
Arithmetic Units: Data Manipulation 

If one considers that a computer is "one that computes," then perhaps the princi- 
ple function of the machine is to operate on data. That is, we want to manipulate 
information in a predetermined fashion, according to some rules and methods that 
make sense. The earliest computers were built to do arithmetic at a higher rate 
than previously attainable, at an accuracy providing the detail needed. These 
machines were often used in some military capacity, such as building tables for 
ballistics operations. In the last chapter we examined some of the methods for 
information representation, and the limitations of those methods. In the next 
chapter we will discuss the instructions that the machines utilize, that is, instruc- 
tions to manipulate the information and instructions to control the computer sys- 
tem itself. In this chapter, we are concerned with the design of the circuitry for 
doing the actual data manipulations, that is, hbw does one design circuitry for per- 
forming additions, multiplications, and divisions? 

Many times in the discussion of a computer system we gather all of these 
functions together and consider them to be performed by a single block of logic 
called an arithmetic/logic unit (ALU). Such a block is shown in Figure 3.1. This 
diagram is directly applicable to LSI ALUs, such as the '181 or '381; however it is 
also applicable to dedicated units such as the THCTlOlO Multiplier/Accumulator. 
Some ALUs may require additional lines to provide a carry input or to handle 
status bits on output. In the figure, the source of the operands is left unknown, as 
is the destination of the result. The interconnection of the components is a func- 
tion of the type of computer and its intended application, as we will discuss later. 
But now our concern is with the ALU. Logical functions are achieved by gating 
the appropriate function to the output. For example, the function A AND B is 
achieved by having each A, ANDed with the corresponding B, to derive F,, The 
logic operations can be achieved with minimal gate delays and is therefore a rela- 
tively fast operation. The more interesting operations are those required for the 
arithmetic manipulations. 
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Figure 3.1. Connections for an 
Arithmetic/Logic Unit. 

3.1. Addition: the Universal Data Operation 

One of the favorite questions asked by instructors teaching basic logic design is. 
what is a universal logic gate? The basic premise demonstrated by this question 
is that a NAND gate is considered a universal logic gate because all of the basic 
functions - AND, OR, EX-OR, and so on - can be derived by different combina- 
tions of NAND gates. In a similar fashion. NOR gates are also universal logic 
gates. The same type of statement can be made concerning arithmetic operations 
and the add function. All of the various arithmetic operations - add, subtract, 
multiply, and divide - can be implemented by appropriate combinations of the 
add function. First we will look at thefull adderl.and-some variations of it, then 

. - . 
we will consider the look-ahead carry pmcess that can be used to speed up the 
a_dd function. ~ t h e ~ ~ ~ ~ l ~ & o " ~ o f  aa-fEct&.,suchasthe carry save adder or 
the Wallace tree adder. will be treated with other functions such as multiply. 

A basic cell that can be used to perform additions is the full adder (FA). 
shown diagrammatically in Figure 3.2(a). As shown, the function of the FA is to 
add two bits (Al and BI) and the cany fmm a stage of lower significance (GIN) to 
produce a single bit of output (Fl) and a carry out to the next stage of higher 
significance (COUT). Thr l~utli table for this function is shown in Figure 3.2(b). 
Several observations can be made after examination of the truth table. For exam- 
ple, the function of a FA is to take three bits of equal significance - A,, B,, and 
GIN- and create two bits, F,, which has the same significance as the three input 
bits, and COUT. which is one bit more significant. Another observation is that the 
output forms a 2-bit number (COUT, FI) which indicates how many "one" bits there 
are in the three input bits. The four possibilities (0. 1, 2. 3) are the permissible 
number of asserted bits on the inputs. 

Figure 3.2 also contains Kamaugh maps for CoUT and F,, and the resulting 
logic equations in sum-of-products form. The sum bit (F,) is also shown in an 
exclusive-OR representation. The equations are then implemented with the 
appropriate logic. The implementation of the sum bit is shown in the sum-of- 
products NAND implementation as well as the exclusive-OR implementation. In 
either case, the output bits are formed from two levels of logic. That is, between 
any input and an appropriate output there are two gates, and hence two gate 
delays. (One set of gates is for the AND function; the other set of gates is for the 
OR function.) This is true for any combinational circuit: if one is willing to util- 
ize enough gates, each of which has the requisite number of inputs, it is possible 
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Figure 3.2. Design of a Full Adder (FA). 
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to accomplish any logical function in two gate delays. It may not be desirable or 
practicable, but it is possible. We will utilize this fact as we examine the times 
required to perfom various functions. Thus, to perform the addition of the two 
bits A/ and 8, with carry, requires two gate delays from the time that the inputs are. 
stable. 

At this point it is useful to comment on the design methodology for combi- 
national circuits, which is exemplified by the full adder. The first step in the 
design of any combinational system is to understand the problem at hand, which 
is a nontrivial quirement. Once the problem is understood, the problem and its 
solution can be stated succinctly in prose, identifying the input and output vari- 
ables. From the problem statement, truth tables can be established, equations 
derived, and gating networks developed. When the solution is complete, simple 
tests can be performed to ascertain that the outputs do indeed perform the desired 
function, and that the requirements of the initial problem are satisfied. 

For the full adder, the basic requirement is the addition of two numbers. As 
we discuss the various arithmetic operations in this chapter, we will first seek to 
understand the requirements of the underlying process, then proceed to determine 
a design which will perform the required work and meet the other needs of the 
system. The simplified block diagram shown in Figure 3.2(a) seems innocuous in 
appearance, but before progress can be made toward a reasonable design. the pro- 
cess which is being performed must be understood. One demonstration of the 
understanding required is a correct truth table, as shown in Figure 3.2(b). A 
designer's concept of what the device should do is identified by this table. If a 
design does not function properly, the usual debugging approach is to see if the 
wiring matches the logic as described by equations, and that the equations were 
correctly obtained from the truth table/Kamaugh maps. This approach will find 
errors that are implementation emrs. However, it is often the case that the logic 
is an accurate implementation of the logic equations, and that the logic equations 
themselves are incorrect. This may be true not because the Boolean algebra was 
done incorrectly, but rather because the designer's understanding of the pmblem 
was flawed. And one place where that understanding will be displayed is in the 
truth table; thus, this step should also be examined in detail in both the design and 
checkout process. 

In the design process, the logic equations are derived from the truth table 
repre~ntation of the problem. Eacl~ minterm can be written down individually 
fiurn the trutli table, and rules of logic utilized to find the minimal form. Or some 
other method can be used to find an acceptable logic equation. The Kamaugh 
map method is exemplified by Figure 3.2(c). From the equations. the proper 
arrangement of logic gates can be derived. The exact implementation techniques 
will be dictated by the design constraints established by the problem itself. 

Portions of the process - from understanding to truth table to Kamaugh 
maps to logic equations to implementation - can be aided by CAE (computer 
aided engineering) systems or CAD systems (Computer Aided Design). However. 
it is imperative that a designer be able to understand the results of C A W A D  sys- 
tems, and be able to ascertain correctness of the final result. The computer aided 
systems will do a speedy and precise job. but the underlying algorithms used by 
the computer system may not coincide with the desires of the system designer. 
Therefore, care must be taken to assure that the final results provide a reasonable 
solution to the initial problem. 

In general, we are not interested in computers operating on a single bit at a 
time. Rather, we are concerned with computers that operate on a collection of 
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bits. Full adders can be cascaded to the width of the system, as shown in Figure 
3.3. In the figure, two &bit numbers are added to produce an &bit result. An 
additional input is the carry in (GIN). which may come from a status register or 
other source; and the carry out (CWT) from the addition is available for the sys- 
tem. 

This is not the fastest method to perform an addition, as we will see, but it 
will provide the correct answer. The time required to perform addition by this 
method, as measured from the time that all inputs are stable. is directly propor- 
tional to the number of bits in the word. This kind of addition process can be 
called a ripple carry adder (RCA), since the cany at each stage is propagated to 
the next stage. We will label the time required by this type of addition as 

and this time is given as: 

That is. the time for an N-bit addition is just N times the time for a single bit addi- 
tion (TFA). and the time for a single bit of addition is two gate delays. Thus, the 
time for a full adder implementation of an addition module is linear in the number 
of bits to be added. 

The details mentioned above are often hidden inside integrated circuits. 
However, in designing or understanding the circuitry embedded in ICs, this infor- 
mation may be very beneficial. Full adders can be purchased in IC form, such as 
the '80. Or one can consider that four such stages are cascaded in a single unit. 
such as the '83, a 4-bit adder. However. if one examines the circuitry internal to 
the '83, the carry out of the chip is generated in a different fashion than the FA 
method just described. This method is the look-ahead method. which we will 
examine later. But first let's apply the add technique described above to a sub- 
tractor. 

Exampk 3.1: Full subtractor: Using the methods described above, design a 
full subtractor (FS). 

The first step in this process is to under~tand the requirements of the 
design. Figure 3.4(a) is a diagram that indicates the futcliun ol Illc full 

Figure 33. A Word Adder Composed of Full Adders. 
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Figure 3.4. Design of a Full Subtractor (FS). 

subtractor. Two bits from the data word (X,, YI) are inputs to the FS, as is a 
line from the previous stage. This line is the borrow in. BLN. The outputs 
are the subtract output for this stage. FI, and the borrow output to the next 
stage, BOUT. The algorithm for doing subtraction in base 2 is exactly the 
same as the algorithm used for the base 10 taught in grade school. One 
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"borrows" bits (digits) from places of higher significance as needed to be 
able to perform the subtraction of a bit. Figure 3.4(b) is ah example of a 
binary subaaction; this example is given becau:;e all of the information 
necessary to create the complete truth table is present. Figure 3.4(c) is the 
truth table for the full subtractor, which has been derived by examining the 
subtraction of Figure 3.4(b) and filling in the table as needed. 

A good thing to do in unfamiliar circumstances (base 2 subtraction is 
not a daily occurrence for most people) is to convert to a familiar system 
and do the subtraction. The base 10 representation of this operation is 226 
- 172 = 54; and since 001 101 lo2 = 54,o. we feel much better about the 
accuracy of the results. Alternative derivations of an answer provide 
methods for checking the results of an algorithm, and should be employed 
as necessary to build confidence and pmve correctness. 

The Kamaugh maps for the subtractor are shown in Figure 3.4(d). as 
well as the resulting logic equations. Finally, the gating function for the 
borrow is given in Figure 3.4(e). The gating is not given for the subtract 
output since F, = X, $ Y, $BIN is exactly the same formula as the sum out 
for a full adder. The same circuitry can be used for both functions. Note 
also that the logic equation for the borrow has the same form as the logic 
equation for the carry out of the full adder. but the inputs are different. 
Thus, with a little ingenuity and some gating functions, the same circuitry 
could be used for the A + B, A - B, B -A, and A $ B. The latter function is 
achieved by disabling the carry function; forcing the carry to a logical zero 
allows A $ B $ C to reduce to A $ B. 

The timing for a multiple bit full subtractor is exactly the same as the 
timing for the carry propagate adder, 

Subtraction of two values can be accomplished by a system of sub- 
tractors created as described here. However. a subtraction system can also 
be created by using an adder system (composed, for example, of '283s) and 
the complement-and-increment method of negating a value. The value to be 
subtracted is complemented with a set of inverters, and the increment is sup- 
plied by asserting the carry-in of the adder system. 

The similarity between the subtraction process and the addition process is 
not really surprising. but it points out a situation that often arises. In many cir- 
cuits, both combinational circuits, such as those discussed here, and sequential cir- 
cuits, such as direct multiplication methods discussed later, then are opponunit~es 
to utilize some of the same elements of the circuit for more than one function. 
Here, one set of gates can be utilized for both the addition and subtraction func- 
tions. The same concept applies in some sequential circuits, where counters (or 
other components) can be reused for different functions. The key to the effective 
use of system resources is to achieve a complete understanding of the functions to 
be performed by the system, and to combine that with a knowledge of the logic 
requited to perform those functions and the capabilities of that logic. This combi- 
nation will allow a designer to trade off system resources against system require- 
ments to achieve an effective design. 

