
Instruction Set Processing 

Thus far we have been dealing with the blocks from which computers are built. 
Chapter 2 described some of the decisions involved with choosing a method for 
representing the information within the computer. Chapter 3 is a discussion of the 
issues involved in doing some of the arithmetic operations required of a machine. 
In both cases, tradeoffs must be made to assure that the system resources are util- 
ized in an efficacious manner. Representation ranges of number systems must be 
effectively weighed against the cost of those representations, and the targeted 
applications of the machine. Similarly, the methods used for doing the arithmetic 
must be balanced in such a way that the speed and complexity match the intended 
uses of the system. 

In this chapter, we will look at how the arithmetic building blocks can be 
combined with other functional units, such as registers and memories, to create 
computing systems. Here we seek to address some of the basic questions con- 
ceming data manipulation methods. What are some of the issues involved in 
choosing an instruction set? What basic operations should be included? How do 
we specify the operations to be performed, and identify the operands to be used in 
that operation? What are the steps required to accomplish the specified work? 
What are the costs associated with the specification and execution of these instruc- 
tions? 

Let us first look at some of the basic tools used to describe machine struc- 
ture and data manipulation methods. The tools are very simple: diagrams to iden- 
tify smcture and a register transfer language to specify data movement within that 
structure. Then we will identify some of the methods utilized by different 
machines to accomplish their work. Often what is considered "good" depends on 
several factors, and good design practices using one set of constraints will not be 
considered good design practices using a different set of constraints. Like the 
other ideas explored in the previous chapters, engineering choices are made after a 
careful examination of the alternative methods of doing the work. The key is to 



choose appropriate metrics or measurement melhods and to apply the metrics uni- 
formly to the various alternatives. 

The first area of interest concerns the data manipulation instructions and 
related topics: single address machines, two address machines, operand 
specification methods, and so on. Then we will look at program flow instructions: 
jumps, branches, subroutine calls, and the like. In a related area we will look at 
the machine reactions when exception conditions occur: interrupts and traps. This 
will necessitate some discussion of VO programming methods as well. Finally, 
we will identify some of the issues in the ongoing RISC/CISC dehate, and explore 
reasons that the two methods are alternately considered good and bad. 

4.1. Basic Building Blocks for Instruction Specification 

As the computers space expands, the distinction between the responsibilities of 
the individual pans becomes more and more blurred. So, we will begin by look- 
ing at some of the concepts utilized in the early machines, and then as the opera- 
tions and methods become more complex, we can recognize the parentage of the 
ideas, and see possible applications and design methods. 

The building blocks used by the earliest machines comprised a very small 
set: registers, ALUs. memory. and data paths. In this discussion we will assume 
that the ALU model is as shown at the beginning of Chapter 3: two different 
inputs and an output. The ALU is assumed to be as wide as the machine; the 
word width is a decision based on what needs to be represented. We will assume 
that the ALU is capable of all of the arithmetic and logic operations which are 
required by the instructions. 

Figure 4.1 shows the basic building blocks we will use in consideration of 
machine operation. The ALU we have already mentioned; it is used for data 
manipulation. Missing from the diagram are some very necessary lines, and in 
that sense the representation is incomplete. The missing lines include the control 
lines, which specify the action of the ALU (add, subtract, AND, etc.). and the data 
lines that do not form part of the designated inputs and output. These additional 
data lines often connect directly to a status register and include such things as the 
carry (in and out), the sign bit, overflow bit, and the like. Thus, for operations 
needing this additional interaction, we will assume that the connections do indeed 
exist and that the bits are transferred appropriately. 

Figure 4.1. Basic Building Blocks for Instruction 
Set Processing: ALU, Register. Memory, and 
Communication Paths. 
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The data to be manipulated by an ALU is first stored in a memory, and such 
an  element is shown in the figure. For our purposes we will say that the memory 
is as wide as the data path, but we will see later how this may be. altered as part 
o f  the machine design. Our model for the memory element is simply that there 
are M memory locations, and these are arranged in such a way that they can be 
accessed by an address supplied on rlogz (MI1 address lines. The data path 
allows reading and writing of data in these locations. As with the ALU, some 
lines are missing from the memory block as shown in Figure 4.1. These lines are 
the control lines used to cause the actual write or read of data from the memory 
devices. These lines are system-specific, and we will assume that the designer is 
aware of the required lines and handles them in an appropriate fashion. 

Much of our current practice of memory system design and utilization is the 
result of the ideas explored by Von Neumann and his colleagues in the late 1940s 
[BuGo46]. Some of the earliest memory systems were organized such that the 
instructions could be held in one memory, and the data in another, and that these 
two memories were disjoint in function and fabrication. However, Von Neumann 
observed that the memories organized in that manner were not always effectively 
used; some tasks would leave the data memory practically empty while crowding 
the program memory, or vice versa. So he reasoned that since both instructions , 
and data were basically information, both could be stored in the same memory 
space. Organizing the memory system in this manner brought a number of 
benefits, since programs could be treated as data. Instructions could be selectively 
altered to allow different functions or addresses as required, or data values could 
act as instructions if the conditions permitted. By organizing the memory in this 
fashion, only one memory element was needed, with its associated addressing and 
data retrieval capabilities. The two types of information, data and instructions, 
were combined into the same memory. The principal drawback to the arrange- 
ment was that interaction with the memory element was now needed for both 
types of information, and hence the path between computational functions and 
storage functions became a primary impediment to the effective processing speed. 
This has become known as the Von Neumann bottleneck, and we will present 
some of the suggestions made to minimize its effect. However, we will still treat 
memory as a linear array of storage locations, accessed by an appropriate address. 

Another element shown in the figure is the data path. The width of the data 
path is assumed to be the same as the machine, but, as with most generalizations, 
exceptions can be found. We will use that width as a natural value, and later we 
will discuss ways to use widths other than the basic machine width for transfer- 
ring information. These interconnections can be point-to-point wires from one 
element to another (containing the appropriate number of individual wires), or 
they can be buses, which are capable of transferring information between several 
distinct elements. Direct connections allow for high speed, but have low versatil- 
ity. With tri-state logic readily available, a number of alternative busing arrange- 
ments can be made. We will discuss various types of buses in Chapter 6. 

The final element shown in Figure 4.1 is the register. For our purposes, this 
is an element that is as wide as needed to match the buses, memories, and ALUs, 
used for storing information. This is another basic device that needs additional 
control lines not included in the figure. A register will require a clock line identi- 
fying when data is stable on the input line, and the register should load that data 
into its collection of storage elements. Other control lines may also be needed, 
such as output control lines for tri-state devices, or shiftnoad control lines for 
multifunction registers. Again, we will assume that the designer of the system is 
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aware of the capabilities of the registers being used, and that appropriate control 
lines are included in the machine. 

Registers are used for a variety of applications, and generally receive names 
that denote their function. Figure 4.2 shows a block diagram that will serve as a 
vehicle for describing how the various registers and other elements function 
together to accomplish work. By work we mean the information transfers 
required to do some task. The registers shown in the figure form a fairly minimal 
set: 

Memory Address Register (MAR). This collection of storage elements bas the 
responsibility of identifying the memory location of the information to be 
transferred. The transfer could be either into or out of memory. 

Memory Buffer Register (MBR). The memory buffer register is used to store 
information moved into and out of memory. With destructive readout devices, 
such as core memory, it is a requirement; reading the value of a memory loca- 
tion destroys the contents of that location, and to preserve what was there it 
must be written back. The value to be restored is obtained from the MBR as 
the value is being used by the other parts of the circuit. With most semicon- 
ductor memories, the storage of the data going into and out of the memory is 
not required, and this register is optional, and used only in systems where there 
is a specific requirement to maintain the data after it is read. 

Program Counter (PC). The program counter is used to identify the location of 
the instruction to execute next. For machines that store one instruction per 
memory location, this register will increment by 1 during the execution of an 
instruction, which.is why it has become known as a program "counter." Other 
organizations will have differing requirements for updating the PC value. For 
now, we will assume that the program counter will increment as needed to 
specify the next value needed from the instruction stream. 

Instruction Register (IR). The instruction register is used to store the instruc- 
tion currently being executed. This allows the control portion of the machine 
to assert the control lines of the rcgiskrs., memories, and arithmetic elements in 
an appropriate manner to cause the action needed. The design of the control 
section will be the subject of the next chapter: The 1R may only be as wide as 

Figure 4.2. Block Diagram of Simple Machine. 
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needed to store the operation code of the instruction, or it may be wide enough 
to keep a temporary copy of all of the information associated with an instruc- 
tion. 

Accumularor (ACC). The accumulator is shown here as the receptacle of the 
action of all of the data manipulation instructions. In the next section we will 
discuss the implications of the use of an accumulator for doing arithmetic. 

This collection of resources (registers, ALUs, memory, and data paths) pro- 
vides a sketchy view of the system, but it is sufficient to represent transactions 
that occur within the machine. We also need some method of describing those 
transactions. To do useful work we will need to specify the work to be done, and 
this work will be directed by the control section. The user of a computer system 
has a view of what the capabilities of the computer system are, and this view 
results directly from the instructions that the machine can execute. This view of 
the machine, or the appearance of the machine as seen by the assembly language 
programmer, is sometimes called the instruction set architecture of the system. 
By the use of the instructions included in this set, the user specifies the action 
which should occur on the data. 

This work of an instruction is accomplished by a fetch-decode-execute 
mechanism: the instruction is fetched from memory and placed in a register 
specifically designated for that purpose (the IR), the required decoding is per- 
formed, and then the data transfers required by that instruction are executed. At 
the completion of this action, the machine starts over again, requesting another 
instruction, decoding it, and performing the needed action. The process continues 
until the machine has completed all of the designated instructions. 

The action of an instruction can be described by identifying the data 
transfers needed to do the requested work. The specification of this work is done 
by a register transfer language (RTL); the transfers occur along the permissible 
data paths in the machine from one major component to another. Only transfers 
that can actually occur, given an accurate block diagram of the system, are per- 
missible components of the specification for an instruction. For example, 
transfers from the PC or MAR to the MBR of the system shown in Figure 4.2 
would not be possible, since the data paths between those elements do not permit 
data transfer in that direction. Thus, RTL descriptions specify the order of register 
transfers and arithmetic action required to carry out the work of an instruction. 
This information can then be utilized by the designer of the control system to 
identify the order of activation of control lines to actually cause the desired 
transfers. This points out one of the basic divisions of the computer design pro- 
cess: the data path (with its appropriate arithmetic capabilities) is specified. and 
then in a quite separate process the control section for the data par11 is designed. 
The design of the data path section is done in such a way that data manipulation 
goals are met. The design of the control section is then carried out so that the 
timing requirements of the system are met. 

A register transfer language can become as simple or as complex as needed 
to specify the transfers required in the system. Since we will be using an RTL to 
describe the action of systems in this chapter and in the remainder of the book, we 
will describe the few primitives which will follow. The basic operation is the 
transfer of the contents of one register to another: 

PC -+ MAR 
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specifies that the contents of the program counter are transferred to the memory 
address register. If the data paths of the system are rich enough to allow niultiplc 
operations in the same time period, these can be represented by specifically link- 
ing the transfers together: 

identifies that in the same time period the value of the program counter is incre- 
mented and the contents of the MBR are transferred to the IR. Ncrmally, all of the 
information is involved in the transfer. However, if a subset of the information is 
to be transferred, then the specific bits are identified by the use of pointed brack- 
ets: 

IR<3:0> -) ALU 

specifies that bits 3 to 0 of the instruction register are directed to the ALU. Simi- 
larly, locations of memory or a set of registers are specified with square brackets: 

indicates that the contents of register 2 in a general register set (REG) is 
transferred to the location in memory identified by the memory address register. 
Finally, for operations that are conditional in nature, we include an "if' facility 
patterned after the C language if construct: 

if(cany= 1) PC-24  + PC 
else PC + 1 + PC 

identifies that if the cany is equal to 1, the program counter is adjusted by a factor 
of -24; otherwise the program counter is incremented. 

Using the above constructs, a wide variety of instructions can be specified. 
For example, consider the following add instruction: 

fetch: These register transfers get the instruction. 
PC -+ MAR Instruction location to MAR. 

M [MAR] + MBR Put instruction in MBR. 
MBR --t IR And then put it in the IR. 

PC + Ilen -i PC Bump the program counter to next instruction. 
, 5 r  e+ 

decode The decode process identifies the instruction. 
execute: and the execute portion performs the needed work. 

IR < adr > + MAR Address of operand to MAR. 
M [MAR] -+ MBR This is value to add to ACC. 

ACC + MBR -t ACC Do the actual work of insmrctiorr. 

At this point we will pause to consider briefly some of the timing considera- 
tions. All of the operations identified by the RTL require some finite time to 
accomplish. Exactly how much time is required depends on the technology of 
implementation and the electrical characteristics of r: 3 system. A simple register 
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transfer in a tri-state bus system requires time for the source register to be 
enabled, time for the data to become stable on the bus, and a setup time and a 
hold time for the data at the destination register. These times become very impor- 
tant to the designer of the control system, as all of the appropriate timing require- 
ments must be met. In this chapter, we will assign times for the operations 
specified by the RTL for some of the instructions. These times, when added 
together. identify the total time required for the execution of the instruction. The 
times required for operations specified in RTL statements will be identified by a 
number in parentheses with the statement, and that number represents the execu- 
tion time in nanoseconds. 

By identifying the times required for the actions specified by the RTL state- 
ments, time can be used as a metric for the comparisons that need to be made in 
system evaluations. The overall instruction rate is then the inverse of the average 
instruction time. It is possible to increase the instruction rate (decrease the 
instruction time) by increasing the complexity of the system. For example, con- 
current register transfers can be possible if multiple data paths exist within the 
system. Note, however, that the increased complexity may also result in longer 
machine cycle times, and this must be considered in the process of creating a sys- 
tem. As before, the tradeoffs involving complexity and speed must be made by 
the system architect using reasonable engineering judgements based on metrics 
that demonsmate the effective use of system resources. 

Another piece of information used in the RTL descriptions included here is a 
statement number, which allows identification of the steps of an instruction. This 
identification is often needed in the description of the process. 

With the ability to represent the machines at the. register level, the data 
paths connecting the registers and the transfers of data between the major com- 
ponents, let us examine some of the methods used to organize machines and per- 
form useful work. 

4.2. Single Address Machines 

The first machines constructed made very judicious use of registers since registers 
required a nontrivial amount of system resources. One of the registers was desig- 
nated as the one that would be utilized in arithmetic and logic operations; others 
were also involved as needed. The register involved in these operations was most 
often called the accumulator, as we have indicated in Figure 4.2. This same tech- 
nique has been used in many different machines, and provides insight when com- 
pared to techniques more prevalent in newer architectures. 

On machines that operate in this manner, operations requiring only one 
operand, such as complement, increment, clear, and the like, find the operand in 
the accumulator. And the result remains in the accumulator. Functions requiring 
two operands also use the value in the accumulator as one of the operands. The 
other operand is identified by a single address in the instruction; hence the name 
single address machine. To demonstrate how these machines might perform each 
kind of instruction. let us use the block diagram shown in Figure 4.2 and identify 
the transfers needed for a negate instruction and a subtract instruction. We are 
assuming that the machine in question uses the two's complement number system, 
s o  forming the negative of a given value can be accomplished by complementing 
and incrementing. The following RTL description implements the negate instruc- 
tion: 
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fetch: 
1 PC -i h4AR Instruction location to MAR. 
2 M [ MAR ] -3 MBR Put inslruction in MBR. 
3 MBR -i IR And then put il in the IR. 
4 PC + Ilen -+ PC Bump the program counter to next instruction. 

decode 
execute: 

5 -i ACC Complement value in ACC. 
6 , K C  + l + ACC And then increment it. 

All instructions start as does this one, with the fetch cycle. The address from the 
program counter, which identifies the location of the next instruction to execute, is 
placed in the memory address register (step 1). The value pointed to by this 
address is fetched from memory (step 2), and placed in the instruction register 
(step 3). The machine then readjusts the program counter to point to the next 
instruction (step 4). To  correctly do this, the machine must be aware of the length 
of the instruction. That is, it is possible that machines have instructions of dif- 
ferent length, and when the program counter is adjusted to identify the next 
instruction, the amount of that adjustment (Ilen) is information which is associated 
with the inshuction. For example, the 68020 has instructions ranging in length 
from 2 to 14 bytes. 

The actual work of the instruction is accomplished by steps 5 and 6 above: 
the value in the accumulator register is fed to the arithmeticflogic unit, when it is 
first complemented and that result is then incremented. In general, the exact steps 
utilized to do the work of an instruction depend on the capabilities of the ALU in 
the system. (Alternatively, the capabilities of the ALU can be based on the 
requirements of the instruction set.) Usually two iterations through the unit will 
not be needed. However, this is a good example of some of the possible methods 
that can be used to accomplish work: the system resources are used as required to 
complete the tasks of an instruction. These transfers are coordinated by the con- 
trol unit in agreement with the technology demands of the system. 

The subtract instruction requires two operands. One question is the order of 
operands: which should be the subtracted value? We will assume that the instruc- 
tion SUB X means, subtract the value stored in the location X from the value 
currently in the accumulator and store the result in the accumulator. We will 
further assume that the address X is adequately contained in the instruction itself, 
so no additional information beyond the instruction will be tequired. With those 
assumptions, a set of data transfers that will perform the work of the subtract 
instruction follows: 

fetch: 
1 PC 4 MAR Instruction location to MAR. 
2 M [ M A R ]  + MBR Put instruction in MBR. 
3 MBR + IR And then put it in the IR. 
4 PC + Ilen -i PC Bump the program counter to next instruction. 

decode 

execute: 
5 X -t MAR Put address X in the MAR. 
6 ht [ M A R ]  + MBR Value at memory address X to MBR. 
7 ACC - MBR + ACC Subtract it from value currently in ACC. 

