
Input and Output Operations

We have di.\cushed severol of the characteristics attributed to a machine. including
the rnethods of intormation representation and the instruction bet. We have albo
discused methods of designing the functional elements, such as the arithmetic unit
or the control unit. But it is not sufficient to compute; the results of the computa-
tion must be made available to other systems. These systems may be other com-
puters, computer peripherals. or similar devices. Eventually, the information may
need to be pmented in a form easily understood by humans; many interface sys-
tems convert information not only into readable text, but also graphic images.
synthesized sound, or some other suitable form.

The term "input" is attached to the process of transferring information into
the computer, and "output" to the transfer of information out of the machine.
When both are possible, it is simply "ID." In this chapter we will discuss the
methods used to perform these transfers, some of which we have already alluded
to in the consideration of instruction sets. This will include mechanisms used for
asynchronous and synchronous bus transfers, time multiplexing of information on
buses, and so on. We will also consider arbitration techniques, which decide who
is the "owner" of a bus when a transfer is made. And we will include both pro-
grammed control and direct memory transfers to move information. Included
with the discussions are a number of examples that illushate the concepts and
techniques. Once the ideas are understood at both the conceptual and implemen-
tation level. UO systems and interface modules can be more easily designed and
understood.

'Ihe instruction set architec~rc of a machine will determine the apparent
organization of the VO system. That is, the mechanisms envisioned for system VO
will be one of the factors considerod in the process of the creation of the i n s m -
tion set of the system. In many respects, the computer system will be judged by
its ability to coordinate information transfer in a d l e fashion. A moie
comprehensive view of the total system impact is obtained by considering

computer system performance from a systems aspect, taking into account the
characteristics of the CPU, the peripheral devices, and the transfer mechanisms.
(See, for example, [LaZa84].) Our intention is to understand the principles utilized
in the transfer mechanisms.

6.1. Asynchronous Bus Transfers

The block diagram of Figure 6.1 indicates that a number of functional units can
exchange information over a common communication medium: the bus. The
transfer of information will begin when one of the modules recognizes a need to
communicate with another module. This need will result from any of a number of
mechanisms, such as a processor module that must obtain the status of an inter-
face module, or an UO module that must transfer information into system memory.
If a module has the ability to control the bus. we call it a "bus master." In general,
there will be several bus masters in a bus-oriented system. When a master needs
to transfer information, it will request ownership of the bus. The process of allo-
cating control of the bus to a bus master is called arbitration, and we will discuss
arbitration mechanisms in a later section. When a master has obtained conml
over the bus, it then initiates a bus transfer by activating the appropriate lines.
The module activated by this transaction (the one that responds to the master) is
called the "bus slave." The set of rules or algorithm utilized in this process is
called the "bus communication protocol." This protocol will identify the sequence
of events to occur in the process of rransfemng ~nfomation. and specify the tim-
ing requirements of the mnsier.

In this section we w~ll discuss the exchange of information over the lines
assuming an asynchronous protocol. That is, the modules of the bus system do
not share a common clock, and the transfer proceeds in an asynchronous manner.
In the communication process, the master and the slave assert signals on common
communication lines in a predetermined manner so that the transfer can proceed.
We will assume that the arbiaation process has been completed and that the mas-
ter is in contml of the bus. The master is now capable of initiating the transfer.
and will do so by activating the appropriate bus lines according to the defined pro-
tocol. The bus lines (except power and ground, which are also distributed along
the bus) belong to one of thne groups: address, data, or control, as shown in Fig-
un 6.2.

The address lims are used to identify the target of the transaction. That is,
the mascer places an address onto the address lines that will uniquely identify the
location to be used for the transfer. The number of address lines that can be used
fm this function determine the number of addressable locations, since N lines are
capable of selecting one of 2N locations. This address is the only mechanism the
master has to identify the target module. All of the modules that can respond to
addresses to perform transfers are connected to the address bus, and they receive

Master Slave
s

I I 1 I I 7
Figure 61. Module Organidon for Bused Systems.

Chap. 6: Input and Output Operotlons

Figure 6.2. Bus Lines Connecting the
Master and the Slave.

this address and compare it to their assigned address space. The address should
identify only one module: if more than one module recognizes the address. the
transaction will not function properly. (As usual. there are exceptions to this rule,
which we will note later.) Once a master has initiated a transfer. it will allow a
predetermined amount of time for the address comparisons, then proceed with the
transaction. The slave module with an assigned address matching the target
address will respond to the master, and the transaction will proceed governed by
the assertion of the control lines. The convol lines are used to synchronize the
action between the master and the slave modules. The mechanism for this is
shown in Figure 6.3. This tisure shows the address lines as a group. the data
lines a h a group, and three of !he control lines. A number o f other control lines
will he ~nvolved w~th the arbitrat~on mechanism. but for this discussion we will
limit ourselves to the three control lines identitied in the figure: READ-H. REQ-H.
and ACK-H. The READ-H line identifies a read transaction when it is asserted.
That is. when it is high, the master module is reading a location fmm the slave
module. When the READ-H line is not asserted (when it is low), the master
module is writing to the slave module. The READ-H line has the same timing
requirements as the address lines, which are explained in conjunction with the
other control lines.

The two lines that control the timing and sequence of the events involved in
the transaction are the request line (REQ-H) and the acknowledge line (ACK-H).
The write cycle proceeds as shown in Figure 6.3(a). The master, which has
already obtained control of the bus, asserts the address of the desired location.
This time is identified as to in the figure. A finite time is required for this address
to propagate to all of the slave modules and be decoded by them. so the master
must wait for a specific period before asserting the request line. The amount of
time required is a function of the technology in which the hardware is imple-
mented, and the physical and electrical characteristics of the bus. When the
required time period has passed, the master asserts the request line (time t!). This
is then accepted by all of the slave modules, but only the module with the match-
ing address will respond. When the slave has performed the requested action,
which in this case is to accept the data on the data lines, the slave module asserts
the acknowledge line (time t2). When the master detects the assertion of the ack-
nowledge line. it recognizes that the work of the transaction has been completed.
So it releases the q u e s t line (time t3), and when the slave detects the release of
the request line, it releases the acknowledge line (time t4). The master must keep
the address lines asserted after the release of the request line to prevent any spwi-
ous action that may occur if the address changes before the release of the request

Chap. 6: Input and Output Operations 273

Address

Data

READ-H

REQH

Address arseRed by I
Master af time L.

PmvDus >i:- Data as- by
Data Master at bme t,,

i

EGzr<
Cycle

1
/

3

(a) Write Cycle

~~d~~~~ P ~ V I O U S Address X- Address asserted by Master at bme I,,

i
i

Data i Data asrened by
Slave at bme t Next CYcb

f I I 3

REQH

ACK-H
i

Chap. 6: Input and Output Operatiom

line has propagated through the decode logic of the slave modules. This may be
accomplished by holding the address lines for a specific time after the release of
the request signal, or until the master detects the release of the acknowledge by
the slave module. This mechanism is sometimes called the four event bus
transfer. since four events (1 + 2 -t 3 + 4 in Figure 6.2) are involved in per-
forming the transfer.

The read transaction is almost identical to the write, and the appropriate
lines are shown in Figure 6.3(b). The major differences are that the read control
line is asserted and that the data is now asserted by the slave module. The master
begins the transaction as before, by asserting the address and waiting the neces-
sary time for propagation delay and skew. Even though the master may assert all
of the address lines simultaneously, they will not all anive at the decoder of the
slave modules simultaneously, since the electrical characteristics of the bus and
the propagation delays of the address lines may be different from one another.
The time difference from the arrival of the first signal to the arrival of the last sig-
nal is called the skew time. and the bus protocol must include a sufficient time
delay to account for the maximum expected skew time of the bus. When the mas-
ter has allowed time for propagation delay and skew, it then asserts the request
line (time tl), asking the addressed slave to provide the information. The
addressed slave module performs whatever action is required to obtain the data: if
it is a memory device this will require a memory cycle. but if it is an interface
module the information may be readily available. When the data has been
obtained. the slave module assens the data onto the data bus. as well as asserting
the ;~cknowlrd@e line (tmc 1:). At this pomt the master must walt for a period of
time to allow for \kew. then 11 accepts the data and relenaes the request line (time
13). When the slave detects the release of the request line. it releases the ack-
nowledge line. Some time after the release of the request line, the master is free
to release the address.

'Ihis basic asynchronous communication protocol is used by a number of
different microprocessors and minicomputers. It has the advantage of not needing
a specific clock, since the transaction proceeds according to the signals asserted
by each module. Since the modules can proceed as fast as their functions allow,
the transactions can proceed as fast as data is available. The drawback is that the
built-in delays, needed to allow for signal skew and propagation delay, force a
relatively long minimum cycle time. For the UNIBUS, which is the bus on which
the Digital Equipment Corporation PDPII series is based, a typical minimum
cycle time is 400 ns. Nevertheless, because of its simplicity and ease of function,
the asynchmnous bus protocol is used extensively. One example is the Multibus,
which originated with some products from Intel.

Example 6.1: Asynchronous protocol: The Multibus is an asynchronous
protocol that fits the discussion above. What are the signal and control lines
utilized by the Multibus, and the associated delays?

The asynchronous protocol, as described in the above paragraphs and
in Figure 6.3, is directly applicable to the Multibus, with a few
modifications in nomenclature. The signals on the Multibus are all asserted
low, so the address, data. and control lines have a low voltage for a "1" and
a high voltage for a "0." Then are 20 address lines and 16 data lines,
which gives an addrrssable space of one megabyte. The address lines are
used for both y0 and memory addresses. After a master has asserted the
address, it waits for 50 nsec before ,asserting the request line; this is the time

Chop. 6: Input and Output Operations 275

allowed for skew and delay. The appropriate request line is asserted low (as
opposed to the high assertion shown in Figure 6.3). Instead of having a
read line to identify the direction of the transfer, the Multibus has separate
request lines for memory read (MRDC-L), memory write (MWTC-L), VO read
(IORC-L), and UO write (IOWC-L). This allows the address lines to be used
by memory and UO devices, and the appropriate interface module will
nspond only when the necessary control line is asserted. When a slave
module responds, regardless of the request line that activated the module, it
will assert a transfer acknowledge signal (XACK-L), in the manner shown in
Figure 6.3.

Example 6.2: Intet$ace to asynchronous system: Assume that a floating
point multiplier is to be interfaced to the Multibus in the VO space. This
multiplier requires two 32-bit words to be available, one in Register X and
one in Register Y. Design an interface module for the Multibus that will
read and write to Register X and Register Y, and also cause the multiply to
occur when accessed. Assume that the multiply process will take a variable
amount of time depending on the data. and that the multiplier will assert a
DONE signal when the answer is available.

The Multibus protocol allows 16-bit bus masters to address 4.0% dif-
ferent UO locations, so we will assume that the floating point multiplier in
question is to occupy the following addresses:

DFO , ,

DFI I6

DFI 16

Dm16
D%
DF3,6
Dm16
DF4l6
Dm16

IOWC-L
IORC-L
IOWC-L
10RC.L
IOWC-L
IORC-L
IOWC-L
IORC-L
IORC-L
IORC-L

.IfIC .\(I ~ O N

Wntc lo Keg~ster X (low 16 bits).

Read from Reg~ster X (low 16 bits).
Write to Register X (high 16 bits).
Read from Register X (high 16 bits).
Write to Register Y (low 16 bits).
Read from Register Y (low 16 bits).
Write to Register Y (high 16 bits).
Read from Regism Y (high 16 bits).
Read from Result (low 16 bits).
Read from Result (high 16 bits).

Tlte design of this system is relatively suaightfonvard, since the logic is
basically combinational in nature. The only timing requiremenu are those
imposed by the bus protocol, and the sequentiality of action defined by the
protocol is also enforced by the master. The data path for this interface
module is shown in Figure 6.4(a). -The registers are made up of positive
edge triggered devices ('273s), which hold the information for the floating
point multiplier. Note that for this system an inverting bus transceiver has
been inserted into the data path. This has the benefit of presenting only one
electrical load to the data bus, but incurs the penalty of an additional delay,
which needs to be included in the design process. Many multipliers have
registers built in, so in one sense the external registers redundant. How-
ever, the specification indicates that these values should also be made avail-
abk to the bus upon request, so the registers are needed to provide that
capability. Tri-state drivers ('541s) arr used to send the information to the
internal data bus, which is enabled onto the Multibus data lines by the @an-
sceiver. This path is also used by the product from the multiplier.

Chop. 6: Input and Output Operations

The control signals used for this system arc derived by the logic
shown in Figure 6.qb). The address lines arc checked for a proper address
pattern. However, since the address pattern could be asserted for memory
addresses as well as the y0 addresses needed for this system, no action is

ADDRESS I 1 1:O) -H
~ 1 1 1 : O I

IPT

lllc

FO4-L
FD3-L
F02-L
FOl-L
FOO-L

PROD-H

-
DELAYED-FROM-L
FD3-L 1 Y-HIGH-CLK-H

FOO-L X-LOW-CLK-H

TO-n-BUS+

FDJ-L PROD-HIGH-EN-L

FD4-L PROD-LW EN-L

FDZ-L Y-LW-EN-L

FDl-L X HIGH-EN-L

mUm 6.W. C h m l Signals for Multibu Interface Modu* of
Example 6.2.

Chap. 6: Input and Output Operotions

taken until the UO request lines are asserted. If the transaction is a write to
the X or Y register, then the Multibus data lines are enabled onto the intemal
data bus (with FROM-M-BUS-L), and after a delay to allow the data to pro-
pagate to the registers, the appropriate clock line is asserted. Figure 6.qb)
does not indicate how this delay is obtained. but a number of different
methods could be utilized, from a tuned delay line to a synchronous method
using the clock provided on the Multibus. The slave response to the lD
request lines is through the acknowledge (XACK-L), which is seized when
the address is recognized, but not asserted until the transaction is complete.
For filling the X and Y registers the acknowledge will be asserted when the
delay has been completed. Similarly, reading the X or Y registers, or the
lower bits of the product, involves a delay to allow the data to propagate
onto the intemal data bus and then to the Multibus data lines. When a pro-
pagation delay time has been accounted for. then the acknowledge can be
asserted. Requesting the higher bits of the product causes a multiply to
occur. so the acknowledge is asserted when the done signal is asserted by
the multiplier. This necessitates that the most significant word of the pro-
duct be requested first to achieve proper results.

The Multibus. and many other buses that use the asynchronous handshaking
technique to transfer information. can be effectively utilized to pass data in a sin-
gle bus environment. However. the lines required to perform this type of transfer
are rather numerous. The Multibus utilizes 41 lines to perfom these transfers.
and the UNIBUS uses 38 lines. One of the ways to reduce the number of wires
required is to time multiplex the address and data lines. That is. one set of lines
contains the address for part of the time and data for another part; the information
content of the lines is determined by the control signals. Thus, the total number
of wires required to perform transfers is reduced. The uadeoff is between the
number of wires on the bus (or pins on the integrated circuit, or on the edge of the
board, or ...) and the increased time required to perform the transfer. Since the
lines are utilized for two functions (address and data), then the number of control
lines will increase. Nevertheless, the total number of wires is decreased, and the
speed of the bus is sufficient for many applications.

Example 63 : Time mulriplexed asynchronous prorocol: Digital Equipment
Corporation has built a number of devices based on a protocol and physical
configuration called the Q-Bus. This is a time multiplexed dataladdress bus
with an asynchronous protocol. What is the sequence of events involved in
performing a read and a write with the Q-Bus?

The waveforms for the transfers of the Q-Bus are shown in Figure 6.5.
This is an abbreviated version, since there are control lines to indicate when
a transfer is in the YO page, when it is a byte transfer, and so on. But the
basic principles are demonstrated by the figure. The levels indicated in the
figure are logical levels only, since the assertion level of the signals on the
bus itself is negative, so that on the bus a "I" is indicated by a low voltage
level. The read cycle f.Figure 6.5(a)] begins with the master asserting the
address on the time multiplexed data/ad&s lines (DAL), then allowing a
time for propagation delay and skew. The SYNC l i e is then asserted (time
tl), which is used by slave devices to latch the address information as
needed. The master releases the DAL l ies , and at time tz asserts Dm.
which indicates to the addnssed slave that the transaction is a read. From
this point the transaction follows the four event sequence, with DIN

Chap. 6: Input and Output Operations 279

DAL X Address X x Data x
SYNC ; /

DIN : / 7

RPLY : / \

DAL x Address x Data x
SYNC ; /

DOUT /

RPLY : / . 9 , , , .
'0 '1 '2 '3 '4 '5 '6

65, Read aod Write Cycled on a T i Multiplexed Bus: (a) Read Cycle; (b) Write
Cycle.

representing the request line, ts), and then within 125 nsa: asserts the data.
The master mponds by releasing DIN (time 4). When the slave detects the
nkase of DIN, it releases RPLY (lime 15). and thm releases the DAL lines.
The last event in the cycle is the nkase of the SYNC signal by the master in
preparation for the next cycle.