Word adders composed of full adders are an example of a minimal gate 
solution to a pmblem, but the time required for the result may provide an 
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unacceptable limit to system performance. Another approach is to add more com- 
plexity to the add process to do the function faster. In order to do this, we look 
again at the logic equations for the addition process: 

Looking at these equations we make the following observations, some of which 
have been made before. The creation of the&sign&qui~ but two ga!e delays 
h m  stabilization of input t ~ o ~ ~ & & i e .  The same can be said for the first 
form of the carry equation, but the second form requires three gate delay?. How- 
ever, the sL%d-fo& allows the addition process tip&eed in a different 
fashion. Here the data inputs (as opposed to the carry input) are grouped into two 
terms: AB is called the carry generate (CG) function since if this term is asserted 
there will be a carry (hence, the carry is "generated") regardless of the value of 
the carry input. The A + B term is called the cany propagate, since if this term is 
asse~ted any carry which is supplied to this stage is passed on to the next. (Note 
that the function A $ 6 would also be. a valid carry propagate function. Why?) 
Arrangement of the add operation to include the carry generate (CG) and carry 
pmpagate (CP) functions results in a module which produces: 

Figure 3.5(a) shows a diagram of such an adder. Note that the time required to 
create the carry generate and carry pmpagate is a single time delay. But more 
importantly, note that the carry generate and carry propagate lines are not func- 
tions of the carry input. This means that if we arrange several look-ahead carry 
adder (LACA) modules as shown in Figure 3.5(b), then all of the CG and CP lines 
will be stable one gate delay after the inputs are stable. In Figure 3.5@) these 
lines are inputs to another module, called a look-ahead carry generator (LACG). 
The LACG has the responsibility of creating the cany for each stage; it does this 
by looking at the carry generate and cany propagate signals from all of the stages. 
If CW is asserted then Co will be asserted. C1 will be asserted if the carry generate 
of the previous stage (CGo) is asserted. OR if CPo is asserted AND CIN is asserted. 
As the carries become more significant, the amount of logic needed to generate 
the cany becomes larger. But it is important to note that, if the designer of the 
LACC is willing to supply a sufficient number of gates, then all of the carries will 
be generated in two gate delays. Thus, the addition shown in Figure 3.5(b) 
requires 5 gate delays: one to generate the CG and CP for each LACA, two to gen- 
erate all of the appropriate carries, and two more to propagate the effect of the 
carries to the outputs. This is faster than the 4 x 2 x G = 8 gate delays required 
for the FA implementation. 

It is apparent that much of the complexity has been moved to the LACG. 
which becomes more complex as the number of modules that it services increases. 
A LACG that provided the carries for all 64 bits of an adder would be 
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Figure 3.5. Look-Ahcad Carry Adder (LACA) and its Connection in an Adder Circuit. 

prohibitively expensive in terms of numbers of gates, or IC real estate. So, the 
LACGs are designed to cascade in exactly the same fashion as the LACAs. That 
is, in addition to the carries, the LACG generates a CG and CP that can be utilized 
by a second stage of LACG; the process continues as far as necessary to perform 
the work required. Such a system is shown in Figure 3.6. This figure shows the 
connection of '181s. which are 4-bit ALUs that generate the CG and CP signals 
required, and '182s. which are the LACGs. These units are both 4-bit units; that 
is, the ALU performs the addition of 4 bits, as well as generating the CP and CG 
signals for those 4 bits, and the LACG handles the CG and CP signals from 4 
modules. Because of this added complexity in the ALU module, the CG and .;P 
signals will require a minimum of two gate delays to cleate, as opposed to the sin- 
gle gate delay for a single bit unit. The time required for a carry lookahead addi- 
tion is then given by: 

where there an N bits to be added, and the number of bits handled by the ALUs 
and LACGs is b. When no LACG is needed (up to b bits), then the time required 
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is simply two gate delays. Then. as the number of bits increases, the LACGs are 
added in a tree type of structure, where the fanout of each node of the tree is b. 
This gives rise to the second term in the above equation. As the number of bits 
(n) increases, each time the term logb(N) -1 crosses a b boundary. that is, when 
the number of bits to be added crosses an exponential integer (b'), then the depth 
of the tree increases by one, and the number of gate delays required increases by 
four. By utilizing the look-ahead process, the time required for addition has been 
changed from function linear in the number of bits to a process that is logarithmic 
in the number of bits. And the base of the logarithm is the number of bits han- 
dled by the LACAs and LACG; a larger b results in a faster adder for a given 
number of bits. For the adder shown in Figure 3.6, the time would be: 

= LO gate delays 

The 10 gate delays for the look-ahead process of Figure 3.6 are a limit, which will 
not, in general, be fully attained by commercial parts. This is because parts such 
as the '181 and '182 will reduce the number of gates required for the final function 
by allowing three or four levels of gates, instead of the theoretically possible two. 
Nevertheless, the look-ahead method for addition is much faster than addition 
with chains of full adders. At this time we will introduce another term for the add 
process: carry propagate adder, abbreviated CPA. By this term we indicate that 
the carry will propagate all the way through the addition, but the method of carry 
implementation, whether ripple carry or carry look-ahead, is not specified. 

The addition function provides an example of the tradeoffs available in 
creating a system. A carry propagate adder will perform a function with a 
minimal number of gates, but the time will be correspondingly long. A carry 
look-ahead adder will perform an addition in a minimal amount of time, but the 
number of gates required for the function has correspondingly increased. Each 
system designer must examine the resources available (time, gates, silicon real 
estate, etc.) and allocate those rcaources in an appropiale mannzi. 

3.2. Status: Results of Arithmetic Operations 

Often when arithmetic operations are performed, some information about the 
answer is as important as the answer itself. That is, many operations are per- 
formed simply to find out how things compare: is A larger than B? Is A equal to B? 
Is A negative? Many of these questions are answerable if certain information is 
available concerning arithmetic operations. For example, is A equal to B? Well. 
subtract A from B (or B from A); if the result is zero, then A is indeed equal to B.  
In general, four pieces of information are produced by these arithmetic operations, 
and these pieces can be used to form bits in a status register. The four bits are 
zero. sign, overflow, and carry. We should hasten to add that other types of info;- 
mation are often available in a status register, and we will deal with this type of 
information in Chapter 4. At this time, we are interested in the arithmetic opera- 
tions and status that can rcsult from them. 
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The sign bit is perhaps the easiest to generate: it is the sign of the result of 
whatever operation was performed by the ALU. For two's complement numbers, 
this is the MSB of the result; for most floating point number systems. this is also 
the most significant bit. In either case. the sign of the number is fed directly to 
the status register. Instructions that manipulate arithmetic values (ADD, SUB- 
TRACT, COMPARE, etc.) will modify this bit; instructions that do not do arith- 
metic (JUMP. CALL, etc.) will not modify the bit. For a precise list of the instruc- 
tions that do modify the various bits of the status register of an existing machine, 
the instruction set definition for that machine must be consulted. The opposite is 
true for a system architect in the process of creating a set of instructions. That is, 
based on the application area of the machine, the arithmetic operations required. 
and the number systems utilized, the system designer can, at the time of the 
definition of the system, identify which operations will have an effect on the 
status register. 

In addition to the sign bit, t h h  is also readily available from the 
ALU. If an arithmetic operation resulted in a carry. then this bit is asserted in the 
status register. Again, the instructions modifing the bit are obtained from the 
instruction set definition.. The hardware of the system, then, must prevent instruc- 
tions that cannot modify the bit (as defined by the instruction set) from actual 
modification capability. This is accomplished by disabling the load function of 
the status register bit (carry bit, in this case) within the status register. 

'J3e zero be is also easy to visualize, conceptually. If the result of the 
operation is zero, then the bit should be set. Often this operation will be utilized 
by more instructions than strictly the arithmetic ones. For example, in some sys- 
tems MOVE instructions will test the value being moved to see if it is zero. As 
before, the exact list of instructions that modify the zero bit will be obtained from 
the instruction set definition. The logic required is a test on each line to check its 
assertion level. For ALUs not providing this information on a separate status line, 
then all of the output lines must be checked. However, some ALUs provide a sin- 
gle line that will be asserted if any of the ALU lines are not zero. The advantage 
of this method is that these lines are constructed with open collector technology, 
and can be tied together without external gating. Thus, when all ALU outputs are 
zero, none of the lines is asserted, and the recognizable output is high, which is 
exactly what is needed by the status register. 

,=overflow bit is the condition that requires more than rudimentary logic. 
When should the overtlow bit be set? The overflow bit indicates that the opera- 
tion performed has exceeded the ability of the number system to represent infor- 
mation. Thus, one of the basic pieces of information needed (or assumed) is the 
number system being utilized. Our examples will concentrate on the two's com- 
plement number system. Other number systems may call for other conditions to 
identify an ovetllow. For example. consider an &bit, two's complement number 
system. From our previous considerations we know that this number system can 
represent values from -128 to +127. If we add 61 10 to 4510: 

00111101 Thisis61 inbasel. 
00101101 This is 45 in base 2. 

Now add them together. 
01101010 The result is equivalent to 106. the correct answer. 

This operation does not exceed the ability of the number syslem to represent 
information. However. if we add 7Sl0 to 581~:  
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OIOOlOll This is 75 in base 2. 
001 11010 This is 58 in base 2. 

lOOOOlO1 In 2's complemenl. this is -123. 

If the pattern is considered an unsigned integer, then the answer is correct (13310). 
But as a two's complement number, the ability of the number system to represent 
information has been exceeded. Two positive numbers have been added together, 
and the result was a negative number. The same thing will happen if two large 
negative numbers are added together: a positive number will be the. apparelt 
rewlt. Again, the ability of the system to represent information has been 
exceeded: an overflow has occurred. When this happens in an arithmetic opera- 
tion, then the overflow bit of the status register will be set. If a number system 
other than the two's complement number system is to be used, then a similar set 
of operations must be checked, identified by the number system itself. 

Example 3.2: Overflow circuit: Design a circuit that will detect the 
occurrence of an overflow condition for a two's complement system. 

As stated above, the overflow will occur when two positive numbers 
are added together and a negative number results, or when two negative 
numbers are added together to form a positive result. So the observation 
points are the sign bits: if the two input sign bits are positive (zero), and the 
output sign bit is negative (one), then an overflow has occurred. Likewise, 
if the two input sign bits are negative (one). and the output sign bit is posi- 
tive (zero), then an overflow has occurred. A circuit to detect this condition 
is shown in Figure 3.7. 

If the internal canies of the addition process are available, this circuit 
can be replaced by a single exclusive-OR gate. The exclusive4R gate 
would detect a difference between the carry-in and the carry-out of the most 
significant stage; these two lines will differ when the overflow condition 
exists. 

The arithmetic bits included in the status register are set and cleared as 
directed by the control logic for the system. That is, not all of the instructions 
will be allowed to modify the status bits, and some status bits will be modified by 
more instructions than other bits. This will require a system which is capable of 
selectively controlling each of the bits. If we limit ourselves to fairly standard 
TIT parts, then such a circuit is shown in Figure 3.8. Note that each of the bits is 
individually setable and clearable, as well as being reset jointly by a system reset. 
If the instruction set does not require the ability to individually set and clear each 
of the bits, then the amount of logic required for this function will be reduced. 

SIGN-A-H 
SIGN-8-H 
ALU-SIGN-L r 

OVER-FLOW-H 

Figure 3.7. Circuit for OverRow Detection (Two's Complement 
System). 
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Figure 3.8. Arithmetic Bit Formation for a Status Register. 

Some manufacturers provide many of these functions in a single IC. such as the 
AM2904. This reduces the number of chips required but not the control lines: The 
AM2904 has 17 control lines associated with this function. 