The fetch cycle of this instruction is identical to the other fetch cycles: get the 
instruction and bring it into the instruction register, then bump the program 
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counter. The real work begins in step 5, where the address of the operand is 
transferred to the MAR. The intended operand of the instruction, the value stored 
a t  location X, is then transferred (step 6) to the memory buffer register. Since the 
address is contained in the instruction, the value of X needed for step 5 can come 
from either the instruction register or the MBR. Finally, the value is subtracted 
(step 7) from the value currently in the accumulator, and the result left there. This 
mechanism for doing the subtraction assumes a more capable ALU than did the 
negate instruction above. If the ALU needed to form the negative of the value in 
the MBR by a complement and increment fashion, then additional operand storage 
facilities would be required. 

A number of variations of this method have been made, while the machines 
have remained basically single address machines. The IAS. Von Neumann's 
machine built in 1946-7, utilized a word length of 40 bits. The word length was 
capable of storing more information than required for a single instruction and a 
single address, so two 20-bit instructions were placed in a single 40-bit word. 
Each instruction was composed of an &bit op code and a 12-bit address; up to 
256 operations could be specified, and, if needed, the single address could identify 
one of 4,096 data locations. But although each word of storage was capable of 
handling two addresses, the instruction format was limited to a single address per 
instruction. The restriction of 12 bits for an address in the single address machine 
of IAS was not restrictive since the total addressable memory was only 4,096 
words. However, this limit is generally not acceptable, so different mechanisms 
have been implemented to extend the permissible range of the operands. 

One of the mechanisms utilized for storing addresses needed to identify the 
location of operands is to place them directly after the operation code (op code) 
that identifies the work to be done. This method has several advantages that make 
it an attractive alternative. If there is no need for an address (such as the negate 
instruction above), then no room is taken up in the instruction itself for a value 
(address), which will not be used. If multiple length addresses are permitted, that 
is, addresses of 1, 2, or more bytes depending on addressing mechanism, then 
only the requisite number of bytes after the op code are utilized to identify the 
address. And after the fetch portion of the instruction the program counter 
identifies the location of the address itself. An RTL implementation of this type of 
subtract instruction is shown in Figure 4.3. Notice the change that results if the 
assumption is made that the operand address is located in the instruction stream 
directly following the bits specifying the instruction. 

The RTL included in Figure 4.3 indicates that the program counter is used 
twice, once for the address of the instruction to be executed, and once for the 
address of the operand. In the first instance, it was incremented by the Icngth of 
the instruction; in the second, it was incremented by the length of the address. 
We are making the assumption here that the decoding of the instructiorJaddrcss 
identified the appropriate lengths and treated the program counter appropriately. 
By separating the op code fetch from the address fetch in this manner, the number 
of bits needed to specify the operation is allowed to expand to meet the appropri- 
ate requirements. 

Example 4.1: RTL and timing calcularions for ADD: How much time is 
required to execute an ADD instruction for a machine organized as demon- 
strated above? 

The time required for execution of the instruction will include the 
time necessary to obtain the instruction from memory, decode it, and exe- 
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fetch: 
1 PC -+ MAR 
2 M [ M A R ] + M B R  
3 MBR -+ IR 
4 PC + Ilen -+ PC 

decode 
execute: 

5 PC + MAR 
6 M [ M A R ] - + M B R  
7 MBR -+ MAR 
8 M [ M A R ] - + M B R  
9 PC + Alen -+ PC 

1 0  ACC - MBR + ACC 

lnslruclion location to MAR. 
Put instruction in MBR. 
And then put it in the IR. 
Bump the program counter to next value 

the PC will then point to memory location 
holding the address of the operand. 

PC is needed again. 
Address at this location to MBR. 
This is address of operand. 
And this is operand. 
Now bump PC by length of address. 
Subtract it from value currently in ACC. 

Figure 43. RTL Implementation of a Subtract Instruction for a Single Address 
Machine. 

cute the necessary steps. To determine the time required for instruction exe- 
cution, we must first develop an appropriate RTL implementation of the 
operations. One such implementation is shown in Figure 4.4. 

Each of the items involved in Figure 4.4 will talc.: time to accomplish, 
and the time for the operation will be implementation dependent. We will 
assume for the purposes of this example that the accesses to memory cost 
300 nsec, the access to a register cost 50 nsec, and that the add itself can be 
done in 100 nsec, not including the register time. The amount of time for 
each of the operations identified above is given in the RTL itself. Note thal 
we have assumed that the bumping of the PC can be done in the time it 
takes to load the register. Also note that step 10 accounts for both the add 
time and the register delay time. With these figures, we can see that the 
t o d  time is 1.1 pec .  The instruction fetch itself requires 450 nsec, which 
is 'lmost half of the total time. If we look only at the time metric, we can 
drJw some conclusions concerning the efficient use of time to accomplish 

fetch: 
PC + MAR 

M[MAR] + MBR 
MBR -+ IR 

PC + Ilen + PC 

decode 
execute: 

PC + MAR 
M[MAR] -+ MBR 

MBR -+ MAR 
M[MAR] + MBR 
PC + Alen + PC 

ACC + MBR + ACC 

Start by loading MAR. 
And get instruction 
into the IR. 
Bump the program counter. 

PC now points to address of operand. 

PC is needed again. 
This is really address of operand. 
SO put in MAR. 
And get operand to MBR. 
Now bump PC by length of address. 
ADD value in MBR to value in ACC. 

Figure 4.4. RTL Implementation and Timing Considerations an ADD Instruction. 
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the work of the system. If we now ask how many bits are required. and 
what are the costs involved in storing and moving data, a different type of 
conclusion may be available. However, this demonstrates that the fetch of 
an instruction from memory is definitely not free. It also demonstrates one 
of the mechanisms that can be used to obtain information about the execu- 
tion time for inshuctions. 

One of the single address machines built in the mid-1960s that enjoyed wide 
popularity was the PDP 8, made by Digital Equipment Corporation. This was a 
12-bit machine, a block diagram of which is shown in Figure 4.5. 

The instruction format called for a 3-bit op code, which left 9 bits of the 
12-bit instruction for the address. With 3 bits for specifying the action of the 
instruction, the possible operations were limited to 8, and these 8 were chosen 
with care. One of them was an ADD instruction, which added to the accumulator 
the value identified by the single address included in the inshuctioil. The 9 bits of 
address specification in the instruction limited the number of addressable 
operands, so different operand specification mechanisms, such as indirect address- 
ing, were used to increase the number of accessible values. We will discuss alter- 
native addressing methods in Section 4.4. The instructions that required an 
address for operand identification, such as DCA (deposit valuc currently located in 
the ACC to the memory location identified and clear accumulator). TAD (two's 
complement add), and IS2 (increment and skip if zero), used the 9 address bits to 
specify the location of the operand. Instructions that did not require an address, 
such as CLA (clear accumulator), INA (increment accumulator), and CLE (comple- 
ment accumulator), expanded on one of the eight available op codes to specify the 
action to take place. 

Figure 4.5. Block diagram of PDP 8 Computer. 
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The format of the PDP 8 instruction set is given in Figure 4.6. At the time 
of the creation of the system, memory was a very expensive system resource, and 
hence the word length was limited to 12 bits. As the relative costs of memory 
and other system components change and diminish, uses of those system 
resources will also be appropriately change. The designers of the PDP 8 system, 
with a limited number of bits to work with, chose the operations of the system 
with care. A 3-bit op code limited the number of instruction patterns to 8. Six of 
the possible instructions required an address, and this address was determined by 
the 9 LSBs of the instruction. These six instructions were logical AND, add, 
increment-and-skip-if-zero, deposit-and-clear-accumulator, subroutine jump, and 
unconditional jump. Another of the eight patterns identified an UO instruction, 
and the remaining 9 bits specified one of 64 UO devices, and one of eight opera- 
tions. The operations were defined by the design of the UO device itself. The 
final pattern identified instructions that needed no address, and hence could all 
share a common instruction code in the op code bits. This allowed a number of 
operations to be specified, such as clear the accumulator, or increment the accu- 
mulator, and so on. One of the most challenging tasks facing a computer architect 
is to identify the instructions to be incorporated into a new machine, and then 
encode the specification of those instructions in a format acceptable for the new 
system. We will examine some more examples of instruction formats later in this 
chapter, each of which demonstrates a different view of the optimal utilization of 
system resources. 

All of the above examples have a common operational mode: the instruction 
y a m  provides a single address, and this address is utilized to identify the loca- 

tlon of an operand. For data operations, that operand is used in conjunction with 
whatever is needed in an assumed location (the accumulator), and the result is left 
in a predefined place, usually the accumulator. With this type of a machine all of 
the operations needed by a system can be performed, but the result may not be as 
efficient as  desired. With the fetch utilizing a large fraction of the instruction 
time, one approach would be to try to utilize more effectively the information 
fetched from memory. One method proposed for this is to make the system more 

Op Addr 
Code Spec Address 

Single Address 
Instructions 

Device I10 Unit ID operation 

Operation Selection 

Figure 4.6. Instruction Formats for the PDP 8 Computer. 
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efficient by using more than one address in a single instruction to specify a greater 
variety of operations and operands. 

4.3. Multiple Address lnshuctions 

Multiple address instruction formats cany with them both benefits and added 
specification requirements. With a single instruction more operations art 

identified, so fewer instructions are required to implement a string of arithmetic. 
At the same time, the instructions must identify all of the work to do, since no 
assumptions will be made concerning the location of the data. Thus, multiple 
address instructions will identify both source and destination of the information. 
The myriad possibilities are exemplified by the following formats: 

Although the system architect can choose any reasonable specification mechan- 
ism. the assumption we will make concerning the syntax of these instmctions is 
that the final address specified is the destination of the function. With this 
assumption, the ADD2 instruction adds the value in the location identified with the 
A address to the value in the location identified by the B address, and the result is 
returned to the location specified by the B address. Thus, this instruction changes 
the value identified by the B address. The ADD3 instruction obtains the operand 
identified by address A. adds to it the value stored at the location specified by 
address B, and places the result at the location identified by address C. In a 
machine that utilizes this type of capability. the op codes must differentiate 
between the various types of operations. 

That is. a separate code must be available for each instruction; ADD2 and 
ADD3 will be specified by different patterns. This results in a larger operation 
code field, since many different codes must be representable. And it also results 
in different length instructions. since some inshuctions will require three 
addresses, while others will require only two. Consider the following example, in 
which we compare two and three address add instructions. 

Example 4.2: TWO ond three address instructions: Compare the operation of 
the ADD2 and ADD3 instructions, using the times identified in Example 4.1. 
Assume that the operation codes require the same number of bits to 
represent as the addresses. (Is this a valid assumption?) What is the execu- 
tion time required for each of the instructions? 

In order to address these questions, we need to identify some of the 
details of the system. That is, before the RTL of implementdtion can be 
determined, we need to understand what mechanisms art being utilized. Let 
us assume that the first value obtained from memory at the location 
identified by the PC is the appropriate op code, and that the next values are 
the respective addresses. This is somewhat simplistic, as we shall see a lit- 
tle later. But it will help to identify some of the underlying issues. The 
next problem to be dealt with needs a little more detailed consideration. 
This consideration is the mechanism for the addition: how is it to be carried 
out. In order to visualize the transfers necessary and the order of events, we 
need to know the available registers and their interconnection. 'Ihe basic 
elements required for this example are given in Figure 4.7. The figure has 
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Driver 0 

Adder 

Figure 4.7. Block Diagram of System for Example 4.2. 

two registers, TI and T2, which are not pan of the instruction set architec- 
ture. That is, the system as defined by the instruction set does not include 
these storage elements. However, they are very useful when doing instruc- 
tions that require holding information to be utilized by the system. Armed 
with this knowledge about the underlying structure, let us examine RTL 
representations of the instructions. 

The RTL statements describing one implementation of the two address 
ADD instruction is found in Figure 4.8. The figure also contains timing 
information with the RTL statements, indicating the time required to com- 
plete the task. 

The RTL for the three address case is included in Figure 4.9. Note the 
similarity with the two address version in the initial stages of the instruction 

fetch: 
I PC + MAR (50) Address of instruction to MAR. 
2 M [MAR ] + MBR (300) Instruction to MBR. 
3 PC + Ilen + PC (50) Bump the PC to point at address. 
4 MBR + IR (50) Instruction finally to 1R. 

decode 
execute: 

5 PC + MAR (50) Go get address of operand. 
6 PC + Alen + PC (50) Bump PC to point at next address. 
7 M[MAR]  + MBR (300) This is address of first operand. 
8 MBR + MAR (50) So put in MAR. 
9 M [MAR]  + MBR (300) And get the value there. first to MBR. 

10 MBR + TI (50) And then to TI. 
11 PC + MAR (50) This is to get address of second operand. 
12 PC + Alen + PC (50) Bump PC to next instruction. 
13 M [MAR J + MBR (300) Address of second operand to MBR. 
14 MBR + MAR (50) And then to MAR. 
15 M [MAR]  + MBR (300) The second operand goes to MBR. 
16 MBR + T2 (50) And then to T2. 
17 TI + T2 + MBR (150) Do the add. results to MBR. 
18 MBR -+ M [MAR]  (300) Put results where operand tW0 used to be. 

(2500) Total time: 2.5 psec 

Figure 4.8. RTL Implementation of a Two Address ADD Instruction. 
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efficient by using more than one address in a single instruction to specify a greater 
variety of operations and operands. 

4.3. Multiple Address lnst~ctlons 

Multiple address instruction formats carry with them both benefits and added 
specification reqnircments. With a single instruction more opcrations are 
identified. so fewer instructions are required to implement a string ol ariLhn~eLic. 
At the same time, the instructions must identify all of the work to do, since no 
assumptions will be made conceming the location of the data. Thus, multiple 
address instructions will identify both source and destination of the information. 
The myriad possibilities are exemplified by the following formats: 

Although the system architect can choose any reasonable specification mechan- 
ism, the assumption we will make concerning the syntax of these instructions is 
that the final address specified is the destination of the function. With this 
assumption, the ADD2 instruction adds the value in the location identified with the 
A address to the value in the location identified by the B address, and the result is 
returned to the location specified by the B address. Thus, this instruction changes 
the value identified by the B address. The ADD3 instruction obtains the operand 
identified by address A, adds to it the value stored at the location specified by 
address B. and places the result at the location identified by address C. In a 
machine that utilizes this type of capability, the op codes must differentiate 
between the various types of operations. 

That is. a separate code must be available for each instruction; ADD2 and 
ADD3 will be specified by different patterns. This results in a larger operation 
code field, since many different codes must be representable. And it also results 
in different length instructions, since some instructions will require three 
addresses, wh~le others will require only two. Considei the following example, in 
which we compare two and three address add instructions. 

Example 4.2: Two and three address instructions: Compare the operation of 
the ADD2 and ADD3 instructions, using the times identified in Example 4.1. 
Assume that the operation codes require the same number of bits to 
represent as the addresses. (Is this a valid assumption?) What is the execu- 
tion time required for each of the instructions? 

In order to address these questions. we need to identify some of the 
details of the system. That is, before the RTL of implementation can be 
determined, we need to understand what mechanisms are being utilized. Let 
us assume that the first value obtained from memory at the location 
identified by the PC is the appropriate op code, and that the next values are 
the respective addresses. This is somewhat simplistic, as we shall see a lit- 
tle later. But it will help to identify some of the underlying issues. The 
next problem to be dealt with needs a little more detailed considera~ion. 
This cot~sideration is lhe mechanism for the addition: how is it to be carried 
out, In order to visualize the transfers necessary and the order of events, we 
need to know the available registers and their interconnection. The basic 
elements required for this example are given in Figure 4.7. The figure has 
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Driver 

Memory 

Figure 4.7. Block Diagram of System for Example 4.2 

two registers, T I  and T2, which are not parf of the instruction set architec- 
ture. That is, the system as defined by the instruction set does not incltlde 
these storage elements. However, they are very useful when doing instruc- 
tions that require holding information to be utilized by the system. Amied 
with this knowledge about the underlying structure, let us examine RTL 
representations of the instructions. 

The RTL statements describing one implementation of the two address 
ADD instruction i s  found in Figure 4.8. The figure also contains timing 
information with the RTL statements, indicating the time required to com- 
plete the task. 

The RTL for the three address case is included in Figure 4.9. Notr the 
similarity with the two address version in the initial stapes of the instruction 

felch: 
PC j M A R  

M I M A R ]  -) M B R  
PC + llcn -, PC 

MBR -3 IR 
decode 
execute: 

PC ,-t M A R  
PC + Alcn -i PC 
M I  M A R ]  --t M B R  

MBR -+ M A R  
M [ M A R ]  -i MBR 

MBR -+ TI 
PC 4 M A R  

PC + Alcn -r PC 
M I M A R ]  -i MBR 

M B R  -3 M A R  
M [ M A R ]  -+ M B R  

MBR -i T2 
TI + n -t MBR 

MBR -i M I M A R ]  

Address of instruction lo MAR. 
Instruction lo MBR. 
Bump the PC to poml at addrchs. 
Instruction finally lo IR.  

Go get address of operand. 
Bump PC to polnt at next address. 
This is address of first operrnd. 
So put in MAR. 
And get the value there, firs1 lo MUK. 
And then to TI. 
This is to get address of scco~ld opcranil. 
Bump PC to next insmction. 
Address of secold operrnd ru MBR. 
And then to MAR. 
The second operand goes lo MDR. 
And then tu T2. 
Do the add, results to hlBR.  
Put results where operand two used lo be. 