?he write cycle shown in F i p 6.5(b) is very similar to the above
sequence of events. The major difference is the assation of the data on the
DAL U. by the masta after the address has bcen issued and synctrronized
by the SYNC signal. Once again. the four event cycle mechanism is used.
The master idmalies the cycle ps a write cycle by asserting DOUT. ?he
s h e accepts the data and aclsehcl RPLY. The master then nlea~es DOUT.
which allows the slave to release RPLY. The bus protocol calls fa the mas-
ter to hold the data on the DAL h e s for at least 175 nsec a h nltslling
DOUT. And as kfon, the terminatioa of the cycle is indicated by releasing
SYNC

Chap. 6: Input and Output Operottons

The asynchronous method for information transfer can be very useful for
exchanging data in time multiplexed systems and in systems with dedicated
address and data lines. It is simple to comprehend, and interface modules
between the bus and external devices can be designed and consrmcted in a rela-
tively easy manner. The absence of a clock allows the transaction to proceed at
the rate at which data (and address) information is available. Nevertheless, the
data rates for this type of transfer are in general not as high as those for a syn-
chronous protocol. Before we discuss the reasons for this, let's examine some of
the arbitration mechanisms used to identify the module that will control the bus
transaction.

6.2. Arbitration Mechanisms

In any system with multiple master modules. that is, modules that can assert the
control lines on the bus, a mechanism must be provided for arbitration. Using
some predefined priority algorithm, this mechanism must uniquely identify the
module that will take charge of the bus for the next transfer. It is possible to have
this decision follow each bus cycle, so that there is an arbitration between each
bus transfer. But in general the arbitration process is performed in parallel with
data transfers. so that during the current transfer arbitration is being performed for
the next transfer. In this section we will consider arbitration mechanisms and how
they can be utilired to assure that control is pabbed to the proper module.

Three bas~c mechanisms can be utilized for making the decision as to the
proper module to control the bus for the next cycle. These are shown in Figure
6.6. In each case. the masters (MI, Mlr ...) request access to the bus by asserting a
bus request (BR). When the arbitration mechanism is ready to select a new master
module to control the bus, it will assert the bus grant signal (BG) associated with
that module. The behavior of the devices receiving the bus grant depends on the
type of arbitration mechanism involved, as we shall see. When a device needs
access to the bus and it detects that the bus grant line has been asserted, then it
will be the next to receive control of the bus. If more than one master requests
ownership of the bus at the same time, then the arbitration process selects one.
and the remaining modules must wait until a later time for their respective
transfers.

The fastest arbitration mechanism is the parallel system. In this system each
master module has a dedicated connection to the arbitration unit, and when a mas-
ter module needs control of the bus it will assert its assigned bus request line.
The arbitration unit then has the responsibility of dealing with the system in some
predetermined fashion. That is, the algorithm utilized in the design of the arbitra-
tion unit is not limited by the interconnection system. The arbitration can be done
on the basis of first-assened/first-served, round robin, assigned priority levels, or
whatever mechanism is determined in the design process. Thus, this mechanism
allows a variety of possibilities, from extremely simple to extremely complex.

In the parallel scheme, when the arbitration unit has determined that a mas-
ter module has priority and should have control of the bus, it asmts the bus grant
line associated with that master module. This module can then c m m l the
transfers on the bus. The data, address, and handshake lines are controlled by the
selected master, and when the master no longer requires access to the bus, it will
release the bus request signal. The parallel arbitration system is then free to allow
other master moduies to gain access to the bus.

Chap. 6: Input and Output Operations 28 1

Arbitration Unit

I

Data. Address. Handshake Cines

~y[E-qiGrm-i~r
Arbitration

Unit

Data. Address. Handshake Lmes

Bus

Data. Address. Handshake Lines

Figure 6.6. Bus Arbitration Mechanism.

Ihe details of the transfer mechanism will vary with each implementation.
but the parallel mechanism provides the highest speed of arbiwtion. T~IC cost for
this speed is the additional lines quired to allow each poesibk master dinct
a c e s to the arbitration unit, and the hardware costs w o c k d with whueva
arbiuation algorithm is implemented The number of l i requid could be
extensive, needing two l i e s for each module as shown in the following example.

Chap. 6: Input and Output Operotlons

Another mechanism would need only one line per module, as we will see later.

Exumple 6.4: Parallel arbitration system: Design a parallel arbitration sys-
tem that will allow up to eight bus masters to access a common set of wn-
m l lines. The assumed mechanism for master-slave data exchange is the
four event handshake that has been discussed. If no bus master has conool
of the bus, then the requests are to be synchronized by an internal 10 MHz
clock. If a master module has control of the common handshake lines, then
the reqwsts are synchronized on the trailing edge of REQ-H.

This type of a system can be easily constructed with a priority encoder
and a decoder, such as shown in Figure 6.7. Notice that the assertion levels
are low in this example. When no request is pending for the bus (no bus
master requires use of the bus) the decoder is disabled, and no master has
control. The requests for access are synchronized by a 10 MHz clock, and
when one of the masters has made a request for the bus, the appropriate bus
grant line will be asserted. If more than one module has requested the bus.
then only the highest priority bus grant line will be asserted. Note that the
nature of the '148 priority encoder, with its asserted low outputs, inverts the
normal order on the decoder oueputs.

The desired behavior, as defined above, is that the synchronization of
requests take place on the trailing edge of REQ when the bus is being used
by a bus master. The gates on the input of the clock of the synchronizing
register multiplex between the 10 MHz clock and the bus request to allow
this to happen. This vrnple mechanism is. In general. not sufficient. since it

does not preclude the poss~bility of glitches occurring on the clock line.
(What additional gating is required to assure that no glitches occur'?)

The example demonstrates the simplicity with which parallel systems can be
consaucted. However, more exotic priority algorithms. such as first-asserted
first-serviced. will lead to more complex implementations. But because of the
speed with which arbitration can proceed in this case. systems that need the per-
formance will provide the lines necessary to ailow parallel arbiaation. Because of

Register Priority Decoder
Encoder

Figure 6.7. Simple Parallel Arbitration System.

Chap. 6: Input and Output Operations

the need to have dedicated lines to the master modules for parailel arbitration, the
number of allowable masters on any system is fixed at the time of implementa-
tion. This places a fixed limit on the number of allowable masters. and the sys-
tem cannot be expanded beyond that limit in a parallel fashion. Expansion is one
of the benefits of the next type of system to be considered, the serial arbitration
system.

Serial arbitration is a technique in which the bus grant lines of the bus mas-
ters are connected together in a serial fashion, as shown in Figure 6.6(b). There is
a single bus q u e s t line, which is connected to all bus masters. The arbitration
unit is not aware of which bus master needs access to the bus, and so the arbitra-
tion mechanism is simplified to asserting the bus grant signal at the proper time in
the bus cycle. The arbitration unit is then responsible for examining the lines
controlling the transfers on the bus and deciding when control of the bus can be
given to a new master module. When the bus can be controlled by a new module,
the arbitration unit asserts a single bus grant line connected to the first module.
Since this module is the first to receive the bus grant signal, it has the highest
priority: a device can receive the bus grant signal only if the modules between it
and the arbitration unit do not need the bus. Because of this connection method,
where one module passes the signal on to another in a serial fashion, this is
referred to a "daisy chain" mechanism. And because of its serial nature, there is
no limit to the number of devices that can be connected in this manner. However.
each additional device results in a longer maximum arbitration time.

The serial mechanism for bus arbitration needs at least three lines to func-
tion. although more can he used. as indicated by the example helow. The rhrce
lines are hus rcqucht. huh grant In. and hus granr out. A ma.\tcr module indicates
that 11 needs to acccss the bus by asserting u common request line, as shown in
the tigure. This line is implemented in open collector technology, or some other
method that will allow multiple units to assert the signal simultaneously. The
arbitration unit uses this signal to identify when a new bus master needs access to
the bus, as described above. When the arbitration unit determines that a different
module can control the bus, it asserts the bus grant line. Each master receives the
grant signal on its bus grant in line, and if the module does not need to access the
bus, it asserts the bus grant out line. In this way the assertion of the bus grant
signal is passed from m module to another, until it arrives at a module which
needs access to the bus. This module does not assen the bus grant out line, but
rather assumes ownership of the bus and performs the needed m s f e r . A master
module of lower priority that needs access to the bus will continue to assen the
q u e s t line. and at a later time a new bus grant signal will be asserted by the
arbitration unit and passed to it.

The priority scheme of this system is strictly physical: devices of higher
priority are physically (and hence electrically) closer to the arbitration unit. Dev-
ices of lower priority are farther away from the arbitration unit. The number of
devices included has a d i m effect on the speed of the function. Since each dev-
ice must check the bus grant signal in a serial fashion, the total time for the arbi-
tration function is proportional to the number of devices on the bus. Of course,
the closer the device is to the arbitration unit (fewer modules in between), the fas-
ter the operation. But since each module requires time to complete the bus grant
in to bus grant out sequence, there is a practical limit to the number of devices
rhat can be utilized.

Because of the serial nature of the arbitration process, care must be taken to
avoid the situation where huo masters access the bus simultanwusly. This

Chap. 6: Input a n d Output Operations

possibility will arise in systems in which the modules operate asynchronously
with respect to each other and to the transactions taking place on the bus. In this
case, a module could q u i r e access to the bus directly after the bus grant out sig-
nal had been asserted to inform the next module in the chain that it can access the
bus. If the first module is allowed to immediately command the bus and release
the bus grant out line, then both units could be in a situation where they are.
accessing the bus. A practical solution to this problem is to design the units to be
edge sensitive rather than level sensitive. That is, the master modules would be
capable of taking ownership of the bus only when the bus grant signal is changed
from its unasserted to its asserted level. Thereafter, the unit must wait until the
next assertion of the signal, even though it is currently asserted. This mechanism
will prevent more than one module from assuming control simultaneously.

Elxample 65: Serial arbitration system: The UNIBUS uses serial arbitration
to identify bus master modules that need access to the bus. What are the
lines involved in this arbitration process. and how does the protocol func-
tion? Also, what circuiay is need to connect to the arbitration lines to prop-
erly utilize the serial arbitration lines?

A number of lines in the UNIBUS are used by the master modules to
control access to the bus. For the purposes of understanding the mechan-
ism, we need consider only four signals: BR-L (bus request, asserted low),
BG-H (bus grant. asserted high), SACK-L (selection acknowledge. asserted
low), and BBSY-L (bus busy. asserted low). These lines and the relationship
between them are shown in Figure 6.8. The sequence of events begins at
1.4, when the bus arbitration unit recognizes that a new arbitration cycle can
begin. since SACK is nor asserted. When a master module needs to transfer
informat~on over the bus, it will signal the arbitration unit by asserting the
BR line (te). The arbitration unit will then respond by asserting BG (t ~) .
Some time later (t ~) , the bus grant signal will be received at the master
module; there may be other master modules through which this signal has
passed to reach the module that requested the transaction. When the bus
grant signal is received by the module needing the bus, it will not pass the
signal on, and it will assert SACK. This signals the arbitration unit that the
arbitration process was successful, and it can now release the bus grant sig-
nal. At the same time. BR will be released by the module, but this will not
naxssarily mean that the line will rem to its unasserted level, since
another master module may also be asserting the q u e s t line. When the
arbitration unit receives the assertion of SACK, it releases BG (t ~) . 'Ihe
actual arbitration process is now complete, but the bus is still being used by
a different module. When the current bus master completes its cycle, it will
release BBSY (t ~) , signaling the next bus master that it has completed its
operation. The new bus master will wait for SSYN (not shown) to be
released, indicating that the slave involved in the last transfer is idle, and BG
to be released. At that time it will be able to control the transactions on the
bus. The new bus master will then assert BBSY to signal the fact that it is
controlling the bus, and relase SACK, to allow the arbitration process to
select a new bus master.

A logic diagram of an system that does this is shown in Figure 6.9.
?he gates receiving bus signals (RCV) and drive bus lines (DRV) have s p
cia1 electrical character is ti^ that minimize the elecmcal loads placed on the
bus. Otherwise, the gates have the normal NAND or NOR function shown
by the shape of the gate.

Chap. 6: Input and Output Operations 285

............... i. ..

.............................-.......-................... i i i
a .

BG-H i i I i i i . .
SACK-L j i ?[~

: : :
i i i

BBSY-L i i i
i i i L
. . .

Figure 6.8. UNIBUS Bus Arbitration Lines.

REWEST-BUS-H
BR-L

H I
T

Figure 6.9. Logic for UNIBUS Bus Request-Bus Grant

The UNIBUS protocol was chosen for this example for three reasons.
First a great number of devices have been built to interface with the
UNIBUS. and so for sheer numbers this is a very prolific mechanism.
Second, this example demonstrates that the arbitration process can proceed
in parallel with the transfer currently in progress. Many asynchronous buses
q u i r e that the cumnt transaction terminate before arbitrating for owner-
ship of the bus. And third, the mechanism described here is utilized in m e
form or another by almost all asynchronous bus arbitration systems.

The protocol described in Example 6.5 is similar to many schemes that use
the daisy chain method of arbitration. One of the problems that can arise with
this mechanism is the transfer of control from one master to another. Although
the arbitration system can select a bus master to assume control of the bus, the
actual transfer of control will not occur until the cunent bus master releases the

Chap. 6: input and Output Operations

BBSY line. Therefore. a bus master may control the bus for an extended period of
time, not allowing other modules access for transfers. In that sense, the protocol
is not "fair," and may not be applicable in some circumstances. To prevent this
type of device lockout, schemes can force the system to arbitrate for every
transfer, instead of arbitrating for ownership. Or a a mechanism may be included
that will force a module to relinquish ownership of the bus and allow the arbitra-
tion process to find a new bus master.

The use of one kind of bus arbitration does not exclude the use of another.
The UNIBUS uses parallel arbitration in combination with serial arbitration, as
does the VME bus. Parallel arbitration occurs in the UNIBUS because there are
five sets of BR-BG lines, each of which has a different priority. The access to the
bus between these five sets is done in a parallel fashion. Each of the five sets of
BR-BG lines is a serial line, and operates as described in the example above.

The final bus arbitration technique we are going to mention is polling,
which is shown in Figure 6.6(c). Here each master module has access to a com-
mon request line, which it will assert when it requires access to the common
resources. The arbitration unit must then decide which of all of the possible
modules made the request. It does this by placing the address of a master module
on the address lines and querying each in turn, until it finds the highest priority
module needing the bus. This method has the benefit that any priority scheme can
be implemented - FIFO, round robin, and so on. But the cost of the mechanism
is large in time requirements. For that reason it is almost never used for arbitra-
tion of bus lines. but it does find application in the arbitration of 110 requests.
That is. a processor. under prosram control. will poll 110 dev~ces to ascertain the
module requesting an Interrupt.

6.3. Synchronous Bus Protocob

The term "synchronous bus" can refer to a number of different techniques for
transferring information between modules. The common characteristic of all of
these mechanisms is that a clocking signal is used to synchronize all of the
transfers. This restricts the length of the bus, since the signal must propagate to
all bus masters and bus slaves, and be received with a reasonable degree of simul-
taneity at all locations. In this section we will consider some of the mechanisms
that can be used for synchronous data transfers on bus systems.

One type of a synchronous bus is not a multiple master, general purpose
bus. This is a bus bus system under the direct control of a central unit. This type
of system fits into the model shown in Figure 6.1, but each of the units is directly
connected to a master control unit. This central control unit then decides which
module is to assen information onto the bus, and which element is to accept the
information. That is, no general address is decoded by slave modules, but rather
the central control unit selects both the source and the destination. The micropm-
gnunmed modules studied in Chapter 5 are included in this classification. since
the contents of the bus are determined by the microcode word during each mkro
cycle.

Another bus protocol that is synchronous in some aspects is typified by
the bus connections of some high performance microprocessors. Tbe M68020
has a protocol almost identical to that described above, except that the mechan-
isms allow for dynamic bus sizing and other flexibility. The mode of operation
is syncluonous with the system clock, giving the appearance of a synchronous

Chop. 6: Input and Output Operotlons 287

mechanism. If the slave (memory, for example) is not able to respond to the p m
cessor fast enough to allow continuous operation, the processor automatically
inserts idle bus periods, called "wait states," until the slave responds with the
desind data Thus, the only difference in method is that the M68020 works in
increments of the basic system clock, rather than using completely asynchronous
signaIs.