These status bits form both a source and a destination of information in the 
performance of computer functions. Arithmetic operations often require a carry 
input, which is provided from the status register. Addition operations may change 
all four of the bits discussed above. Logical operations can also affect the zem 
bit. And program control operations can test status bits to control the flow of 
control in the system. Thus. these four bits can form a portion of a status register. 
which performs a central function in the overall system operation. We will 
include other kinds of status information in the discussion of inshuction sets in 
Chapter 4. 

3.3. Iterative Multiplication Methods 

Fmm the very early days of computers one of the things needed was a multiplica- 
tion capability. Many of the early machines were funded by defense needs, such 
as calculation of ballistics tables and other strictly computational tasks. For these 
tasks a multiply was required, and many early machines had a hardware multiply 
inshuction. Later, when memory speeds improved dramatically, subroutines 
could be used to do the multiply and still accomplish the function faster than the 
previous hardware systems. This allowed a sizeable reduction in hardware for the 
computer. Still. hardware multiplication capabilities have been utilized more and 
more as the relative cost of hardware has decreased. Let us examine some of the 
methods for doing multiplication. 
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First, let us define the problem in exact terms, then select a sample problem 
to follow through the various methods of multiplication. What we want to find is 
the product. P, of two values, A and B. 

A and B are called the multiplicand and multiplier; let us assume that they are both 
5-bit numbers: A,A3A2A,Ao and B4B3B2BlB,,. We know from Chapter 2 that these 
can assume values from 0 to 2' - 1 = 31. So, the largest product would be 31 x 
31 = 961. To represent the number 961 requires [lo& (961)1= 10 bits; hence, 
we say that the product of two N-bit numbers requires 2 x N bits to represent. 
With our assumption of a positional notation system, the p d u c t  tau be 
represented as: 

In practice. we write this as follows: 

The five rows labeled PPo to PP, are known as the partial product array. For this 
mul~iyiicalioo, the rows of the partial product array are composed of 5 bits, and 
each bit is an AND function of a bit from the A input and a bit from the B input. 
The product itself (PR) is the sum of the rows of the partial product array. when 
the rows have been aligned appropriately for bit significance. The effect of the 
multiplication by powers of two in the above equation is accounted for by the 
shifting of the rows in the partial product array. This is the same situation as that 
taught in grade school for base 10: 

In the base 10 example, each mw in the partial product array is the result of the 
multiplication of the first number by one digit in the second number. As 
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explained above, in the base 2 system this product is very easy to obtain, since 
multiplication in base 2 is accomplished on a bit-by-bit basis. Therefore, the crea- 
tion of the partial product array for a base 2 example is very simple: merely AND 
each bit in the multiplicand with the appropriate bit in the multiplier. Then the 
rows of the partial product m y  are summed in some fashion. Let us examine 
some methods for accomplishing this. 

The most straightforward method for doing the multiply is the traditional 
"shift and add" method. One implementation of this is shown in Figure 3.9. 'The 
multiplier shown in the figure is set up to do an 8x8-bit multiply. Several 

Figure 3.9. Data Path Logic Diagram for Simple Multiplier. 
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observations can be made concerning this system. Fist of all, the adder used is 
an &bit adder; this will function properly since the partial product addition is 
done from the least significant partial product to the most significant partial pro- 
duct. There is nothing magic about the order of partial product addition, so long 
as the bits are added in their appropriate significance. That is. for an N-bit multi- 
ply, the partial products PPN., to PPo could be added in the order shown (PPo first 
to PPN.I last). in the reverse order (PPN.] first to PPO last), or in any order deemed 
convenient because of design considerations. 

In Figure 3.9, the shifting of the result is accomplished by hard wiring the 
accumulating sum to line up with the appropriate bit positions in the partial pro- 
duct. And the partial product is crealcd eiactly as S;IUW:I i ~ i  UIC a'bove erpmsion 
of a binary multiplication: AND gates are used to generate the panial product from 
the multiplicand. The multiplier bit to be used is obtained from a shift register. 
A timing diagram that will assert the control signals in an appropriate fashion to 
do the work is shown in Figure 3.10. The timing diagram shows a set of control 
signals that will work in all cases; however, the resul: can be obtained faster in 
some circumstances if the control section is modified to look for specific condi- 
tions. One such condition is that either the multiplier or the multiplicand is zem; 
in such a case, the result is zero, and the answer can be given immediately. A 
flow diagram showing such a set of decisions is shown in Figure 3.11. The 
design of a control section that will create the appropriate signals is the topic of 
Chapter 5 and will not be covered here. 

The circuit shown in Figure 3.9 is only one of a variety of implementations 
that will accomplish the work of multiplication. Other solutions to the problem 
would try to create the "best" design based on some criteria of the designer. For 
example, in the design shown in Figure 3.9 two chips are required for the AM) 
function; these can be removed by using a slightly more complicated product 
register capable of shifting internally as well as loading from an external source. 
This reduces the number of chips (and hence board area required) fw the function. 
but will necessitate a slightly more complex control. Another type of design may 
test for the condition that the remainder of the multiplier is all zero, hence the 
multiplication is essentially complete. The challenge in that type of design is to 
be sure that the final product bits are in the correct bit positions. 

No matter what type of data path is selected, and its appropriate algorithm 
devised, the designer is faced with the problem of proving correctness. Several 
methods are available to do this, from simulation of the hardware if such a 

PROD-CLR-L 

PROD-CLK-H 

u \ / 
Clew Product R e g d  hdd Partial Products t o  Product Register, 
Load Multiplier Shift Multiplier register to next bit  

Figure 3.10. Timing of Control Signals for Simple Multiplier. 
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Fiurc 3.11. Flow Diagram for Data Dependent Multiply Algorithm. 

simulation system is available, to examples worked through by hand. Before the 
design is fabricated, the designer should select several appropriate examples and 
show that the system will provide proper results. 

Example 3.3: Multiplier Design: Design a data path for a multiplier that 
will add the partial products in "reverse" order, from the most significant to 
the least significant. What are some of the benefits and penalties of doing 
this? 

This could be accomplished in a number of ways, one of which is 
shown in Figure 3.12. The figure shows the parts and principal interconnec- 
tions needed; a more detailed schematic representation is found in Appendix 
B. This method requires an adder as wide as the final product. For simpli- 
city this is shown as four '283s; faster add times could be attained by using 
an adder with lookahead capabilities. The product register is constructed 
out of '273s, which are 8-bit edge triggered registers. The bits from this 
register are fed back to one set of inputs on the adders. The inputs to the 
product registers come from the same bit positions in the adder. 

The multiplier register is composed of two '195s which have been 
configured to be a shift register. The control section will be responsible for 
asserting the clock line (PLIER-CK-H) when data is available to be loaded. 
and also when the multiplication is proceeding. The output of the multiplier 
register is constantly checked to see if it is zero (PLIER-ERO-L). 

The multiplicand register is composed of two types of shift registers: 
'195s and a '164. The '195s provide for the load of the multiplicand value, 
at the same time clearing the '164 (PCANDLD-L). Again note that the con- 
trol section will be responsible for asserting the load and clock lines in the 
proper sequence to cause the data to be loaded at the appropriate time, and 
then shifted during the execution of the multiplication itself. As the multi- 
plicand is shifted out of the '195s. it will be shifted toward lower 
significance in the '164. This is the method whereby the stated design 
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Figure 3.12. Data Path for Multiplier of Example 3.3 

objective of "reverse" order of partial products will be accomplished. The 
multiplicand can also be checked for a zero value (PCAND-ZERO-L) when it 
is loaded, but this will only be effective at the beginning of the algorithm. 

A flow diagram for implementation of the multiplication algorithm is 
shown in Figure 3.13. This diagram indicates how the algorithm proceeds. 
and identifies some of the benefits of this organization. The first step is to 
clear the product register; this is the correct answer if the multiplicand is 
zero, which is checked next. It is also the correct answer if the initial value 
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Fiurr 3.13. Flow Diagram for Multiplier of Example 3.3. 

in the multiplier is zero, which is the next condition checked. Then the 
iterations begin in earnest. The value in the multiplicand register is added 
to the value in the product register; this result may or may not be placed 
into the product regider. That decision is based on the most significant bit 
in the multiplier register (AND-BIT-H); if the bit is asserted. then the pro- 
duct register is loaded. In either case. the multiplier and multiplicand regis- 
ters are shifted by one bit position. If the number of iterations is N (8 in 
this case), then we are done. If not, check the multiplier register to see if 
we have added in all of the appropriate values. If we have, then the algo- 
rithm is finished. As this description points out, the time required for this 
algorithm is data dependent. It is not necessary to check for zems, since the 
algorithm would function correctly with an iteration counter and no data 
checks. However, by testing the values during execution of the multiply. 
the number of iterations will depend on the arrangement of one's and zero's 
in the data. By doing the additions in the "reverse" order, the product bits 
are in the correct position whenever all the required additions have been 
performed. Thus. the time to complete the instruction will vary according 
lo the data. which will speed up the processing. 

Another benefit fmm this method is the absence of AND gates to do 
the individual panial product multiplications. The p a i d  product is always 
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added to the accumulating product, but this value is conditionally loaded 
into the product register, based on the appropriate bit in the multiplier. 
Thus the AND function is supplied by control of the product load line, rather 
than an AND line on every bit. 

One of the obvious tradeoffs with this method is that the speed 
benefits and the reduction in gating (no AND gates) have becn obtained at 
the expense of a larger adder and multiplicand register. So, before a 
designer declares this method betterlworse than another method, he needs to 
ascertain the various costs of the method and decide if the tradeoffs match 
his system resources. 

The multiplicxtion methml~ d;cwwpd *r I!.;? +nt -- ;...,d,,v; ~ , & , . r t i ~ :  L;,L 

same adder syslem is used a number of times until the correct result is obtained. 
One of the questions to be addressed is the time required for the multiplication. 
The time that we worry about here does not include the time required to load the 
multiplier and multiplicand registers, and, in an actual implementation, those 
times need to be included in any timing estimates. The multiplication time. 
TMULT. can be gmuped into two contributing factors: the setup time. TSmp. and 
the iteration time. TmR. 

The setup time includes the time required to clear the product register and per- 
form any initial checks identified by the algorithm. This is reflected in the "is 
multiplicand zero" condition in the algorithm of Example 3.3. The iteration time 
is the time required to create the partial product @erform the AND function), to 
add the partial product to the ~ n n i n g  sum, and to load the resulting value into the 
product register. These times are reflected in the following equation: 

The first term (TAND) is the time needed by the algorithm to form the. partial pro- 
duct. Note that in some algorithms, such as that described in Example 3.3, this 
time will be zero, since the same effect is obtained by conditionally loading the 
product register. The second term (TSUM) accounts for the time required to form 
the sum of the partial product w~th the product register. This time will be deter- 
mined by the adders being used and the interconnection method (cany propagate 
adders or cany look-ahead adders). The term should reflect the time required 
fmm all data inputs stable to all outputs stable. The last term TREG is a combina- 
tion of the times required for the register being used, which can be obtained from 
the data sheet for the device. These include the setup time (the time that the data 
must be stable prior to the assertion of the clock), the hold time (the time the data 
must be stable after the assertion of the clock), and propagation delay (the time 
for stable outputs, from the assertion of the clock). ~ l l  of these times must be 
accounted for in deciding on the time required for the clock cycle of the unit. 
However, if a designer is willing to provide for nonequal clock times, then the 
time required by the system of Example 3.3 can be reduced. That is, if the 
AND-BlT-H is not asserted, then the add will not be needed, and the system can 
move on to the next bit (shift multiplier and multiplicand) without waking for 
T~~~ 
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These multiplication methods can be used to build multipliers out of com- 
mercially available parts, such as the system shown in Figure 3.12. Or they can 
be used to implement multiplications by using resources (adders, registers, and 
data paths) internal to a chip. such as a microprocessor. Since these methods are 
iterative in nature, they can be readily implemented with microcode methods. We 
will lwk more closely at microcode in Chapter 5, but an understanding of the 
iterative nature of the system helps to explain why some manufacturers identify 
the times required by multiplication instructions in numbers of cycles. And why 
some multiplication instructions indicate that the time for instruction completion 
is dependent on the data being used. 