Total time: 2.5 psec 

Figure 4.8. RTL Implementation of a Two Address A D D  Insm~ction 
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fetch: 

I PC + MAR 
2 M [MAR] 3 hlBR 
3 PC + Ilen + PC 
4 MBR 3 IR 

decode 

execute: 

5 PC + MAR 
6 PC + Alen + PC 
7 M[MAR] 3 MBR 

8 MBR + MAR 
9 MIMAR] -+ MBR 

10  MBR --f TI 
I I PC + MAR 
12 PC+Alen -+ PC 
13 M[MAR] + M B R  
14 MBR -t MAR 
I5 M[MAR] --f MBR 
16 MBR + n 
17 PC -t MAR 
18 PC+Alen -1 PC 
19 M[MAR] -1 MBR 
2 0  MBR -t MAR 
21 T I t T Z - t M B R  
2 2  MBR 3 M[MAR ] (300) 

(2950) 

Address of instruction to MAR. 
Instmcrion to MBR. 
Bump the PC to point at address. 
Now, instruction to IR. 

This is to get first address. 
And bump PC by address length. 
Now the address to the MBR. 
And then to the MAR. 
This is the first operand. 
So put it in TI. 
Now, go get the second address. 
Bump the PC appropriately. 
This is the address itself. 
So, put it in the MAR. 
Now, get the second operand. 
And put it in M. 
Gotta go get the final address. 
Bump PC to point to next instruction. 
Get the address of the result. 
And put in the MAR. 
This is actual work of the instruction. 
Put in location specified by third address. 

Total time: 2.95 psec 

Figure 4.9. RTL Implementation of a 'Ihree Address ADD Instruction. 

implementation. Then, when fetch has been completed and the actual work 
of the instruction begins, the statements in the RTL reflect the different 
action of the two instructions. 

Since the addresses of the operands are stored in the instruction 
stream, obtaining and storing information requires two memory references 
for each value: one to obtain the appropriate address, and another to utilize 
that address for a fetch or store. Each of these interactions requires time to 
complete, resulting in seemingly long instruction times, 2.5 psec for the 
ADD2 instruction and 2 . 9 5  p e c  for the ADD3 instruction. As would be 
expected, the ADD3 instruction takes longer than the ADD2 instruction, since 
one more address is involved in the operand specification. This requires 
modifying the PC to point at the address, and an additional memory access 
to fetch to get the appropriate address. The resource utilization of these 
instructions can be viewed in number of ways. If one simply looks at the 
time required for the instruction, then the ADD2 instruction is more attrac- 
tive than the ADD3 instruction. However, if one looks at the time required 
to implement a set of operations, such as 

then the differences become more apparent: 
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MOVE Y.X AND3 Y.2.T 
AND2 2 . X  AND3 W.V.Y 
h l U V t  \4.Y A d U j  1.t.h 
AND2 V.Y 
ADD2 Y.X 

The stream of instructions that utilize the ADD2 method require I5 memory 
locations to store and 12.5 psec to execute; the ADD3 method requires 12 
memory locations, and executes in 8.55 p e c .  In contrast to the above 
methods, a single address implementation of the equation would require 14 
memory locations to store, and be executed in 8.95 psec, making similar 
assumptions about the address storage and execution mechanisms. To more 
appropriately evaluate the merits of one, two, and three address instruction 
mechanisms, a more complete set of example instructions and system usage 
is required. 

It is possible to generate examples in which each of the mechanisms dis- 
cussed thus far - single address machines, two address machines, and three 
address machines - has a better time characteristic than the other two. Among 
other things. this indicates that the metric we have chosen for comparison, com- 
bined with the underlying assumptions, is not a sufficient test. To make a more 
realistic comparison, further analysis and additional criteria are required. 
Nevertheless, the above example illustrates a viable method: when a choice 
between different alternatives is to be made, a metric is chosen that demonstrates 
the use of the appropriate system resources, and the associated costs are deter- 
mined. Caution must be exercised to ascertain that the costs not included in the 
metrics will not undermine the effectiveness of the comparison. 

One observation that could be made concerning the system is that a great 
deal of the execution time for the ADD2 and ADD3 instructions, as shown above, 
is consumed in fetching addresses of operands and the operands themselves. A 
similar comment can be made concerning the number of bits required to store the 
addresses: if the range of addresses can be limited in some fashion, the number of 
bits required for addresses (and hence the entire instruction) can be greatly 
reduced. For both of these reasons - the time required for operand access and 
the number of bits needed for address specification - register sets have been 
included in machines. 

The use of a register set reduces the time required for instruction perfor- 
mance. One demonstration of this is to rework Example 4.2, this time assuming 
that the add instructions deal with values in registers, rather than values that reside 
anywhere within the memory space of the machine. The block diagram for this 
example is given in Figure 4.10. Note the similarities and differences with Figure 
4.7. The main difference is the inclusion of a set of registers, shown here to con- 
tain 8 different storage locations. Thus, to represent the operand location requires 
only 3 bits, and this field can be incorporated into the instruction format. The net 
result is a reduction in the number of memory references required by each instruc- 
tion to get information. 

Example 4.3: ADD2 and ADD3 instructions with registers: Again compare 
the operation of the ADD2 and ADD3 instructions, but this time assume that 
the operands reside in registers, and that the register specification is con- 
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Register 

Figure 4.10. Block Diagram of System for Example 4.3. 

tained within the instruction itself. That is, an additional memory cycle to 
obtain addresses is not required, since the identification of the appropriate 
register is accomplished by using a multiplexer (register select MUX) to 
select the appropriate bits from the instruction register, as shown in Figure 
4.10. 

The RTL required for this example follows the RTL for the previous 
example, with the obvious differences: 

PC -i MAR 
M I M A R ]  -i MBR 
PC + llcn 4 PC 

MBR -i IR 
RA -+ TI 
R, -+ n 

TI +'I7 -i RB 

ADD3 RA. Re .  R c  

PC -4 MAR 
M[MAR] --r MBR 
PC + Ilen -i PC 

MBR -4 IR 
RA + TI 
RB -4 'IZ 

T I + =  -i Rc 

Note that the operands are in the registers, and the resulting instruction 
times reflect the reduced requirements for operand access. Both instructions 
now require 700 nsec, but we must recognize that the storage requirements 
are different for both instructions. That is, the ADD2 instruction must be 
wide enough to include two addresses, while the ADD3 instruction must be 
even wider, sufficient for three addresses. If all instructions are to be the 
same width, it must be the wider of the two formats. That is, if instructions 
are to be a common width (to match a memory constraint. for example), 
then the word width must match the widest instruction. For a system utiliz- 
ing this technique, an instruction that requires fewer than three addresses 
will waste some of the capabilities of the storage mechanisms. The point is 
that tradeoffs must be applied to each situation to determine their relative 
merits, and the choice of the metric will directly impact the comparisons. 
The metrics may include the number of bits (or bytes) required to store a 
program segment, the time required to execute, the complexity of the algo- 
rithms required to implement the instructions. or any of a number of other 
appropriate metrics. 
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The above example demonstrates that the use of registers greatly reduces the 
time requirements for instructions. As mentioned above, the main reasons for this 
are the reduced time requirements for interacting with the operands and reduced 
memory requirements for storing the instruction itself. The reduced time require- 
ments for operand access result from the fact that register access is faster than 
main store access. The reduced memory requirements are a function of operand 
identification, since identification of an appropriate register requires a few bits, 
while identification of a main store address requires a great many more bits. We 
have used the example of the IAS, which used 12 bits to identify a location in 
memory; more recent systems. such as the 68030 microprocessor, require as many 
as 32 bits to specify a location in memory. 

A number of existing machines utilize multiple address formats, and we can 
benefit from an examination of the instruction set architecture of those systems. 
However, before we consider those machines, we wi:l need to examine a "fcature" 
that we have ignored to this point. The very mechanism that saves time by reduc- 
ing the memory requirements also reduces to a very small number the aIlowable 
locations for operands to reside. However, in general. we would like to be able to 
access any operand, and operands should be able to reside anywhere in main 
store. Thus, some mechanisms must exist that will allow operand access to arbi- 
trary locations. Let us examine some of the mechanisms used for operand access. 

4.4. Operand Addressing Mechanisms 

When an instruction requires an operand for execution, the location of the operand 
can be assumed. as in the CLA (clear accumulator) instruction, or the operand 
location can be identified in the instruction itself. In this section we will examine 
different mechanisms for the specification of the location of the operand. First we 
will look at direct and indirect addressing, and some variations of indirection that 
have proved useful in different machines. Then we will look at some of the 
indexed and register relative modes. Combinations of these mechanisms will pro- 
vide the versatility needed to identify locations in main store for all types of 
machine instructions. A visual representation of the addressing mechanisms is 
included in Figure 4.15 (page 154). and it may be useful to refer to that figure 
throughout the section. 

In our discussion of addressing modes, we are concerned with the manner of 
specification of the effective address of the operand. That is, how is the location 
of the operand identified. Thus, we are concerned with the generation mechanism 
or formula for the effective address (EA). 

The term "direct addressing" refers to the situation where the effective 
address of the operand is supplied directly by the instruction. Thus, for direct 
addressing 

That is, for the ADD2 X.Y instruction. with direct addressing, 

The actual address is contained within the instruction. This is the situation that 
was assumed for the instructions considered in Example 4.3. As we have 

Chap. 4: Instruction Set Processing 145 



mentioned, various costs associated with this method diminish its effectiveness, so 
other approachs to operand identification are used. One useful mechanism is to 
use the information contained in an instruction to identify not the operand, but 
rather the address of the operand. 

The term indirect addressing is applied when the instruction identifies not 
the operand, but rather the location of the operand. That is, for an ADD2 X,Y 
instruction with indirect addressing, 

EAOPERAND I = M [ X I 

The information in the instruction tells the machine where to find the address of 
the appropriate operand. Different manufacturers have different mechanisms for 
specifying that a value identified by the instruction is not an operand, but rather 
the address of an operand. I h e  mechanism we will use is to include an asterisk 
(*) before the operand specifier. Thus, 

specifies an instruction that adds a value stored at location X to a value stored at 
location Y. However, 

specifies an instruction that adds two values: the address of the first value is found 
at  location X, and the address of the second value (as well as the result) is found 
at location Y. These mechanisms can be combined in instructions, so that 

adds the value found in main store at the address found in location X to the value 
at location Y, and the result is placed in location Y. 

The usefulness of indirect addressing is best demonstrated by example. 
Then a variety of uses becomes apparent, such as accessing arrays in a regular 
fashion or accessing information in a data dependent fashion. 

Example 4.4: Indirect addressing: Using indirect addressing and two 
address instructions, demonstrate a method for adding the elements of three 
single dimensional arrays together. These arrays are located in main store. 
and their starting locations are also found in main store at the locations 
named ARRAY,. ARRAY2, and ARRAY,. The result is to be placed in an 
array in main store, the starting location of which is in a location named 
ARRAY4. 

Wc have not yet considered the branching instructions needed for this 
problem, so those functions will be identified but not specified. Also, we 
will make the assumption that the information is stored one value per loca- 
tion (instead of double precision or other considerations), so that increment- 
ing an address by one automatically points to the next value. This addition 
could be performed in a number of ways, but one way is demonstrated by 
the following instructions. 
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Set up problem first, then entcr this loop: 

over: hlOVE *ARRAY ,. TEMP 
ADD2 *ARRAY2. TEMP 
ADD2 'ARRAY,. TEMP 
MOVE TEMP, 'ARRAY, 

INC ARRAY 
INC ARRAY2 
INC ARRAY, 
INC ARRAYI 
if nor done. go to over 

Get value from first array. 
And add value from second array. 
And third array. 
Now move answer to right spot. 
With the arithmetic over, adjust 
the addresses appropriately. 

These increment instructions 
bump each address to point 
to the next value. 

End of loop. 

Note that the MOVE and ADD2 instructions access the information in the 
arrays indirectlv. Thus, the location irlrntifiwi in thr i-rtr~ction is not tile 
location of the operand, but rather the location where the address of the 
operand is found. Then the increment instructions, which access their 
appropriate locations directly, cause the addresses to point to the next ele- 
ments of the appropriate array. The way in which the above section of code 
was written modifies the locations ARRAYl4, which is in general not a good 
idea. A better solution would have been to place these addresses in tem- 
porary locations and operate on them in those locations. Another comment 
that ,can be made concerns the use of the temporary location. The location 
would not be needed if the MOVE instruction placed the value in the loca- 
tion identified by ARRAY,, and the subsequent ADD2 instructions used that 
location to sum the value. Thus, the number of memory locations needed 
for the execution of the program would be reduced. However, indirect 
references require one more memory reference than direct references, so the 
required time to complete the code would be increased. Thus, the "best" 
solution will be determined by which metric is the critical one for the appli- 
cation. 

Including both direct and indirect addressing mechanisms in an instruction 
set allows a wide variety of operand access capabilities. Ibese concepts are 
directly applicable to systems with register sets, where the identification bits in the 
address refer to a specific register. Direct addressing in this fashion is sometimes 
referred to as register direct addressing. An indirect reference occurs when the 
value contained in the register is an address identifying the location in main stol.: 
of an operand. This would then be register indirect addressing, and operates in 
the same fashion as the indirect addressing mentioned above. The benefits af this 
mechanism have already been identified: the number of bits required to specify 
the address are reduced, and the time required for register access is much less than 
that required for main store access. 

Example 4.5: Cost of direct and indircct nddrcssiug. Determine the times 
for the ADD2 instruction using direct and indirect addressing. Compare the 
system of Figure 4.7, which doesn't have a register set, with the system of 
Figure 4.10, which includes a general register set. 

The times required for these instructions can be obtained only if we 
know the set of register transfers required to accomplish the work of the 
additions. So, the first step is to obtain the RTL of instruction implementa- 
tion. First we will look at the system without registers, then observe the 
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effect when a register set is available. The direct addressing implementation 
ol  h e  ADD2 i~~slruc~ion is shown in Figure 4.11. Thc transfers required to 
perform the work consume a total of 2.5 psec. Of that time, 0.450 psec is 
required for fetching the instruction, the other 2.05 psec is used in execu- 
tion. Another view of the time requirements comes from examining the 
time used by the memory interaction. There are six memory transfers, one 
for the instruction and five for addresses and operands; these total 1.8 psec. 
We would expect the indirect addressing example to take even more time, 
and this is confined by examining the RTL of the indirect addressing ver- 
sion contained in Figure 4.12. The indirect addressing system is longer, but 
only by 0.7 psec. The instruction fetch again took 0.45 pec ,  while the 
eight memory transfers consumed 2.4 psec, or 75% of the total instruction 
time. This gives an indication of one of the reasons that computer architects 
have attempted to reduce the memory interaction as much as possible. The 
times involved in the register implementations of the ADD2 instruction indi- 
cate how well that can be accomplished. 

The work required for register-oriented ADD2 instructions, both for 
direct and indirect addressing, is demonstrated by the RTL implementations 
in Figure 4.13. 

An examination of the implementations of Figure 4.13 indicates that 
indeed time is saved when the operands (and/or addresses) are contained in 
the registers. When the operands are located directly in the registers, then 
the ADD2 instruction requires only 0.7 psec, 28% of the time required for 
the memory implementation. The principal contributor is the fact that this 
implementation requires only one memory transfer, compared to six 
transfers for the ADD2 X, Y instruction. 

ADD2 X. Y (Direct Addressing) 

fetch: 
PC 

PC + Ilen 
M[MAR] 

MBR 

decode 

execute: 

PC 
PC + Alen 
M[MAR] 

MBR 
M[MAR] 

MBR 
PC 

PC + Alen 
M[MAR] 

MBR 
M[MAR] 

MBR 
TI + T2 

MBR 

MAR 
PC 
MBR 
1R 

MAR 
PC 
MBR 
MAR 
MBR 
TI 
MAR 
PC 
MBR 
MAR 
MBR 
7.2 
MBR 
M[MAR] 

First, address of instruction to MAR. 
Now bump PC. 
Retrieve instruction. 
And move to IR. 

This to get address of X. 
Bump PC by length of address. 
MBR now contains address of X. 
So put in MAR. 
And retrieve X. 
Move operand to TI. 
Do same thing for Y. 

Move Y to T2. 
Do the ADD. 
And store back where Y was. 

Figure 4.11. RTL implementation of a Two Address ADD Instruction with Direct 
Addressing. 
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fetch: 
PC -t MAR 

PC + Ilen + PC 
M[MAR] + MBR 

MBR + IR 

decode 
execute: 

PC + MAR 
PC + Alen + PC 
M [ M A R ]  + MBR 

MBR + MAR 
M[MAR] -+ MBR 

MBR -t MAR 
M[MAR] + MBR 

MBR + TI 
PC + MAR 

PC + Alen -+ PC 
M[MAR] + MBR 

MBR + MAR 
MIMAR] + MBR 

MBR -t MAR 
M[MAR] + MBR 

MBR + n 
TI +TZ + MBR 

MBR -t M[MAR] 

As before, address of instruction to MAR. 
Bump PC. 
Retrieve instruction. 
And move to IR. 

This to get address of address X. 
Bump PC by length of address. 
MBR now contains address of address X. 
SO, put in MAR. 
And retrieve address of X. 
Put address of X in MAR. 
And retrieve X. 
Move X to TI.  
Do same thing for Y. 

Move Y to T2. 
Do the ADD. 
And store back where Y was. 

Figure 4.12. RTL Implementation of a Two Address ADD Instruction with Indirect 
Addressing. 

