duces three outputs: A>B. A=B, and A<B. Assume an unsigned binary
representation for the numbers.

3.7 Repeat Problem 3.6, but include A S . A=B, and A<B inputs. How should
these devices cascade? Show how these devices could be used to compare
8-bit numbers.

3.8 Prove that the overflow bit for a two's complement addition is the exclusive
OR of the carry in and the carry out of the most significant stage of the addi-
tion.

3.9 Design a carry look-ahead generator circuit for 4 bits. Inputs include a carry
in. as well as propagate and generate signals from four adders. Outputs are
three carries, a propagate out, and a generate out. Compare your solution
with the 74S182. How are they the same? How are they different? Why?

3.10 Design the logic necessary to create the status bits for a system that requires
the following bits in the status register: zero, overflow, carry. sign. Assume
that the carry bit out of the ALU is available.

3.11 Row reduction can be used to speed up the multiplication process. A 3-2
row reduction unit for a single bit position is a carry-save-adder, which has
the same logic equation as a full adder. A 7-3 row reduction unit can be
created from 3-2 row reduction units, or from random logic. Design a 7-3
row reduction unit using both methods and compare the result from the
aspect of gate count and speed of operation.

3.12 Give a logic diagram for the data path of a multiplier that will produce the
product of two 24-bit numbers. Use the standard shift-and-add algorithm
(partial products added least significant to most significant). Use a shift
register for the product register and no AND gates. Also, create a flow chart
that specifies the action of the system. Be sure you know which lines go
where and why.

3.13 Give a logic diagram for a multiplier system that uses the shift-and-add
algorithm for partial products added in the reverse order (from most
significant partial product to least significant). Use '283s for adders; use

Chap. 3: Arithmetic Units: Data Manipulation

'198s for the register functions needed. Identify the control signals on the
individual parts that must be.asseed to do the work. and the levels (or
edges) that cause the action to occur. Include a flow chart for the action of
the system.

3.14 Create a logic diagram for a 16x16 multiplier using Booths algorithm. Use
'382s for the arithmetic element, and whatever registers and shift registers
are needed. Include the logic required to control the function lines for the
addition/subtraction/do nothing performed by the '382s.

3.15 Create a logic design for the data path to divide a 16-bit number by an 8-bit
number to give an 8-bit rcsult asd an 8-bit wmainder. Be sure you know
why the connections are made as you specify in your design. Use '382s to
perform the arithmetic. Give a Row chart that identifies the work to be done
and the assertion levels of the signals required to do the work.

3.16 Design a 2x4-bit multiplier with a maximum delay from input to output of 3
gate delays.

3.17 Create an 8x8-bit multiplier system using 2x4-bit multipliers, cany save
adders, and adder systems as needed.

3.18 Give a block diagram for a 32x32-bit multiply system using 7-3 row reduc-
tion units. 3-2 row reduction units, with the final stage being a cany pro-
pagate add system. Estimate the speed of the system in gate delays.

3.19 Design a floating point adder system for the floating point format given in
Problem 2.10.

3.20 Obtain a data sheet for the Am29C325 floating point multiplier, and identify
the steps which can be used to perform a divide operation.

3.21 **Create the logic diagrams needed for the data path of a 32-bit floating
point multiplication system. Assume that the inputs have been loaded into
two 32-bit registers, and that the output will be loaded into a third 32-bit
register. Assume that the floating point format is a normalized format with
the radix of the system equal to 2, the mantissa stored in fractional form
using the hidden bit technique, and the 8-bit exponent stored in excess 128.
m e multiplier must use a shift-and-add algorithm. In addition, provide a
status register with bits for the sign of the result, underflow, overflow, and
result equal to zero. Identify the control points, and the levels of the control
signals to do the work. Give a flow chan that identifies the proper levels for
the signal assertions.

3.22 Multiply problem. Design a multiplier for a 24x24-bit multiply. You have
three rypes of parts to work with: 3-2 mw reduction elements, 4-bit carry
look-ahead adders. and 4-bit cany look-ahead generators. Conswct a data
path block diagram of the multiply process. starting with rows of the partial
product array. Show all of the interconnections necessary at the row reduc-
tion stage, but not at the CLAA stage. Assuming two gate delays for all of
the functions (that is, assume that the row reduction elements. the CLAAs.
and the CLAGs all take two gate delays to do their work), how much time is
requid for the multiply? How many individual CSAs are needed for this
function?

Chap. 3: Arilhmetic Units: Data Manlpulotlon

3.23 One method for performing the iterative divide operation is described as foi-
lows:

can be calculated by:

if the successive f t ' s are chosen s o that the denominator approacnes one.
The numerator iteration for this method is DDm+, = DD. x f,. The denomina-

f.. Assume tor iteration is used to calculate the f s, and is fn+l = 2 - D x
that a ROM is provided to choose an appropriate fo, which is correct to 8
bits. Create a block diagram of a system that will follow the iteration sys-
tem. Assume that you have one multiplier available, and one two's comple-
ment unit available. as well as the initial value ROM and whatever registers
you need. With the block diagram include a description of how a divide
will proceed. How many steps to get a result correct to 56 bits?

3.10. References and Readlngs

[AMDB5] Advanced Micm Devices. Bipolar Microproccssor Logic and Interfocc Data
Book. Sumyvale. CA: Advanced Micm Devices, 1985.

[AnLc8l] Anderson, T.. and P. A. Lce, Fauh Tolerance. Principles and Practice. Engle-
wood Cliffs. NI: Prentice Hall International. 1981.