Before we move on to direct methods of multiplication, we will note that in 
the considerations thus far we have carefully avoided any mention of negative 
numbers. Without any modification, the techniques mentioned will not function 
for negative numbers. A number of techniques have been uscd to allow use of 
negative as well as positive numbers. The techniaue we will describe here is - 
called B w t h ' s r i t h m ,  after a pair of British mathematicians, but similar tech- 
niaues ke%sed elsewh&7-These techniaues are classified as recoding techniaues. 
since the multiplication is modified by a-recoding scheme. Let us see how &is is 
applicable to the problem of multiplication of signed numbers. 

First of all, we n e x t 0  remember from Chapter 2 that the bits in the number 
have a different meaning for signed numbers. That is, the most significant bit has 
a different mazning. The five bit numbers which were used earlier for an example 
had the form and meaning: 

The difference for a two's complement number is shown in the following fashion: 

As can be seen from the equation, the most significant bit is different in its 
weighting formulation and must be treated accordingly. The Booth's algorithm 
approach can be understood by first doing some algebra on the number. In a 
step-by-step fashion. we can express the two's complement number in a new 
fomi: 
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The values in parentheses in the ahove cqmtion are composed of the subtraction 
of two bits. and can have the values +LO, or -1. Note that the weights are what 
we would expect in that all are powers of two. Therefore, multiplication by the 
weighting factors can be. achieved by the shifting used in the first algorithm. The 
complexity comes in that now, instead of strictly adding, we need the ability to 
add, subtract, or do nothing. However. once a subtraction (addition) has been per- 
formed, the next operation will be an addition (subtraction). (This can be easily 
seen by examining possible bit patterns and the resulting order of operations.) 
This alternate nature of the operations guarantees that the size of the 
adderlsubtractor will be limited to N bits. The easiest way to visualize this pro- 
cess is to work through an example: 

Example 3.4: Signed mulfiplication with recoding: Utilize the Booth's algo- 
rithm recoding scheme to perform the multiplication: 2510 x -1910. 

The bit patterns for the two numbers are: 

01 1001 Lel A = 25,~, be the multiplicand. 
101 101. And B = -19,, be the multiplier. 

The recoding algorithm works on pairs of bits a .  shown below. Note that 
the product is sequentially formed; the steps shown below to form Po to P, 
correspond to the cumulation of the partial products to that point. 

-1 x ( bo - 0 ) 5 -1 Subtmct A fmm 0 10 form Po' 
-2x( bl - bo) = +2 Add2x.A toPo to form PI. 
4 x (  b2 - b, ) = -4 Subtract 4 x A from P, to form Pl. 
-8x(bl-b2)  = 0 P,=P,. 

-16x(b4-b3) = +I6 Add 16xAtoP,toformP4. 
-32 x(  b5 - b4 ) = -32 Subtract 32 * A  from P, to form PI. 

These steps can be followed as identified to ascertain that the answer is 
4 7 5  as expected. The multiplication by powers of two called for here is 
achieved by the appropriate shift of the operand A. The hardware that 
would perform this kind of a multiplication can be visualized as shown in 
the following example. 

Example 3.5: Hardware for recoding multiplication: Design the data path 
for a multiplier that will perform multiplication according tc Bmth's algo- 
rithm. Assume that the input values are 8 bits each. 

One solution to the problem is shown in Figure 3.14. The multipli- 
cand register and the product register are formed using '273s. which are 
8-bit registers. The multiplier is loaded into a '165, which is a parallel- 
inherial-out shift register. Note that, when the n~ultiplier is loaded, the 
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flip-flop for storing the previous bit in sequence is cleared. The 
add/subtracUdo-nothing requirement of the algorithm is handled by a pair of 
'181s. which are capable of performing all of the functions. The determina- 
tion of the function of the '181s is handled by the arithmetic select lines 
(S3-SO), and the desired function is identified by the bits of the multiplier, 
as seen in the previous example. The appropriate bits are called simply BO- 
H and BI-H in the diagram. As the multiplier shifts through the register 
during the execution of the algorithm, the appropriate bits will appear on 
these lines. The function of the '181s should then be determined by the fol- 
lowing table: 

'Plicr Bit! Af.11 Scl Funclion 
81-H BO-H S3-H SZ-H Sl-H SO-H 

0 0 0 0 0 0 Pass product value. 
0 I I 0 0 I Product plus multiplicand. 
I 0 0 1 1 0 Roduct minus multiplicand. 
I 1 0 0 0 0 Pass product value. 

This logic is implemented in the few gates in Figure 3.14. L i e  the first 
multipl~cation method, this one will require a fixed number of clock pulses 
on the control lines to complete. Of course, it would be possible to check 
for a zero input condition, but it will not function properly if it is stopped in 
the middle of a multiply. 

As can be seen from the example, the logic required for multiplication of 
negative as well as positive numbers does not greatly increase, but more care must 
be taken in the design and verification of the system. Nevertheless, the iterative 
approach will produce the proper result if enough caution is used in its implemen- 
tation. Some of the many references for design techniques and examples of itera- 
tive methods of multiplication are listed at the end of this chapter. This is by no 
means intended to be an exhaustive explanation of multiplication methods, but 
rather it should identify some practical systems that can be used to perform the 
needed operations. For systems requiring more speed, then are faster methods for 
accomplishing the multiply, as we see in the next section. 

3.4. Direct Multiplication Methods 

All of the above methods require that the product be formed by combining the 
partial product with a value that will eventually form the final result. One of the 
reasons that an iterative approach is desirable from a resources standpoint is that it 
requires a single adder to perform the entire multiplication. The eadeoff has been 
made to sacrifice speed in favor of minimal logic resources. But in what way 
could more resources be applied to the problem? That is, given the situation 
where a designer is willing for purposes of speed to include a great number of 
gates, how should those gates be configured? We have already seen that, by exa- 
mining the addition problem and using a different technique, the addition time 
could be changed from a linear function to a logarithmic function. Now we will 
analyze the multiplication function and identify methods that can be used to 
decrease the multiplication time. 
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Consider the following multiplication: 

Multiplier + 
Multiplicand -+ 

PPo ' 
PP, -4 

PP2 ' 
PP3 ' 
PP, ' 
PP, ' 
PP, -+ 
PP, -4 

m u c t  -+ 

The multiplication process requires two separate functions: forming of the partial 
products and adding all of the partial products together. The formation of all the 
partial products (PP, - PPo) can be done in a single gate delay from the time that 
the data is stable. The hardware cost in the above example is 64 two-input AND 
gates, but, with that gate investment, the partial product array can be generated in 
parallel. Once the partial products are available, they can be summed as before. 
However, our objective here is speed, so rather than have a single adder and 
iterate to a register, let's use multiple adders and feed the result of one adder 
directly into another. The system resulting from this is shown in Figure 3.15(a). 
and it would require N-1 adders for N rows of partial products. 

In the previous section, TMULT was a function of a setup time and a multiple 
number of iteration times, TITER. ?he system shown in Figure 3.1S(a) reduces the 
time by changing T, to be simply the add time, TSuM The adders shown in the 
figure are cany look-ahead adders, but any kind could be used. The point here is 
that the time for a direct method with a linear connection of adders. TMULTm,,, 
is given by: 

The time is linear in the number of rows @its), which is a situation that will only 
get worse for more bits. The obvious solution is to get a time reduction to a loga- 
rithmic function by arranging the adders in a tree fashion, such as that shown in 
Figure 3.15(b). This would chan e the time from a linear function to a loga- 
rithmic function: TnuLT,, = Flog* (Nil x q U M  where there are N bits in the 
multiplier. This system will indeed obtain the product in a smaller time than the 
linear system, but other methods can achieve even higher speed. 

The next method to consider has received several names, but we will call it 
row reduction. To understand what is going on, let us return to a simple example, 
a 4x4-bit multiplication for positive values only. The problem setup is exactly as 
we have seen' it before, with the elements of the partial product array being 
formed as the AND of the appropriate bits. Here we want to emphasize the rows 
formed in the partial product array, so we will consider the multiplication by 
labeling elements in the partial product array as RX,y,  where X gives the row 
number and Y is the element in the row. Thus, a 4-bil multiplication becomes: 
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Sum of panial products 

Each row of the partial product array forms a more significant portion of the final 
product. as seen by the shifting nature of thc information. Now let's put together 
a set of full adders to do this multiplication according to the above setup. That is, 
we will do a multiplication in the method of TD,,,,,, above, but use full adders 
for this simple case. This is shown in Figure 3.16. As expected, the partial pro- 
duct bits (R,,,) are added into the product by shifting them appropriately and 

PPO 

PP 1 

PRODUCT 

Figure 3.15. Multiplication by Direct Methods: Linear and Tree. 
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Figure 3.16. Partial Product Addition with Full Adders. 

using full adders to add to the running sum. Now we ask the question, what is 
the function of the full adder? We often see a symbol for a full adder as shown: 

We mentioned earlier that the outputs form a 2-bit number that gives the number 
of one's on the input lines. The three inputs (A. B.  GIN) all have the same 
significance; the sum output has the same significance, and the carry out has a 
significance of one higher bit position. There is no reason that the carry needs to 
be added into the sum in the same row that it is generated; that is, the carry can 
be saved for fhe next level of adders. The benefit of passing the cany to the next 
set of adders is that the work accomplished by the first stage no longer requires a 
time based on the number of bits in the word; the time is always two gate delays. 
The policy of saving the carry to the next stage gives rise to the name "cany save 
adder." or CSA. The multiplier of Figure 3.16 is redone to utilize this feature, and 
the result is shown in Figure 3.17. 
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Figure 3.17. Panial F'roduct Addilion with Carry Save Adders. 

The use of carry save adders to speed up the addition process reduces the 
time required for the intermediate steps to two gate delays. but the carry process 
cannot be put off forever. The final stage of such a system must be an adder that 
implements the carry process the width of the final r.:sult. The effect is that the 
intermediate stages can be designed with a relaxed resource criteria, and more 
design effort can be directed toward speeding up the final stage. One way of look- 
ing at what is happening is to recognize that using adders as shown above (saving 
the carry to the next level of addition) reduces the number of rows that need to be 
added. The carry save adder, then, is a 3-row-to-2-row reduction unit: 3 rows of 
bits are reduced to an equivalent operation that requires only 2 rows. For exam- 
ple, in the first level of CSAs in Figure 3.17. 3 mws of bits fmm the partial pro- 
duct array (Ro,, R,,, and R2$ are reduced to 2 mws of bits. 'Ihen. the 2 rows of 
bits obtained by that process, plus the remaining row of bits from the partial pm- 
duct array (R,,) are reduced to 2 rows of bits. Finally, these 2 mws form the 
input to a set of full adders, which does the final addition. Thus, Figure 3.17 
shows an implementation of two 3-2 (3-row-to-2-row) reduction units and a final 
CPA stage. 

The output for any bit position of a row reduction unit contains a value that 
identifies the number of "ones" found in that bit position of a number of mws. 
Thus. a row reduction unit with k outputs will be able to represent numbers from 
zero to 2k - 1. Hence. a row reduction unit with k outputs will be able to reduce 
2k-  1 rows; therefore, 7-3, 15-4, 31-5, and so on, are all possible configurations 
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however. that the complexity of the 15-4 reduction units will be much larger 
than the carry save adders, which form the 3-2 reduction stage. The final 
stage is a carry look-ahead adder that will produce the 112-bit result. ,We 
will assume that each row reduction unit requires only two gate delays. 
Thus, the time required for signals to propagate from the data inputs to the 
final addition stage is 9 gate delays (one for formation of partial products, 
two each for the four stages of row reduction units). From the equation for 
time required for carry look-ahead addition, the final addition process will 
require 

= 10 gate delays 

So, the final result will require 19 gate delays. The cost of doing this is an 
enormous amount of hardware. This is not really practical in systems made 
of individual gates; however, this could be done in a reasonable fashion 
internal to an integrated circuit. 