A similar savings is obtained with the register indirect method, also 
shown in Figure 4.13. The speedup of the register indirect implementation 
is not as dramatic as the register direct method, but 1.7 psec is 53% of the 
time required by the system when no registers are present. Again the differ- 
ence reflects the extent to which memory is utilized: with registers the 
instruction required only four memory transfers, while the system without 
registers required eight memory transfers. The following table summarizes 
this information: 

Addressing Memory Fetch Execute Total 
Technique References Time Time Time 

Direct 6 450 2,050 2,500 
Indirect 8 450 2,750 3,200 
Register Direct 1 450 250 700 
Register Indirect 4 .  450 1.250 1.700 

Note from the table that the instruction fetch time of all of these instructions 
is identical. For the ADD2 *X, *Y instruction, this is only 17% of the 
instruction time, while for the ADD2 Rx, Ry instruction, this is 64% of 
the instruction time. This will form a portion of an interesting observation 
later in the chapter. 
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ADD2 RY. RY (Resister Direct Addressinn) 

ferch: 
PC 4 MAR (50) Once again. address of instruction to MAR. 

PC + Ilen -+ PC (50) Bump PC. 
M[MAR]  4 MBR (300) Retrieve instruction. 

MBR + IR (50) And move to IR. 

decode 
execute: 

Rx -t TI (50) Get first operand to TI. 
Ry 4 n (50) Get second operand to R. 

 TI+^ 4 R, (150) And result back to Ry. ' 

(700) 

ADD2 *R,, *Ry (Re~ister Indirect Addressinn) 
- - 

fetch. 
PC 4 MAR (50) Address of instruction to MAR. 

PC + lien 4 PC (50) Bump PC. 
MIMAR] 4 MBR (300) Retrieve instruction. 

MBR 4 IR (50) And move to IR. 

decode 
execute: 

Rx -+ MAR 
M[MAR] -+ MBR 

MBR 4 TI 
Ry -+ MAR 

M[MAR] 4 MBR 
MBR 4 T2 

TI +T2 -+ MBR 
MBR -4 M[MAR] 

Rx holds address of first operand. 
Retrieve operand. 
And put in TI. 
Ry holds address of second operand. 
Retrieve operand. 
And put in TZ. 
Do the work. 
And store results. 

Figure 4.13. RTL Implementation of a Two Address ADD Instruction 
with Register Direct and Register Indirect Addressing. 

The inclusion of registers in the system reduces the time required to perform 
most functions, as shown in the above example. The register indirect method is a 
very useful mechanism for identifying the location of operands in main store. In 
a previous example, we considered the use of indirect instructions to access every 
element in an array. This type of mechanism is used often enough to justify 
including a specific addressing mode which handles the incrementing of the 
address automatically. This is called an autoincrement capability, and is included 
in many instruction sets. We will indicate that an address is to be incremented 
after it is used by including a plus sign (+) after the indirect specification. That is, 
an ADD instruction that uses the indirect autoincrement mechanism for its first 
operand and register direct access for the second operand would be specified as 

The increment amount used in the instruction is generally tied to the size of the 
operand. That is, an instruction set may have three different integer add instruc- 
tions: one for byte, one for word (two bytes), and one for double word (four 
bytes) operands. The process of autoincrement for these instructions would 
increase the address by one, two, or four, respectively, for the different situations. 
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B O S  - 

The autoincrement mechanism is very useful for dealing with data in data 
structures within the computer. For example, one data structure utilized exten- 
sively in some types of processing is the stack. Stacks can be created in main 
store by allocating space for the structure and associating a "stack pointer" 
address with it. Conceptually, information is placed on a stack and then removed 
as needed. That is, it is a last-in, first-out mechanism for storing information. We 
will identify some of the uses of this type of information storage later in this 
chapter. 

Stacks can be constructed by means of a number of methods, but perhaps 
the most prevalent mechanism is to allow the stack to grow downwards in 
memory. A POP operation for such a stack is included in Figure 4.14. The 
address provided by RsTACK indicates where the current top of the stack 
(TOS) is located. This address can identify either the next available location for 
storing information, or it can specify the location containing the information on 
top of the stack. For a stack that grows downward in memory, the common 
mechanism is to utilize an address that points to the value currently on the top of 
the stack. Notice that the action of extracting information from the stack can be 
achieved with the register indirect autoincrement add~cwng mode: 

The above instruction moves information from the stack to Rx. Since 
RsTACK points to the value currently on the top of the stack, the read 
action transfers that value from the memory at that location. Then the systcm 
automatically increments the stack pointer by the appropriate amount, and at the 
end of the instruction the stack pointer identifies the next element to be on the top 
of the stack. 

POP Operation for Stack which Grows Downward In Memory 

Stack 
Area 

in 
Memory 

Before POP 
TOS points b 
data located 
at the top of 
me stack 

Higher 
Memory BOS -4 
Addresses 

Lower 
Memory TOS- 
Addresses 

Stack 

Memory 

Higher 
Memory BOS 
Addresses 

Stack 

Memory 

Higher 
Memory 
Addresses 

i Memory 
I Addresses I Addresses 

During W P  
data is removed 

from memo location 
identified b y I 0 ~ ;  then 

TOS is incrernented 
b point to value now 

on top of stack 

After POP 
TOS points to 

location which holds 
value on top of stack 

Figure 4.14. Stack Mechanisms in Main Store. 
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To complete the data transfers needed for stack implementation, we must 
consider the action required to place information on the stack. Obviously, we will 
need the ability to decrement the address in RSTACK POINTER. TO do this, many 
instruction sets also include an autodecrement facility. This works in exactly the 
same fashion as the autoincrement mechanism, except that generally the decre- 
ment is done before the address is used, rather than after. In this text we will 
assume that all autoincrement operations are postincrement operations, and that all 
autodecrement operations are performed in a predecrement manner. This permits 
the following pair of operations to be used for stack manipulation: 

MOVE Rx, *RSTACK Push value in Rx onto stack. 
MOVE *RsTACK RX Pop value from stack to Rx. 

The first instruction does a push: the address in RSTACK mImR is first decre- 
mented and then used as an address by the system, and the information in Rx is 
written to that address in main store. The second instruction is used to pop infor- 
mation from the stack: the address in RSTACK m , ~ ~ ~  is used to access the infor- 
mation, and then incremented to point to the next element on the stack. Both the 
push action and the pop action leave the address pointing at the value on the top 
of the stack, as expected. 

Thus far we have identified direct and indirect addressing, with and without 
registers, and the idea of autoincrementing (autodecrementing) a value being used 
as an address. Before we look at some real machines to see in what way these 
mechanisms are specified and used, three other addressing schemes need to be 
mentioned. 

One mechanism that can be used to access information which is known 
when a program is created is instruction stream addressing. This mechanism uses 
the PC to identify data and addresses in the same manner that instructions are 
identified. As an instruction executes, the information is retrieved from the 
instruction stream, the location of which is identified by the PC. This method is 
sometimes called the immediate mode, since data and addresses are "immedi- 
ately" available for use. In this way, constants (or predetermined addresses) can 
be included in the instruction stream. 

Another method has several names, but we will call it register relative 
addressing. The basic idea is that a location in main store is specified by identify- 
ing an offset from a value in a register. Thus, the effective address of the location 
will be obtained by adding the two values: 

Effective address = Address in register + Offset amount 

A common use of this type of addressing is to identify locations in a program 
relative to the current position of the program counter. This is often called PC 
relative addressing, and is used extensively for identifying the destinations of 
branches or jumps in programs. The offset amount is generally included in the 
instruction itself. 

Another use of register relative addressing is to locate information based on 
the mode of execution of the program combined with the instruction. Some sys- 
tems have registers that are given specific operating system responsibilities, and 
references to information are automatically made relative to these registers. An 
example of this is the 80x86 series of processors made by Intel, which contain 
four segment registers. The addresses in these registers identify the location in 
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main store of data, program, stack, and extra segments. Thus, any access to 
memory is automatically made relative to the appropriate segment register. 

Finally, another mechanism for addressing information is indexing. Here, 
the address of the desired information is the sum of at least two values. One of 
these values is considered the base value, and can be supplied by the instruction 
stream or be stored in a register. The second value is usually in a general purpose 
register. The sum of these two values provides the effective address of the 
desired location. Thus the base value is "indexed by the value in the register. 
One example of the use of this mechanism is to provide the base address of an 
array in the instruction stream, and then to identify the desired element of the 
array by a value in a register. Indexed references provide an effective way to 
reference structured data. 

It is helpful to visualize the relationship of the various components making 
up the various addressing modes. A visual summary of the addressing mechan- 
isms described above is shown in Figure 4.15. Additional addressing mechanisms 
can be constructed by combining the different basic mechanisms to extend the 
total number of possibilities. We will use many of these addressing mechanisms 
in examples throughout the text, and a summary of the nomenclature used in the 
assembly language level examples is included in Table 4.1. 

These basic methods are combined in a variety of ways to accomplish the 
task of identifying in main store a desired location. One of the remaining tasks, 
which we have not yet discussed, is representing these different choices in a 
manner that they will be acted upon in a reasonable fashion by the CPU. We 
know from Chapter 2 that with N bits we can represent 2N different entities. The 
problem is to use N bits to specify the operation code (op code) or instruction to 
perform, the register(s) needed for operand identification, if any, and the appropri- 
ate addressing mode. Let us consider two examples of how this has been accom- 
plished by system architects in real machines. First, we will look at some of the 
mechanisms used by DEC, then the NS32032 processor. 

Example 4.6: Encoding of addressing modes: The PDP 1 1  series of comput- 
ers utilizes a number of different addressing schemes to identify lwations. 
How are the single and double operand instructions encoded? 

The PDP 11 has been one of the most popular 16-bit computers ever 
built. One of the features of the PDP 11 instruction encoding scheme is that 
all of the op codes for the instructions fit into 16-bit words, with whatever 
additional information (addresses, for example) needed occupying additional 
16-bit words. To accomplish this, different formats are utilized for those 
16:bit instructions. The two of interest to us are those used for single 
address and double address functions, the formats of which are shown in 
Figure 4.16. The PDP I I utilizes eight general purpose registers, which are 
numbered from 0 to 7. Register 7 is also the program counter, and there are 
some special modifications to the addressing mechanisms when this register 
is specified. To identify one of the eight registers requires 3 bits, and loca- 
tions for these bits are reserved in both representations. An additional 3 bits 
are used to specify how the register is to be used. Note that using both 
register and mode bits for the two address format leaves only 4 bits for 
identification of the instruction. These 4 bits are coded as shown in Table 
4.2. 

As can be seen from the table, certain patterns in the 4 most 
significant bits (MSB) expand to consume the bits used for the source 
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Dired . Addressln 
lnsbucbon ~ d e n d "  

Location of Data in Memory U 

Reglster Direct Addressing: 
lnstrudcm Identifies 

Location of Data in R ~ I s W  u 

Stad Addressing: 
Stack Pomler ldentlfies 

Location of Data in Memory U 

lndlrect Addreng:  
l~ t ruc l ion  Identifies 

Location of Address of 
Data in Memo~y 

Memory 

Reglsler lndlred Mdressing: 
lnstruction Identilies R isler 

which has Address o f % a  
in Memory u 

RQ , Instruction , fl 
.. ..:..i.:.:. 

Instruction Stream Addressing: 
Register Indirect from PC U 

Figure 4.15. Addressing Mechanisms for Accessing information in Main Store 

register (Rs) mode and register identification bits. This allows a few pat- 
terns i n  the MSBs to be utilized to represent many different single address 
and program control instructions. The bits used to specify the addressing 
mechanism are coded as shown in Table 4.3. 
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ED' 
Muniple R i s m  

Involved In ategister 
Relative Address 

Specification 

Reglslers Instruction 

€I- 

Reglslers Instruction Memoly 

Indexed Addressing: 
Base Address k 

Indexed by 
Value m R apster 

Figure 4.15. (conr) Addressing Mechanisms for Accessing Infom~ation in Main Store 

The addressing mechanisms detailed i n  Table 4.3 indicate one 
approach to operand addressing, an approach that can be extended or 
modified to meet the needs of a system. The instruction set architecture, as 
well as the structure of the machine, wi l l  reflect the intended use o f  the 

Single Operand lnstruction Format 

Double Operand Instruction Format 

Direct w Indirect Addressing 
Register Mod+ -7 

Direct Deferred Bit 

I Op Code 

Figure 4.16. PDP I I Instruction Formats for Single and 
Double Operand Instructions. 
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Addressing 
Mode 

Direct 

Register 
Direct 

Indirect 

Register 
Indirect 

Instruction 
Stream 

Register 
Indirect 
Autoincrement 

Slack 
Addressing 

PC Relative 

Memory- 
Based 
Index 

Register- 
Based 
Index 

Represented 

BY 

Push 
POP 

(<address> i Rm) 

(Rn i Rm) 

Address is part of instruction. 

Table 4.1. Addressing Modes and 

Operand in found in register. 

their Nomenclatures. 

-- 

Address is part of instruction; operand is located 
in memory at that address. 

Address found in register; operand in memory at 
that address. 

Value is stored in instruction stream. 

Register used as address; value in register incre- 
mented at end of instruction. 

Stack pointer indentifies location in main store 
for transfers; value in stack pointer adjusted as 
necessary. 

Offset identifies target address relative to current 
location identified by program counter. 

Operand is located in memory at address which 
is sum of <address> and Rm. 

Operand is located in memory at address which 
is sum of Rn and Rm. 

system and the relative importance of system resources: the number of 
registers, the amount of memory, and the times required for arithmetic, 
register, and memory interaction. The register direct addressing referred to 
in Table 4.3 is as we expect: the operand is located in the specified register. 
And the register indirect uses the specified register as an address pointing to 
the desired location. The register indirect autoincrement is as described 
above, the value in the register being used as an address and incremented as 
part of the instruction. Mode 3 is a multiple use of indirection, with the 
register being incremented after use; that is, the value in the specified regis- 
ter is used as an address and then incremented. But the address extracted 
from the register points not to the operand, but rather to the address of the 
operand. DEC refers to this additional level of indirection as "deferred" 
addressing. The same thing happens on the autodecrement and two level 
indirect with autodecrement. The decrementing of the register value is done 
first, and then the address used, in the first case as the address of the 
operand, and in the second case as the address of the address of the operand. 
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Table 4.2. Encoding of Ii~slructions for lllc PDP 11 
Architecture. 

Op Code Function Perjormed 

Single address and special function instructions 
Move instruction 
Compare instruction 
Bit test instruction 
Bit clear instruction 
Bit set instruction 
ADD2 instruction 
Single address instructions 
Single address and special function instructions 
Move instruction (byte) 
Compare instruction (byte) 
Bit test instruction (byte) 
Bit clear instruction (byte) 
Bit set instruction (byte) 
Subtract instruction 
Special purpose instructions 

Table 43. Encoding of Addressing Information 
in the PDP 11 Architecture. 

Addressing modes for PDP I 1  operands 

Addr bits Addressing mode 

Register direct 
Register indirect 
Register indirect - autoincrement 
Two level indirect. autoincrement register 
Register indirect - autodecrement 
Two level indirect, autodecrement register 
Indexed 
Indexed indirect 

Addressing modes when PC is target register 

Addr bits Addressing mode 

0 1 0 Immediate mode 
0 1 1 PC absolute mode 
1 1 0 PC relative 
1 1 1 PC relative. indirect 

The index mode uses the specified register as an index, and a value 
from the instruction stream as the base. This information is coded as fol- 
lows: 

The address of the operand is the sum of the base address and the amount in 
the register. For the indexed indirect mode, the address resulting from the 
sum points not to the operand, but to the address of the operand. 

First word + 
Second word -i 
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Finally, the PC specific addressing modes all require a second value in 
the instruction stream. The first value is the instruction that identifies the 
appropriate PC addressing mode. The immediate mode is used to supply an 
operand directly from the instruction stream: 

First word -t Instruction 
Second word -t I Operand 

The PC absolute mode is used to specify an address directly in the instruc- 
tion stream: 

First word -t Instruction 
Second word -t Address 

The PC relative mode is also coded as above, but the address is relative to 
the PC (actual address is sum of PC and supplied address). The PC relative, 
indirect mode uses the same mechanism to identify the address of an 
operand, rather than the operand itself. 

When DEC expanded on the ideas and concepts of the PDP 11 to create the 
V A X l l  architecture, the capabilities of the address mechanism were also 
expanded. However, the same basic elements are utilized: direct and indirect 
addressing, indexing, and relative addresses. The number of registers was 
expanded to 16, and the bits identifying the different addressing modes expanded 
t o  4, so specifying an address required 8 bits. The number of instructions has also 
been expanded, so that the list includes not only one and two address instructions, 
but three address instructions as well. 

Example 4.7: Expanding op codes: The advances in semiconductor technol- 
ogy have allowed microprocessors to become more and more powerful. 
One of the 32-bit microprocessors is the NS32032, by National Semiconduc- 
tor. Although the instruction set does not include three address instructions, 
it does have some interesting capabilities in the addressing mechanisms. 
How are the one and two address instructions encoded? 

Some of the addressing formats for the NS32032 are shown in Figure 
4.17. The processor has several different addressing modes, but the ones 
that concern us are one and two address formats. An interesting feature of 
the instruction set is that many of the instructions which are usually associ- 
ated with a single address are two address instructions for the 32032. The 
single address instructions are used for functions like JUMP and JSR. The 
target location is identified by the use of the five address specifier bits. 
These allow 32 different addressing combinations, some of which use the 
eight general purpose registers in the processor. Included in the mechan- 
isms are register direct, register relative, register indirect, two level indirect, 
immediate, absolute, stack, and indexed references. When a displacement or 
other constant is needed (constant for immediate values. addresses for 
memory locations), this value directly follows the instruction bits in the 
instruction stream. The size of an immediate value is determined by the 
instruction (byte, word, longword). However, an address displacement is 
composed of 1, 2, or 4 bytes. as shown in Figure 4.17. This allows storing 
in the instruction stream only the bits needed to identify the target address. 
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as an Address: Ent~re Address Space; 

29 as  a value: +/- 2 -1 
LSB Displacement 

Figure 4.17. NS32032 Formats for Single and Double Operand Instructions. 