Another bus protocol is used by a number of micmprocessors, and works in
conjunction with the system clock. One of the problems that has become pre-
valent as integrated circuits have increased in complexity is providing enough pins
to transfer the information into and out of a device. To minimize the total number
of pins required for information transfer. some devices time multiplex the bus
lines to allow one set of pins to present both address and data information. Thus,
a processor with a 32-bit data path and a 32-bit address requirement can use one
set of 32 pins, and synchronize all requesu in such a way that all bus modules
know when the address is available, and when the data is required.

A sample of the NS32332 protocol is presented in Figure 6.10(a), which
presents a write cycle. The 32 bits of address and data share the time multiplexed
AD(31:O)-H lines: the presence of a valid address is identified by ADS-L, and the
data is synchronized by WRITE-L. The DDIN-L line identifies the direction of data
transfer. The minimal transaction requires four cycles; the address is presented in
the first cycle, and the data is available during later cycles. If the slave cannot
respond within the required time, the master can wait until the transaction is able
to proceed. This may occur. for example. if a dynamic memory is performing a
refresh cycle when the processor requests a transaction. Most ryternq that use
this technique will latch the address and create the appearance of separate address
and data buses. A block diagram of one such arrangement is shown in Figure
6.10(b). To a slave device attached to the separate address and data lines, this
communication mechanism appears the same as those previously dexribed: the
four event transaction proceeds in exactly the same way.

The time multiplexed dataladdress lines provides a mechanism to efficiently
utilize one scarce system resource, the number of pins on the device. But another
system resource that is not effectively utilized in the protocols described above is
time. The master must a l m the slave that some information is needed, and then
wait for the slave to respond. A more time efficient mechanism would be to iden-
tify the basic components of a transfer and so design the protocol and the bus to
allow these components to occur simultaneously. This requires a greater com-
plexity on the part of both the master and slave modules, but it does more
efficiently utilize the wires used to connect the modules together.

One of the beneficial features of asynchronous protocols identified in Sec-
tion 6.1 is that the transaction proceeds as fast, or slow, as both sender and
receiver agree that the information can be transferred. If some event requires
more time, then the protocol essentially waits for the event to complete, and then
proceeds with the transfer. This provides for increased flexibility, and it also pro-
vides for fairly simple interface modules. However, the overall data rates will be
higher if more capability is pmvided in both the sender and receiver to minimize
the amount of time that the bus lines are utilized to exchange the information.
This is the basic premise of synchronous protocols, and the mechanism provides
for timc efficient use of the bus lines.

In the protocol described in Section 6.1. the bus master was responsible for
assating the address, and then allowing time for propagation delays and signal
dcew before asserting the request line to initiate action. One of the reasons that a

Chap. 6: Input a n d Output Operations

cU<_PHSl -H

AD(31 :O)-H

ADS-L

DDIN-L

WRITE-L

lut Next
Address -

32201
Timing and Control

*re 6.10. Ns32332 BU T m m a i o ~ : (a) Timing D*gnm for a Write Oparrion;
@) Block Disgnm of Intafmx Logic.

Chap. 6: Input and Output Opermns

I

Addreas
Buffer

- :: 32332
Cent@

pmcesslng
Unit

+

3 I
Time Multiplexed

AddrWData Bus

32081
Floating

Point Unit

' Data
Wef

synchronous protocol is more time efficient than the asynchronous protocol is that
the action of all of the modules is coordinated by the presence of a common
clock. This establishes an exact time when the information must be present on
the bus, and when each module attached to the bus will know that information is
available. This establishes bounds on the time required to transfer the informa-
tion, and interface modules must all be designed to operate within those bounds.
Thus, this mechanism calls for the interface modules to meet a time standard,
rather than having the protocol adjust the time requirements to satisfy the needs of
the various interface modules. The modules connecting to the bus must then be
capable of transferring information at the rate determined by the bus protocol.

The mechanism of data exchange for synchronous protocols operates on a
different set of principles than the asynchronous methods previously described,
and this leads to a slightly different nomenclature when dealing with the units.
We will call the module that initiates a transaction a commander, because it sends
a command to another module. The command may or may not contain data,
depending on the type of transfer. The module that fields the command we will
call a responder. since it responds to the request in an appropriate manner. As
with the asynchronous protocols. a number of different mechanisms will function
properly. We will describe first a sample mechanism for write and read. and then
examine a specific instantiation of a protocol.

There are four components of the transfer of information, and all four must
be completed for a successful transfer. We discussed each of these functions in
the process of describing the asynchronous protocols and arbitration mechanisms,
but did not identify them as necessary constituent parts of the transfers. Time
components are:

1. Obrain control of the bus. This is the responsibility of the commander and the
arbitration network. When a module requires a transfer, it communicates that
need to the bus interface module, which initiates a request for the bus. When
the arbitration process allows the commander interface module access to the
bus, the transfer can proceed.

2. Initiate transfer. If this is a write, this will include data. The commander
places appropriate address (and &ta, if needed) and control information on the
bus. The responder with that address will tract by accepting the request
'Ihis does not imply that the responder module will be able to handle the
request, only that the request has been received.

3. Decide how to handle the request. This is the task of the responder bus inter-
face module. This does not mean that the subsystem attached to the bus will
necessarily accept (or provide) information immediately, but the bus interface
module of the responder must be capable of deciding how to respond to the
request. For example, if a memory is ready to accept information, it will be
capable of accepting the information, and the bus interface module will decide
that the information can be accepted. On the other hand, if a memory is busy
with a previous request and unable to accept data, the bus interface module
will decide to reject the request.

4. Inform commander of the decision of the responder. This is the feedback
mechanism to allow the handshake to occur, and indicates to the commander
that the request has been handled. If the request was a write, for example, the
system attached to the c o m m d e r bus interface module can proceed with its
tasks. However, if the system attached to the responder interface module was

Chap. 6: Input and Output Operations

unable to accept the data. this decision is relayed to the commander, and the
commander interface module can then initiate the request anew.

These four components are present in the asynchronous protocol, with its
associated arbitration mechanism, but are not as evident as in synchronous proto-
cols. The arbination component can be handled in parallel, as in the UNIBUS pro-
tocol, or after a bus is available, as with most microprocessor bus systems, such
as the NS32032 systems. Component 2, initiating the transfer, is handled by the
bus master in an asynchronous protocol; the master module asserts the address,
waits the prescribed time. and alerts the slave modules by asserting the request
line. The third component, deciding how to handle the request, is an integral pan
of the slave module mechanism, since all requests in an asynchronous protocol are
handled immediately. If a memory read is required, then the protocol awaits the
response from the memory before proceeding. Thus, it is difficult to separate the
act of responding from the decision to respond. However, in a synchronous pro-
tocol, these two elements are distinct. and are handled in a different manner. The
decision process is handled by the bus interface module. while the response to the
request is handled by the appropriate subsystem, such as a memory. The forth
component, the handshaking mechanism, is handled by the request and ack-
nowledge lines of the system.

These four events are shown in write and read sequences in Figure 6.1 1.
The write sequence begins (period n) by the processor interface module arbitrating
for use of the bus lines. When the arbitration process is hettled in hvor of the
procehwr. the wquencc procceil\. and the procchwr intertacc module .l\\erts the
data and address ~nlormatlon onto the bus lmes (period n+ 1) . When the clock
occurs, the memory interface module accepts data and address. and determines
that the request was intended for the memory subsystem. During the next period
(n+2), the memory interface module ascertains the status of the memory and
determines that the data can be accepted. And finally, during the acknowledge
period (n+3), the memory interface module sends an acknowledgement to the pro-
cessor interface module to indicate that the transaction was successfully com-
pleted. Since the commander of the processor bus interface module srarted the
series of events in period n. it will know that the response of the memory (accept
or reject) will be found in period n+3, so it will listen to the lines at that time to
find out if the write action was successful.

The read sequence is also shown in Figure 6.11. The transaction is initiated
by the arbitration of the processor for the bus (period n). When the processor
interface module has obtained control of the bus lines, it will then assert the
address and request information on the bus (period n+l). Synchronous with the
clock, the memory interface module accepts the request, and in the following
period (n+2) ascertains the status of the memory and decides to accept the
request. This decision is communicated to the processor interface module in the
last period of this sequence (n+3). The memory subsystem is then activated in
order to supply the required information. The time from period n to period m
reflects the response time of the memory. When the memory pmvides the i@r-
mation, the memory interface module initiates a bus transaction, fiat by arbinat-
ing for the bus (period m), and then by asserting the data onto the bus (period
m+l). The processor interface module accepts the data synchronous with the
clock, ascertains in the next period (m+2) that the data is in response to an earlier
request, and in the last period (m+3) sends an acknowledgement to the memory
interface module.

Chap. 6: Input a n d Output Operations

I I Memory I

Write Sequence

Bus Interface

Time Periods - I n I "+I / n+2 / n+3 I

Bus Interface

Commander Initiate Response to Responder
Arbitration Request Commander Decision

I Synchronous Bus

/
Processor
requests Processor i M e w Lory interface

bus sends data: intertace
Memory

sends a&

inteltace
decides to to Pmces,,

accept data
gets data

interface

Read Sequence

Comm lnit Resp Res to
Arb Req D d Comm

Comm Inn Resp Ras to
Arb Req Ded Comm

Flyre 6.11. Synchronous Bus Mechanisms.

As indicated in Figure 6.1 1, each of the four compon*1ts of the exchange
happens in separate cycles of the c o m m ~ ~ clock, and can be pipelined We will
discuss pipelining in mcm detail in Chapter 8, but the basic idea is that indepcn-
dent events can occur in different piaxs of hardware in the same per id With

Chap. 6: Input and Output Operattons

multiple events occurring simultanwusly. a speed advantage is obtained over the
same events occurring serially. With a synchronous bus protocol, the interface
devices can be designed in such a manner that each of the four functions involves
a different set of hardware and a different set of bus lines, so that up to four
separate transactions can be in different stages of execution at any one time.
Thus, the speed advantage of synchronous bus transactions stems not only from
the specific windows in which information must be valid, but from the pipelining
and overlapping of transactions. Note that, if not enough transactions are avail-
able to keep the different portions of the bus busy during the various clock cycles.
then the speed advantage of the pipelining is lost.

Example 6.6: Synchronour bus protocol: The synchronous backplane inter-
connect (SBI), which is the communication mechanism for the VAX 1 In80
computer, is a synchronous bus protocol. What are the methods used by the
protocol. and how fast can information be transferred on the bus?

The principle lines (but not all) involved in information transfer on the
SBI are shown in Figure 6.12(a). The sixteen arbitration lines [TR(15:0)1
allow parallel arbitration of up to 16 different modules during a clock
period. The information transfer lines include the 32 dadaddress lines
[B(31:0)] and lines for identifying the type of transaction that is occurring.
The response lines [CNF(l:O)] provide a data path for confirmation of previ-
ous transactions. The principle difference between the SBI and the protocol
discussed above is that the SBI time multiplexes the dataladdress lines so
that a write will requlre more than one cycle. The SBI mechanism allows
for one or two words of data in a write transfer. jo that up to X hytes of
infomat~on can be wntten. Such a write cycle is shown in Figure 6.12(b).
To demonstrate the pipelined nature of the action, the transfer is shown in a
space-time manner. The lines involved in the transfers are divided into
three groups: arbitration lines, information lines, and acknowledge lines.
And the action of these three sets is described for each of the cycles. The
DEC name for the commander and responder interface modules is the
NEXUS. The first period (n) is used by the arbination lines for the NEXUS
associated with the processor to acquire control of the bus. Once this has
occurred, the transfer can continue. The arbitration unit has the capability
of locking out other requests for the two additional cycles needed to com-
plete the transfer. The assertion of address and write identification informa-
tion occurs in the second cycle (n+ l). This information includes not only
the target address of the write, but also an identifying field to specify the
source of the information. The reason for this will become apparent with
the read transaction. At the end of this period the NEXUS associated with
the memory will receive the address and the identification information. The
dataJaddress lines are used in the next period (n+2) to send the first 4 bytes
of data; at this same time, the memory NEXUS is deciding how to handle
the request. At the end of the period, the acknowledgement decision has
been reached, and the first bytes of data are accepted into the NEXUS.
Then, during the final data cycle (n+3), the acknowledgment is retumed to
the originating NEXUS for the address and write identification information.
In the next two cycles additional acknowledgement information is retumed
for the data cycles of the msfer .

The pipelined nature of possible transactions is indicated to in Rgun
6.12(b) by the shaded area that indicates a possible second write cycle to be

Chap. 6: Input a n d Output Operdons 293

Arbitration tines
TR(15a) I

NEXUS
for

Transmit
a* Recetve

Time Period- 1 n I n+l I n+2 / n+3 / n+4 1 n+S 1

Information Transfer Lines
TAG(2:O). ID(4:0), M(3:0), B(3i:o)

Control tines
Interrupt Lines

REQ(7:4)

Information
Transfer

NEXUS '- -
Response Lines

CNF(I :o)
. . - - - . . -

Confirmation

IUl

Transmit
and

Racaiva

Fipre 6.12. Synchronous Backplane Interconnect Protocol: (a) Control Lines Involved in
SBI Information Transfer: (b) Write Transaction. 8 Bytes: (c) Read Transaction, 8 Bytea.

initiated by a second NEXUS. Note that the second cycle begins befon the
first cycle ends. This protocol allows meaningful data or address informa-
tion to be placed on the data bus during each cycle.

The read transfer operates with a similar mechanism, except that the
q u e s t and the response are separated by the RSpOnse time of the memory.

Chop. 6: Input and Output Operathm~

This is shown in Figure 6.12(c). Here the NEXUS associated with the pro-
cessor acquires control of the bus (period n), sends out a read q u e s t con-
sisting of an address, a logical identifier, and a transfer type identification
that informs the memory to supply 8 bytes. The processor receives the ack-
nowledgement of the request in period n+3. Some time later, when the
memory has the information for the processor, the NEXUS associated with
the memory gains control of the bus (period m), and sends the data in two
4-byte transfers (period m+l, m+2). The destination of this information is
carried by the identification lines, which will have the same logical identifier
that was passed with the read request. The NEXUS associated with the pro-
cessor sends its acknowledgement to the memory in periods m+3 and m+4.

Additional read and write transactions are shown in the shaded areas
of Figure 6.12(c) to demonstrate the pipelining and parallel events possible
with the protocol.

The clock cycle time for the SBI is 200 nsec. Thus, with the above
protocol it is possible to send 8 bytes every 600 nsec. This gives an effec-
tive data rate of 13.3 MBytesIsec.

In this section we have considered some of the principles involved in
m s f e m n g information with synchronous bus communication protocols. These
mechanisms will, in general, lead to a higher data rate than their asynchronous
counterparts for two basic reasons. First, the presence of a common clock limits
the physical size of the system and synchronizes ail requests for action. This syn-
chronization establishes a time at which all action must take place. Second. the
separation of the components ~nto independent pleces of hardware. and into
independent bus lines, permits pipelining of the various functions. This allows
concurrent use of the available resources. The net result is that data can be
t r a n s f e d at higher rates than achievable with other methods.

6A. Data Movement: Programmed 110 and Direct Memory Access

We have discussed some of the basic mechanisms involved in doing transfers of
data over bus systems. Regardless of the exact protocol usad, an arbitration
mechanism is utilized to identify the module which mtro ls the bus. This module
then initiates a transfer, and the data is moved from one module to another. This
mechanism is most often utilized to exchange information between a memory and
a pmessor module. However, the same mechanism is used to transfer informa-
tion and commands to and from UO devices. In this section we want to explore
some of the methods that can be used to control UO devices and to transfer infor-
mation to and from a computer system. For computer systems that include
separate VO instructions, generally an UO bus is used for the communication. In
some systems with UO instructions, the system bus is used for memory and UO
transfers, but VO transactions use a slightly different set of control lines to per-
form the transfers. However, one prevalent practice is to use the same address
space for both memory and VO devices. This method calls for the VO devices to
be assigned locations in the memory space, and then, when the device is to be
activated and controlled, the processor does so by writing and nading the

locations. This is called " m e m q mapped ID," and is used exten-
sively in minicomputer and micmprocessor systems. In fact. the inclusion of VO
instructions in the processor instmction set does not preclude the use of memory

Chap. 6: Input and Output Operations 295

mapped W, and the manner used for connecting VO devices is left up to the sys.
tem designer.