To better understand the multiplication mechanism, let us consider what is 
happening at each stage of the above process. The action being performed is to 
group portions of the partial product array together, and to then provide a number 
that is a count of the number of "1"s in the appropriate columns. This sectioning 
of the partial product array can be done in any manner that will produce the same 
results as the lengthy "normal" process. Thus, portions of the partial product 
array can be formed and summed, and then these intermediate sums combined to 
produce the final result. Any consistent mechanism can be used to identify por- 
tions of the multiply process for sectioning. The simplest example of this is the 
3-2 reduction unit (CSA). which provides a count on the two output lines of the 
number of "1"s on the input lines. Other types of sectioning can be performed by 
using special purpose ICs, or by using similar techniques in multipliers that are 
internal to processor chips. 

An example of the concept of subdividing the partial product array into sec- 
tions can be found in the stepwise creation of the final result by considering only 
portions of the original problem. That is, using special purpose integrated cir- 
cuits, portions of the partial product array are formed (the ANDing is done inside 
the chips) and the resulting elements combined in the fashion described above. 
The output of these chips is a number that is a sum of parts of the partial product 
array. Conceptually, this is shown in Figure 3.19. The figure indicates that some 
of the bits of the partial product array are formed, and then summed in an initial 
step in the multiplication process. These partial sums are then combined together 
to produce the final result. Using these techniques, large multipliers can be built 
using multipliers that work only on portions of the input values, as shown by the 
following example. 

Example 3.7: Multiplication with sectioning: Design an 8x8 multiplier. 
using 74284 and 74285 4x4-bit multipliers. 

These devices jointly form the 8-bit product of two 4-bit numbers: the 
'285 produces the four least significant bits; the '284 produces the four most 
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for row reduction units. One additional benefit of row reduction is the ability to 
do portions of the partial product addition in parallel. That is, since all of the par- 
tial products can be generated simultanwusly, the row reduction process can 
begin immediately to reduce the N rows of bits to 2 rows, which will then be 
added to form the final result. And independent row reduction units can operate 
on different rows of the partial product m a y  simultaneously. This is demon- 
strated in the following example: 

Example 3.6: Multiplicarion with row reduction: The DEC floating point 
number system has a double precision configuration with a mantissa length 
of 56 bits (including the hidden bit). Design a high speed multiplier to do a 
56x56-bit multiply. Assume that the larecut row reduction unit you hwe to 
work with is a 15-4 row reduction unit. Also assume that there is an adder 
at the last stage organized in &bit units for carry generate and carry pro- 
pagate. How long will the multiplication take? 

The formation of the partial product results in 56 rows of bits that 
need to be added together. These are then fed into row reduction units to 
reduce the total number of rows from 56 to 2. The overall design approach 
for this system, using 15-4.7-3, and 3-2 reduction units, is shown in Figure 
3.18. As can be seen from the figure. this requires two stages of 15-4 mw 
reduction units, one stage of 7-3 row reduction, and a stage of 3-2 row 
reduction. These steps can all be accomplished in 8 gate delays. Note, 

56 
PARTIPL 
PRODUCT RODUCT 

ROWS 

Figure 3.18. 56-Bit Multiplication Using Row Reduction. 
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Figure 3.19. Partial Product Reduction by Sectioning. 

significant bits. Therefore, an 8x8 multiply will be able to effectively use. 
four pairs of devices. First, let's look at what one pair will produce: 

So, the organization of an 8x8  multiply will be exemplified by the follow- 
ing configuration: 

Note that the pattern established above is utilized four times, and that the 
various portions of the partial product overlap. So some type of an adder 
tree would be needed to do the summation of the partial products. This is 
accomplished with a carry save adder stage (3-2 reduction) and an adder. 
The schematic for this is shown in Figure 3.20. This works rather well, but 
doesn't handle large multiplications without a corresponding large number 
of chips. Texas Instruments is no longer making this part; however, this 
same method of building portions of the partial product m y  can be utilized 
using larger multipliers. For example, several manufacturers make a 16x16 
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multiplier (like TDC1010). which could be cascaded in exactly this fashim 
to create a 32x32-bit multiply. 

This example works on the basis of a "normal" partial product array; tk 
respective portions of the array are generated internal to the multiplier chips, ant 
partial sums formed. Thcn these sums can be combined to form the appropriaks 
result. This same type of organization, forming portions of the partial pmdud 
array from multiplicand and multiplier bits, can also use the recoding ideas in- 
duced with Booth's algorithm. Indeed. the 74261 is a 2x4-bit multiplier ttvP 
requires three bits of the multiplier in order to do the recoding necessary. But tk 
system handles both positive and negative numbers, and the results are c o w  
two's complement numbers. Like the system of Example 3.7, several sections d 
the parts can be combined to handle larger numbers. 

All of these algorithms for high speed multiplies attempt to form Br 
appropriate portions of the partial product array in parallel, then do as much of tk 
partial product addition in parallel as possible. This includes delaying the find 
stage of the addition, where the carry will need to propagate all of the way acroo 
the output, as long as possible. Therefore, much of the design emphasis can be 
placed on this stage, which will be the speed bottleneck. 

The multiplication process, then, adds into the final result the appropriar 
number of copies of the multiplicand. This can be accomplished by using a sin& 
adder and a register, and iterating through the necessary calculations. This t yped  

- ' 

system consumes considerable time resources (takes a relatively long time), b 
few hardware resources. One advantage to this approach is that it can be e a s b  
incorporated into a microprogrammed machine. Another multiplication method 6 

to organize the calculation to use parallel application of partial product generatim 
hardware. and then sum the final result with mw reduction elements and hi& 
speed adders. This design consumes little time, but requires many hardware der- 
ices. The type of design selected will be dictated by the intended application. lad 
the relative cost of system resources. 

3.5. Direct Division: Basic Division Algorithm 

Whereas multiplication finds the sum of multiple copies of an operand, division k , 
concerned with finding out how many times one value can be found in another 
value. The numbers involved are the divisor, Ds, the dividend. DD. the quoti* 
Q, and the remainder R. Mathematically, these elements are easily related to aac 
another: 

The division operation determines the quotient and the remainder. One of & 
assumed requirements on R is that it has a smaller magnitude than Ds. In the p- 
cess of designing a system to do division, care must be taken to provide hardwn 
that will do the work required by the system. That is, magnitudes should be um- 
sidered. the number of bits to be provided in the operands, the bits required in lk 
answers, and the placement of the radix point. All of this information must bc 
considered in the design process. 

One of the most straightforward methods to use in the approach to & 
design of the system is to mimic the operations of paper-and-pencil long divisim 
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for positive numbers. Consider, for example, the steps required for dividing 58 
by 5: 

101 1 Quotient, Q 

Divisor. D, -1 101 1111010 + dwidend. DD 
101 QJXDS 

1W1O R > D,, continue 
000 Q, x 0,. shifted - 
1W1O R >Dl. continue 
101 Q ,  x D,. shifted - 
IOOO R > D,, continue 
101 Q, x D,. shifted - 

11 R <D,. done 

This operation proceeds in the same fashion as paper-and-pencil, long division. 
The base 10 algorithm with which we are familiar will produce a new base 10 
digit at each iteration; the base 2 equivalent exemplified here will produce a new 
base 2 digit (bit) at each iteration. This is accomplished by subtracting the 
appropriate shifted divisor from the remainder value. The result of the subtraction 
determines the value of the bit in the quotient. A block diagram of such a divider 
is shown in Figure 3.21. The division process involves repetitive shifts and arith- 
metic operations, so the hardware is organized to accomplish that. The operation 
begins by placing the divisor in the register marked Ds, the dividend in the Q 
register, clearing the R register. In each iteration another bit of the answer is 
created, and this bit is shifted into the Q register as the dividend is shifted into the 
R register to be used in the calculations. As seen in the above example. the most 
significant bits are used in the first comparisons, so the shifting is configured to 
do least-to-most significant shifts. And this is exactly what is needed for the final 
result, since the quotient is generated most significant bit first and shifted into Q 
one bit at a time. At the completion of the process, the remainder will be found 
in R, and the quotient will be in Q. 

The basic algorithm for the direct divide is very simple. After the operands 
are in place, the division process begins by subtracting the divisor from the value 
in R, which is the accumulating remainder. If the subtraction would result in a 
positive number, that number is loaded back into the R register and conditions are 
set up to introduce a "1" into the Q register. Otherwise, the R register is not 
changed and a " 0  is readied for the Q register. Then the Q and R registers are 
shifted left, and the process is continued. We make the observation that since we 

INPUT INPUT 
I I 

control 

Termination: Quotient in Q 

Remainder in R 

Figure 3.21. Block Diagram for Basic Division. 
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are working with positive numbers in this system, the subtraction will not change 
the bits in the lesser significant places. This observation indicates why the results 
of the subtraction are loaded only into the R register, and do not affect the Q regis- 
ter. Thus, the only information loaded into the Q register, once the process has 
begun, are the individual bits as they are generated and shifted in. 

A flow chart for the divide operation is given in Figure 3.22. As can be 
seen from the flow chart, two decisions need to be made in the execution of the 
operation. The first concerns the action at the R register: should the value avail- 
able from the subtraction be loaded into the R register or not? This decision is 
made based on the results of the subtraction: if the result is a positive number, 
then it is loaded and a "1" is setup for loading into the Q register. Otherwise, the 
result is not loaded, and a 'V is readied for loading. Then a count is checked to 
see if we are done with the operation. 

The algorithm shown in Figure 3.22 conditionally loads the results of the 
subtraction (R - DD -t R) based on the value to be loaded. This is easily accom- 
plished if the hardware is set up specifically to accomplish the divide. However. 
note that the hardware to do the direct multiply is very similar to that required for 
the divide. Hence, some systems are so configured that the ALUs and registers 
can be used for either function, and the control is slightly more complicated. In 

clear R 

shin Q.R 
lee one b~t  
inc wunn 

Figure 3.22. Flow Diagram for Division Operation. 
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such a system. it may be that the subtraction result must be stored (ALU out --f R) 
in order to set bits to be tested by microcode, or some other control mechanism. 
The algorithm shown in Figure 3.22 must then be changed accordingly. The net 
effect is that as well as setting up to put a "0" in Q, the value which was sub- 
tracted out must be restored, requiring another addition operation. This kind of 3n 
algorithm is called a restoring algorithm; another algorithm, called the nonrestor- 
ing divide, is so configured that the value is not restored, but set up to contribute 
the appropriate value for the next iteration of the process. The net result is fewer 
overall ALU operations. 

Example 3.8: Hardware system for direct division: Design a set of 
hardware U~di will ll~cepl d& Cirini a bus acd pcrform a 16-bit division 
using the operations identified by the flow chart of Figure 3.22. 

The block diagram for one solution to this problem is shown in Figure 
3.23. The actual logic diagram is found in Appendix B. Here the bus pro- 
vides input for three registers: Ds, Q, and R. The divisor register is made of 
two '564s. Since the operation needed is to subtract the divisor, this is an 
inverting register. Two's complement subtraction can be accomplished by 
inverting the divisor (hence the inverting register), incrementing the result, 
and then adding the other operand, which in this ease is the remainder. 
Here the remainder (R) register is made of two '198s. which can load or 
shift. The remainder register cq-be_&itiali.wd to the dividend (DD! vahe 
from the bus by uhng the '.157s multiplexors. Finally. a pair of '198s are 
used for the Q register. The R - Ds subtraction is accomplished by using 
adders; the R value comes directly from the R register, and the inverse of DS 
provides the other input. And the increment p m  of the "complement and 
increment" two's complement negation is done by asserting the carry ia of 
the adders. The result of this subtraction is returned to the R register 
through the MU%, which allows the control to load the bus value of the 
subtraction value as required. That is, the bus provides the informaticn for 
initialization, and from the adder comes any parallel load information 
required in the execution of the process. If the parallel load is required by 
the algorithm, then the control section causes the load. Then the '198s car, 
be shifted simultaneously, with the control'section providing the correct bit 
as input to the Q register. Missing from this diagram is the counter needed 
to identify the termination conditions. The control design methods rcquired 
will be covered in Chapter 5. 