As mentioned above, the two address 'format is used not only for adds 
and subtracts, but also for instructions traditionally considered single 
address instructions. Thus, the negate instruction extracts a value from m e  
location, forms the negative value by subtracting it from zero, an1 then 
places the result, not back in the original location, but rather in a location 
identified by the destination address. Figure 4.17 includes two of Lhe two 
address formats; the more often used instructions make use of the shorter 
format. These include add, subtract, compare, move, and others. The 
longer formats are used by instructions that do not occur as often, such as 
divide, test bit, shift, and absolute value. In the two address formats, all of 
the addressing modes are possible, allowing location of operands in both 
registers and memory. 

The 32032 instruction set is a good example of the concept of the expanding 
op code. That is, the bits required to specify interaction expand to provide the 
necessary information. The shortest instructions occupy a single byte; more com- 
plex instructions can consume 3 bytes in instruction specification, then more bytes 
for index, address, and constant specifications. 
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Both the PDP I 1  and the NS32032 provide examples of one and two address 
instruction sets, as well as providing real examples of a variety of addressing 
modes. The specification of a target address, whether for operand identification or 
for program control, can utilize a combination of the basic modes, as we have 
seen. The decisions involved in selecting the modes to include in an instruction 
set reflect the design philosophy of the system architects. The basis for those 
decisions is formed by the intended application, the resources available (time, 
power, chip area, etc.), and the targeted system goals. Before we examine some 
of those issues let us look at another approach: machines that use instructions with 
no address specification. 

4.5. Zero Address Machines: the Use d Stacks 

A stack is a last-in, first-out storage mechanism, where information is stacked up 
much like pieces of paper. The stack mechanisms described in the previous sec- 
tion are built in main store with appropriate instructions. However, it is also pos- 
sible to do arithmetic with stacked values: an arithmetic operation is specified, and 
any needed operands are extracted from the stack. The result of the arithmetic 
operation is then placed on top of the stack. Because the operands are assumed to 
br located on the stack, no addresses are needed in the instruction to identify 
operand location. Hence, this type of system is called a zero address machine. 

In addition to the arithmetic or logic instructions that actually cause work to 
occur, additional instructions are needed to push information onto the stack, and 
then to pop it off the stack when the arithmetic is finished. The operation of a 
stack system to do work is demonstrated by a simple example. 

Example 4.8: Arithmetic with a stack: Consider the expression 

Give a set of stack-oriented instructions that will calculate the expression. 
This could be done in several ways; we will mention two. These are 

listed below, assuming that the machine can perform push, pop, add, divide, 
and multiply operations. 

PUSH A 
PUSH B 
PUSH C 
MULT 
PUSH D 
PUSH E 
PUSH F 
DIV 
MULT 
ADD 
ADD 
POP F 

PUSH E 
PUSH F 
DIV 
PUSH D 
MULT 
PUSH B 
PUSH C 
MULT 
ADD 
PUSH A 
ADD 
POP F 

Notice that the only instructions that require addresses are the push and pop 
instructions. All of the other instructions merely indicate the action to take 
place. In fact, some stack systems use push and pop instructions that do not 
require addresses, but rather use the value located on the top of the stack as 
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the address of the target location of the instruction. The ADD instruction. 
for example, pops two values off of the stack and places on the top of the 
stack the sum of the two values. Another thing that needs to be pointed out 
is the depth of the stack. The major difference between the two solutions 
above is that the stack depth of the first solution (the maximum number of 
items on the stack) is 5, whereas the stack depth of the second solution is 3. 
The depth of the stack will have a direct impact on the speed of execution, 
depending on the implementation of the hardware. 

Another thing that needs to be pointed out is that the instructions here 
will be best implemented if they are of variable length. Note that the push 
and pop instructions will need to be long enough to include the appropriate 
address bits, but the arithmetic instructions can be very short, since only 
action specification is required. 

The use of a stack for implementing a variety of functions is very attractive 
in certain circumstances. The most obvious drawback is that the time required 
can be great because of moving data to and from the stack, especially since the 
stacks we have mentioned to this point have been constructed in main store. One 
solution to this is to construct a special hardware module that places the top ele- 
ments of the stack in hardware registers. A block diagram of such a module is 
shown in Figure 4.18. The figure shows four hardware registers forming the top 
of the stack. Information to be placed on top of the stack (by instructions) comes 
from the memory. and information popped off of the stack flows to the memory 
through the memory interface. This module has the responsibility for maintaining 
the stack pointer and the transfer of information from the appropriate hardware 
regisier totfrom memory. Organization of a hardware stack control system is an 
attempt to minimize the interaction with memory, since stack depths of up to four 
(for the system shown in Figure 4.18) needn't require interaction with memory 
(except as called for by the instructions being executed). The ALU is shown 
receiving input from the top two registers. This arrangement allows the ALU to 
perform needed arithmetic and place the result back on top of the stack, all in a 
single clock period. The stack control circuitry is then responsible for handling 
the flow of information within the stack, and between the hardware registers and 

Figure 4.18. Block Diagram for a Hardware-Oriented Stack System. 
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The use of a stack system within a machine organization allows for some 
very useful capabilities. Stacks can be effectively utilized for some arithmetic 
capabilities and also for specific algorithms, such as optimization algorithms in 
compilers and other software systems. Another example of effective stack usage 
is  parameter passing between routines, since operands needed for a subroutine 
can be placed on the stack, and then the subroutine is called. The code of the 
subroutine knows that the operands are located on the stack, so it performs the 
needed operations and places the results on the stack before returning control to 
the calling program. 

However, there are some drawbacks to the use of the stack, such as saving 
results for further use. For example, consider the following expression: 

The C + D portion of this statement can be used twice, and in a register machine 
this would be straightforward to accomplish. The method of doing this on a stack 
machine is not so obvious, since only items on the top of the stack can be used 
for calculations. However, this type of operation is very prevalent in most calcu- 
lations that a machine will perform. Another operation used extensively in com- 
putations involves structured data (arrays, queues, et~.). A calculation like 

which involves references into several arrays and address on array subscripts, is 
handled very naturally on a register machine with the various addressing modes 
already discussed. These manipulations are not easily accomplished on a pure 
stack machine. Because of the need to access information in situations such as 
this, most practical stack machines include capabilities not available in a pure 
stack machine. These include additional registers for addressing, such as index 
registers, as well as operand referencing with respect to the top of the stack. The 
ability to reference information held in the stack (but not at the top of the stack) 
adds capabilities that can be effectively utilized by a computer system. These 
various capabilities can allow stack machines to be used for many types of com- 
putations. 

4.6. Program Control Instructions 

The instructions dealt with thus far are instructions required to do work in 
machines, where work is defined as arithmetic or logic operations. These con- 
cepts will also apply to operations that are often not considered as part of the 
"computing" realm, such as editing or control processing. However, this is not a 
broad enough definition to cover all of the types of operations that of a machine. 
Calculation of values covers only one type of operation that computers must pro- 
vide. In addition to computing, a machine must be able to make decisions, 
transfer information, and control devices. The instructions oriented toward 
input/output operations (UO) will be dealt with in a later section; we now turn our 
attention to instructions used to control the program flow. 

The area of program flow instructions can be divided into two general 
groups: instructions that change the flow of the program without side effects, and 
instructions that modify the program counter and also cause additional operations 
to occur. Examples of the first type of instruction are conditional and uncondi- 
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tional branches, while the second type of instruction is exemplified by a subrou- 
tine call. 

The simplest instructions to deal with are those that change the program 
flow without any side effects. As we have indicated by the RTL representations of 
instruction execution, the assumed address for the next instruction to execute 
identifies the location immediately following the current instruction. That is, nor- 
mal program behavior calls for the program counter to be incremented from one 
instruction to the next. When the next instruction to execute is not the next one in 
the memory, then the program counter must be modified accordingly. The pro- 
gram counter must be changed to identify to the appropriate instruction to be 
fetched. We will follow the terminology used by many manufacturers that a pro- 
gram counter change that uses direct addressing mechanisms is called a jump, and 
a program counter change that identifies its target address as an offset from the 
current location (PC relative) is a branch. 

The jump/branch instruction is very straightforward: the target address is 
identified, and the program counter is changed accordingly. The target address 
can be specified by combinations of the various addressing modes that we have 
already identified. The system operation changes somewhat when the branch is 
made conditional. In this situation, the contents of the PC at the completion of the 
branch instruction is dependent upon some system status condition or on some 
comparison identified by the instruction. The conditions may include the status 
bits contained within the status register of the machine; some arithmetic possibili- 
ties were identified in Sections 3.2 and 3.7. Other conditions found in status 
registers reflect the status, not of the arithmetic operations, but rather of the entire 
system. These include such information as interrupt information, errors and traps 
that have occurred, semaphores used in synchronizing system resources, and any 
other information that details the state of the system. 

In the definition of the system architecture, the designers of the system must 
determine the information to be included in the status register, as well as the pos- 
sible conditions that will be testable with the instructions defined in the instruction 
set. Two different examples of the approaches that can be taken are available in 
the VAX architecture (from Digital Equipment Corporation), and the MIPS archi- 
tecture (from MIPS Computer Systems). Both systems include a 32-bit system 
status word; however, the information contained within the status word is dif- 
ferent for both systems. The VAX status word contains bits that reflect arithmetic 
conditions, while the status register of the MIPS system does not contain results of 
arithmetic operations. The VAX system, which is an architecture based on a com- 
plex instruction set philosophy, has over 35 instructions to test various combina- 
tions of bits in the status register. The MIPS system, on the other hand, has eight 
conditional branch instructions, two of which compare two general purpose regis- 
ters (equal, not equal), and the rest of which check conditions of a single register 
(equal to zero, not equal to zero, positive, etc.). The MIPS system is an example 
of the reduced instruction set approach to machine design, which we will discuss 
in Section 4.8. 

Regardless of the type of instruction set architecture chosen for a particular 
system, if the proper conditions are satisfied, the PC contents arc modified to 
allow the program to continue at an address identified by the instruction. If the 
conditions are not satisfied for modifying the program flow, then the program 
counter is incremented in the normal fashion and execution of the program contin- 
ues with the next instruction in the normal order of execution. These program 
counter modification mechanisms are demonstrated by the following example. 
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Example 4.9: Jump and branch instructions in a PDP I1 type architecture: 
In the PDP 11 architecture, jumps can use any of the appropriate addressing 
modes to identify the target address. Assuming that the target address is 
included in the instruction stream, give the RTL for a jump instruction. 
Also, give the RTL for an instruction that branches if the carry is set. The 
branch instruction on the PDP 11 encodes the target address as an offset 
from the PC, and 8 bits are included in the instruction to specify the offset. 
Since PDP 11 instructions must be on even word boundaries, the offset is 
multiplied by two before it is added to the PC. 

The jump instruction required by the example must retrieve the target 
address from the instruction stream and move it to the PC. This can be 
accomplished as follows: 

fetch: 
PC + MAR 

P C + 2  + PC 
M[MAR] + MBR 

MBR --t IR 

decode 
execute: 

PC -+ MAR 
M[MAR] -+ MBR 

MBR -+ PC 

Go get the instrurtion 
Address of instruction to MAR. 
Bump PC to point to address. 
Retrieve instruction. 
And move to IR. 

Control system figures out what to do 
And begins the proper action: 
Go get the target address. 
And put in MBR. 
This is actual modification of PC. 

As seen by the RTL, this is a very simple instruction, and because of its sim- 
plicity it can be done relatively fast. Nevertheless, time is required for each 
of the steps. For the instruction mechanism shown in the example, two 
memory fetches are required, one for the instruction and one for the address. 
For that reason, the branch instruction is often a desirable alternative, since 
the target address is identified with respect to the PC, and the offset is 
included in the instruction. Consider the RTL for the instruction that 
branches if the cany is set: 

fetch: 
PC + MAR Address of branch inshuction to MAR. 

M [MAR] + MBR Retrieve instruction. 
MBR 4 IR And move to IR. 

decode 
execute: 

if (carry == 1) ( Check the condition: if satisfied, then . . . 
PC + (2 x IR < 7:O > ) + PC Next instruction is at target address. 

) else ( Also, 1R < 7:O > is sign extended to 16 bits. 
PC + 2 -+ PC Change PC address if condition not true. 

I 

To  perform the work of the instruction it is necessary to be able to selective 
execute the appropriate transfers. That is, the control section sets the PC to 
PC + 2 or to PC + offset depending on the appropriate condition, which in 
this case is the contents of the carry bit. The manner in which the arith- 
metic is done will be system-dependent; however, the logic required to 
increment the program counter will be available to be utilized as needed. 
See Figure 4.10 for an example of a system where a separate adder is used 
to add the appropriate length to the PC. Including a multiplexer to select 
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either the instruction length of the offset, based on the selected condition, 
would permit the necessary decision to be made. 

As the above exanlple ind~cates, the instructions that mod~fy the program 
counter do so in a manner that reflects the capab~lities of the machine and the 
instruction set. The target address is identified, by whatever combinations of 
addressing modes are available, and the specified address is placed in the program 
counter. In the case of conditional execution, the necessary condition is tested, 
and then the appropriate action is taken. We have indicated a simple choice, 
where the program counter goes to the next instruction or to a different target 
address. However, more complicated mechanisms can be set up in a system. For 
example, one minicomputer used a three-way branch for its arithmetic tests: three 
target addresses followed an arithmetic conditional branch instruction. A different 
target address was used for the greater than, equal to, and less than arithmetic 
col:JAoas. 

The above example also contains an anomaly when compared to other RTL 
descriptions of instructions included in this chapter. The fetch portion of the con- 
ditional branch did not include incrernenting the program counter to point to the 
next instruction. Historically, the modification of the program counter to identify 
the location of the next instruction has been done in the fetch portion of the 
instruction. For example, many 16-bit computers configure all instructions to 
occupy one 16-bit word. Then, in the fetch portion of an instruction the program 
counter is incremented by two bytes. If the instruction needs an immediate value 
or an address in its execution, the PC then points to this value, and the execution 
portion of the instruction will obtain this value and increment the PC accordingly. 
Thus, by the end of the instruction execution, the PC does indeed point to the next 
instruction to execute. 

The conditional mechanisms provided in instruction sets reflect the intended 
use of the systems. For example, some instruction sets will contain a dedicated 
CASE instruction (see the NS32000 system) that facilitates decisions requiring a 
multiway branch capability. Other systems will use combinations of instructions 
to perform this function. Another example is the use of a special LOOP instruc- 
tion, such as used in the 180x86 system, to simplify implementation of loops. 
This instruction decrements a register and branches to a target address unless the 
result of the decrement is zero. 

In the definition of a computer system, the system architect must decide the 
mechanism for PC relative references, and then maintain consistency in the appli- 
cation of the methods to all instructions. One of the most natural mechanisms is 
to identify the offset from the address of the instruction itself for all PC relative 
references, both references for additional values obtained from the instruction 
stream and references for other locations with an address that is specified with 
respect to the PC. One mechanism used to implement this technique (address 
specification from instruction address) is to delay updating tht PC until the end of 
the instruction. Otherwise, some other method must be utilized to adjust the 
references made during instruction execution to account for the continued incre- 
menting of the PC. A different approach is to make all PC-relative references 
made with respect to the contents of the PC as it adjusts itself during the execution 
of the instruction. The two approaches result in different hardware requirements, 
with a corresponding difference in programming techniques. Whatever mechan- 
ism is selected, the resources of the system (address adders, registers, data paths, 
etc.) must be used in a reasonable fashion to obtain the desired results. 

While the PC modification instructions are relatively simple, the extension 
of the ideas to linkage instructions brings additional complications. The basic 
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requirement is that the program flow is changed in such a way that control 
transfers to another routine, a subroutine, in such a way that program flow can 
return to the point of departure having accomplished some useful function. The 
machine then executes the code that follows the subroutine call. The method of 
accomplishing the subroutine linkage can be very simple or quite complicated. 
To transfer control in a reasonable fashion, we must create a mechanism that will 
cause the program counter to change so that instructions are fetched from the sub- 
routine. At the same time, the linkage mechanism must provide a way to retum 
to  the calling routine. There are a number of methods which are used to provide 
this facility; we will describe three. 

One subroutine calling sequence used by a few machines in the mid-1960s 
is to have the subroutine itself remember from which address it was called. The 
PDP 8, a 12-bit machine, used the first location of the subroutine to store the 
return address. The action would then proceed somewhat like: 

fetch: 

PC -+ MAR 
P C + ]  -+ PC 

M[MAR] -+ MBR 
MBR -+ IR 

decode 

execute: 

IR -t MAR 
PC -+ M[MAR]  
IR -+ PC 

PC+ I -3 PC 

Start instruction. 
Bump PC to point at next instruction. 
Get instruction from memory. 
And transfer to IR. 

This assumes address contained in instruction. 
Put return address in first location of subroutine. 
Now put same address in PC. 
And bump it to point to next location, which is 
actually the first instruction of the subroutine. 

A t  the completion of the transfers outlined above, program execution proceeds in 
the new routine. The address required to retum to the original (calling) code has 
been stored in memory with the subroutine. The return from this subroutine 
mechanism is accomplished with an indirect jump. That is, the target of the jump 
is  the address stored at the beginning of the subroutine. The last instruction of the 
subroutine identifies the first location of the subroutine, fetches the address stored 
there, and jumps to that address. The RTL for this action would be: 

fetch: 

PC -+ MAR 
PC+] -3 PC 

M[MAR]  -+ MBR 
MBR -+ IR 

decode 

execute: 

1R -+ MAR 

M [MAR] -+ MAR 
M[MAR] -+ PC 

Get the instruction. 
Bump PC; this value not actually used. 
Get instruction (which is a jump) from memory. 
And transfer to lR. 

This assumes address contained in instruction. 
Address identifies first location of subroutine. 

Get return address from first location of subroutine. 
Which is actually address to return to; put in PC 

and program continues at instruction after subroutine call. 