There are thne basic mechanisms for the interaction between the process*
and the VO device. Ihe processor nsponsibilities of each mechanism, the system
resources required, and the complexity of the interface module r e q u i d by
each method are all different. A Mock diagram showing the relationship betwan
the processor and the VO device is shown in Figure 6.13. The VO interface
module interacts with the system bus to provide h h control signals and data to
an VO device controller. Most VO device controllers are designed in such a way
that they will control a single type of device, such as a disk or tape unit. How-
ever. the device controllers are also designed in such a way that multiple copies of
UO devices can be controlled by a single W) device controller. If another type of
VO device is to be included in the system, then a different VO device controller is
needed, with its associated VO interface module.

Regardless of transfer mechanism utilized, the processor must have the abil-
ity to direct action in the VO device with instructions; this mechanism we will
refer to as "programmed UO." It is possible to conuol both the action and the data
movement of a device with programmed UO, as we will see in an example. It is
also possible to initiate the action with programmed UO, and then allow the inter-
face module to interrupt the processor when data is available. This intermpt capa-
bility allows the processor to proceed with other work while the data is being
obtained, and then to interact with the VO device only when data is available.
Finally, the highest speed is obtained when the interface module has the capability
of exchanging data directly with the memory. This is referred to as direct
memory access (DMA). and is lim~ted in speed hy the transfer rate of the bus. For

Additional devices can mlu* -
to a single contmlla

\

Computer System Bus W D a t a - I
UO m

lnterfam - Device
- VO

Devia,
TVpe

i m a r Q n b h n e n s y s m ~ b u a
utddevicscamoUa

Flgun 6.13. Interface System Block Diigrsm.

Chap. 6: Input a n d Output Operatlord

DMA transactions, programmed W) instructions are used to set up a starting
address in the system memory and the length of the transfer; and then another
programmed VO instluction initiates the action. The system is then free. to per-
form other tasks, and the DMA interface module interacts directly with system
memory to perform the transfer.

An l/O device is controlled by writing (and reading) information to (and
from) specific locations. This method is independent of the type of bus protocol
used. but the examples in this chapter will all be done with the asynchronous pro-
tocol, as that is the most widely used mechanism at this time. Interface module
and VO devices can be controlled by assigning a specific action to each of the
addresses used by an VO device, or by assigning an action to specific bits or bit
panems at a single address. In either case. the processor sends the command to
the interface module by writing to the proper address with the necessary bit pat-
tern. When the interface module receives a write request. it accepts the bit pattern
and performs the requested work. When the interface module receives a read
request, it supplies the appropriate information to the bus. In this fashion. infor-
mation can be moved to and from the 110 device.

One of the most frequent inquiries made by a processor concerns the status
of the interface module and UO device, whether it is busy or not, and whether it
has data available. Thus, reading a status register in the interface module must be
done quickly and easily. The status register usually contains information about
the device it is controlling. For example, a tape recorder interface module might
have bits in its status word that indicate if the device is on line. if it is busy. if the
interrupt I cnahled. and w on. The processor 1s then capnble of detenlnin: the
atatus of the device by reading the atatus register.

The simplest interface mechanism results by allowing the processor to con-
trol all aspects of the transfer. This method consumes all of the time of the pro-
cessor, but can be used if the need arises. Since the machine is entirely utilized
with the l/O transfer, it is not capable of being used for other tasks during this
time, and this is generally not an acceptable cost. Nevertheless, the interface
module between the computer system and the UO controller can be very simple. as
shown by the following example.

Example 6.7: Interface module design: Design an interface module that will
connect a tape recorder to a &bit asynchronous bus for a read only opera-
tion using memory mapped VO techniques. This mechanism is to be con-
trolled by writing command patterns to address m8Ol6, reading status at
address FFFD8ZI6, and by reading the data at address What is the
maximum data rate achievable by this mechanism?

We will delay several of the details of the tape recorder side of the
interface module, and concentrate on the interaction with the bus. Assum-
ing that the interface method to be used is the four event protocol described
in Section 6.1, the lines of interest are the address and data lines, a read
line. a request l i e , and an acknowledge h e . One design for this interface
module is shown in Figure 6.14, which we will examine by function.

The first function is the address decode and command l i e interface.
The most significant lines of the address ~IE tested with a gating network to
look for the proper address (-I6 - FFFDJMld. This same function can
also be accomplished by using an addnss decoder chip. such as the 74677.
which looks for a specified bit pattern. However, if the address of the dev-
ice is not known at &sign time, then one mechanism is to use comparators

Chap. 6: Input a n d Output Operations

23 Gates t o detect
assigned address

Figure &14(a). Tape Recoder Inurfacc Module (Control).

configured with address specifying switches. The least significant lines are
directed to a 3-line-to-8-line. decoder, which assms a line for each of the
appropriate addresses. Note that the least significant l i e (ADDR(0)-H) is
not used; we assume that the system is always going to access this informa-
tion in 16-bit words, properly aligned.

If the address matches, then when the q u e s t line is asserted (REQ-H),
the required action is immediately performed, and the acknowledge line
asserted (ACK-H). No delay other than the gate delays of the circuitry is
inserted into the system since the timing does not require it: information
from the master is accepted with edge mggmd devices, and the naction
time of the master will account for any hold time needed. Also, information
sent to the master is aaserud at the same time as the acknowledge line, and
'the master is responsible f a any delays necessary to account for skew on
the data lines. Thus, command information (and data. if it is q u i d by the
specified interaction) is accepted without delay. Likewise. as soon as a read
annmand is received, the requested information is provided. %a register
interaction will result in a faster readlwrite time than normal memory,
although it is in the same address space.

Chap. 6: Input and Output Operations

TAPE DATA(15:O) -H

frcm the tape
controller

Edge tr~ggcred regrsters
u ~ t h tr l -state wtpr ts

The status lmes
from the tape

READ-H - ~ n - c n n - ~
COMMAND-L

E
cpv-D&T&llS:O)-H - Lmes uhlch - control the

'273 2 funct ~ o n of
Edge tr~ggered reqlsters - the tape
u i th m u 1 wtputs 1 , machine

Figure alqb). Tape Recorder Interface Module (Dau Path).

To demonstrate the programmed ID mechanism, consider the m s a c -
tions required to cause the recorder to space forward a block, then read the,
next block of 512 words. Assuming that there is a simple assembly
language to work with, the following code section will perform the desired
w&.

FSF is file space forward patW~l.
BUSY is pancm to test busy condition
of interfa module. Loop to "one" till done.

Setupthccwnt
saupthcaddma
.Su up mt paam for dam avrilrbk.
Set up sddrrsr of status register.
Sct up ddrtu of data register.
strut d action.
(800) L thcre data?.

Chap. 6: Input and Output Operations

R two (450) If not. go back to "two."
MOV *RS.*RZ+ (1150) If so. move where R2 points.
DEC R I (550) and bump R2: done 512 words?
JNZ two (M)O) If not. go back to "two."

(3550)

The first instruction writes out the panem to indicate to the interface module
that the tape recorder should move forward to the next file mark. The next
two instructions merely wait until that is accomplished. Instructions 4
through 8 set up the general purpose registers to allow faster processing in
the transfer section. Instruction number 9 actually starts the read action of
the recorder. Instruction 10 checks to see if the data is available. It is simi-
lar in function to instruction 2, which checks to see if the recorder is busy.
However, by using values in registers, rather than values in the instruction
stream, the time required for the instruction is greatly reduced. In Chapter 4
we identified different instruction times for instruction types, based on the
amount of work required by the instruction. Using the times identified
there. instruction two requires 1,750 nsec for completion, while instruction
10 can be done in 800 nsec. Instruction I I is to loop until data is available,
when the action moves to instruction 12. which moves the data from the
interface module to the designated spot in memory. And with the autoincre-
ment feature of the destination address, the system is ready for the next
iteration. Instruction 13 decrements the counter. and instruction 14 loops if
the count has not reached 7.ero. The highest data rate will occur when the
instructions 10 and I I ;Ire cnecl~red hut once C:IC~ itcrxlon. Whcn this
occurs. Ihe loop t aks 3.550 11wc. Two hyteh each 3.550 nscc results In a
data rate of 563 Kbyteslsec. This mte cannot be sustained over time. since
it does not take into account the time required to set up the transaction.

The above example indicates what can be accomplished by a machine dedi-
cated to performing a single transfer. However, if the device being controlled is a
modem or line printer, then the data rate is much lower than that attainable by
programmed VO. Most of the time the machine would be executing the wait loop,
waiting for the data movement to occur. Therefore, system designers have often
designed the machines in such a way that the interface module can intenupt the
action of the computer when data movement is necessary. The positive effect of
this is that the machine time that would be used by looping can be effectively util-
ized for other functions. The negative effect of this mechanism is that the m s f e r
rate will be lower, since more work is needed for each transfer.

Example 6.8: Interface design with inrerrupr: Consider the system of Exam-
ple 6.7, but assume that the interface module is also capable of issuing an
interrupt when data is available. What is the maximum data rate for the
system?

We will make the assumption that an interrupt action causes the
current PC and status register to be pushed onto the system stack, and also
causes the interrupt service routine to be entered with the vector mechanism
discussed in Chapter 4. This mechanism will require about 1.100 nsec in
our machine. We include hen two sections of code. one of which is used to
set up the action, and one of which is actually executed once for each w a d
of data transferred.

Chap. 6: Input and Output Operations

1 setup: MOV *start addn. @ADDR Set up the initial address.
2 MOV #dl%, @COUNT Set up the count value.
3 MOV h e a d c m h , @FFFDBO Start the read action.

1 0 srvce: MOV @-, *@ADDR+ (3650) Move the data
1 I DEC @COUNT (1800) Check the count.
12 JZ more (450) If d m , do other action.
13 Rll (850) If not, mtum from intermp
14 mom: ...

2 0 ADDR: DATA0
21 COUNT: DATA 0

The first three instructions are used to initialize the starting address and the
word count, and to start the actual read action. We are neglecting here the
commands necessary to position the tape at the right spot. since additional
code to discern between a movement command and a data command would
further slow the action of the system. For the data movement action of
interest here, the instructions of note are 10 through 13. These perform
essentially the same action as the code of Example 6.7; instruction 10
moves the data. instruction I1 decrements the count, and instruction 12 gets
out of the loop if the count has reached zero. The count will reach zero
when the appropriate number of words have been transferred. and at that
point the transfer is complete. If the transfer IS not complete (COUNT has
not reached zero). then lnstructron 13 returns the program to the execution
in progress when the interrupt occurred.

The difference in instruction execution times results from the fact that
now the address information is contained in the instruction stream, and
many more references to memory are needed to obtain and manipulate the
data. One benefit of this mechanism is that no registers need to be saved
upon entering the interrupt service routine. However, the overall time will
be greatly increased. with a time for intermpt and intempt service routine
of 7,850 nsec. This results in a maximum data rate of 254 Kbytes/sec.

As can be seen from the example, the data rate for interrupt driven transfers
is much less than that achievable smctly with programmed UO. However, for sys-
tems where the data rate is much lower, the intermpt scheme will allow the sys-
tem to be utilized in other action while the transfer is in progress. In both cases.
the action of the interface module and the movement of the data were controlled
with programmed VO instructions.

To increase the data rate of the system requires a more complex interface
mechanism, one in which some of the responsibilities of the transfer are moved
from the processor to the interface module. The most frequent and time consum-
ing activity is the transfer of data from the device to the memory, and this is pre-
cisely the activity committed to hardware. This requks a more complicated
interface system, and a simplified diagram of such an interface module is shown
in Rgun 6.15. The result is a d i memory access interface module, which will
interact directly with memory in the m s f e r of the data

As can be seen from Elgun 6.15, an interface module with DMA capability
also contains the basic elements of the programmed VO interface system: the
seatus register reports the status of the interface module and its associated VO

Chap. 6: Input and Output Operations 301

I Tape Controller I
Status/Comrnand Data

T

Control Section

I
Control Lines

I

Data Lines

Figure 6.15. Tape Raconlcr Interfasc Module with DMA.

device, and the command register controls the action of the unit. However, two
other registers have been added: the word count register (WC) and the address
register (AR). These registers will be filled (and read, if required) by programmed
UO instructions. The control portion of the DMA interface module must be more
complex than the previous interface modules to not only transfer control and
status information, but also to control the process of automatic data movement. In
general this control portion will be a sequential system designed using the con-
cepts and ideas presented in Chapter 5.

The control of the action of the y0 device (tape movement. head positioning
for a disk, etc.) proceeds as beiore, with programmed I/O instructions diraaing the
appropriate movemenl and the device interrupting when the specified action has
been completed. However, when data movement is called for, then the code con-
trolling the unit (commonly called the "M) driver mutine"), with programmed
M) instructions, fill the WC register with the number of words to transfer, and the
AR with the starting address in memory where this transfer is to take place. The
transfer of information is then initiated with programmed y0 instructions. Whm

Chap. 6: Input and Output Operations

the data becomes available, the interface module requests control of the bus, per-
forms the necessary transfer, and relinquishes control of the bus. The address for
the transfer is provided by the DMA interface module. After the transaction is
complete, the address is changed to point to location to be used by the next
transfer. In addition, the word count is decremented to keep track of the number
of transfers that have occurred. Thus, the hardware handles the information
transfer after data starts to Row. Using this technique, the data can be transferred
at a rate limited only by the bus speed. This allows high s p e d devices, such as
d i f units, to exchange information at the data rates of the disk. A disk using an
SMD protocol can transfer information in excess of 3 Mbyteslsec.

Example 6.9: Interface design with DMA: Modify the tape recorder interface
module developed in Example 6.8 to include DMA capability. The word
count register is accessed as location FFFD86,6, and the address register is
accessed as location FFFD88,, for the least significant 16 bits, and location
FFFDXA,, for the most significant 8 bits.

We will delay the des~gn of the control system until the following sec-
tion, but the other elements are shown in Figure 6.15. The use of the
decoder is expanded to include the additional addresses required by the
word count and address registers. Note that these registers are readable as
well as writable. This does not improve the functionality of the unit. but
will provide valuable help for both checkout and test.

The need for actlon on the pan of the sequential controller is indicated
by a hardware tlas in the control sectlon of the interlace module. This 1s set
when the command register IS tilled by programmed 110. One of the respon-
sibilities of the controller is then to reset this Rag when the action has been
initiated. When the action requires tape movement, such as file space for-
ward, then the interface module requests the movement from the tape con-
troller and waits for the completion of the action. When data movement is
required, the specified tape action is requested, and when a data transfer is
necessary, the appropriate bus cycle is initiated.

The transfer rate of this mechanism is limited by the bus speed of the
system. For a bus system with a transaction time of 250 nsec, the max-
imum date rate would be 8 Mbyteslsec. This rate is somewhat inflated,
since no allowance is made for other users on the bus or for the cost of bus
arbitration.

This section has dealt with the transfer of information between a processor
and an VO device. There is a tradeoff in complexity of hardware and processor
time to transfer information. If the complexity of the interface module is kept
simple, then the responsibility of the processor to control the ID device and the
data movement increases. For transfers conducted purely with programmed VO
instructions, the processor must either continuously monitor the appropriate status
lines, or it must interrogate them periodically (polling) to ascertain if any action is
necessary. In either case, a large ponion of the processor time is devoted to con-
ducting the transfer.

If the concept of intenupts is utilized, then the procwsor is able to ignore
the I@ device until action in needed, at which point the interface module will
cause an interrupt, requesting interaction with the processor. The benefit of the
use of interrupts is that the processor is free to do other work while the VO device
does not need supervision. The cost of this policy is the decrease in the speed of

Chop. 6: Input and Output Operations 303

possible transfers. This policy is especially beneficial for action that does not
involve data transfers, such as tape movement or positioning of disk heads.

The highest speed is achieved by direct interaction between the interface
module and the memory, with the use of DMA. This method requires more com-
plex hardware, but is capable of very high speed transfers. DMA interface
modules combine the various techniques to achieve the high data rates. Pro-
grammed UO instructions are used to communicate with the various registers that
control the action of the VO device. Interrupt techniques inform the processor that
a requested action has been completed. The controller of the interface module
interacts directly with the bus to transfer the data with minimal overhead, needing
only the time required for successful bus cycles.

6.5. An Example d a Device Interface Module

Many of the concepts discussed in the preceding sections are more easily visual-
ized when a specific example is utilized. For that reason. we will use the tape
recorder mechanism that was the object of the previous examples, and we will
design a simple DMA interface module capable of a limited amount of interaction.
The interface module will control the behavior of tape drives as directed by the
programmed IK) instructions issued by the CPU. Thus, the interface module
should combine all of the techniques discussed: respond to instructions. assert sig-
nals going to the tape controller, cause interrupts. and control DMA transfers.