The direct division mechanisms here can be implemented with individual 
adders as demonstrated by Example 3.8. Also, networks of divider cells can be 
constructed to produce results faster than the divide algorithms described above, 
since time is not required for storing and shifting operations. But the basic con- 
cepts of those division mechanisms are the same. Most high speed computers. 
however, do division by repeated multiplication, as shown in the next section. 

3.6. High Speed Division: the Iterative Approach 

We know from the definition of division that a reciprocal relationship holds for 
the values involved. One of the design approaches to the problem is to recognize 
the reciprocal relationship, and to utilize that to build a faster system. A great 
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Figure 3.23. Logic for Divide Operation. 

1 
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deal of effort has gone into making the multiply operation as fast as possible; is 
there some way that the multiplier can be utilized to do the division, so that the 
process benefits from the speed mechanisms available in the multiply? One way 
for the hardware for the multiplier to be used to do the division is to utilize the 
Newton-Raphson iteration: 

f G )  
x,,, = x ,  - - 

f ' ( x , )  

0-REG-WT-L 

R-REG-WT-L 

We know that for a well behaved function f. and an appropriate initial value y), 

this iteration system can deliver a desired result, which is the root o f f  ( x )  = 0. 
Thus, to find the reciprocal value, we first select a well behaved function which 
has a root at the reciprocal. We will choose to let 
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The mot of this equation will be x = l lw .  Iff (x) = (llx)-w. then 

and the iteration system will be 

Therefore. the operation A * B can become A x (ID), and the system hardware can 
produce I/B according to the above equation using only the multiplier, and a sub- 
tractor for other operation required in the iteration. The Taylor series expansion 
of the function shows quadratic convergence, which indicates that the number of 
correct bits doubles every iteration. Therefore, the desired precision can be 
approached by using the proper number of iterations. 

Division by the above process first finds the reciprocal (IIB), and then using 
that value to multiply by the other operand to get the final result. Some commer- 
cially available devices include all of the capabilities needed to do the iteration 
described above, and hence can be used to perform the iterative divide algorithm. 
See, for example, the AM29C325 by Advanced Micm Devices. 

Another similar approach to iterative division is to form the result directly. 
rather than specifically calculate a reciprocal. In this approach, we assume that 
the numbers in question are normalized floating point numbers. This means that 
the dividend and divisor will be expressed as a fraction (at least, tbe mantissa is a 
normalized fraction). Now we want to find the quotient Q, where 

To achieve this we will multiply both the dividend and the diviscr by the same 
factor, fi: 

We want the result of the various multiplications to apprc~ach the correct answer, 
Q. so we will choose theh  in such a way that the denominator approaches unity. 
This will result in the numerator approaching the correct answer (2. Since we 
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know that the part of Ds that we are working with is a normalized fraction, then 
let us represent this fraction as: 

where. the value of x is determined by the particular Ds. But since Ds is less than 
1, x is also less than I. Now, choose 

But notice that the product of Ds and fo is: 

which is closer to 1 than Ds is. Each iteration both numerator and denominator 
are multiplied by h, and each iteration the result gets closer to Q. With Ds x fo 
= I - x2, let us choosefi so that 

With this condition, then 

which is even closer to the correct answer. And so the iterations continue, each 
time getting the answer closer to the correct value. One of the questions to be 
addressed is how to find the succeeding values of h. We know f, in terms of x. 
but we only know x in terms of Df and fo: 

Thus, each new fk is formed by taking the two's complement of the multiplication 
of the fk., and the denominator result to that point. Within a computer. then, the 
values are presented to the divide hardware, and the iterations carried out until the 
answer is at the desired precision. The number of iterations required is deter- 
mined by the value of fk; when fk is close enough to "1," the result will be close 
enough to the correct answer. How close is "close enough" will be determined by 
the application and the number of bits in the represencation. However, rather than 
test each fk to determine when to stop. generally a fixed number of iterations is 
used. Therefore, to assure that the process converges sufficiently close to the 
correct answer under all conditions, rather than use 2 - Ds to calculate fO, a ROM 
is used to find an appropriate value for fo. Providing the initial "seed" value in 
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this fashion guarantees that the results will be acceptable after a fixed number of 
iterations. 

A block diagram of the hardware required to do this operation is shown in 
Figure 3.24. The divisor and dividend are presented to the divide hardware, and 
the quotient is iteratively generated. each stage getting closer to the desired value. 
The ROM is used to be sure that the initial precision of fo is close enough to com- 
plete the process in a reasonable number of iterations. 

Example 3.9: Iterative divide operations: For the divider shown in Figure 
3.24, show the values of the numerator, the denominator, and the fk at each 
step along the way for the following calculations: 0.4 10.7, 0.7 10.4. 
0. I t0.15. Give the valtres for six iterations, rather than the three shown in 
the figure. Assume that the fo is calculated as 2-Ds rather than to use a 
ROM. 

The division operation begins by calculating fo, then multiplying this 
value times the DD and Ds, as shown in Figure 3.24. For the calculation 
0.4 10.7. the calculation proceeds in the following fashion: 

DD 0.4000000 0.7000000 fo 1.3000000 DO: 0 3 2 W  i: O.POW999 f l  1.09KW3 
DD~ 0.5668000 Dsa 0.9918999 f i  1.0081000 

0.5713911 Ds, 0.9999344 A 1.0000656 2 037l4286 Ds, 0.9999999 f4 l.0000000 
DD, 0.5714286 Ds, 1.0000000 f5 1.0000000 
Do, 0.5714286 Dq 1.0000000 

With an x value of 0.3, this calculation approaches the comct value within 
four iterations. The next requested calculation is 0.7 10.4, which is the 
inverse of the calculation just done: 

This calculation takes longer to approach the correct value, since the initial 
x was 0.6. Note that the result in this case ended up greater than one, which 

Figure 3.24. Block Diagram for Iterative Divide Operation. 
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is to be expected and must be handled by the hardware. That is, with nor- 
malized fractions for initial values, there is a limit that the ~ s u l t s  will not 
exceed, but the hardware must be able to generate numbers to that limit. 
The final calculation for this example is 0.1 / 0. IS. 

This calculation doesn't quite get to the desired value, even with six itera- 
tions. This highlights the fact that in order to approach a desired precision 
within a specific number of iterations, a ROM is needed in the initial stage. 

The iterative approach to the divide operation allows the hardware associ- 
ated with the multiply to be used for more than one type of operation. For pro- 
cessors with single instruction stream capability the same hardware may be util- 
ized for both operations. But since several steps are nquired for the divide opera- 
tion, these instructions will generally take three to live times longer to execute 
than a multiply instruction. 

3.7, Floating Point Arlthrnetic 

In the previous sections we have looked at the problem of designing hardwan to 
do the basic arithmetic operations: add/subtract, multiply, and divide. Storing 
information in a floating point format compounds the complexity of the problem 
and requires additional hardware to complete the operations. Let's first examine 
addition and some issues raised by addition, then look at multiplication and divi- 
sion. The floating point addition also includes subtraction, since the 
sign/magnitude method of storing information necessitates that the hardware be 
capable of both. 

3.7.1 Floating point addition 

The difficulty when adding two floating point numbers stems from the fact 
that the mantissas, in general, have different significance. That is, unless the 
exponents of the two numbers are the same, thq most significant digit of one 
mantissa has a different magnitude associated with it than does the most 
significant digit of the other mantissa. Therefore, before the two numbers can be 
properly added together, the mantissas must be aligned. This involves determin- 
ing which operand value is smaller, and then aligning the mantissa of that operand 
appropriately with the mantissa of the larger operand. The alignment is accom- 
plished by .shifting the mantissa of the smaller operand a number of positions to 
the right, hence making the digits of the smaller operand line up with the digits of 
the same significance in the larger operand. The amount of the alignment, the 
number of positions to shift, is determined by the difference in the exponents. 
The addition element then receives the mantissa directly from the larger operand. 
and the aligned mantissa from the smaller operand. 
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To demonstrate this process, assume that A. 6, and C are floating point 
numbers, and find A = 6 + C. Furthermore, assume that 6 < C. (Also, for simpli- 
city, assume 6 and C are positive numbers.) 

With the assumption that 6 < C, the value of En - Ec in the above equation is 
nzgative. and multiplying MB by rsEn-Ec is nothing more than shifting the 
mantissa M8 to the right En - EC places. Note that we have said nothing about the 
radix of the system; this applies to base 10, base 2, or any other base. The shift 
for alignment is accomplished by moving the value the appropriate number of 
digit positions. 

A block diagram for floating point addition is given in Figure 3.25. This 
diagram shows the arithmetic portion as an ADDISUBTRACT unit, instead of 
shictly an add operation. The reason for this is that floating point numbers are 
almost always stored in sign-magnitude form; hence there is no sign associated 
with the mantissa itself. Therefore. if two numbers are to be added together, and 
one of the numbers has a negative sign, then what should actually be perfomred is 
a subtraction. Thus, the arithmetic unit associated with the floating point adder 
must be capable of doing both addition and subtraction. 

The selection of the appropriate mantissa to be aligned (fmm the smaller 
number) is made based on a comparison of the magnitude of the two exponents. 
Thus, the result of this comparison directs the SELECT multiplexers to seIect the 
unaligned mantissa, and the same signal directs the ALIGN network to select the 
other mantissa and align it by shifting the appropriate number of positions. These 
two results, one unaligned mantissa and one aligned mantissa, an then fed to the 

Post Normalization 

Result Exponent Result Mantissa 

Figure 3.25. Block Diagram for Floating Point Addition. 
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A D D ~ S U B T R A ~  unit for the actual calculation. The resulting number is then 
provided to the POST NORMALIZATION unit. 

The function to be provided in a post normalization step is to be sure that 
the final result is itself a normalized number. This unit must be capable of shift- 
ing to the right to take care of examples like the following base 10 examples (the 
same principles hold in any base): 

0.8045 Input A is normalized. 
+ 0.7132 Input B is normalized. 

1.5177 Result is not normalized. 

Thus the post normalization unit must be capable of a shift of at least one position 
to lesser significance. The unit must also be capable of shifts of many positions 
to higher significance: 

0.8045 Input A is normalized. 
- 0.8033 Input B is normalized. 

0.0012 Result is not normalized. 

The result of this example must be shifted left two positions to be properly nor- 
malized. Note that two Ndigit floating point numbers, when subtracted. may 
result in a required post normalization alignment of N-1 positions. This post nor- 
malization network must then be capable of adjusting the size of the exponent to 
reflect any normalization. At the end of this process, the result will have been 
properly formed and ready for any additional operation required of it. 

Floating point addition, then, requires many more operations, and hence 
more hardware, than its integer counterpart. The addition techniques examined 
earlier will apply in the arithmetic unit inside a floating point adder, but other 
functions are also required. 

Example 3.10: Mantissa alignment for floating point add: Design the net- 
work used to align tl~e snlaller nlanlissa to be added to tlir larger miu:tis:a 
in Figure 3.25. Use readily available ICs, and assume that the mantissa is 
24 bits, base 2. 