This type of subroutine linkage does indeed work, but it has some inherent 
problems. One problem is the implementation of reentrant code, or subroutines 
with recursion. Since the return address is stored in a specific location in 
memory, only one calling routine can utilize the subroutine at any one time. 

Chap. 4: Instruction Set Processing 



Thus, a system with more than one user (such as a time-sharing system) would be 
unable to share code between users. Likewise, a subroutine could not call itself, 
since in the process of doing so the retum address to the original call would be 
destroyed. Another problem encountered with this mechanism is that the tech- 
nique does not work in systems that store the programs in read only memory 
(ROM). And since microprocessors make extensive use of ROM for storing pro- 
grams this method is particularly unattractive for those systems. 

A second type of subroutine linkage involves storing the return address in a 
general purpose register. Instead of copying the updated program counter (which 
identifies the instruction after the subroutine call) to a location in memory, it is 
saved in a general purpose register. This solves the memory and reentrant prob- 
lems, but not the recursion problem. It does provide a more rapid linkage 
mechanism. That is, since references to memory are not required to store and 
rcl~icve tl~c a.ttlresc, the time required fv both tbc CJIT  ~ I I J  tile return wlli bz pro- 
portionately less. This is the mechanism used by the Texas Instruments 9900 
architecture, where the branch and link instruction (BL) places the return address 
into general register 11. A similar mechanism is used by some instructions in the 
IBM 370 system. 

Perhaps the most extensively utilized method for subroutine linkage is the 
use of a subroutine stack. Systems that use this method will have a register desig- 
nated as the stack pointer, which will control a stack in the memory of the 
machine. A subroutine call will push the return address onto this stack. The 
return reverses the process, popping the address from the stack to the program 
counter. This method is very attractive from several aspects, since it provides a 
solution to the problems identified earlier. The stack is built in memory, which 
need not be shared with the program, so the program can be in ROM while the 
stack is in RAM. When multiple users are executing programs on a single com- 
puter, then each user will have a private stack space and can share a single copy 
of the code. Since each call to a routine will push a new return address onto the 
stack, recursive routines can be utilized as well. For these reasons, the stack 
method for establishing subroutine linkage is used by many systems. 

Example 4.10: Subroutine linkage: The 68020 instruction set architecture 
has eight data registers (Do -D7) and eight 'address registers (Ao -A7), to 
which users have access, one of which (A,) is considered the stack pointer. 
In addition, there is a program counter. Give an appropriate RTL for the 
JSR (jump subroutine) instruction, assuming an address register indirect, 
relative addressing mode to identify the location of the subroutine. Also 
give an RTL for the RTS (return from subroutine) instruction. 

This subroutine linkage instruction mechanism is very straightforward. 
Note that the following RTL is not necessarily accurate if the 68020 is con- 
sidered in detail, since that processor has a pipelined implementation that 
increases the complexity of the system. However, as far as the user is con- 
cerned, the action of the JSR instruction can be considered as shown in the 
RTL included in Figure 4.19. 

Notice that since the 68000 series processors utilize a stack that grows 
down in memory, the adjusting of the stack pointer to put information on 
the stack is to decrement it; the proper value is then placed at this address. 
At the end of the operation the SP is pointing at the value at the top of the 
stack. The address register on the 68020 is 32 bits long, so the SP must be 
decremented by 4 since the addresses of the system are byte addressy. To 
pop information off of the stack, the value is first removed, then the stack 
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RTL for JSR (Jump to Subrourine) Inslructiorl 

fetch: 
P C + M A R  Start fetch of instruction. 

P C t Z  + PC All 68000 instructions start with 2 bytes. 
So point to next value to be fetched. 

M[MAR] -t MBR Get the JSR instruction from memory. . 
MBR + IR And transfer to IR. 

decode 
execute: 

This must identify addressing mode, etc. 

PC -t MAR Since addressing mode needs value from instruction stream. 
M [MAR] 4 Temp Get the value and store temporarily. 

PC+2 -t PC Bump PC by 2 to identify return address. 
S P- 4  -+ SP Get stack pointer ready for new addition to stack. 

SP -t MAR Set up MAR to identify memory location for return address. 
PC + M [MAR] And push PC, which has return address, onto stack. 

Temp + AN + PC Now put address of subroutine in PC. 
Note that A, is specified by instruction. 

RTL for RTS (Return from Subroutine) Instruction 

fetch: 

PC + MAR 
P C + Z  +PC 

M[MAR] + MBR 
MBR -t IR 

decode 
execute: 

SP -b MAR 
M[MAR] -t PC 

SP t 4 -t SP 

Start fetch of the return instruction. 
All 68000 instructions start with 2 bytes. 
Get the RTS instruction from memory. 
Transfer to N. 

Identify memory location where return address is stored. 
This will be a 4-byte transfer. 
Increment stack pointer to point at next value on stack 

and the action is completed. 

Figure 4.19. RTL Implementations of Subroutine Linkage for a 68020 System. 

pointer adjusted accordingly. One such implementation is also included in 
Figure 4.19. The call and the return, as demonstrated by the RTL of this 
example, implement a very simple but effective mechanism for linking cal- 
ling routines with subroutines. 

The mechanisms above for providing subroutine linkage control the flow of 
the instructions from one routine to another. But what has been ignored in the 
above discussion is the treatment of parameters being passed to and from a sub- 
routine. Several techniques are used in different circumstances, each of which has 
its relative merits. Rather than discuss the implementation techniques and how 
they may be used by different language systems, let us discuss some of the 
instructions included in different machines to help with the problem. 

The most obvious methods require no special instructions: leave the operand 
in a known place, like a register, and call the subroutine. When the subroutine 
has completed its work, leave the result in a known location and return to the cal- 
ling routine. The complexities arise when the called routine wants to use general 
resources, such as registers, but leave those resources unchanged when control is 
returned to the calling routine. The subroutine can then copy the registers that it 
will use, do the work, then restore the registers and return. For this reason some 
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instruction sets include special features to simplify this process. One example is 
the SAVE instruction of the NS32000 system, v:.,, .~, 1 , .   IN, t ; ~ :  L . S .  :. L J ~ J ' C ,  

of the selected registers. 'Ihcse can tl1c11 bc rcatored at the proper time with a 
RESTORE instruction that works in the reverse manner, popping values from the 
stack and placing them in the registers. 

Another facility is provided by the LINK facility in the 68000 instruction set. 
Often when a routine is accessed, it is desirable to provide for it an area in 
memory for local variables. One way to accomplish this is to use some of the 
system stack for this purpose. The LINK instruction allocates space on the stack 
for the routine to use as needed. This stack space can be used not only for local 
variables, but also for parameter passing between the two routines. The values are 
accessed by indexing into the stack (with the indexing mechanism provided by the 
addressing modes) from the current stack pointer. 

One of the more complicated mechanisms for linking routines is demon- 
strated by the CALLS instruction in the VAX architecture. This instruction uses 
the stack to pass arguments to a routine, with the assumption that the stack has 
already been modified to contain those arguments. The inbtrucrion t'izi~ nceds to 
know the number of arguments and the address of the target routine. The action 
of the CALLS instruction begins by pushing a number of arguments onto the 
stack. The location of the routine being accessed is identified; this could involve 
combinations of the addressing mechanisms already mentioned. The first 16 bits 
of the routine being called form an entry mask, which identifies thc registers to be 
saved before the routine can be entered. The stack pointer (SP) is aligned to a 
32-bit boundary, and those registers are pushed onto the stack, as well as the pro- 
gram counter (for return address), the frame pointer, and the argument pointer. 
Then two 32-bit values containing status and mask informa:ion are also placed on 
the stack. Finally, the new frame pointer and argument pointer are set up, and the 
program counter is set to the location after the entry mask, and control passed t9 
that point. This mechanism performs the work of transferring control to the new 
routine and providing, via the stack, a parameter passing mechanism. 

4.7. 110, Interrupts, and Traps 

The instructions investigated thus far have included mechanisms for doing work 
(arithmetic and logic instructions), mechanisms for passing information (moves, 
etc.), and mechanisms for controlling the work (program control instructions). 
One of the areas not mentioned is the transfer of information to and from external 
devices. This is generally called inputJoutput processing (UO), but involves more 
than transfer of data. Additional requirements include such things as testiflg of 
conditions and initiating action in an external device. Some of the UO program- 
ming is in response to an external event signaling the processor that a device 
needs to be serviced. This signaling process is called an interrupt, and the proces- 
sor responds to the interrupt in a predetermined fashion. Finally, traps serve 
much the same purpose as interrupts, but result from conditions detected internal 
to the processor. 

YO processing has evolved from the very simple capabilities of the first 
machines to sophisticated mechanisms used in some machines available today. In 
its simplest form, VO transfers data to or from an addressed device under the 
direct control of the processor. This is called programmed UO. In single address 
machines, the data is moved from/to the accumulator. For example, the PDP 8 
instruction set has input and output instructions that identify one of 64 devices. 
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Having selected the appropriate device, the system can transfer information in the 
ACC to the device, information from the device to the ACC, or test a condition in 
the device. The conditional instruction is similar to the conditional branches 
already discussed: the order of instruction execution is modified if the proper con- 
ditions are met. 

This concept of having specific instructions for input and output has contin- 
ued, and some rnicropmessors include an additional control signal to indicate 
that the address appearing on the address lines is to identify an UO device address, 
rather than a memory address. However, another technique, called memory 
mapped YO, is perhaps more widely utilized. With this method, VO devices are 
assigned specific locations in the address space of the processor, and any access to 
that address actually results in an If0 transfer of some kind. The memory mapped 
UO scheme has the advantage that no special UO instructions are required in the 
instruction set, and this reduces the complexity of the instruction decode mechan- 
ism. In addition, devices attached to the processor need not decode special sig- 
nals to differentiate between memory and VO requests. However, the fact that ID 
instructions are included in an instruction set does not prevent the use of memory 
mapped UO techniques in a system. The user of the system can decide which 
technique would be most appropriate for the goals of that particular implementa- 
tion. 

We will identify specific VO functions and methods in Chapter 6. But as far 
as the instruction set architecture is concerned, the important point is that the sys- 
tem be. capable of transferring information to and from devices attached to the 
processor. This can be data or status information, and can be used in calculations 
and decisions in the same manner as other datalstatus information within the sys- 
tem. Consider the following simple example of a transfer method. 

Example 4.11: Memory mapped 110: A 16-bit computer system that uses the 
memory mapped VO scheme has been configured so that the addresses 
FFEO16 and FFEI,,, are assigned to a simple UO device. The status of this 
device is obtained by reading FFEOI6. The least significant bit is set when- 
ever the device is  ready to accept a value, which can be written to the 
address FFEl16. The second bit is set whenever the device has data that the 
processor can read. This data is obtained by reading address FFEI 16. Create 
an appropriate code segment to move data from the array DATA-OUT to the 
device, at the same time accepting data from the device and putting it in the 
array DATA-IN. Assume that the operation will finish when the last value 
of DATA-OUT has been transferred. 

The actual code for this example would depend on the instructions in 
the system, but the point here is to use the memory mapped capabilities to 
do the desired work. The code must check to see what data transfers are 
possible and perform them: 

MOVE #length. RO 
MOVE #rn, R I 
MOVE #FFE I, R 2  
MOVE #<datain>, R3 
MOVE 4kdauoutz. R4  

loop: MOVE *RI,R5 
JZERO lwp 
AND Sl.R.5 

Put the number of transfers in RO. 
Move the status address to a register. 
And the data address. 
Fill R3 with address of input area. 
Fill R4 with address of output area. 
The MOVE sets status bits according to value 

transferred; back to loop if it's zero. 
If it's not zero, is the LSB set? 
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JZERO output I f  LSU not 1 ,  musl be ready for ourpul. 
MOVE *R2. *R3+ This is inpul funclion. 
BRANCH loop Now go back and check again. 

output: MOVE *R4+, *R2 This oulputs one value (and inc's address). 
DECREMENT RO Now are we done? Decrement RO, and if the 
JNZERO loop result is not zero, go back and try again. 
instruction Otherwise, we this is the next instruction. 

This code will cause the machine to poll the UO device until either the dev- 
ice has information for the system, or the UO device can accept data from 
the system. The polling is done by rcadinp, the status register of the YO 
device, which is available at address FFE0,6. When the status register indi- 
cates that transfers can occur, they are performed by writinglreading the 
appropriate memory location. 

The above example identifies one method by which information can be 
transferred between a processor and a peripheral device. However, the polling 
mechanism demonstrated by the code is extremely inefficient in many cir- 
cumstances. For example, if the processor issued a command to a tape drive to 
seek a particular file on a tape, a very long time will pass between issuing the 
request and having the device respond with the desired results. With the polling 
technique, the capabilities of the system are not available for anything else during 
the seek time. Therefore, it is more efficient to have the UO device send a signal 
to the system when the action of a command (in this case the seek action) has 
been completed. This signal is an interrupt, and it signals the processor to inter- 
rupt its current action and do something. What the system should do when it 
responds to an interrupt is defined in a routine called an interrupt service routine. 
The behavior of the system when responding to an interrupt is identical in many 
respects with the action of calling a subroutine. Thus, the instructions dealing 
with interrupts mimic the instructions involved in subroutine linkage. 

One of the most basic requirements of the system with respect to the inter- 
rupt facility is the ability to enable or disable interrupts. This action is provided 
in some systems by including two specific instructions: one to turn on the inter- 
rupt facility, and one to turn it off. This function can also be handled by a bit 
(often called the interrupt enable bit) in the status/control register of the system. 
This bit is set and cleared by the logic instructions of the system. 

If the interrupt capability of the system is enabled, the interrupt facility is 
checked at the end of each instruction. If an interrupt is pending, the appropriate 
action is taken. If the conditions are such that the interrupt should be recognized, 
then the system responds by causing execution of the interrupt sequence. If the 
interrupt conditions are not met, then the request is ignored. The "conditions" 
range from the simple to the complex. In some extremely simple systems, all 
interrupting devices activate the same control line, so there is no way of differen- 
tiating (in hardware) what caused the interrupt. Hence, any interrupt will cause 
the interrupt sequence to be initiated. Another method is to group interrupting 
devices into levels, and to prevent interrupts below a specified level from being 
recognized. A system with this ability may prevent interrupts from devices of a 
lower priority from being handled until the action required by a higher priority 
device has been completed. Another method is to individually control the inter- 
rupt ability of VO devices. Thus, before an interrupt can be recognized, both the 
system level interrupt and the device level interrupt facilities must be enabled. 
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The interrupt acknowledge sequence is identified by the system architect 
when the design is specified. One intermpt sequence is to do an automatic wb- 
routine call with a predefined target address. The subroutine, which is the inter- 
rupt handling routine, is then responsible for disabling further interrupts, saving 
whatever information is needed, and then doing the work. When the interrupt ser- 
vice routine has completed the action needed by the interrupting device, then the 
system reenables the interrupt, and returns to the program where the execution 
was active when the interrupt occurred. 

The desired behavior is for the interrupt action to be invisible, except for the 
time required by the interrupt service routine. That is, the state of the machine 
should be the same di~ectly afier the interrupt has been serviced as it was before 
the interrupt occurred. The state of the machine refers to the contents of all of the 
appropriate registers, both general purpose and special registers. For this reason, 
the information saved by the interrupt action must include all registers altered by 
the interrupt service routine. These will be restored in the process of returning to 
the interrupted program. For example, when the 6800 microprocessor recognizes 
an interrupt, the accumulators (there are two), the program counter, and the status 
register are all pushed to the stack. The RET instruction restores all of these 
values and continues execution. Other systems respond in a similar fashion, stor- 
ing a sufficient amount of state information to return to normal programming at 
the end of the interrupt service routine. 

If one address is specified for all interrupts in the system, then the intermpt 
servlce routine does not have a sufficient amount of information to identify which 
of the possible interrupting devices actually is requesting attention. Therefore, the 
routine must poll all appropriate devices to ascertain which one needs service. A 
more time-efficient mechanism is to ask the devices to identify themselves so that 
a specific routine can be accessed. This is called a vectored interrupt, and is 
implemented in a variety of ways. One is to have an interrupting device supply 
the address at which the interrupt service routine will be located. This is the 
method used in UNIBUS devices: a special interrupt acknowledge bus cycle 
requests the address from the applicable device, and obtains from that address the 
address of the intermpt service routine (one level of indirection) and a new status 
word. 

A similar mechanism for vectored interrupts is used by a variety of 
microprocessors. The technique calls for a number of interrupt levels, and to each 
level is assigned a device or number of devices. Within the memory of the pro- 
cessor is created a table containing the address of the interrupt service routine for 
each level. An interrupt is requested by asserting the lines to indicate the 
appropriate level, and the processor automatically extracts the corresponding 
address from the table. With this technique, if several devices have the same 
priority level, then the interrupt service routine must use an additional information 
mechanism, such as polling, to find the device that actually requested the service. 

The interrupt mechanism is very useful for handling any event that needs 
service. The above discussion deals with external interrupts, such as a disk or 
tape drive interacting with the processor. But the same kinds of information are 
needed for exception conditions that occur during the execution of a program. 
For example, if an ovedow or similar arithmetic problem occurred during the 
execution of a program, the system must deal with it in a reasonable fashion. One 
way is to ignore it, which requires no additional facilities. Another way is to 
allow the system hardware to cause an interrupt in the same manner as a disk 
drive. This is called a trap or exception, and is used for a variety of functions, as 
demonstrated by the following example. 
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Exun~ple 4.12: Itltc.rrupr n~ecl~unisnu: The instruction set architecture for 
the 68020 is given in Figure 4.20. What is the intermpt mechanism for this 
device? What traps are established in the system that also use this mechan- 
ism? 