The t:1s1 facing a designer la to ascertain the requirements of the system and
build a device that wdl aatisfy those requirements. In this case, we need informa-
tion concerning three different facets of the design. Two of these are indicated in
Figure 6.15, which shows the relationship of the interface and the tape controller.
One piece of information is the bus specification, which identifies the elecmcal
and timing requirements of interaction with a bus module. The other device
specific information is the set of control and data signals used by the tape
recorder. To perform the needed tape movement, read, and write operations, the
device must assert these lines in the manner defined by a controller specification.
The final piece of information needed is a definition of the commands to be issued
and the status to be interrogated by the CPU. Thus, before the design process can
begin, information about the electrical and behavioral characteristics of the inter-
face module must be established.

The bus used for this design is the UNIBUS, but the same techniques would
be applicable on a Multibus, Q-bus, VME bus, and so on. Each bus has its own
characteristics, and these characteristics must be considered in the process of
doing a design. The UNIBUS is relatively simple, yet it includes the salient points
addressed by the previous sections. Also, because it is a 16-bit bus. the transfer
techniques are not overshadowed by an enormous number of wires. To match the
electrical characteristics we will use special gates, and to satisfy the timing
characteristics we will use a sequential system designed with a state machine
approach. Other bus systems, such as the VME bus, will use more standard gates
for their interaction, but the techniques will be the same.

The tape controller that is the object of this design is capable of controlling
up to four 9-track tape transports. The data path to the controller is separate from
the data path coming from the controller, but both paths are 8 bits wide. Parity is
used to create the ninth uack for the tape, but the controller itself takes care of
parity operations. In addition to the data lines, there arc command signals and

Chap. 6: Input and Output Operations

status indicators associated with the tape controller. The command lines an indi-
cate in Table 6.1. Asserting these lines in the proper fashion will result in the
desired control over the tape drive and the date movement The designer must
create the interface module in such a way that the signals are asserted properly.
The third control is labeled SETX-L, and it used to synchronize the 0 t h com-
mands listed. For example, when a write file mark command is required, the
WRITEFM-L line is asserted, and then the SETX pulse causes the tape controller to
accept the command and begin the specified work.

The control signals of Table 6.1 are used to activate the controlla and per-
form work, but in addition to that the CPU often needs to know the status of the
tape system. For this reason, a number of status lines are provided, as shown in
Table 6.2. These signals are received and delivered to the CPU when the
appropriate programmed UO instruction is given.

The UNIBUS specification is used to identify the required signals on the bus
side of the interface module. The controller specification provides the signals
given in Table 6.1 and Table 6.2. which identify the signals of the tape drive side
of the interface module. With this information a preliminary data path block
diagram can be formed, and this is given in Figure 6.16.

The initial registers are identical in function to those identified in previous
sections in this chapter. The command register is used to receive commands from

Tabk 6.1. Control Lines to Tape Controller.
Tionul Flrncrrnn

INIT-L

SET-TRANt3:O)-L
SETX-L
WRITE-L
READL
I N r n - L
o m m - L
FILESRCHF-L
PILESRCHR-L
SYNCFWD-L
SYNCRVS-L
WRITEFM-L
REWtND-L

Pulw lo lnltlal~rr lranhport
Level to select active transpon
Pulse to synchronize action requests
Level to identify function type
Level to identify function type
Command for input dam
Command for output data
Canmand for fib scarch fornard
Command for file search ~'~versc
command for synchronous fornard action
Command for synchronous mae action
Command for write file mark
Rewind command pulse

Table 63. Status Signals Available from Controller.
Signor Function

TAPE-READY-L Tape UiUlSpOn and colrtrokr nady
P-ERROR-L Parity e m
EOF-L End of file mark detected
BOT-L Tape located at beginning of rape mark
Em-L Tape located a end of tap mark
PROTECT-L Top tlWlSpOn Senses n0 write h 8
RWDINEL Tape is minding
S U L Transport 0 selected
SELI-L Transport 1 selected
SELZ-L Tran~pOn 2 ~ele~ccd
SEW-L Transport 3 selected

Chap. 6: Input and Output Operatlono

Address Decode
Signals

CMD-CLU Command Register State Machine Control
'273 Controller w s

RD-STATUS Receivers and
Signals

WC-LD-CLK
Word Count

WC-DEC-CLK Register

MSB-AR-LD-CLK 8 MSB
Address Rea~ster

LSB-AR-LD-CLK
16 LSB

AR-INC-CLK

I

MSB FROM CLK I
I

MSB _TO-ENBL -------ti 1
BUS-DATA-CLK

DATA-BUS-ENBL

Figure 6.16. Data Path Block Diagram for Tape Recorder interface Module.

L-

LSB-TO-ENBL

LSB-FROM-CLK

CPU
System

Bus

the system: these will be acted upon by the control portion of the interface
module. The status register allows the CPU to investigate the current status of the
system and the selected transport. The word aunt and address registers operate
as described in Section 6.4. The registers that have not been mentioned yet are
the registers used to hold the data transferred to or from the tape transport. The
output registers accept a word ftmn the bus, and then, under control of the inter-
face module, the bytes are alternately sent to the tmspon. The transport itself
adds parity for the ninth bit. The path from the transport to the bus is the reverse

-

Chap. 6: Input and Output Operations

(16 bits)

-

MSB Data Register
'646 8/ Data lo

Receivers
LSB Data Register

'646

8 Data horn *
&IW

Drivers 1 ' T W
Controller

of that described above; the bytes are accepted one at a time, then the 16-bit word
is sent to the bus. If it is desirable to be able to m s f e r an odd number of bytes,
then the interface module becomes correspondingly more complex.

Along with the initial data path, we also need a behavioral description of the
interface module. We know that we want commands to cause tape movement, as
well as commands for reading and writing. We will design a system capable of
selecting one of the transports, and on the selected transport performing one of the
following commands:

Read forward (R) : Tape motion is initiated by the tape controller to read data.
Before this command is issued it is imperative that the interface module be ini-
tialized with a word count indicating the number of words to transfer. and an
address where the data is to be located. Data delivered from the tape controller
will be placed into memory by the interface module. After the block of data
has been read from the tape. the number of words read is compared to the
number of words expected: if they differ, an error bit is set in the status word.

Write forwurd (W): Tape motion is initiated by the controller, with controls
configured for a write. Again, it is imperative that the word count and address
registers have been properly initialized for the required transfer. DMA m s f e r s
are performed by the interface module, and the data delivered to the controller.
When the word count reaches zero. the action is stopped.

Write file mark (WFM): A tile mark is written onto the tape by the controller.

Fi le ~ r u r c l ~ J ~ J I X ~ ~ I ~ ~ cl5Ti: The word count register mubt he tilled with a
number lnd~catmg how many tile marks \hould be skipped. The intertace
module issues the appropnate number of tile search commands, halting when
the word count has been decremented to zero.

File search reverse (FSR): This command positions the tape by searching in
the reverse direction. It is assumed that this request will be given (with an
appropriate word count) to position the tape afrer the file mark in question.
That is, if the tape is positioned in the middle of a file, an FSR command with a
word count of one will back up one file mark, then read over the file mark.
The net result is to position the unit at the bcguuting of the fik. An FSR com-
mand with a word count of two will position the tape at the bcginniig of the
file before the current position of the tape.

Rewind (REWJ: A rewind pulse is sent to the tape contmller. The net mul t is
a rewind action on the selected drive.

Enable interrupt (INTEJ: The intermpt capability of the interface module is
enabled. This will be indicated as a bit in the status register.

Disable interrupt (INTD): The intermpt capability of the interface module is
disabled.

Each command involving tape movement will cause an interrupt (if the intermpt
facility is enabled) when the command has been completed. In addition. the sys-
tem should provide various sws information about the condition and
configuration of the selected tape transport.

The command required of the interface module will be supplied over the
bus and loaded into the command register. The commands are not ASCII words,
but rather consist of bit patterns defined in advance to identify the de.sired action.
For this project we define the following bit pa- as instructions:

Chap. 6: Input a n d Output Operations

Action

Read
Write
Write file mark
Wle search forward
Elk search reverse
Rewind
Enable intermpt facility
Disable internpt facility
Select uanspon (xx = 0.1.2.3)

Bit Pattern

OOO100
001OOO
001100
0 1 m
010100
011OOO
100101
100100
lOOOxx

The bit patterns identify the six LSBs of the w o ~ the other bits are not tested in
the system. Note that a pattern of all zeros is not a legal instruction. Also, the
actions that do not require tape movement (transport select, intermpt enable, inter-
rupt disable) all have a I in the sixth position. This will simplify some of the
hardware of the system. The bit patterns used to specify the action of machine
interface modules should have some correlation between the defined patterns and
the hardware requirements of the interface modules. This is just one of the many
examples where communication between users of computers (programmers, sys-
tems personnel. etc.) and builders of computers should communicate requirements
and preferences.

The above commands are given to the interface module by writing the
appropriate bit pattern to the command register. The status of the tape drive is
ohtained by rcading the status reyster. This ~ntormation i\ ohtamed from the hig-
nal lines ~dcn t~ l~ed in Table 6.7. Other signal& are available, but this set will be
sufficient to demonstrate the elements of our design. From those signals, as well
as from signals generated by the control of the interface module, we will
configure a status register as follows:

The bits an defined as follows:

~ 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

BSY: Busy bit, derived directly form the TAPE-READY signal from the tape
conmller.

SMB: State machine busy, indicates when the controller of the interface
module is not in the idle state.

BSY

ERR: Record length error, which will occur when the number of words read
fmm a block on the tape does not agree with the expected number.

INTE. lntermpt enable bit, which is a 1 when the interrupt facility of the inter-
face module has been enabled.

SMB IM

RDW: Rewinding, set when the selected transport is in the process of rewind-
ing.

WRP: Write pmtect, which is a 1 when the selected transport docs not detect
the presense of a write ring on the tape.

WRP ERR RDW

PE: Parity m r , which is set when the Last operation detected a parity e m r .
BOT: Beginning of tape, indicates that the tape is located at the beginning of
tape marker.

PE

Chap. 6: Input and Output Operations

BOT EOT UIF Trans

EOT: End of tape, indicates that the tape is located at the end of tape marker.

Trans: These 4 bits indicate which of the four transports will be controlled by
the interface module.

Reading the status causes these values to be loaded into a register, so that if they
should change while rhe insfsuction is being executed that change will not cause
problems with the instruction itself.

The list of commands for the tape system does not have a direct comspon-
dence with the signal lines given for the tape controller. Thus, the designer must
identify the desired action and assert the control lines accordingly. For the con-
troller used here, the functions identified above are obtained by asserting the lines
according to the following table:

Write File File
File Search Search

Read Write Mark Forward Reverse Rewind

SETX-L
WRITE-L
READ-L
FILESRCHF-L
FILESRCHR-L
SYNCFWD-L
SYNCRVS-L
WRITEFM-L
REWIND-L

-- -

X X X X X
X X

X X X
X

X
X X X X

X
X

X

Note that the SETX line is to be asserted for all motion commands, except rewind.
which requires a pulse on only the REWIND line. The INPUTX and OUTPUTX
signals are pulses that activate the data transfers; that is, when the tape controller
needs (or has) data for transfer. it will request this information. The interface
module must respond by providing (or accepting) data on the byte-wide set of
data lines to the tape drive and asserting OUTPUTX (or ~~PUTX). AU of the other
lines can be levels, and our design will treat them as such.

The interface module must be electrically compatible with both the bus with
which it is working and with the tape controller. m e UNIBUS requires specific
set of interface chips that provide a minimal load on the bus; sample gates used
by the interface module are shown in Figure 6.17(a). The assertion level on the
bus is low, and these chips convert from the high assertion levels used in the
interface module to the low assertion levels used on the bus. Other bus systems
may use standard tri-state devices, or have other requirements, but the design pro-
cess must adhere to the specification of the bus. We will not include all of the
individual gates in the drawings shown in this section, but we will assume that
rhese gates are used to match the electrical requirements needed by the signals.
The drawings in this section will include the major blocks and some of the control
signals involved. A more complete set of schematics can be found in
Appendix B.

The tape controller also has a specification for driving and receiving the
conml, status. and data lines. This specifically calls for open collector drivers for
the signal lines going to the controller. and resistor networks (22X#2 to +5. 330Q
to ground) on the signals arriving from the conmller. The effective impedance of
this combination (22M in parailel with 33W) is about 13(#2 which is a

Chap. 6: Input and Output Operations 309

I I
lo91c HI* true buffwed or UHlsUS logic: name Stgnal generated

preceded by '8' for bus: naw
p r U M by 'G'

interface s~gnals for
tape controller

signal' from
tape

Buffered
signals for

controller: interface
assw t ed
level I S

law

Lor asserted I
signals to
tape controller:
open collector
drlve circults

Figure 6.17. Interface Gates Used for Bus, Controller.

reasonable match for many signal transmission mechanisms. For this reason. it
has been used for many years as the method for terminating signals, as shown in
Figure 6.17(b).

'Ihe diagrams for the interface module are included as Figure 6.18. and we
will describe the various sections and their responsibilities. The address decode
and programmed UO control signals are found in Figwe 6.18(a). Gates have been
provided to minimize the load presented to the address bus, and the buffered lines
are labeled BADDR. These lines are used to compare the address against an
addressed set up by the user. This mechanism allows the address to be deter-
mined at installation time rather than design time. The UNIBUS uses only 18
address lines, so the other lines indicated in the figure are supcrfluous; however,
other bus systems use up to 32 bits in the address. The least significant address
lines and buffered control lines from the bus are used to create signals used in the
interface module. These signals allow the sequentiality of the bus protocol to pro-
vide the timing necessary to read and write registers under programmed VO con-
trol. The request line for the UNIBUS is called MSYN, and its buffered version is
shown in Figure 6.18(a). The acknowledge is identified as SSYN, and it is shown
before being sent to the bus with the required bus matching gates.

'

Also included in Figure 6.18(a) is the command register. The action of
filling the command register also sets a Bag (A m) , which will be tested by the
state machine that k t s the intermion with the tape. controller. The contents of
'the command register and the activity flag am inputs to a second register, which is
labeled the buffered command register. 'Ihis register, which is clocked whenever
the system is in an idle state, has two purposes. Ihe first is to synchronize the

Chop. 6: Input and Output Operations

DIP witches
or lire

jumpers to
sot sddress

Comparatw

BADLRI23:4l-H -
UNIBUS uses only 18
lines: other buses
may use nwe

Decode system to generate
w r k srgnals from bus
address lrnes and control
srgnsls

MATCH-L -
LO-LSA-L
LD-WC-L

BADOR 13: 1 l -H LD-CMD-L

Command reglster
fi l led by

prw.wd 110 14
BWtTA17:OJ-H

rqrs ter : used
by state nchrne

Decode logrc
to generate
proper s~gna l
combmatrons
for tape
controller

Open collectw
d r~ve r s f w
control s~gna l s

n

1
Drivers

Control
signals

controller

Figure &18(n). Rogrammcd VO Control and Command Registers.

filling of the command register with the clock of the state machine systrm.
Without this mechanism the system would fail when the contents of the command
register changed during the sensitive time before the active edge of the state
machine clock. The second reason for the second register is to prevent any
change in the command register from affecting a function in prognsa The con-
tents of the buffered command register an decoded and the appropripte control

Chap. 6: Input and Output Operations 311

lines asserted to the tape controller. The commands and levels will be determined
by this logic; the required pulses will be generated by the state machine.

The word count register and the address register are found in Figure 6.18(b).
These registers must act as regism to be filled by pmgrammed VO instructions,
and as counters to be decrmnted when under the control of the state machine.
This is accomplished by using two clockiig sources. When the state machine is
idle, SM-IDLE will be asse* and the clock is derived from the programmed VO
signals. However, when the state machine is not idle, the registers are decre-
mented by a signal fmm the state machine itself (WC-DEC-L). One feature of the
system that will not be used in the normal action of transfers is the ability to read
the contents of the word count register. This is provided by the tri-state drivers
included with the word count and address registers; when the appropriate enable

Or1ver to
8 MSB of read 8 WB
address of M
r g l s t e r

Trl-state drlver
to read WC r e g ~ s t w

< 16 LSB of
r
of W

address

WC-BUS-L
Cs

LSA-BUS-L

Figure 6.18(b). Word Count Regism and Addrns Register.

LO-wc-L
>ax

00

WC.0-L
2

WC _UEC-L
Word count
reylster

TS
driver

BDATA(15:OI-H -

Address t o
bus ~ ~ I V W S

TS

Chap. 6: Input and Output Operattons

BDATA(15:Ol-H -
'3-IDLE-L

Count -

r, b1ver

BW\TA(lS:O)-H - BWTA115:O)-H
00

signal is asserted, the information is enabled onto the internal data bus (BDATA)
and then to the UNIBUS.