A mantissa of 24 bits is a fairly common size for 32-bit floating point 
number system. Since the number system is base 2, the alignment network 
must be capable of shifting any number of bits. from 0 to 24. Figure 3.26 
shows that one way of accomplishing this is to use a number of 2-1 multi- 
plexers. The figure shows the logic in a block diagram form; a logic 
diagram of the system is found in Appendix B. The assumption here is that 
the adders used to compare the exponents provide a binary number (size: 0 
to 24; hence 5 bits) which indicates how far the number needs to be shifted 
in the alignment process. The MSB of this number is then used by the first 
level of MUXs to shift the number by 16 bits (the I condition), or provide 
no shift at all (the 0 condition). Similarly, the second MSB of the number is 
used by the second set of MUXs to shift the number provided by the first set 
of MUXs by 8 (the I condition) or provide no shift at all (the 0 condition). 
This process continues, with each level of multiplexers shifting the number 
by some power of 2, until all 5 bits have been utilized. The result is an 
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Figure 3.26. Logic for Alignment Shift Network. 
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output that has been shifted the number of bit positions identified by the 5- 
bit control number. 

This network can be used to illustrate some interesting characteristics 
of the system. The network of Figure 3.26 has been configured to place 
zeros to the left of the aligned bits. This could be changed to align with 
sign bit (not needed here, but possible in some applications of shift net- 
works) by asserting the unspecified inputs of the the multiplexers with the 
sign bit of the aligned number, rather than facing them to zero. Another 
observation concerns the amount of logic needed for the alignment function. 
This network has been set up to do the alignment required by a base 2 
number, such as the DEC or IEEE floating point system. However, if the 
floating point system has a different base, such as the base I6 1BM floating 
point system, then not all of the above levels are needed. Notice that the 
base 16 system does not need to align to each bit position, but rather to each 
digit position, which is every four bits. Thus, the last two of the five levels 
of logic shown in the figure would not be necessary, with a resulting in less 
overall logic and a speed enhancement of 40%. Thus a floating point sys- 
tem that does not use base 2 results in a greater range and smaller logic 
requirements for some of its constituent parts. 

3.7.2 Handling the extra Mh 

Two problems are illustrated by the example of floating point addition. both 
of which deal with what to do with the exm bits. The first "extra" bit problem is 
identified by the following example. Assume a 6-bit mantissa for a base 2 
number system, and assume that the second number has been shifted two bit posi- 
tions to allow the exponents to agree. Then the mantissa addition may be some- 
thing like: 

1OlOlO Larger mantissa. 
+ IlOOlO Smaller mantissa. aligned. 

1101 1010 Addition results in 8 bits. 

There are more bits than can be dealt with in the result, so something must be 
done with the extra bits. Several ways have been proposed and used to deal with 
these bits. The first and most obvious method is merely to ignore them; this is 
called truncation. and the unwanted bits are truncated from the result. This results 
in an error, since the final mantissa (call it MF) differs from the real result. MR. by 
whatever bits happen to be in those bit positions. This results in a truncation 
error, ERRmUNC, which will result in an bias, or offset. after a number of opera- 
tions have been performed. For purposes of comparison with other methods of 
handling extra bits, let us define the enor as the difference between the real result 
and the final mantissa: 

We will also define the bias as the sum of the ERRTRUNC over a span of possible 
results. The span we will use is all possible combinations of 2 bits, for two itera- 
tions. Thus the bias for truncation would be calculated as follows (let the decimal 
point mark the number of bits storablelusable by the machine): 
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The bias is the sum of all the enors over this span. Adding all of the elements in 
the ERRTRUNC column results in a bias of +1 1.02, or +310. Obviously. if we chose 
fewer elements within a span, such as only one extra bit instead of two, the bias 
would be less. Or if more points were selected the bias would be greater. Note 
that, if we included three extra bits instead of two, there would be twice as many 
values in the above table, all contributing to the error. But as we compare trunca- 
tion with other methods we will be careful to utilize the same set of MR so that the 
comparison will be valid. Truncation always throws away information, which 
results in a positive bias: the number stored is smaller than the actual number to 
be represented. Thus, over many calculations results will tend to be smaller than 
the true value. 

Another method of handling the extra bits is to try to reduce the bias by 
adding half the value of the least significant bit position to the number before 
truncation. This method is exemplified by the following operation: 

101010 Larger mantissa. 
+ 110010 Smaller mantissa, aligned. 

I101 1010 Addition results in 8 bits. 
+ OOOOOOlO Now add half of the LSB position. 

1101 1100 Final result. now mncate. 

This method is called rounding, and the answers result in errors that have both 
positive and negative values: 

Mx + 'h LSB 

Note here that the last entries g and h above have had a carry propagate into the 
word, a fact that is indicated by the xy in lieu of u for the value in the table. 
Whatever value was represented by u is incremented to be q, and any carry 
which results continues to propagate into the word. The bias here is -1.0. The 
error in this method is always smaller than truncation, but the bias does not disap- 
pear. 

Chap. 3: Arlthmetic Unlts: Data Manipulation 



One of the methods utilized to minimize the error of calculations is to create 
a rounding scheme that will result in a zero bias solution. These schemes have 
different names. such as round-to-zero or R* rounding. One such method operates 
according to the following rule: whenever the value to be truncated has a "1" in 
the most significant bit, and "0" in all other bits, that a "I" is forced into the least 
significant bit of Up This scheme results in a bias which is zero over many cal- 
culations: 

The two values in the above set that are. handled differently from "normal" round- 
ing are entries c and g. In both cases, a "1" is forced into the least significant bit 
position of the value saved. Although both entry c and entry g are handled in this 
way, only entry g ends up with a value different from the "normal" rounding sys- 
tem. The bias with this method totals zero, and over many calculations will tend 
to smaller errors than other techniques. 

At this point, we will mention two other techniques. The first is called jam- 
ming, and was proposed by von Neumann as a good method to reduce overall 
errors; that is, it is better than truncation. The method is to "jam" a 1 into the 
least significant bit of the result. regardless of the values of the extra bits. This 
method results in larger errors than other methods, but over time it has the same 
bias as rounding. Thus, it is as fast as truncation (no time required for rounding 
step. since LSB is always forced to I), but has a smaller bias. 

Another method centers on the ability to look at the extra bits and the least 
significant bits to be retained, and using this information make an educated deci- 
sion as to the value to be added. This step is carried out by using a ROM or other 
method of looking at several 5:s for thc dwlsinn p c c v : .  The r w n n  for doing 
this is to construct the value added in the rounding step in such a way that there is 
no carry to propagate into the higher bit positions. This will speed the rounding 
step, since the method guarantees no carry beyond the least significant bits. But 
since the choice of the value to add in this step is ma& judiciously. the bias is 
controlled, and again over time the bias should be zero. 

The errors resulting from the various methods of handling extra bits are 
graphically depicted in Figure 3.27. Note that the shape of the envelope of error 
is the same for truncation and munding, one being offset from the other. How- 
ever, the rounding process has made the overall bias smaller. Note also that jam- 
ming has the same shape, but that the variations are greater. The zero bias 
schemes, round-to-zero and ROM rounding, have shapes that reflect their 
approaches to achieving their results. In both cases. the bias is minimized by 
intelligent handling of the extra bits involved in the action. 

The second "extra bit" problem deals with the number of bits that need to 
be retained in the alignment process. That is, if the resulting mantissa is going to 
be 24 bits, must we construct adders and alignment networks capable of 48 bits or 
more? If the difference in the exponents is greater than 24, what should happen 
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Fiiure 3.27. Erron in Handling Exha Bits. 

to the aligned operand? These questions must be addressed by the designer to 
create a properly functioning system. Let us look at the problem with some 
examples. 

As we have noted before, the alignment process takes the mantissa of 
smaller significance and shifts (aligns) it the proper number of places, which is the 
difference in exponents. Let the amount the alignment be represented by a, and 
then consider some cases. We will use mantissas which consist of 5 bits. First of 
all, if a = 0, then no alignment is necessary in the problem setup, but post normal- 
ization may be necessary. such as: 

0.10000 
- 0.10001 
- 0.00001 Post normalization 

necessary of 4 places left. 

Now consider some examples where alignment is necessary. We will consider 
subtracting an aligned version of the largest mantissa representable from the smal- 
lest mantissa. The smallest mantissa for this system is just 0.10000, while the 
largest mantissa has a value of 0.11 11 1. Thus for the problem 0.10000 x 2' - 
0.1 11 11 x 2'. the value of a will be I. and the addition problem can be 
represented: 

0.10000 0 
- 0.01111 1 

0.00000 1 Post normalization 
necessary of 5 places left. 
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This is perhaps the worst case for post normalization. However, note that the 
problem required a single bit wider than the 5 bits of the normal mantissa. The 
situation when o = 2 is depicted in Figure 3.28, as is the situation with other 
values of a. First we point out that in each of the situations depicted in Figure 
3.28 there is a leading zero in the result, which will need to be removed in post 
normalization. The next observation concerns the bits retained by the system in 
the computation. These bits are underlined in the figure. Note that, for any 
rounding scheme (except jamming) to work properly. at least one more bit than 
the (end of the) underlined bits must be retained. For example, if truncation is to 
be used, which is the simplest of the methods mentioned above, the answer would 
be different if that one additional bit is not included in the calculation. Finally. 
we observe that the answers would all be the same if only one 1 bit were retained 
to the right of the vertical lines in the figure. We call this bit a "sticky" bit, and it 
has the characteristic that if any 1 bit were to be shifted through that position in 
the process of alignment, then the bit is set to a I. This allows the results to turn 
out as expected. 

Thus, three digits are needed beyond the number required by the number 
system. (This has been shown in binary, but is true in any radix.) One digit is 
needed for post normalization, at least one digit is needed for the rounding 
method, and one digit is used as the "sticky bit." 

Handling the additional bits involves making reasonable decisions about the 
bits that result when operations generate more bits than can he retained in a result. 
This involves bits generated in multiplication and division, since both of these 
operations generate more bits than can be retained in a floating point number with 
the same characteristics as the input values. For example, multiplication of two 
24-bit mantissas will result in a 48-bit value, which must then be reduced lo 24 
bits by an appropriate algorithm. Additional bits to be concerned about in the 
design process include the bits in the alignment process for floating point addi- 
tion. In each case, the system architect and designer need to identify the goals of 
the system, and based on those goals make appropriate decisions on the number of 
bits to retain and the rounding algorithm to produce a desired result. 

With the adoption of the IEEE floating point number system, many of these 
decisions have been dealt with by the specification. That is, different types of 
rounding schemes are available, and the user has the option of specifying the 
mechanism that will be most appropriate for the calculations to be done. 

Figure 3.28. Subtraction with Alignment of Operands. 
(Alignment is done by a shift of a bits.) 
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3.7.3 Floatlng Point MuHipllcation 

Floating point multiplication is perhaps the simplest floating point operation 
in terms of the required operations. That is, there is no alignment of operands 
required before initiating the operation, and minimal lormalization is required at 
the end of the transaction. The required operations are simply stated: 

That is, the mantissa of the result is the product of the mantissas of the two input 
operands, and the exponent of the result is the sum of the exponents of the input 
operands. A block diagram of this operation is shown in Figure 3.29. The basic 
operations shown in the block diagram are identical to those indicated in the 
above equations: the operands are separated into t k i r  ccnstituerrt parts, the 
exponents are added, and the mantissas are multiolied The only difficulties are 
implementation specific. once the floating point representation has been selected. 
For example, the EEE 32-bit floating point system calls for representing the 
exponent in an excess 127 code; therefore, the exponent adder must be so 
designed to correctly present the result in excess 127 code. The other block in 
Figure 3.29 that is not obvious from the above equations is the post normalization 
block. This block has the responsibility of checking the output of the multiplier 
to ascertain if the result is a normalized number. If it is not, then it must be 
adjusted accordingly, and the exponent modified. To identify the number of digit 
positions that can be involved in this process, let's look at the two exmmes: the 

Mantissa B Mantissa C 

Multiply 

L 

Post Normalization 

Result Exponent Result Mantissa 

Figure 3.29. Block Diagram for a Floating Point Multiply 
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product of the largest legal mantissas, and the product of the smallest legal 
mantissas. 

Lorgesr x largest 

Base 2 Base I0 
- ~ 

0.1111 0.9999 
x u  x 0.9999 

0.1110 0.9998 Aligned properly. 
no postnonnalization. 