The figure indicates that the system can function at two levels, the 
user level and the system level. The user is prevented from accessing some 
of the registers of the device, whereas the system does have access to all the 
user registers and those that have a direct impact on the system operation. 
Of particular interest for this example is the treatment of the status register. 
The user has access to the condition codes (extend, negative, zero, overflow, 
carry), but not the other portions of the status register. The user cannot 
influence the 3 bits comprising the interrupt mask. The system establishes 
the interrupt level by setting the 3 bits to the desired level. At the end of 
each instruction the three intermpt lines of the processor are checked to see 
if they form a number that indicates a high enough priority level to request 
an interrupt. If no interrupt is pending, or if the pending interrupt is not of 
sufficient priority to request attention, then the next instruction is fetched 
and processing continues. However, if an interrupt of sufficiently high 
priority is pending, then several things happen to begin the appropriate pro- 
cessing. The status register is copied so that it can be restored when the 
interrupt processing is complete. The system state is changed to supervisor 
mode. The interrupt mask level is set to the level that caused the interrupt, 
so that interrupt requests of the same (or lower) priority are ignored until the 
current one is completed. The processor requests a vector number from the 
interrupting device; the vector number is obtained on the data bus. This 
will be used to obtain the address of the interrupt service routine from the 
exception vector table shown in Table 4.4. After obtaining the interrupt 
number, the current processor context is saved. This is done by pushing 
onto the active supervisor stack an exception stack frame, whose format is 
shown in Figure 4.21. The figure shows the information in a 16-bit 
configuration, but the processor, which is capable of 32-bit transfers, will 
use the wider data transfers as much as possible to speed up the process. 
The status register used is the copy of the status register made at the initia- 
tion of interrupt processing. The program counter is the 32-bit address cf 
the next instruction to execute. The vector offset is the offset value (inter- 
mpt number x 4) that will be used to identify the address of the interrupt 
service routine. And the additional state information contains other system 
registers and information. This will vary from 0 to 42 words, depending on 
the intermpt that initiated the action. (For further details, refer to the device 
specification.) Under certain circumstances, an additional exception stack 
frame will be created on the interrupt stack. Finally, the address of the 
interrupt service routine will be obtained by adding the offset value to the 
contents of the vector base register. At that location is the address of the 
intermpt service routine. Processing continues at that location. 

As can be seen from Table 4.4, addresses are maintained in the excep- 
tion vector table for both user-defined interrupts and system traps. If the 
floating point unit detects an underflow, for example, the interrupt sequence 
for intermpt number 51 is initiated. Regardless of the source of the inter- 
rupt, when the service routine has completed the necessay processing, 
control is returned to the controlling program by the RTE (Return from 
exception) instruction, which pops the appropriate information off of the 
stack and restores it to the appropriate registers. The format bits shown in 
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31 16 15 8 7 0 
Do 
Dl 
D2 

D3 Data 
D4 Registers 
05 
D6 
D7 

A2 
Address 

A3 Registers 
A4 
A5 
A6 

31 16 15 0 I A7 User Stack Pointer 

31 0 
] PC Program Countel 

I - CCR Condition Ccde Register 

User Accessible Registers 

31 16 15 0 
] A 7  lntermpt Stack Pointer 

31 16 15 0 
I 1 A T  Master Stack Pointer 

15 8 7 0 
I CCR ] SR Status Register 

Intern@ Priorly Mask 1 

31 0 - .  
r ] Vector Base Register 

1'1 Alternate Function 
Code Registers 

3 1 0 
I Cache Control Register 

I 31 0 
1 Cache Address Reg~ster 

. -. - .- - - - .  --- -. - 

System Accesstble Regtsters 

Figure 4.20. Inslruction Set Architecture for the 68020. 
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Vecror 
N~rrnber - 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16-23 
24 
25 
26 
27 
28 
29 
30 
3 1 

32-47 
48 
49 
50 
5 1 
52 
53 
54 
55 
56 
57 
58 

59-63 
64-255 

Table 4.4. Exception Vector 
I I Vecror 

Hex 

000 
004 
008 
OOC 
010 
014 
018 
OIC 
020 
024 
028 
02C 
030 
034 
038 
03C 

040-05C 
060 
064 
068 
06C 
070 
074 
078 
07C 

080-OBC 
K O  
0C4 
OC8 
OCC 
OW 
OD4 
OD8 
ODC 
OEO 
om 
OE8 

OEC-OFC 
100-3FC 

Asignments for the 68020. 

set - 
Spare - 

SP 
SP 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 

SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 

SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 
SD 

Reset: initial interrupt slack pointer 
Reset: initial program counter 
Bus error 
AJd~css enor 
Illegal instruction 
Zero divide 
CHK. CHIC2 instruction 
CCTRAPCC. TRAPCC, TRAPV instructionr 
Privilege violation 
T w e  
Line 1010 emulator 
Line l l l l emulator 
Unassigned, reserved 
Coprocessor protocol violation 
Format error 
Uninitialized interrupt 
Unassigned, reserved 
Spurious interrupt 
Level 1 interrupt auto Vector 
Level 2 interrupt auto vector 
Level 3 interrupt autc vector 
Level 4 interrupt auto vector 
Level 5 inlenupt auto vector 
Level 6 interrupt auto vector 
Level 7 interrupt auto vector 
TRAP #)-I5 instruction vectors 
WCP Branch or set on unordered condition 
FPCP lnexact result 
FPCP Divide by ~ e r o  
WCP UnderRow 
FPCP Operand error 
FPCP Overflow 
FPCP Signaling,NAN 
Unassigned, reserved 
PMMU Configuration 
PMMU Illegal operation 
PMMU Access level violation 
Unassigned, reserved 
User-defined vectors 

Figure 4.21. Exception Stack Frame of the 68020. 
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Figure 4.21 will indicate to the system the number of words in the addi- 
tional state informatinn. and the svstem can then restore them appropriately. 

An ilrlportarit tirnc in determirirng titc efllc~cncy ot an rn~ernrpt sysicnl 
is the amount of time required to recognize an interrupt and return, without 
performing any work. The actual times will depend on the processor sped, 
the memory speed, and the state of the cache memory. However, a "nor- 
mal" intermpt will require four 16-bit words, or at least two 32-bit transfers 
onto the stack, to save the state, then a memory transfer to obtain the 
address of the interrupt service routine, and a memory transfer to obtain the 
first instruction to execute. Thus, a minimum of four memory transactions 
are required to initiate an interrupt service routine. A minimum of two 
transfers (from the stack) is required to restore the system to functioning 
order, plus one to obtain the next instruction to execute. Additional times 
would be required for the other, nonmemory activities as well. 

In this section we have seen that a processor requires the ability to commun- 
icate with external devices. This can be accomplished by using dedicated UO 
instructions or by using the memory mapped UO technique. In either case, the 
system hardware has the ability to transfer information to and from the external 
device. This can be data, or it can contain status and control information. How- 
ever, for transfers involving large amounts of data, programmed UO techniques are 
not always applicable, and some form of automatic transfers are used. These 
techniques, such as direct memory access (DMA), will be discussed in Chapter 6. 
When an 110 device has completed its assigned task, it often has the ability to sig- 
pal the CPU that it needs attention, and this interrupt facility allows the processor 
to be doing other tasks while the UO device is busy. 

When interrupts are recognized by the processor, the CPU will save a 
sufficient amount of information to be able to return to what it was doing, and 
then transfer control to an intermpt service routine. This routine identifies the 
device that requested the service, and performs the necessary processing. The 
identification process can be taken care of by polling, by a vector mechanism, or 
by appropriate combinations of these techniques. When the interrupt processing 
is complete, the CPU can return to the original processing in much the same way 
that a subroutine is performed. 

4.8. RISC vs. CIX: Instruction Set Strategies 

To this point in this chapter we have identified different types of instructions and 
addressing mechanisms. One of the questions that must be addressed by a system 
architect concerns the number and type of instructions to be included in a specific 
computer system. One strategy is to include a large number of instruction types 
and addressing modes. A system of this type is called a complex instruction set 
computer (CISC). An alternative method is to reduce the complexity of the 
instruction sef and hence the reduce the logic required for the implementation of 
the system, including only the instructions needed for the desired application. A 
system of this type is called a reduced instruction set computer (KISC). In this 
section, we will examine some of the issues involved in the decision process, and 
some of the techniques that have evolved with the RISC machines. 

The earliest machines were very simple in their architecture and implemen- 
tation, both because experience with computing systems was nonexistent and 
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because the technology of implementation mandated a simple machine. Thus, the 
language of the machine was correspondingly simple. However, users of the 
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their problems in a language that treated variables and arithmetic at a higher level 
than the language of the machine. This resulted in what has become known as the 
semantic gap, which is the gap between the language of the machine and the 
language of the user. The languages of users (FORTRAN, Pascal, LISP, C, etc.) 
became more complex to represent increasingly more complex problems. In 
response to this trend, computers themselves became more complex, changing 
with the available technology and user demands for speed and versatility. The 
attempt was to reduce the semantic gap by creating more complex computing sys- 
tems. This would enable users of computers to more effectively utilize the com- 
putational capabilities of the system. 

Effective utilization of a computing system is accomplished by creating a 
suitable bridge for the semantic gap. The most common bridge is a compiler, 
which accepts as input a problem written in the language of a user, and creates as 
output a corresponding solution in the language of the machine. Complex instruc- 
tion set computers seek to reduce the difficulty of the task of the compiler by 
making the instructions of the machine more closely conform to the instructions 
of the higher level language. Some systems [RiSm71, DitzBI] have been created in 
which a high level language is the native language of the processor, but this is not 
a general practice. 

Observations of the behavior of programs executing on real machines pro- 
vided some interesting insight into the operation of computers. These observa- 
tions indicated that most of the time the computer was utilizing a small subset of 
all available instructions. Carrying this observation to the next logical step, sys- 
tem architects concluded that the system speed could be enhanced by including 
only the often used instructions, and by making them as fast as possible. This 
simplification of the instruction set and the implementation hardware results in a 
unit that can run faster. However, the more complex functions of a programming 
language must be accomplished with subroutines or with longer instruction 
sequences than corresponding CISC instruction sequences. The result is that a 
program may require more instructions to complete on a RISC machine than on a 
CISC machine, but the RISC instructions will, in general, have a higher execution 
rate. 

The RISC approach, then, is to create a system that is simpler in architecture 
and faster in implementation than a CISC machine. With the simplicity comes the 
promise of speed, and with many implementations this promise is realized. How- 
ever, care must be taken when comparing machines based on a rate of instructions 
per second, since the work accomplished by a RISC instruction will, in general, , 
not be as great as the work accomplished by a CISC instruction. 

The basic issue, which is treated differently by the RISC and CISC 
approaches, is one of resource utilization. How can the system resources be used 
most effectively? Different answers to this question are possible, based on the 
relative costs associated with the resources by the system architect. 

The tenets of RISC architectures strive to maximize the speed and minimize 
the complexity of the implementation. Simplicity is the basis of both the architec- 
tural definition and the implementations. Some of the basic policies which are the 
result of this type of an architecture are a minimal number of instructions and 
addressing modes, fixed instruction formats, hardwired instruction decoding, sin- 
gle cycle execution of most instructions, and the use of a loadjstore type of organ- 
ization. 
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Mittinla1 number of instructions and addressing modes. By including only 
the instructions that are executed often, the system need not include seldom used 
features. The result is a smaller, faster system, .That is capable of doing more 
instructions in a given amount of time than a CISC machine. The CISC machine, 
on the other hand, will specify more work in a single instruction. Thus, while the 
CISC instruction will take longer to complete, fewer such instructions are required 
to do the work of a high level task. 

Fued instruction formats. By restricting the format of the instructions, the 
tasks of the control system are simplified. In the fetch-decode-execute mechanism 
of stored program computers, the decode function must identify the work to be 
done. By causing all of the instructions to use the same format, then the decisions 
required of a decoder are minimized. For more complicated instructions, such as 
those of a CISC system, the decoder must first ascertain the length of the instruc- 
tion, extract the necessary information from the instruction stream, and then 
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a restr~cted location for the specification information, the speed of the system is 
enhanced. 

Hardwired instructron decodrng This characteristic accompanies the fixed 
instruction format idea, and can be useful for two d~fferent reasons. The first is 
that hardwared instruction decodmg (using random logic to implement the decod- 
ing function) can, in general, be done more rapidly than the altemative mechan- 
isms. such as microcodmg. We will discuss different alternatives for the control 
system in the next chapter. Hardwired logic has traditionally been faster than 
memory based techniques, such as microcode. The early machines used this tech- 
nique simply because the memory technology was not sufficiently fast to be 
attractive. However, the development time was longer because of the difficulty of 
generating correct logic for all conditions. When small, high speed memories 
became a reasonable altemative, then microcoded systems became attractive 
because of their regularity and versatility. The speed ratio of data memory and 
microcode memory has been steadily decreasing in recent years, so the use of 
microcode for speed is not as beneficial now as it was previously, although the 
use of microcode for versatility is still attractive. Thus, to enhance the speed of 
the control function, hardwired logic for instruction decode is a reasonable alter- 
native. The increased use of computers as tools to aid in the design process has 
made this altemative viable, since the correctness of the design can be tested 
before the design is committed to hardware or silicon. 

Single cycle execution of instructions. If a computer system can be so 
organized that one instruction is executed in each cycle, then by some standards 
maximum utilization of all system resources can be approached. Again, the tcch- 
nology plays a part in the decision process, limiting and shaping thc tjpcs of 
things that can be done in a cycle time. As VLSI technology evolves, functions 
that once took many cycle times, such as floating point arithmetic, can now be 
done in a very short time. Thus, organizing the system to take advantage of this 
can be very beneficial. However, this limits some of the action of a system, since 
certain types of operations cannot be accomplished in a single cycle. For exam- 
ple, incrementing a value located in memory cannot be done in a single cycle. 
since the value must be obtained from memory, then updated, and then rewritten 
to memory. Hence, the instructions included in the system are all restricted to 
what can be accomplished in a single cycle. Some RlSC systems deviate from this 
to allow certain instructions to take two (or more) cycles, which permits reuse of 
certain system resources, or allows for delays through logic that require more time 
than allowed in a single cycle. 
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Loadlstore nlenlory organization. With a loadlstore memory system, the 
only instructions that deal with memory are those that load information into regis- 
ters from memory or that store infommtion from registers to memory. All 
arithmeticbogic instructions work with values in registers. By placing the 
operands of arithmeticbogic instructions in registers, the above stated objective of 
an instruction per cycle can be met. With this organization, the operands are 
readily available, and can be extracted as needed from the registers. No time is 
lost waiting for operands to be obtained from the data memory. However, 
separate instructions are required to move the information to the registers to be 
used. The RISC technique relies on the observation that in general infoimation 
will be used several times before results are written to memory. The CISC tech- 
nique, which does not restrict the location of the operands for the inshuctions, 
allows either the register intensive technique or memory-to-memory operations to 
be uscd. 
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utilization of additional architectural techniques such as pipelining, multiple data 
paths, and large register sets. These techniques are not strictly associated with 
RISC machines, but combining the techniques with the reduced instruction set 
ideas often results in a higher speed system. At this point we should hasten to 
add that not all RISC systems adhere to all of the tenets listed above, and that 
most available RISC systems violate at least one of them. 

The basic concepts and ideas of pipelining are discussed in Chapter 8, so we 
will not elaborate on the RISC use of pipelines here. But one of the reasons that 
pipelining functions well for RISC machines is that the restricted operand place- 
ment for arithmeticnogic instructions minimizes pipeline delays for operand 
fetches. An operand required for execution of an instruction must be obtained by 
a pipeline before the operation can continue. If these operands are always re- 
stricted to fast registers, such as in the RISC case, then the delays associated with 
operand access are minimized. If the operand is in general purpose memory, such 
as in a CISC machine, then a relatively long time is required to obtain the infor- 
mation, which reduces apparent system speed. 

The use of multiple data paths allows a greater amount of parallelism and 
concurrency to be used in the implementation of systems. This is evident in two 
areas, as seen by the block diagram for the Motorola 88000 RISC system, shown in 
Figure 4.22. The two areas identified in the figure are the multiple buses con- 
tained within the 88100 processor chip and the distinct instruction and data paths 
to memory. 

The use of multiple buses internal to a processor allows transfer of multiple 
operands in any given cycle. In particular, two source operands can be provided 
to a functional unit, and a destination operand from a functional unit provided to 
the register file within a single cycle. This requires buffer registers within the 
functional units to hold the values while the buses are released to be used else- 
where. And the multiplicity of functional units increases the opportunities for 
parallel activity within the processor itself. 

Providing different paths for both the instruction and data transfers allows 
those two functions to proceed simultaneously. This is necessary if the goal of 
one instruction per cycle is to be achieved. But by using this technique a new 
instruction can be made available in each cycle, regardless of the data transfers 
needed by the system. For arithmetic instructions, the data path to memory would 
not be needed. But for instructions that transfer information to and from memory, 
both ports would be used very efficiently. 
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REGISTER FILE INSTRUCTION 

Figure 4.22. Motorola 88000 RISC system. 

Like pipelining, the concept of multiple paths for information transfer is not 
limited to use in RISC systems. However, a system that follows the RISC con- 
cepts will be able to optimize the use of multiple information paths for enhanced 
system speed. The same is hue of large register sets. This technique can be used 
in systems of any type. However, one of the techniques that has been linked with 
RISC systems, and that utilizes a large register set, is the use of register windows 
for parameter passing in subroutines. 

By measuring the frequency of instruction execution, it has been observed 
that the process of calling and returning from subroutines consumes a large 
amount of processor time. In an effort to minimize this, the idea of using register 
windows on a large register set has been proposed. The basic idea is that many 
registers are included in the system, but that only a limited number of them are 
accessible by the system at any one time. This limited number of registers is 
identified as the "window" into the set of all registers. To change the window, a 
pointer that identifies the active registers is modified to specify a new set of active 
registers. When the windows overlap between routines, then parameters can be 
passed by placing them in the registers that are accessible by both routines. In 
this way, the memory hansactions required for pushing parameters onto a stack, 
and then popping them off, are minimized. As long as the number of parameters 
is less than the register overlap, no memory transactions are required for passing 
of the parameters. 