The data path is included in Figure 6.18(c). The path to and from the bus is
provided by a pair of bidirectional registers. These devices contain two registers,
one for each direction. During a write operation, information from the bus is
obtained 16 bits at a time, and loaded into the register by a signal derived from
the request line (DMA-OUT-CLK). This information is then fed one byte at a
time to the controller, using the TAPE-DATA lines. The selection of the byte to
send to the controller is handled by the enable lines (LSB-ENBL, MSB-ENBL),
which are alternately enabled during a write operation. The timing signals for
loading and reading the registers are generated using control signals from the tape
unit and the state machine.

During a read operation, the data path is reversed. The register in the
reverse direction is loaded by a signal derived from the control lines of the tape
controller (TAPE-MSB, TAPELSB). The resulting values are enabled onto the
internal data bus when needed during the DMA operation. As noted earlier, the
data lines to the controller are asserted with open collector drivers, and the lines
from the controller are received with resister networks. The state machine con-
troller is responsible for asserting the appropriate information onto the
TAPE-DATA lines, from one of the DMA output registers or the data in lines.

The status register is also included in Figure 6.18(c). This register monitors
signals from the tape controller and from latches internal to the interface module
itself. huch as the interrupt enable bit. When a progr~rnrned 110 instruction
requests this information, it is loaded into a register to keep ~t stable dur~ng the
read operation. The register has tri-state outputs that directly connect to the inter-
nal data bus. This status information will be enabled onto the UNIBUS at the
appropriate time by the DMA system.

The logic for controlling the interface module is shown in Figure 6.18(d).
There are two state machines in this implementation. The first is for the action of
the interface module itself, the second is for the DMA controller. The controller
specification calls for command pulses which are a minimum of 200 nsec. For
that reason, the state machine controlling the action of the interface module is
clocked at 5 MHz, which provides a 200 nsec state time. We will describe the
state diagrams for the system later in this section. The state machine used to con-
trol the interface module is constructed from two registered PROMs, each of which
contains 2,048 words of 8 bits. This requires 11 bits of address. Five of the 11
bits are provided by the present state of the system: the remaining 6 bits are
derived from the inputs to the system. Since more than 6 inputs are required to
control the state machine, the 6 used at any one time are selected with a multi-
plexer network. The outputs of the registered PROMs provide the needed control
and state information. The two devices together have 16 outputs: five of these are
used for present state information, and 11 are used for control signals.

The state machine which is used for DMA and interrupt requests is also
included in Figure 6.18(d). This consists of two parts: a synchronizing register
and a registered PAL. These parts need to be capable of fairly high speed, since
the cycle time for the unit is 50 nsec. The function of the DMA controller is to
control the interaction with the bus for direct access to memory. The outputs of
the PAL drive both the bus signals and the internal registers involved in the DMA
transactions. Also included with the control circuitry are some flags that handle
communication between the two state machines, and a timer used to create a
rewind signal that is longer than 2 psec.

Chap. 6: Input a n d Output Operations

8 B i t bi-directional
regrster for BE of

RITE-L data transfer

I

tape ccmtroller

tape controller

register f w LSB of
data transfer

BSETX-L
C

BINPUTX-H

BOUTPUTX-H

uc-wc-L
C

RITE-L
C

016-ENN-L
C

YRT-H

AOR-ENBL-H

Rgure 6.lWc). Data Path to and han Tape C4nmlla and Stltus Re*.

Chap. 6: Input and Output Operations

220-330 Cku Register urth

Timng
logic

[Data Ready1
OR-H

3
TAPE-LSB-L

3
TWE-MSB-L

3
LSB-ENBL-L

3
BE-ENBL-L

3
m-our-CLK-L

L o g i c f a t i r i n g signals for
data regrster and DM action

tr l- state outputs -
BDllTA(15:OI-H -

Resrstw STUS-BB-L
Ne twks ,

- Signal - buffers -
Status
Signals from
Tape controller

Latching devices

Control and

Latch
Status
register

to hold approplate --
status signals

A

Regrstwed PROMS f w
~mplementatlon of
Interface state machine

RSgistn t h~ l t ~p lexe r t o
select Inputs
to next state
lOqlC (m)

Srgnals be state si-LT'-u] machine uh~ch need to Signals synchronous

with state muhtne -
Present state

2 of a
27545

ITR UK-H \
UR-m-FLG-L

nR-INC-L
YC-BEC-L

00-om-H
BSETX-H SETX-L

1

Feedback of
present state

Reg~stered PCA f w
~mplementatlm of
OM state machlne
(feedback path
is ~nterna l l

nnn .REO_CLR-L

1 Reqlster Sf4 SACK-H

- -
lnput slgnals
for state

Control
signals
for
interface

D l r u t
1 lnes
to tape
controller

Control l ines
f w m
t rmsact lms

FbW 618(d). State Machine Conmllers.

The last of the diagrams, Figure 6.18(e), contains the logic needed to con-
nect to the bus, with the requisite gates matching the bus requirements. The
address and data buses are provided with both receivers and drivers to presmt a
minimal load to the bus as required by the bus specification. The interrupt vector
address can be specified by the user, and the interface module will assert this
information onto the bus at the appropriate time.

The action of the interface module is described by the state diagrams
included as Figure 6.19. As mentioned above, the minimum time for the tape
controller is UX) nsec, whenas the UNIBUS will be most effectively used if the
state times an much less than 200 nsec. Thus, the state time for the controller of
the interface module itself is U X) nsec, while the DMA controller opaates with a
50 asa: clock. It would be possible to combine the two state machines, but that
would result in a much larger system. Hem, the decision was made to use two
diffennt state machines.

Wgum 6.19(a) dcals with the behavior of the interfa module itself. ' h e
states used to pcrfonn the work of d i g the tape controller an identified and
the signals that nacd to be asserted an identified in each state. A d~s~ription of

Chop. 6: Input and Output Operations 315

WINIS uses only 18 address (A1
lines: other mtufaces rill use
more address lines. Unused 11nw In th ls
Interface need t o be disabled.

A(17:Ol-H BADOR 123: 01 -H

LININIS enabled t o internal
data bus only vhen address matches
m d u r i t i n g to reg~ster

OATA-ENN-L
a TS

d r~ve r

The data lanes of the UNIBUS
BDATA prov~des w e brven m l y uhen a data
b ~ d i r u t ~ona l w r d or v u t a ~n fwma t~on

internal data bus IS needed

The adbess i s supplied
to the .ddress krs m l y
uhenneededbyafiM
transfer

I DATA-ENBL-L

AIM-OUT (23: 01 -H
4

AOR-EN&-L
C

E h

I

u
Signals from mterface

Interrupt address to Supply interrupt and On4 control to Control lines

Figure 6.18(e). Circuitry for Bus Interaction.

6(17:OI-H
+

spec~f led by user vector to lnternai drlve UNIBUS control lines
data bus -

CMtrol srgnals

the purpose of each state is included in Appendix B: hen we will briefly describe
some of the action generated by the state machine.

The interface module is initialized by forcing the pnsent state to zero, since
that is a relatively easy thing to do with the present state register. This is used to
initialize both the electronics of the interface module and the tape controller.
Once the initialization has occurred. the interface moves to the idle state, where it
will await further direction.

If the instruction which is received by the interface module don not require
tape movement, then State 3 is visited. This causes the appropriate information to
be clocked into the retaining registers and the action flag to be cleartd, then the
system returns to the idle state.

If a command that requires tape movement is received, then the system
moves to State 4. If a rewind is required, then the system moves to State 20 to
issue a long enough pulse, then to State 23 to await then completion of the tape
movement. If a write file marit (WFM) command is d c s i i the system moves to
State 6 to create the SETX pulse, then to State 23 to await the completion of the
tape movement. Note that the appropriate command l i to the tape controller

Buffered signals

Chap. 6: Input and Output Operotlons

DRIVER

from UNIBUS
t o mtwface

of the UNIBUS -

Figure 6.19(8). State Diagram fa Tqc ControIla lrmcrha Module.

Chap. 6: Input and Output Operotlorn

are generated by the logic associated with the command register. and that the state
machine is used only to create the pulses needed.

The remaining commands are file search forward (FSF), file search reverse
(FSR), read, and write. All of these commands require a nonzero word count
register, so if that condition does not exist in State 4, the state machine returns
immediately to the idle state. If, however, the word co t register is nonzero,
then the action can begin.

The file search commands assert the SETX pulse, decrement the word count,
and then wait for the controller to indicate that it has seen an end of file mark
(EOF). This is repeated until the word count register is equal to zero. If the
specified action was a FSF command, then the desired movement is complete, and
the action of the interface module moves to state 23 to wait for the tape move-
ment to stop. If the specified action was a FSR command. then the state machine
causes one more file search command. this one in the forward direction. This
action leaves the tape at the beginning of a file. rather than at the end of a file.

The write command starts the tape movement and then requests that the
DMA state machine perform a DMA transfer to get the information to write onto
the tape. Then the address register is incremented and the word count is decre-
mented, and the interface module waits for the controller to take the data. The
activity of the data path, while the controller takes the data. is coordinated by
pulses from the controller itself, rather than from the tape machine. This main-
tains synchronization between the devices in the data path and the tape controller.
When the information has been taken by the tape controller. the interface module
checks to \ee if more information is needed (is WC equal to ~ero?). If the tr~nsfer
IS complete. lhe interface module walts for the tape movement to stop.

The action of the read command is initiated by the SETX pulse, then the
interface module waits until data is ready. This condition will exist when the con-
troller has extracted 2 bytes from the tape and placed them into the two registers
on the data path. When this has occurred, then a flag is set (data ready, DR) and
the appropriate action can be requested by the interface module. If the word
count has not reached zero, then a DMA transfer is requested to place the infoma-
tion into memory. This also results in decrementing the word count and incre-
menting the address register. However, if the word count register has reached
zero, then more data is being extracted from the tape than expected. The result
here is to not write the infonnation into memory; rather, an error flag is set and
the data ignored. When the read action is completed, the controller will send a
stop indication (DSTP). If the word count register has not reached zero at this
time, then fewer words than expected were received from the tape, and this also
causes the error flag to be set.

The final portion of the state machine of the interface module is used to
wait for the controller to signal the completion of the tape movement, which is
indicated by the FLCL-FG flag. At that time, an intermpt is requested if the inter-
rupt flag is set in the status register. The final action of the state machine is to
return to the idle state to await the next instruction from the CPU.

The interaction between the two state machines is handled with a simple
flag arrangement, and when a DMA interaction is needed, the DMA-REQ flag is
set. The DMA state machine is then enabled to direct the interaction with the
UNIBUS. This interaction is shown in Figure 6.19(b).

The DMA state machine mnains in the idle state until a DMA transfer is
required. It then assens the bus request signal (BR) to gain access to the bus.
When the arbitration system grants access, then the SACK signal is asserted, and

Chap. 6: Input and Output Operations

Figure d19(b). State Diagram fa
DMA Bus Interaction.

the state machine waits for the pnvious bus transfer to complete. When this con-
dition is detected, then the transfa is p e d d the address is enabled onto the
address lines (States 2, 6). the quest line is asserted (MSYN), and the system
waits for the acknowledge line to be assmtcd in response (SSYN). When the ack-
nowledge is detected, the DMA state machine rearms to the idle state releasing the
assated signals in the appropriate order. Also, the the to to idle state sets a
flag that is detected by the state mechine of thc interfsce module to indicate that
the transfa is -pkte.

If the action is an intermp sequence rather than a deta transfer, then the
same action is n d d , but not all of the samc signals an? used, Ihus, the

Chap. 6: Input and Output Operotlons 319

appropriate control of the gates and tranceivers in Figure 6.18(e) allows interrupt
and DMA transfers to be controlled by the DMA sequencer. For example, the
request signal (MSYN) is not used for the intempt sequence, and hence the bus
driver for that signal is disabled during that operation.

The interface module presented hen is a relatively straightforward imple-
mentation that utilizes the concepts of bus interaction and sequential circuits. lie
system can be made much more complex in its interaction by including additional
instructions and expanding the state diagram. For example. the controller has the
capability to read and write when the tape motion is in reverse. p i s ability can
be harnessed by including appropriate instructions in the efinition of the interface
system, and then including appropriate action definiti d s in the state machine.
Other action, such as block searchs and unloading the tape, an also possible with
a more complex system.

This interface system is an example of the application of the techniques dis-
cussed in earlier portions of this book. The details of the interface module were
determined by a thorough examination of d l of the applicable information. The
electrical requirements and protocol specifications of the bus used in the system
were determined. Also, the electrical requirements and protocol specifications of
the tape controller were determined. And the specific action of the programmed
UO instructions of the system was determined. Once this information had been
obtained, then a data path block diagram of the system could be generated, and
the design of the control system performed. The design required combinational
techniques to create many of the signals and conditions that were not tied to the
pulses generated by the state machine. Combinational circuits were also applica-
ble in those areas where the cequentlality of action was determmed by other \ys-
terns. wch as tilling reglstcrs from the bus. Finally. the sequential action of the
interface module was detined by state machines and implemented with simple
programmable logic devices.

6.6. VSI Devices for Intellace Systems

The example of Section 65 included individd Tll. devices for every aspect of
the system, from address registers to bus controller. However, newer technology
has resulted in a variety of devices that place portions of an complete interface
module into VLSI devices. The designer of an interface system is then required to
ascertain the capabilities of the devices and apply them in a 1~8~0nable manner to
the systems at hand.

The manufacturers of micropmcessor systems have recognized that users of
the microprocessors would almost always be desirous of interfacing the micropro-
cessor to physical devices of one kind or another. Thus, they have provided a
variety of interface devices to work with their systems. Perhaps one of the first
available devices was the 8255, a block diagram of which is shown in Figure 6.20.
This device was created to work with the Intel 8080, and has been used not only in
8080 systems, but many other types of systems as well. This device contains logic
sufficient for 24 b i d i o n a l lines. The control logic internal to the 8255
specifies the mode of operation for the external l i s , whether they an inputs or
outputs, and when to accept (supply) the information from (to) the bus. The
bidirectional data bus lines allow the device to connect directly to buses of a
microprocessor system, as shown in Figure 6.21. If the data bus of the micropro-
oessor system is 8 bits wide. ihen the 8255s an accessed one at a time. If the data

Control Signals I I
Figure 6.20. Block Diagram of the 8255.

Internal
Data Bus

External
InpuWOutputs

8 Bit
Register

8

External
Inputs/Outputs

8/
/ '

External
fnpuWoutpu~

/

8/ 8 Bit Data Bus + b

7

4 Bii
-Network

To external devices

Data
Buffers

4 4/ ,
/

Data Bus

Figure 631. Microprocessor System with 8255 Interface Chips.

'

Chip Select d
Address,

Control lmes

Address
Decoder 02%

bus of the system is 16 bits wide, then both 8255s can be accessed simulmcously.
Or, they could be byteaddressable and accessed uniquely. versatility of the
device, which allows using the device in any of three basic modes on each of the
interface elements, permits configurations that fit the needs of many applicatio~w.
Howeva, the basic system matches the buaes discussed hem the addrtss decoder
is nsponsible for identifying when the devices are to be accused, and the other
timing signals control the actual transfers.

4 Bit
-Network

Control
Log~c

8255

Chop. 6: Input and Output Operdons 321

, 4/ ,
/

/

1

8 Bii
Register

4 w ,
/

One of the functions that is a prime candidate for inclusion in a single
integrated circuit is the circuitry required for a DMA operation. Many manufac-
turers provide controllers for different types of micropmessor systems. A block
diagrh of the Signetics SBC68438 is shown in Figure 6.22. As indicated in the
figure, the chip contains all of the logic needed to perform the DMA operations
with a 68000 system bus. This includes registers for storing the word count and
the address, as well as intenupt logic, daisy chain priority logic. and isolation
gates for the data and addnss buses. The data bus is also connected to the device
controlled by the SCB68430, so that when the DMA controller directs the peri-
pheral device to do so. the data is directed to or extracted fmm the data bus.
Thus, the connection between the DMA controller and the peripheral device allows
the peripheral to signal the DMA controller when a bus transfer is needed, and the
controller to indicate to the peripheral when the data transfer should take place.

The DMA controller can be used with any peripheral that needs to perform
high speed transfers with a 6 8 W system. /Such a system configuration is shown
in Figure 6.23. A DMA peripheral device. such as the tape controller of the previ-
ous section. is connected to the data bus for transfers of data. and to the SCB60430
to control the data transfers. In addition. the device must be controlled by the
processor, and therefore a programmed UO connection is provided.