[Armr8ll Armstrong. R. A.. " A ~ ~ I ~ ~ ~ ~ C A D to Gate Arrays Speeds 32 bit Minicomputer
Design," Electronics. Vol. 54. No. I. January 13. 1981. pp. 167-173.

[Baer841 Baer, 1. L., "Computer Architecture." Computer. Vol. 17, No. IG. October 1984,
pp. 77-87,

IBacr801 Baer. I. L., Computer System Architecture. Rockville, MD: Computer Science
Ress. 1980.

[Banal Bartee. T. C.. Digital Computer Fundamentals, 6th cdition. New York:
McGraw-Hill Book Company. 1985.

[Bm184] Boolh. T. L., introduction to Computer Engineering: Hardware and S o h a r e
Design. New Yo& John Wiley & Sons, 1984.

LBoTj781 Borgerson. B. R.. G. S. Tjaden, and M. L. Hanson. "Mainframe Implementation
with Off-the-Shelf LSI Modules." Compurer. Vol. 11, No. 7, July 1978, pp. 4248 .

[Brrc891 Breeding. K. I., Digital Design Fundamenrals. Englewwd Cliffs. NJ: Prentice
Hall. 1989.

[BuCa84] Burger. R. M., R. K. Calvin. W. C. Holton, et al.. "The Impact of ICa on Com-
puter Technology," Compufer. Vol. 17, No. 10, October 1984, pp. 88-%.

[Cava84] Cavanagh. I. 1. P.. Digiral Computer Arithmetic: Design and Implementation.
New York: McGraw-Hill Book Company. 1984.

C h a p . 3: Arlthmetlc Unb D a t a Manlpulatlon

tFsLB51 Ercegovac, M. D.. and T. Lang. Digital Systems and HardwareJFirmware Alga-
rithms. New Yo&. John Wiley & Sons. 1985.

[FktN] Fletcher, W. I.. An Engineering Approach to Digital Design. Englewood Cliffs,
NJ: Rcntice Hall, 1980.

[GoslKJJ Gosling, 1. B., Design of Arithmetic Units for Digital Computers. Springer-
Verlag. 1980.

IHayc881 Hayes, I. P.. Computer Architecture and Organization. 2nd Edition. New Yo&:
McGraw-Hill Bmk Company. 1988.

[JaSmRSl lames, M. L.. G. M. Smith. and I. C. Welford, Applied Numerical Methods for
Digital Compurers. New Yo& Harper & Row, 1985.

[Knut73] Knuth, D. E.. The Art of Computer Programming: Volume I. Fundamental Alga-
r i h . Reading. MA: Addison-Wesley, 1973.

[Knu169J Knuth, D. E., The A n of Computer Programming: Volume 2, Seminumerical
Algoritlvns. Reading, MA: Addison-Wwley. 1%9.

[Kda77] Kuck. D. I., D. H. Lawrie, and A. H. Sameh (Eds.). High Speed Computer and
Algorithm Organizarion. New Yo*: Academic Press, Inc., 1977.

[Kwk78] Kuck. D. I., The Strucrure of Compurers and Computations. New York: John
Wiky & Sons. 1978.

[KuMiSlJ Kulisch, U., and W. L. Miranker. Computer Arithmetic in Theory and Practice.
New York: Academic Press, 198 1.

[Lang82] Langdon. G. G.. Jr.. Computer Design.
1982.

San lose. CA: Computeach hess Inc.

[Leis831 Lciserson, C. E., Area-Efficient VLTl Computation. Cambridge. MA: MIT Press,
1983.

[Man0791 Mano. M. M.. Digital Logic and Computer Design. Englewood Cliffs, NJ: Pren-
tice Hall, 1979.

~Mandlll] Mano, M. M.. Computer Engineering: Hardware Design. E n g l e w d Cliffs. NJ:
Prentice Hall, 1988.

[McC186] McCluskey, E. I., Logic Design Principles, with Emphasis on Testable Senticus-
tom Circuirs. Englewood Cliffs, NI: Rentice Hall, 1986.

[MeCo80] Mead, C. A,. and L. Conway, introduction to V a l Systems. Reading. MA:
Addison-Wesley. 1980.

[Prndsb] Pradham. D. K. (Ed.), Faun Tolerant Compuring: Theory and Techniques. Englc-
wood Cliffs, Nh Prentice Hall, 1986.

[Preps51 Preparata, F. P.. Inrroducrion to Computer Engineering. New York Harper &
Row. 1985.

[Schm74] Schmid. H., Decimal Computation. New York: John Wiley & Sons. 1974.

[Shiv851 Shiva, S. G.. Computer Design and ArchitecIure. Boston. MA: Little, Brown,
1985.

[Sla187] Stallings. W.. Computer Organization ond Architecture. New York: Macmillan
Publishing Co., 1987.

[Swar80] Swamlander. E. E.. Jr. (Ed.), Computer Arithmetic. Dowden, Hutchinson &
Ross. 1980.

C h o p . 3: Arithmetic Unlts: D a t a Manlpulotlon

[Tanc84] Tanenbaum. A. S.. Structured Computer Organization. Englewd Cliffs. NJ:
Rentice Hall. 1984.

[TI851 Texas Lnstmmenls. The TTL Data Book. Volume 2. Dallas. TX: Texas Instruments.
1988.

[WaR82] Waser, S.. and M. I. Flynn. Introduclion lo Arithmetic for Digital System
Designers. New York: CBS College Pub.. 1982.

[Wilk87] Wilkinson. 0.. Digital System Design. E n g l e w d Cliffs. NJ: F'rentice Hall Inter-
national, 1987.

Chap. 3: Arlthmetlc Unlts: Data Manipulation