This technique was utilized by the architects of the RISC I system at the 
University of California at Berkeley, and their use of registers is shown in Figure 
4.23. The instruction set uses 5 bits to specify registers to be used in an instruc- 
tion. Thus, 32 different locations can be accessed. The first ten registers (RCR9) 
are global registers, and are accessed by any routine, regardless of the number of 
subroutine calls. The remaining 22 registers are broken into three groups: the 
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J Common Registers: 
Accessed by all routines 
as RO-R9 

Figure 4.23. Register Use in RISC I. 

high registers, the local registers, and the low registers. The high and low groups 
each contain six registers, while the local group contains 10 registers. Together 
these three groups form a routine specific set of registers. Thus, when a routine is 
accessing register storage, it will identify a value in either the global registers or 
the routine specific registers. It is then the responsibility of the system/user to use 
the registers in a coherent manner. 

As mentioned above, one of the primary reasons for using register windows 
is for parameter passing in subroutines. When returning from or calling a subrou- 
tine, a pointer that identifies the location of the routine specific registers within 
the set of all registers is modified to point to the next set of routine specific regis- 
ters. This modification is an increment/decrement by 16, which causes six of the 
registers to be shared between routines. With 22 registers in the routine specific 
set, this causes an overlap of six registers between the two routines. Any data to 
be exchanged between the two is merely left in an agreed-upon register by one 
routine, and the other routine knows where to obtain the information when it is 
needed. 

This process of information exchange is graphically depicted in Figure 4.24. 
Only a portion of the overall register set is shown. If a program is executing 
Routine A, then the 32 registers to which it has access are the global register set 
(RO-R9) and the routine specific set which begins at location 90 in the register set. 
The routine specific registers for Routine A are referred to as R10 to R31 by 
instructions within the routine, but the system actually utilizes registers R90 to 
R111. Now assume that Routine A is going to call Routine B, and that it needs to 
pass two values. Routine A places the values in R10 and R11 (which are physi- 
cally R90 and R91) and calls Routine B. The subroutine call identifies the address 
of Routine B; execution of the instruction changes the program counter, creates 
the appropriate return linkage, and decrements by 16 the pointer identifying the 
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Figure 4.24. Parameter Passing with Register Windows. 

routine specific set of registers. When Routine B needs the information passed to 
it. it will access R26 and R27 (which are physically R90 and F91). Parameters 
passed back to a calling routine will utilize the same technique, with Routine B 
leaving results in, say, R31 (physically R95) and returning control to Routine A. 
And Routine A obtains the value by accessing R15 (which is physically R95). 
Note that no special stack operations were involved to pass parameters; the 
parameter passing was accomplished by merely organizing the processing in such 
a way that, when the subroutine was called, the information to be passed was 
found in the overlapped register area. 

The use of register windows allows parameters to be passed without 
memory intensive stack operations. A second benefit is that a subroutine need not 
save state before beginning actual work. In a "normal" machine, if a suhroutine 
is going to modify eight of the general purpose registers, it will first save the con- 
tents of those registers (probably on the stack). Then, before returning to the 
calling routine, the registers can be restored to their previous value. These opera- 
tions are not needed if register windows are used, since different physical registers 
are used for each routine specific set of registers. However, care must be taken to 
be sure that overlapped registers are used in a reasonable fashion. 
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The above technique will minimize the memory interactions needed for 
parameter passing and subroutine use of registers, but the technique incur5 some 
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information. Obviously, it would be ideal to have an infinite number of registers, 
but that is not a reasonable solution. The number of registers included is based 
upon the expected depth of subroutine calls. Studies of actual programs have 
shown that, for most applications, the nesting level of subroutines is on the order 
of eight. Including 144 registers would allow the above technique to have a sub- 
routine call depth of eight before additional transfers would be needed. Obvi- 
ously, if the nesting level exceeds eight, then a great many memory transfers 
would be required to save either the entire set of registers or some designated por- 
tion of it. As with other techniques, the idea of includin~ register windows in a 
system is no1 solely a RISC concept, but rather a mechanism that can be utilized 
whel-ever il will result in an imploved syslenl. 

The use of memory is another of the interesting aspects of RISC architec- 
tures that needs to be considered in a system. Memory technology has made 
rapid advances in both speed and size of available memory systems. In a time 
when memory systems were quite small by today's standards, the size of a pro- 
gram was a critical measure of the effectiveness of the system. However, as 
memories have become faster and larger, the need for having small programs has 
been reduced. In general, programs on a RISC machine will occupy a somewhat 
larger section of memory than similar programs on CISC machines, since more 
instructions are required to do the work. However, since memories are becoming 
increasingly larger, this is often not considered a drawback. Also, since the archi- 
tecture attempts to minimize delays due to memory interaction (separate 
datalinstruction paths, and register only arithmetic, for example), overall effect is 
to create a system that can do work faster. 

The term RISC refers to an approach rather than to a specific system or set 
of requirements. For example, one of the tenets listed above is that a RISC system 
will use hardwired control, yet some computer systems advertise themselves to be 
RISC computers that utilize microcoded control systems. Real computer systems 
will range from units that adhere strictly to the RISC approach and simplify all 
aspects of the system, to units that follow the CISC approach and include highly 
complex capabilities. The "best" system will be the one that makes the most judi- 
cious use of system resources to solve the problem for which it is intended. And 
whether a RISC approach or a CISC approach is a better choice cannot be deter- 
mined without applying appropriate metrics, and perhaps trying the systems in a 
real application. 

4.9. Summary 

We have discussed a number of mechanisms for doing work in computers, where 
work is defined as directing a CPU to perform a specific task. The work that a 
computer is capable of doing is defined by the set of instructions controlling the 
operation of the machine. The set of instructions of the system also identifies the 
apparent architecture of the system or the instruction set architecture. Implemen- 
tations of the architecture may or may not contain all of the registers, functional 
units, and data paths alluded to in the instruction set architecture. 

The structural aspect of the system - the functional units, data paths, and 
storage elements included in the machine - will determine the mechanisms 
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needed to implement the instruction set architecture. When the structure of the 
system is known, then the internal transfers required to carry out the work of the 
instructions can be represented in a register transfer language. 

Instructions that control the arithmetic and logic operations of a system can 
have a varying number of addresses, from zero address stack machines to three 
address systems capable of identifying both sources and destination of an opera- 
tion. The choice of the instructions to be included in the system is made by the 
system architect after careful consideration of the application area of the machine 
and the utilization of available system resources to accomplish the required sys- 
tem objectives. 

The use of registers for operand storage reduces the number of bits required 
to identify the location of information as well as the time required to obtain the 
information. Registers can also be used to effectively identify the location of 
values in a memory system. 

Operands for instructions can be located in general purpose memory or in 
registers. The instruction set may contain multiple addressing modes to identify 
the location of the information. These include combinations of direct and indirect 
addressing, indexing, stack operations, and instruction stream accesses. 

Program control instructions allow changing the flow of control in a pro- 
gram executing on the system. This change of flow can be unconditional or based 
on some status of the system. Also, routines can be called from within a program, 
and a retum linkage established. 

Interaction with devices external to the system is accomplished with UO 
instructions, or VO techniques like memory mapped VO. These devices have the 
ability to signal the computer system, or "interrupt" the program flow, when 
interaction is needed. In addition, internal conditions, such as arithmetic 
overflows, can cause interrupts within the system. 

The RISC approach to computer architecture is to simplify actions to a 
minimal set, and use high speed hardware and optimizing software techniques to 
create a system that will execute programs at a high speed. 

The functional units of a computer system, the interconnection system, and 
the instruction set that controls the action of the system must be created with all 
of the above ideas in mind. The architecture that is most effective in a given 
application will make the most efficient use of system resources, where resources 
can be time, power, memory, or any of a number of other measurable quantities. 

4.10. Problems 

4.1 A general purpose computer system must have the ability to perform certain 
basic functions in order to do useful work. Three of the basic functions are 
store, load, and add. 

a. Name four other basic functions that the computer must do. 

b. Name four additional instructions that would be nice to have. 

4.2 Consider a machine with the following characteristics: 

It is a two address machine. 

Subroutine linkage is through a stack mechanism, in main memory. 

There are eight general purpose registers, plus other special purpose 
registers. 
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The machine is capable of absolute, indirect, base plus displacement. 
and gencral indexed addressing modes. 

a. Give a block diagram showing the major components of the system and 
their interconnection. Include arrows indicating flow direction of the data. 

b. Using the block diagram, give the RTL necessary for 

ADD R I ,  R2 
Add the contents of register 1 to register 2 

MOV *RI. *R2+ 
Move the contents of memory stored at thr Iod~on idciLl~cd by Rt to 
the location identified by R2; then iiicrerntn~ R2 

CALL IAOF4 
Go to the subroutine located at address A04F; this address is stor4 in the 
location following the CALL instruction in the instruction stream. 

RETURN 
Return to the calling routine from a subroutine. 

4.3 One of the methods of evaluation for a machine is to determine its behavior 
for a program or program segment. Two of the basic computer methods dis- 
cussed in this chapter are single address machines with a general purpose 
accumulator, and two address machines with a general register set. Create 
block diagrams for a single address machine and a machine with a general 
purpose register set. Then create assembly level code to implement the fol- 
lowing statements: 

for ( i = 0 ; i < 100 ; i++ ) 

Use the code generated and contrast the two methods. In particular, identify 
the number of instructions executed, the number of memory references 
required, and the number of arithmetic operations. Which of the figures of 
merit is the most crucial? Why? 

4.4 Use the technique of Problem 4.3 to compare a CISC machine approach to a 
RISC machine approach. That is, create block diagram representations for a 
CISC architecture and a RISC architecture. Then create code to implement 
the loop of Problem 4.3. Use the number of memory references, the number 
of register references, and the number of arithmetic operations to contrast 
the two methods. 

4.5 You have been given the task of developing a single address computer to be 
utilized in general purpose applications. This machine is to be a 16-bit 
single address computer capable of direct and indirect addressing. Operands 
obtained via the direct addressing mode are identified by their position 
with respect to the PC, so the access method could be called PC relative. 
This permits programs to be located anywhere in the memory. The machine 
will have more than eight but less than 16 instructions requiring memory 
access. 

a. Give a block diagram of a computer that will fit these requirements. 
Show all major registers, and all data paths, including the direction@) of 
data flow on the data paths. 
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b. Propose a method for encoding the instruction information for the sys- 
tcm. That is, what should the instruction format be in the 16 bits stored in 
the computer's memory. 

c. Give the register transfer language steps required for the following 
instructions: 

ADD (indirect addressing) 

CLEAR 

JUMP TO SUBROUTINE (direct addressing) 

RETURN FROM SUBROUTINE 

4.6 Computer Designers, Inc., has been contracted to design a special purpose 
computer with the following requirements (not a complete list): The 
machine will operate with a two address, register-oriented instruction set, 
with 16 general purpose registers. These registers are denoted RO-R15. The 
subroutine linkage is accomplished with a stack, R15 being the stack pointer. 
The program counter is R14. Operands (results) are obtained (deposited) 
either directly from (to) the registers or indirectly through the registers from 
(to) fast semiconductor memory. The memory space is 65,536 bytes. The 
indirect references can leave the pointer-register unchanged, increment it, or 
decrement it. The instruction set is composed of over 16 instructions, 
including ADD, SUBTRACT, INVERT, AND, OR, EX-OR, NEGATE, JUMP, 
JUMP-SUBROUTINE, RETURN, and INCREMENT. 

a. Give a block diagram of the data path of the machine. 

b. Give sufficient formats to accomplish the instructions (that is, however 
many formats are necessary: 1, 2, or more...). 

c. Give an RTL description of ADD (with direct addressing of the operands), 
INVERT (use indirect, autoincrement mode to identify operand), JUMP- 
SUBROUTINE (use indirect addressing to identify location of subroutine), . - 
and RETURN. 

I 

4.7 Consider the above block diagram of a 16-bit single bus system. The pro- 
gram counter (PC), stack pointer (SP), and instruction register (IR) are 16-bit 

- 
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registers capable of receiving information from and sourcing information to 
the general bus; the temporary registers (TI & T2), the register address regis- 
ter (RAR), and the memory address rcgistcr (MAR) are only capable of 
receiving information. The ALU can increment, decrement, invert, and add. 
The stack pointer identifies the next available location; stack grows to lower 
addresses in memory. The register memory contains 16 registers, and the 
main memory has 65,536 locations. The MUX on the RAR is to select either 
the source or destination register identification bits out of the 16-bit word 
loaded into the RAR. The machine has a two address instruction set with the 
following address modes: register, register indirect, register indirect autoin- 
crement, immediate/absolute (absolute address is stored in next word of 
instruction), and program counter relative (used for jumps only; 8-bit dis- 
placement is stored in instruction word). Give the register transfer language 
statements for the following instructions: (operand order is Source, Destina- 
tion) 

a. ADD R1. *R2 
b. SUBTRACT *RS+, #2A48 
c. CLEAR R9 
d. JUMP $-9 
e. GOSUB #9BA4 

4.8 For the block diagram of Figure 4.10, give the RTL representation for 

a. JUMP INDIREIT 6 2 >  
52 is stored in location following jump in instruction stream. Use contents of 
memory location 52 as target of jump. 

b. ADD R1, 'R3 
Add the contents of register I to the location in memory identified by register 3 

C. JUMP TO SUBROUTINE 145 
Transfer control to a subroutine located at address 145. This address is stored 
'in the memory location following the instruction in the instruction stream. 

d. INCREMENT R7 

System Bus 

- 

ALU Memory I IR I PC I MAR 

4.9 Consider the above block diagram of a computer. ACC, XTRA, IR, INDEX, 
PC, MAR, and MBR are registers that can be filled from the system bus or 
gated to the system bus. The ALU can do add, subtract, increment, decre- 
ment, and all of the logic operations. Give a register transfer representation 
of the complete instruction cycle for 

1 
[ ACC 1 

1 
Driver 

1 

a. indirect addition 
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b. indexed AND 

c. unconditional jump 

4.10 Consider a microcomputer that is a single address machine, with a general 
purpose accumulator (ACC) and a number of special registers. These regis- 
ters include a 16-bit program counter (PC), a 16-bit stack pointer (SP), and a 
16-bit index register (X). The address space is 16 bits, and the system is an 
8-bit system. The system has four intermpt lines (0, 1, 2, 3, with line 0 
assigned highest priority), which devices can assert to cause a vectored 
intermpt. The numbers associated with the vector lines refer to address allo- 
cations starting from the last location of memory (FFFF). A software system 
has been created that contains intermpt handlers for a floppy disk (routine 
starls at EF36), a cassette tape recorder intcrf:m ( rodne starts at F340). a 
line printer (routine starts at D45A). and a terminal (routine start. at C344). 

a. Give the allocation for the upper part of memory (give memory map for' 
vector locations). 

b. Give a register transfer language representation of the action that occurs 
when the cassette recorder asserts its intermpt line (which one is it?) 

4.11 For the block diagram of Figure 4.2, give the register transfers required to 
implement an ADD instruction, and a NEGATE instruction. Assume that the 
number system involved is the two's complement number system. The ALU 
can do the following: feed MBB through, add ACC and MBR, increment 
ACC, and NAND ACC and MBR. Also, ACC can be cleared. 

4.12 Consider the block diagram given for a Problem 4.7. The ALU is capable of 
addition (TI + T2), subtraction (Ti - T2), increment (TI + 1). decrement (TI 
- 1). and logical operations (TI op T2). All registers are registers only, not 
counters too. Data paths, addresses, data are all 16 bits. Give the RTL for 
the following instructions: 

a. ADD 'RI. *{*RZI 
Add the contents of memory whose address is in R1 to the contents of another 
memory location, and store the results back in this second memory location. 
The second memory location is identified by an address which itself is located 
in memory, and the address of the address is found in R2. 

b. IMS addr 
Transfer pmgram control to the subroutine located at "addr," which is an 
address stored at the location following the instruction in the instruction stream. 

c. MOV address I R3, R5 
Move the contents of a memory location to register 5. The address of the 
memory location is found by indexing "address" by the contents of register 3. 
That is. "address." which is found in the location following the instruction, is 
added to the value in register 3, and the result is used as an address at which to 
find the operand. 

4.13 One of the mechanisms discussed for parameter passing was the concept of 
register windows. Contrast a "standard system and a system with register 
windows by doing the following: 

a. Prepare a block diagram of a "standard" system with 32 registers. 
Include as many time saving mechanisms as possible to help the execution 
time of instructions. 

b. Specify instructions needed in this architecture to do a subroutine call. 
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lnclude not only the JMS itself, but also whatever other instructions are 
needed to pass parameters. 

c. Prepare RTL implementations for these instructions to identify execution 
times. Then create a table of execution times for subroutine calls, since cal- 
ling routines with a different number of parameters will result in different 
effective times for the subroutine calls. 

d-f. Repeat steps a-c for an architecture that uses the concept of register 
windows. Use the same number of registers for the architecture as for the 
nonregister window system. Assume that the system has a sufficient number 
of registers to allow subroutine nesting to a depth of eight. 

g. Suggest a mechanism to be utilized when the subroutine nesting level 
exceeds eight. How much time will be required to handle that situation? 

4.14 Obtain instruction set specifications and instruction set architecture descrip- 
tions for the VAX architectcure, the MIPS architecture, and the 32000 archi- 
tecture. Compare the contents of the status registers for the three systems, 
and the conditional branch instructions available. Defend one of the 
approaches as better than the other two, using system resource requirements 
and reasonable metrics to explain your position. 
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