The use of DMA controllers in microprocessor systems greatly reduces the
number of integrated circuit chips required for controlling peripherals that need
the DMA capability. A number of other such devices are available from other
manufacturers. Among these are the 8237A from Intel. which is designed to work
with X-bit buses and contains logic for four DMA channels. The Am9.516. which is
nva~lable from .Advanced Micro Devices. 1% destfned lo work w~rh Ih-bit

Internal
Data and
Address

Daisy Chain

1 I
Control Lines

Chip Select

24 Bit Address Bus

Register

Control and
Status Register

Intempt
Registem Control

Control
Logic

Figure 6.22. Block Dingram of the SCB68430.

Chap. 6: Input and Output Operations

-b

-P

I(P

-
68000
Bus

Interface
Logic and
Buffers 16 Bit

Word Count
Register

Data and
c---+ Address

Buses - Bus Contml
Lines + a

Address Bus

DMA Peripheral
Device

I

Figure 6.23. Microprocessor System with SCB68430 DMA Controiler.

Data Bus
*

microprocessors, and contains two separate DMA channels. And the NS32203
from National Semiconductor is designed to work with the time multiplexed 32032
bus aystem. and it contains logic and registers for four separate DMA channels. In
each case. the megrated circuit contains a ereat deal ot lofie to control the bus
transtcrs needed lor DM,\ action. hut the user I \ requ~rcd to provide the pro-
grammed 110 commands needed to control the action of the DMA peripheral.

Additional capabilities can be added to integrated circuits to further reduce
the number of chips required to do particular functions. One such example is the
DP8466 Disk Data Controller (Dm) fmm National Semiconductor Corporation.
The DDC not only contains the logic needed for DMA operation, but also the logic
for providing most of the interface functions to the data sveam of a disk system.
A basic block diagram of the device is shown in Figure 6.24. Internal to the dev-
ice ate registers that control the DMA action (word count. address, etc), and also
registers that control the activity of the serial data stream. In this manner, dif-
ferent types of disk interface specifications can be handled by the same type of
device. The bus connection presents a m-state interface to the system for transfer
of both data and address information. And the bus timing circuits allow transfers
into the device (e.g., programmed UO set up of registers) as well as out of the dev-
ice. The FIFO permits storing of up to 32 bytes of information in the system.
This allows data transfers to be performed in a burst mode: once control of the
bus is obtained, data can be rapidly transferred tolfrom memory. The remaining
logic is used.to perform the functions needed to convert between the serial for-
mats used on a disk and the parallel format of the computer system.

The DM3 not onlv has the abilitv to encode and decode the information
according to the serial protocols used in disk systems, but it also has capability for
certain w s of error detection and correction. As interface systems become motr.

Program

. .
complex, one of the functions that must be provided is the ability to detect erron
and under the proper circumstances, c o m t them. We discussed simpk error
detection with parity codes in Chapter 2. as well as error correction with Ham-
ming codes. Serial codes can use parity techniques, but often they also use poly-
nomial codes to provide a different form of error capabilities. With the amount of

Chap. 6: Input a n d Output Operations 323

I r I
Data

Memory
(RAM)

Programmed I10
Command Logic -'

SCB68430
DMA

Controller

I ines

and Control

Signals

Data and Clodc
Signals to Disk

Figure 6.24. Block diagram of the D P W .

Parameter

:ai%i
Registers

P

logic available on integrated circuits, the use of these mechanisms can be included
in the chips as shown by the DDC.

As with the DMA controller. the DDC can he used to control dat3. tlow in
\ybtems. but the control of the dihk itheli i b left up to the user. Consder the block
diagram bhown in Figure 6.15. Much of the system is identical to the bystems
shown in earlier tigures. The programmed 110 signals are used to control action in
the DDC as well as the disk itself. The DP8466 is connected to address and data
buses: some buffers, which are not shown in the figure, are required for this con-
nection. The data and control paths to the SMD disk require differential line
drivers and receivers, which minimize the effects of noise on the common data
lines. For other types of interface specifications, such as the ST506. National also
provides a data separator and a data synchronizer. The net effect is to have a
family of integrated circuits that c o m t to general microprocessor bus systems
and control disk systems. With this capability, a user can develop a disk system
to meet a variety of needs.

We will include one final example of an integrated circuit VO controller,
which is the 7990 Local Area Network Controller for Ethernet (LANCE) of
Advanced Micro Devices. Other manufacturers (Intel, National Semiconductor.
etc.) have similar Ethernet devices. The LANCE chip connects to a microproces-
sor system in a manner similar to the other interface systems indicated in this sec-
tion, as shown in Figure 6.26. The only difference here is that a second chip is
required, the serial interface adapter. This chip provides the needed connection
for the 7990 to connect to Ethernet systems.

Internal to the LANCE chip a number of functions are performed. A basic
block diagram of the device is given in Figure 6.27. Like the other devices we
have examined in this section, there is a set of isolating gates to handle the data
and address lines of the bus. In addition, a number of registers an included in the
system to control the action of the device. These include the normal DMA type of
registers, as well as registers that control the Ethernet connection itself. However,
the interaction with the memory of the LANCE is more complicated than other

Chip Select1
Address Llnes

ID Pattern
Recognition

and
Serial Data
Controller

Chop. 6: Input and Output Operations

'
S - '
t

AddresdData
Lines - FIFO - Bus

interface

SMD Disk

Address Bus

Figure 6.25. Microprocessor System with DP8466 Disk Interface

I
Data Bus

Ethernet
Transceiver

Address Bus

system we have considered. The LANCE operates by both building and examin-
ing data stnrtures in the memory ams of the processor. ' M a , in addition to
transferring dam to and from memory, this unit also uses the ab'ity to look at
memory to amml the activity of the Ethcmct d o n .

In addition to the devices described in this section, manufachuers also pm-
vide a number of other functions. Tbese include real time clocks for w i n g

M i
Processor

I

Chap. 6: Input and Output Operations 325

Data Bus

Program
Mem PRO^

/ l

M i
P="=ess"r

Data
Memory
(RAM)

Programmed Va
Command ~ogic-+

Control Signals

NS8466
DDC

Special Interface

Data
Memory
(RAM)

r

Am7991A
Am7990 - Serial
LANCE Interface

Adapts

I \ata and

Drivers and
Receivers

Control
Signals

Figure 6.27. Block diagram of [he Arn7qWI.

c---, Bus Buffere P DMN
Address and Data Path Microprogram
Data Lines Control Store -

d

LANCE/ Connection
CPU to Serial

track of the time, event timers to ascertain the time required for internal and exter-
nal events, serial communications controllers, network interface systems. fiber
optic interface modules, and e m handling devices, to name a few. In all cases,
the user must provide some programmed I/O capability to control some of the
basic functions, and the interface unit handles as much of the automatic data
movement as feas~hle. One o f the chnllenfes of \).\tern architects md destynrrs ib

lo usc lhche dcviccs In rcasonablc ways ill useful systems.

-
v;,"'

6.7. V 0 Channels and If0 Processon

The action of transferring information to and from a computer can take many
forms, as we have seen. The UO mechanisms used as examples have been limited
to interaction between a processor and an VO device connected by a common bus.
Indeed, this is the normal connection mechanism for bus-oriented systems used in
minicomputers, workstations, and microprocessor systems. Another method of
dividing the work of the computer system is to remove from the CPU the respon-
sibility for detailed control of VO devices, and limit the cPU to computing and
controlling. Logically, this resembles the situation depicted by Figure 6.28. The
CPU operates normally, executing programs found in main store and manipulating
data according to the instructions found there. However, when interaction with an
UO device is required, the CPU requests this interaction by sending a command
directly to an UO device controller. This unit is specifically designed to pmvide
control for VO devices, which it proceeds to do according to the instructions of the
CPU. Since the VO device controller has its own connection to main store, the
data transfers occur directly to locations in memory.

The UO device controller shown in Figure 6.28 is sometimes called a chan-
nel, and different types of channels are used in different computer systems. The
channel is essentially a special purpose processing element designed to do OF

thing: control VO devices. In general, the programs executed by the channel
m i & in main store, just as the programs executed by the CPU. The CPU indi-
cates to the channel the work to be done by creating programs for the channel to

- -I -1

Control
Bus

lntertace

Chap. 6: Input a n d Output Operations

Station
Address
Detection

Retry
Logrc

c Serial I10
Interface

lntertace
Adapter -

Figure 6.28. Control of 110 Devices with a Channel

Channel

execute from the set of operations available to a channel. In some systems these
UO commands are called channel command words (CCWs). After the action is
initiated by a direct command from the CPU, the channel will assert the proper
signals to cause the transfer of information from the UO device to the memory.
However. the channel has more capabilities than a simple UO interface module,
such as that presented in Section 6.5. The channel may perform data conversion
on data moving in the system. as well as handle error checking and correcting.
Also. the channel may interrupt the CPU at any time during the transfer, i f the
situation requires it. Also. the CPU may request ~nformation concerning the status
of the transfer at any time. and the channel will respond.

Although many different types of channels are used, channels are sometimes
grouped into the classifications used by IBM. With this classification method,
channels are grouped into three categories: multiplexer channels, block multi-
plexer channels, and selector channels. These are shown in Figure 6.29. A
multiplexer channel, as its name indicates, multiplexes between a number of VO
devices. Each transfer has associated with it an VO device address and a byte of
information. Each device will have a specific address associated with it in main
store, and the multiplexer channel must maintain the correlation between the phy-
sical device and its associated storage area in memory. Thus, the multiplexer
channel maintains a number of addresses and other information about the physical
devices over which it has control. One of the basic requirements for the devices
connected to a multiplexer channel is that they are slow enough to allow the chan-
nel to switch between them as needed. since they all share the same communica-
tion path. Thus, these devices are generally of a nature conducive to the slower
speeds: terminals, modems, elecrmmechanicai devices, CRTs, and so on.

The selector channel is designed to provide high speed transfers from an
external device and the memory of the system. As such, it is very much like a
DMA controller: once the system has designated the device to use and the location
in memory of the information, the selector channel executes that transfer or con-
trol operation before initiating another. This is aue even if the operation is
merely a track-to-sack seek of a disk or other movement command. However,
because of the creation of programs consisting of channel command words in
memory, the selector channel may move on to a second transfer as soon as the
last data movement of the first transfer has been completed

Main Store

Chap. 6: Input a n d Output Operations 327

-
I 110

Device
Controller

CPU >

, I10 Device

CPU

Figure 639. Computer System with Multiple Chnels.

The blocdm~lti~iexer channel is designed to have some of the characteris-
tics of both the multiplexer channel and the selector channel. The block multi-
plexer channel is capable of multiplexing between devices. as the multiplexer
channel. but the basic unit of information is no longer a hyte. hut rather a hlock of
infomat~on. Thus. once the transfer of a blmk of information is started. the

-
u

channel will maintain the logical connection between the device and its associated
location in memory. When the transfer of the block has been completed, then the
channel can move on to another device.

A channel provides a mechanism for the processor to off-load the burden of
UO control to a device specifically designed to handle the interaction. The chan-
nel controls the interaction with the UO devices over the channel bus, which is an
8-bit transfer path. The devices that connect to the channel bus have the same
problem examined earlier in the chapter: transfers are made over a shared data
path, and the interface modules must be designed to permit this to happen in a
uniform manner. However, the interface problem is somewhat simplified, since
the channel is always in control of the bus. Once the channel action has been ini-
tiated, no further action is q u i r e d on the part of the CPU until the transfer is
complete. This leaves the processor free more of the time to do what it does best:
compute.

When a computer system is configured with a number of channels, the sys-
tem architect includes a sufficient number of channels to provide the UO capability
needed by the system. The transfer rate of the memory systems used in large
computer systems is sufficient to allow several channel systems to operate simul-
taneously. Therefore, the architect is fne to utilize enough channels to meet the
maximum nansfer rate required, or to use a small number of channels to provide
capability at a m i n i cost.

Channels arr one example of an input/output pmcessot (IOP). Figure 6.30
shows a system configured with a number of processing elements and IOR. The
figure indicates that the IOR am dedicated to specific hnctions. such as disk or
tape systems. This need not necessarily be the case. The basic requirement for an
IOP is that it be capable of controlling a &vice and intetfacing to another system.
Thus, the lOPs shown in the figure each w o r m a designated task, and present the

LS = LOW Speed device
MS = Medium Speed device
HS = High Speed dev~ce

Main
store

Chop. 6: Input and Output Operations

Mulf plexer

-
- -

Blodc
Multiplexer

Channel

Selector
Channel

MS

LS LS LS
Channel

MS MS

I I I I

MS

I I I I

HS

I I I I

HS HS HS

Disk

Disk

Disk

Digitizer D
Printer P

I I I 1 I I I I I

MEM
CPU

Pigun 6.30. System with Multiple Roc*rwKs and IOPs.

MEM MEM

results to the larger computer system. In this context, many of the units described
above have the characteristics of IOPs.

Additional systems that fall into this classification include the Am5380 SCSl
(Small Computer Systems Interface) Interface Controller, made by Advanced
Micro Devices, and the 8089 W processor, made by Intel. Block diagrams of
these systems are shown in Figure 6.31. Also included in Figure 6.31 is a
diagram of the 8044 m t e universal peripheral interface.

'Ihe SCSI interface definition provides an 8-bit data path to peripherals. and
a number of disks and tape units have been designed to be connected to computer
systems by using this protocd To the controlling CPU. the Am5380 appears as a
set of eight registers; these could be located in the memory space as memory
mapped W or in a scparmc W space. The controlling CPU monitors activity on
the SCSI bus and requests PppFopriatc action by reading or writing to these

CPU

Chap. 6: Input and Output Operations 329

MEM MEM
CPU CPU

Decoding

DMA SCSl Registers
and Functions

SCSl Bus
Interface

I10 Channel 1 - -

Memoiry Counters

Figure 631. IOB: (a) SCSl Interface Controller; (b) VO Rocessor, and; (c) Remote
Universal Peripheral Interface.

--

I10 Channel 2

registers. This device must be utilized in conjunction with other devices to per-
form the DMA transfers required for high speed operation. In this type of a
configuration, the Am5380 is used to provide the SCSI bus connection. and the
other portion of the circuitry conaols DMA interaction with the host. To control a
number of SCSI transfers simultaneously. a system could be configured with
several Am5380 devices. Each of these units would be capable of transferring
information d i d y into the memory system under DMA control. The Am5380
can also be utilized in the design of peripheral units that connect to a SCSI bus, as
it can be a target as well as an initiator on the bus.

Internal Bus
D~",,..

Connection

Chap. 6: Input and Output Operotions

Channel
Contml. - @us

Bus
t* lnterfaca

+_, and
Contml

Register -

The 8089 UO processor is a device that contains a microprocessor capable of
controlling interaction with two UO devices. The unit is compatible with 8086-
and 8088-type microprocessors, and provides high speed DMA capabilities for two
separate devices. It is designed to intelligently control transceivers connecting UO
devices to a microprocessor system. The system was created to be utilized in the
memory space of the host CPU; communication between host and ID processor
are accomplished by passing messages in the memory space. The instruction set
of the 8089 has been created to function efficiently in its role as data mover, and
the instructions include a number of load, store, and move capabilities, as well as
conditional and unconditional branches, and minimal arithmetic capabilities. Dev-
ices of this nature can be used to remove from the host CPU some of the mundane
action needed for UO transfers, allowing the CPU to concentrate on the computa-
tional aspects of the system.

In addition to LSI devices. such as the Am5380 and the 8089 which control
bus interaction. other devices are available to provide lines that can be connected
directly to the control lines of 110 units to control the interaction. One such unit is
the 8044 remote universal peripheral interface. also shown in Figure 6.31. This
unit contains an 8051 CPU capable of asserting lines needed for control of UO dev-
ices. The 8044 provides 24 programmable pins, so that a designer could create
signals for controlling the action of peripheral devices, and interfacing those dev-
ices to a processor system.

Channels and IOPs provide a mechanism whereby a system can divide the
tasks that are required - compuratton and communication - between processors
that are more appropriately configured to the task. Mov~ng 110-oriented tasks to
separate. specialized processors has two immediate benetits. First. the transfers
required by UO units are in general much slower than memory transfers, since lim-
its are imposed by the elecmcal and mechanical nature of the UO systems. This
means that the lOPs can be constructed with medium speed technology and dev-
ices. The second benefit is the release of the time commitment from the CPU,
since it no longer has primary responsibility for every command given to UO dev-
ices. This allows the apparent system speed to increase.

The communication mechanism between the processing element and the external
world is a very important pan of any computer system. By this mechanism data
is obtained by the CPU for use within the system, and results of the operations are
made available to peripheral units, whether those units are computer systems, or
disks, tapes or other peripheral devices.

The UO mechanisms are an important part of the functionings of a computer
system. To assess the impact of the UO system. a thorough analysis of the system
should be performed. This will allow evaluation of alternative utilizations of the
busing schemes and other UO mechanisms. matching the interconnection features
with the characteristics of the processor(s) and peripherals.