Smallest x smallest 

Bust 2 Base 10 

0.1000 0.1000 
~0.1000 xO.lOOO 

0.0100 0.0100 Not aligned properly. 
' postnormalization of 
one digit position. 

For many of the multiplications performed, no alignmen1 will be needed in the 
post normalization stage. The worst case will be a post normalization of one digit 
position. If this occurs, then the exponent must be decremented by one before the 
operation is complete. It is interesting to note that the base 10 and base 2 p m b  
lems are exactly the same for the smallest case (this would be true of any radix). 
but that the number of bits required to represent these values is not the same. 

The above calculations also point out the fact that the final mantissa is com- 
posed of only portions of the result out of the multiplier. For example, the com- 
plete bit pattern resulting from the largest base two multiplication above is 
11 100001. But since the result is handled in the same number of bits as the origi- 
nal operands, the same questions arise as those discussed in connection with float- 
ing point addition: should the result be rounded? Truncated? Or what? Also, 
need all of the partial product array be created in the process of generating the 
result, or only portions of it? These questions must be addressed by thc system 
designer in the creation of an appropriate multiplication unit. 

3.7.4 Flooting point division 

The division operation in floating point contains almost the same steps as 
the multiplication operation: 

A block diagram of the hardware required to accomplish this would look very 
similar to the multiplication system of Figure 3.29. The only differences are that 
the exponent addition would actually be sublraction, and that the multiplication 
block would be replaced by a divider. This division could be handled by either 
direct or iterative methods. The result of the mantissa division may then require 
post normalization in the opposite direction of the multiplier: 
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Largest I smalle.rl 

Base 2 Base 10 

0.1111 0.9999 
+0.1000 +0.1000 

1.1110 9.9990 Not aligned properly, 
postnomalizalion of 
digit posilion. 

Smalle~t I largest 

Base 2 Base 10 

0.1000 0.1000 
+- + 0.9999 

0.1000 0.1000 Aligned properly. 
no poslnormalization. 

Again the questions of rounding' methods and number of places to calculate are 
raised, and the system decisions made will reflect the resource constraints pla~ed 
on the system. 

3.7.5 Floating point status 

We discussed earlier the various status bits normally found in the status 
register of a computer. In general, these bits are controlled by the "normal" 
instructions in a computer, floating point instructions have their own conditions 
that add additional system status information. That is. the bits discussed previ- 
ously do not form a sufficient set to reflect the conditions associated with floating 
point arithmetic. Thus, floating point systems often provide for indication of the 
following conditions: 

Overjlow. This is similar to the overllow discussed earlier: the result has 
exceeded the ability of the system to represent information. betause the result 
to be represented is too large. This can result from adding two numbers 
already at the maximum representable by the system, or, more generally. by 
multiplying two numbers whose exponents add to an exponent not represent- 
able in the system. Division can also cause overflow, dividing a very large 
number by a very small one. 

Underflow. This results when a number is too small to represent in the number 
system. This will occur when two very small numbers are multiplied, and the 
resulting exponent cannot be represented in the system. Similarly, division of a 
small number by a large one can cause the same condition to exist. 

Zero. Like the integer counterpart, this condition indicates that the specified 
operation resulted in a value of zero. 

Sign. The sign of the result can be the MSB of the word. like the integer case, 
or accessed by whatever method is indicated by the number system. This can 
then be used in the same fashion as the sign of an integer number. 

Some manufacturers also provide additional information when building a 
floating point arithmetic unit: 
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NAN (not a number). After the hardware performs the operation requested by 
the instruction. the result is not a legal number in the floating point number 
system. This could be an operand resewed by the manufacturer, or the IEEE 
Not-a-Number value. 

inexucr. This condition arises when the operation specified results in a value 
not infinitely precise, due to rounding. This can be used as an indication of 
auncation or mundoff error. 

Invalid. The IEEE floating point system utilizes specific patterns for representa- 
tion of +- and --. The invalid flag of a system indicates that an operation has 
been performed which was invalid, such as - x 0. 

These status conditions can be incorporated in a register with the "normal" status 
bits, or they can form a separate status register accessible in a different manner. 
The implementation details will differ with design constraints and system 
definition. 

Many books and articles have been written about performing arithmetic on com- 
puters, and designing hardware- lo do the actual arithmetic. What we have looked 
at are some of the basic concepts utilized in the design of arithmetic units. Addi- 
tion is perhaps the most basic. since it is used in the other types of operations. 
We found that addition can be done in a time linear in the number of bits to be 
added (with full adders) or in a time that is logarithmic in the number of bits to be 
added (with carry look-ahead). Thus, the addition process can be made faster at 
the expense of additional gates or integrated circuit real estate. 

Multiplication is a simple operation that can be done in a fashion similar to 
paper and pencil methods, using a single adder and a register to maintain the sum 
of the partial products. However, if speed is a major consideration, then other 
methods can be utilized to reduce the time required at the expense of additional 
hardware. We looked at methods using carry-save adders and mw reduction tech- 
niques. as well as methods that would reduce the number of mws actually needed 
in the partial product array. This latter method utilized parts that not only per- 
formed the generation of partial product bits, but combined those bits into partial 
results. The amount of useful parallelism will be decided by the system designer 
as he or she considers the relative cost of system resources. 

Division is another operation that can be done with direct methods, such as 
paper and pencil methods or with iterative techniques. We have looked at some 
of each of these techniques. One feature of the iterative methods is the ability to 
use the multiplication hardware in performing the division. This justifies some of 
the additional design effort and hardware costs of a high speed multiplier. 

Finally. we looked at some of the considerations introduced by combining 
the adders, multipliers, and dividers into systems for floating point arithmetic. 
The floating point systems introduced a number of issues related to the storage 
and manipulation of information. The manner in which a designer addresses these 
issues will have an impact in the complexity of the hardware constructed, and it 
will also have an impact in the complexity of any software required to effectively 
utilize the hardware. 
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3.9. Problems 

3.1 Design a circuit that will accept as input a BCD digit and produce a 7-bit 
output that is the square of the input digit. 

3.2 Design a circuit that accepts as input two 2-bit numbers. A and 6 .  The out- 
put is a 3-bit number, which is the sum of the two input values. modulo 5. 

3.3 Design a 2-bit adder that functions in no more than 3 gate delays. Inputs 
include two 2-bit numbers and a carry in. Outputs are the 2-bit sum, a carry 
generatc, and a carry propagate. 

3.4 Design a 2-bit subtractor. Inputs are two 2-bit numbers and a borrow. Out- 
puts include the 2-bit difference out and the borrow output. 

35 Create the logic equations that demonstrate the look-ahead process for sub- 
traction. That is, show (with logic equations) how a subtractor could be 
built so that it uses a "look-ahead borrow" technique. , 

3.6 Design a circuit that accepts as input two 2-bit numbers. A and 6 ,  and pro- 
duces three outputs: A>B. A=B, and A<B. Assume an unsigned binary 
representation for the numbers. 

3.7 Repeat Problem 3.6, but include A S .  A=B, and A<B inputs. How should 
these devices cascade? Show how these devices could be used to compare 
8-bit numbers. 

3.8 Prove that the overflow bit for a two's complement addition is the exclusive 
OR of the carry in and the carry out of the most significant stage of the addi- 
tion. 

3.9 Design a carry look-ahead generator circuit for 4 bits. Inputs include a carry 
in. as well as propagate and generate signals from four adders. Outputs are 
three carries, a propagate out, and a generate out. Compare your solution 
with the 74S182. How are they the same? How are they different? Why? 

3.10 Design the logic necessary to create the status bits for a system that requires 
the following bits in the status register: zero, overflow, carry. sign. Assume 
that the carry bit out of the ALU is available. 

3.11 Row reduction can be used to speed up the multiplication process. A 3-2 
row reduction unit for a single bit position is a carry-save-adder, which has 
the same logic equation as a full adder. A 7-3 row reduction unit can be 
created from 3-2 row reduction units, or from random logic. Design a 7-3 
row reduction unit using both methods and compare the result from the 
aspect of gate count and speed of operation. 

3.12 Give a logic diagram for the data path of a multiplier that will produce the 
product of two 24-bit numbers. Use the standard shift-and-add algorithm 
(partial products added least significant to most significant). Use a shift 
register for the product register and no AND gates. Also, create a flow chart 
that specifies the action of the system. Be sure you know which lines go 
where and why. 

3.13 Give a logic diagram for a multiplier system that uses the shift-and-add 
algorithm for partial products added in the reverse order (from most 
significant partial product to least significant). Use '283s for adders; use 
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'198s for the register functions needed. Identify the control signals on the 
individual parts that must be.asseed to do the work. and the levels (or 
edges) that cause the action to occur. Include a flow chart for the action of 
the system. 

3.14 Create a logic diagram for a 16x16 multiplier using Booths algorithm. Use 
'382s for the arithmetic element, and whatever registers and shift registers 
are needed. Include the logic required to control the function lines for the 
addition/subtraction/do nothing performed by the '382s. 

3.15 Create a logic design for the data path to divide a 16-bit number by an 8-bit 
number to give an 8-bit rcsult asd an 8-bit wmainder. Be sure you know 
why the connections are made as you specify in your design. Use '382s to 
perform the arithmetic. Give a Row chart that identifies the work to be done 
and the assertion levels of the signals required to do the work. 

3.16 Design a 2x4-bit multiplier with a maximum delay from input to output of 3 
gate delays. 

3.17 Create an 8x8-bit multiplier system using 2x4-bit multipliers, cany save 
adders, and adder systems as needed. 

3.18 Give a block diagram for a 32x32-bit multiply system using 7-3 row reduc- 
tion units. 3-2 row reduction units, with the final stage being a cany pro- 
pagate add system. Estimate the speed of the system in gate delays. 

3.19 Design a floating point adder system for the floating point format given in 
Problem 2.10. 

3.20 Obtain a data sheet for the Am29C325 floating point multiplier, and identify 
the steps which can be used to perform a divide operation. 

3.21 **Create the logic diagrams needed for the data path of a 32-bit floating 
point multiplication system. Assume that the inputs have been loaded into 
two 32-bit registers, and that the output will be loaded into a third 32-bit 
register. Assume that the floating point format is a normalized format with 
the radix of the system equal to 2, the mantissa stored in fractional form 
using the hidden bit technique, and the 8-bit exponent stored in excess 128. 
m e  multiplier must use a shift-and-add algorithm. In addition, provide a 
status register with bits for the sign of the result, underflow, overflow, and 
result equal to zero. Identify the control points, and the levels of the control 
signals to do the work. Give a flow chan that identifies the proper levels for 
the signal assertions. 

3.22 Multiply problem. Design a multiplier for a 24x24-bit multiply. You have 
three rypes of parts to work with: 3-2 mw reduction elements, 4-bit carry 
look-ahead adders. and 4-bit cany look-ahead generators. Conswct a data 
path block diagram of the multiply process. starting with rows of the partial 
product array. Show all of the interconnections necessary at the row reduc- 
tion stage, but not at the CLAA stage. Assuming two gate delays for all of 
the functions (that is, assume that the row reduction elements. the CLAAs. 
and the CLAGs all take two gate delays to do their work), how much time is 
requid  for the multiply? How many individual CSAs are needed for this 
function? 
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3.23 One method for performing the iterative divide operation is described as foi- 
lows: 

can be calculated by: 

if the successive f t ' s  are chosen s o  that the denominator approacnes one. 
The numerator iteration for this method is DDm+, = DD. x f,. The denomina- 

f.. Assume tor iteration is used to calculate the f s, and is fn+l = 2 - D x 
that a ROM is provided to choose an  appropriate fo, which is correct to  8 
bits. Create a block diagram of a system that will follow the iteration sys- 
tem. Assume that you have one multiplier available, and one two's comple- 
ment unit available. as well as  the initial value ROM and whatever registers 
you need. With the block diagram include a description of how a divide 
will proceed. How many steps to get a result correct to 56 bits? 
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