Busing systems allow different modules to communicate with one another
over the common communication medium. Asynchronous bus communication
promcols allow the transfers to proceed. controlled by signals generated by both
sender and receiver. This allows the transaction to seek its natural transfer rate
for the bus. Asynchronous mechanisms can be used with buses that have separate
address and data lims, as well as buses which time multiplex data and address on
the same set of lines.

Chap. 6: Input and Output Operations

Information can also be transferred on a bus in a synchronous manner. 'Ihe
protocols for synchronous bus systems allow multiple operations, such as arbitra-
tion, uansfer, and acknowledge, to occur simultaneously. For this reason, the data
rates for synchronous bus systems is generally higher than a rate for an asynchro-
nous bus.

The task of identifying the controller of a bus systemisthe responsibility of
an arbitration system. The arbitration mechanism can be parallel in nanue, which
allows for high speed arbitration based on algorithms of arbitrary complexity.
Another arbitration mechanism is serial in nature, with each module cooperating
by passing a grant signal if access to the bus is not required. This method is
necessarily slower than the parallel system, since decisions are made in a serial
fashion. Another arbitration mechanism is polling, which is not used for bus
ownership recognition. but is used in identifying active VO devices.

Control of activity of peripheral devices is achieved by specialized VO
instructions, or by using memory mapped 110 techniques. By using instructions
that control the action of peripheral devices. a processor can initiate transfers and
monitor the status of the system. The complexity of the interface module between
the processor and the peripheral units determines the responsibility of the CPU. If
minimal capability exists within the interface module, then the CPU must monitor
the status of the peripheral and cause all action with programmed VO instructions.
If the interface module is capable of interrupting the processor, then the CW can
continue processing and service the 110 device only when action is needed.
Finally, if the interface module contams the ability to interact directly with the
memory, then the CPU can initwe a transfer and he interrupted only when the
action is complete. This direct memory access min~mizes the time required by the
CPU for controlling UO functions.

Channels and VO processors are specialized processing elements designed to
remove the elemental VO concerns from the CPU. These processors directly con-
trol peripheral elements to perform the data transfers and other functions required
of VO devices. With the byte multiplexing technique, the channel switches
between ID devices as needed and tags each byte as it is obtained. This allows
many slow speed devices to be attached to a single channel. A block multiplexer
channel operates on a similar principle, but the units of transfer are blocks of data
rather than bytes. A selector channel selects one y0 device, and transfers data at
high rates to or from that device before being switched to a different peripheral
unit.

All of the techniques mentioned above - bus systems, arbimtion systems,
programmed VO mechanisms. direct memory access, interrupts, channels, and
lOPs - are utilized to uansfer information to and from a computer system. By
using the various mechanisms as called for by the peripheral devices, computer
systems, and desired data rates, an effective processing system can be configured
that will not only compute, but will also make available the results of the compu-
tations.

6.1 For a bus with handshake protocol shown in Figure 6.3, design a byte swap
register that functions at addre.ss 77%. That is, writing to the specified
address will fill a register, and reading from that same location will present
the data in a byte swapped manner, with the data written on the most

Chop. 6: Input and Output Operotions

significant eight lines now available on the least significant lines, and vice
versa The system has an 18-bit address bus and a ldbit dam bus.

Design a hardware multiplier that will operate on an asynchronous bus sys-
tem with a 24-bit address bus and a Idbit data bus. The multiplier must
use the shift and add algorithm shown in Figure 3.12 (and in Appendix B).
The unit must respond to the following addresses on the bus (read and write
are from point of view of CPU):

Address Read Action Write Action

777610, Read from multiplier register. Write to multiplier register.
mU2, Read from multiplicand register. Write to multiplicand register.
777% Read 16 least significant bits No action.

of result.
777646, Read I6 most significant bit No action.

of result.

This multiplier will function for positive numbers only. The interaction
with the multiplier and multiplicand registers can be accomplished by using
combinational circuits to interact with the control signals of the bus. When
the location of the least significant bits is accessed, a sequential controller
should perform the multiply on the data in the input registers, and present
the result when the multiplication process is finished. When the most
significant result location is accessed. the bits in the most significant bits of
the product register should be made available. without going through
another multiplication process.

6 3 One of the operations that proves to be very beneficial in the algorithm
known as the fast fourier transform (FFT) is a bit reversal, when the most
and least significant bits are exchanged, the second most and the second
least significant bits are exchanged, and so on. Design a bit reversal register
operating on a bus that uses the time multiplexed asynchronous protocol of
Figure 6.5. When the address 1777760S8 is written to, a register is filled.
When that same location is read, the bits in the register are presented to the
bus in bit reversed order. The bus lines involved are multiplexed between a
=-bit address and a ldbit data value. The number of bits needed for the
reversal operation depends on the size of the FlT. What modifications
would be meded to allow a different number of bits to be involved in the bit
reversal? That is, what changes in the design would be required in the
definition of the unit, and what logic complications would result?

6.4 Design a bit rotator for a time multiplexed asynchronous bus that operates
according to the protocol shown in Figure 6.5. This bus multiplexes the
common lines betwan a 22-bit address and a Idbit data value. The rotator
works at the following addresses:

Address Read Action Write Action

1777764% Readrotacevalue. Wrie ~ w p t e value.
17777% Red position value. write positim value.
17777% R t d ~ d ~ ~ h r o o t c NO lrtioh

*tamcataiLeft
number of bit positions
specified by position value.

Chop. 6: Input and Output Operations

The rotator has two registers: a 16-M mtate register, which contains the
value to be rotated, and a Cbit position register, which identifies how many
bits (to the left) to mtate the value Located in the rotate register. The posi-
tion reading and writing the mtate register and the position register simply
involve the bits in the registers in question. When a rotated value is
requested, then the value in the rotate register is loaded into a separate shift
register, which is configured as a mtator, and this register is rotated the
amount specified by the four bits of the position register. When the mtate
has been completed, the value is supplied to the bus, and the transaction can
terminate.

6 5 Thm types of arbitration mechanisms are discussed in this chapter. Give a
brief description of each of the mechanisms, along with an explanation of
what are the good characteristics (and why) and bad characteristics (and
why) of each mechanism.

6.6 Design a parallel arbitration mechanism for eight master modules that
operates on the round robin principle. That is, once a master module has
been granted access to the bus, the module with the highest priority for the
next bus grant is the modulevlith the next highest number (mod 8).

6.7 Both synchronous and asynchronous bus communication pmtocols are dis-
cussed in this chapter. Identify the salient characteristics of each type of
protocol. and describe the good and bad features of each. Which communi-
cation mechanism is faster? Why?

6.8 An interface is to he dc\igned to control a data logger and provide the data
to n computer. The computer 15 organrzed around an asynchronous data bus,
such as the UNIBUS or MULTIBUS. Give a simple block diagram of the
interface, identifying the major data pathslregistea and the principal contml
boxes. What information is transfemd under program contml? What is
transferred on a cycle stealing basis?

6.9 Consider a computer system with the following characteristics:

500 nsec memory cycle time, both read and write

2 microsec instruction time for all instructions (very strange com-
puter, since most clear instructions take less time than multiplies,
or a CALL)

memory mapped VO
standard instruction set

Create appropriate code segments to control UO transfers, and determine the
peak transfer rate and the average transfer rate for blocks of 512 words, for

a. interrupt driven W
b. straight programmed W
c DMA

6.10 Consider the partial system diagram shown below, which contains two CWs
and two memories. Using the synchronous protocol of Figure 6.1 1, what is
the shortest amount of time in which the two CWs cwld write two words
(each) to the memories, where CPU A is writing to MEM A, and CPU B is
writing to MEM B. Plot the timing relationship of the msactions, showing

Chap. 6: Input and Output Operations

Synchmnous 8us System (arbitration lines, data and address lines, acknowledge lines)

Figure P6.10. Panial System Diagram with Synchronous Bus.

the relationship between the arbitration lines, dataladdress lines. and the ack-
nowledge lines. If the words are each 4 bytes, and the cycle time is 100
nsec, what is the data rate?

6.11 Repeat Problem 6.10 for read cycles, instead of write cycles. Assume that
the bus cycle time is 100 nsec. and that the memory modules require five
cycles to obtain the requested data.

6.12 Create a diagram similar to Figure 6.12 that explains the time relationship
between commanders and responders on the SBI. Show with the diagram
both reads and writes, and configure the transactions to demonstrate a max-
imum transfer rate. Name three different techniques that could be used to
increase the bandwidth of the bus.

6.13 An A D converter is configured as shown in Figure P6.13. Design a DMA
interface that will input data to an asynchronous bus system from this AID
convener. The iletimtion 01 the behavwr ot' the interfllce 15 as fbllows: The
interface 15 idle untll a b ~ t (the GO bit. which is the most significant bit of
the command register) is set in the command register. When the GO bit is
set, the interface will clear the DATA-AVAIUBLE-H flag and wait for the
A/D convener to generate a new data sample. When the sample is available,
the interface will request a bus transaction by asserting a bus request line
(BR-H). When the bus grant is asserted (BG-H), then the interface releases
the bus request and asserts the address and data lines. After a 50 nsec delay,

. the interface assens the request line (REQ-H) and awaits the a s d o n of the
acknowledge line (ACK-H). The master then releases the q u e s t line, and
when the master sees that the acknowledge line has. been released, it will
release the address lines and decrement a word count register. This process

Analog Input

C
12 Output lines
for data

~ u p l e 1nprt: / Neu data is available
Sample process rhm RVlOV IS high:
initiated by READY is La durlng the
larto-h~gh srql lng process
transit ion

Figure P6.13. AID Convener for Problem 6.13.

Chap. 6: Input and Output Operations

continues until the word count reaches zero. The interface contains a status
register readable by the CPU, which consists simply of a busy bit (which is
the most significant bit on the bus). When the interface is in the process of
transferring information to the computer the bit is a one; otherwise. the bit is
a zero. Thus, the busy bit will be set by the action of setting the 00 bit of
the command register, and reset when the word count reaches zero, and the
transfer process is completed For this system, provide:

a. a programmer's interface definition: the registers that a programmer can
reach and their definitions

b. a data path block diagram that identifies all of the necessary components
for the data transfers and their interconnection

c. a set of control signals that can be used to control the interface (the con-
trol signals of the data path \
d. a state diagram of the interaction

e. logic diagrams for the system

6.14 The bus transactions described in Problem 6.13 are used to transfer informa-
tion to a memory module. Modify the protocol description to read informa-
tion from a memory. Then design a DIA converter interface with the foilow-
ing behavior: When a SEND-DATA flag is set, the interface extracts a value
from the location identified by the address register and sends it to the DIA
convener. and also resets the tlag and decrements the word count. When [he
word count re aches dero. the word count IS returned to an initial word count
value and the address register IS returned to an initial address value, and the
process is repeated. This system could be used to draw waveforms on an
oscilloscope. For this system give:

a a programmer's interface definition: the registers that a programmer can
reach and their definitions. Note that the programmer will not be able to
reach all of the registers in the system.

b. a data path block diagram that identifies all of the necessary components
for the data transfers and their infMConnection

c a set of control signals that can be used to control the interface (the con-
trol signals of the data path

d. a state diagram of the interaction

e. logic diagrams for the system

6.15 Obtain the data manual for a DP8466 disk data conrmller (DDC), and using
that device design a disk interface for a 16-bit asynchronous bus. initiate
the design by identifying the possible transfers between the DDC and the
bus. Then identify the additional signals required to control the action of
the disk. Then, complete the design process by creating an appropriate data
path block diagram, specifying the control system, and creating the appropri-
ate logic diagrams.

6.16 Obtain a data manual for an Am9516 direct memory access controller
(DMAC), and using a pair of devices design a high speed communication
channel that connects two 16-bit asynchronous bus systems. These are
essentially independent computer systems that are physically close together,
and information is to be exchanged between the two o v a the DMA channels.

Chap. 6: Input and Output Operotions

6.10. References and Readings

[AMDBS] Advanced Micro Devices, Bipolar Microprocessor Logic and Interface Data
Book. Sunnyvale, CA: Advanced Micro Devices, 1985.

[But841 Baer, J. L., "Computer Architecture." Computer. Vol. 17. No. 10, October 1984,
p 77-87.

[Bur801 Baer. J. L., Computer System Architecture. Rockville, MD: Computer Science
Press, 1980.

[Ban851 Banee, T. C., Digital Computer Fundamentals. 6th edition, New York: McGraw
Hill Book Company, 1985.

[&Ne71] Bell, C. G. and A. Newell. Computer Structures: Readings and Examples. New
Yorl;: Mffiraw Hill Book Company. 1971.

IChen741 Chen. R. C. H.. "Bus Communications Systems," Ph.D. Dissertation. Pirtsburg,
PA: Department of Computer Science, Camegie-Mellon University, 1974.

[Clu1821 Cluley, I. C., Minicornpurer and Microprocessor Interfacing. New York: Crane,
Russak, 1982.

[DEC82] Digital Equipment Corporation, VAX Hardware Handbook. Maynard, MA: Digi-
tal Equipment Corporation, 1982.

[Dex1861 Dexter. A. L., Microcomputer Bus Srrucrures and Bus Inte~face Design. New
York: .M. Dekker. 1986.

[EggeX3\ Eypehrecht. L. C.. Itrrertor~~tt~ to /he /OM Perwtrul Complrrer. Indlanapol~r. IN:
H. W. Sams. 1983.

[Flet80] Fletcher, W. I.. An Engineering Approach to Digital Design. Englewood Cliffs,
NJ: Rnt ice Hall, 1980.

[EEE75] Institute of Electrical and Electronics Enginem, "IEEE Standard Digital Interface
for Rogrammable Instnunentation," lEEE Std. 488-1975. The h t i ~ t e of Electrical
and Electronics Engineers, Inc., October 1975.

Intel, Microsystem Compownrs Handbook. Intel Corporation, 1984.

[Ida841 Lazowska E. D., J. Z.hojan, 0. S. Graham, and K. C. Sevcik, Quanritclfl've
System Pe~ormance. EnEaglewood Cliffs. NJ: Rmticc Hall. 1984.

[Lang82] Langdon, G. G., Jr., Computer Design. San Jose, CA: Cornputeach Rcss Inc,
1982.

[Lip0881 Lipovski, G. I., Single- and Multiple-Chip Microcomputer Interfacing. Engle-
wood Cliffs, NJ: Rnt ice Hall, 1988.

fMui801 Matick. R. E., "Memory and Storage," in [Sm80], pp. 205-274.

[Muin] Matick, R. E., Computer Storage Systems and Technology. New Yorlr. John
Wiley & Sons, 1977.

[M&5] Motomla, The VMEbw Specficatwn. 1985.

[hw.all Parker, A. C., and 1.1. Wallace, "An VO Hudware Descriptive Language," IEEE
Transacriom on Computers. Vol. C-30. No. 6. June 1981, pp. 423439.

[Poll831 Pollard, L. H., "Fault T o k m t Bus Canmunication RMocoh for Canputcr Sys-
tems," Ph. D. DisseMtion. Champaign-Urban& k University of Illinois, 1983.

(Shiv851 Shiv* S. G.. Computer Design and Architecture. Bostoh MA: Little. Bmwq
1985.

Chop. 6: Input and Output Operotlons 337

[S i W] Siewiorek. D. P.. C. G. Bell, and A. Newell, Computer Structures: Principles and
Euunples. New York: McGraw H i Book Company, 1982.

[Sta187] Stallings. W., Computer Organization and Architecwe. New Y&. Mamillan
Publishing Co., 1987.

m851 Texas Inseumcnts, T k R Data Book. Volume 2. Was, TX: Texas Insmunents,
1985.

[Thle72] Thurber, K. 1.. E. D. lensen, et al., "A Systematic Approach to rhe Design of
Digital Bussing Smcnun," MIPS Conference Proceedings -Fall Joint Computer
Cot$erence. 1972, pp. 719-740.

[T%Mn79] Thurber, K. I., and G. M. Masson. "Bus Structurrs," in Distributed Roccssor
Communication Architectwe. Lexington. MA. Lexington Books, 1979. pp. 131-174.

[TiLa821 Titus. C. A.. J. A. Titus. and D. G. Larson, STD Bus Interfacing. Indianapolis.
IN: H. W. Sam, 1982.

[TsSiXZI Tseng, C. I.. and D. P. Siewiorek. 'The Modeling and Synthesis of Bus Sys-
tems," Technical Report DRC-18-42-82, Design Research Center. Pittsburg. PA:
Camegie-Mellon University, 1982.

[Wik87I Wikinson, B., Digital System Design. Englewood Cliffs, NI: Rentice Hall Inter-
national. 1987.

