
Memory Systems 

One of the most basic functions of a computer is the retrieval of information 
\tored in a memory element. This action is needed to obtan the instruct~on to 
perlorm: it is also needed to obtam the data on which the instruction operates. 
One widely used model of memory is shown in Figure 7.1. In this model the 
memory consists of N consecutive storage locations. The size of a location is 
dependent on the system architecture, and the width of the data path (w)  is a func- 
tion of the implementation mechanisms. But the model remains the same: the 
address supplies the desired location, and the data is transferred tolfrom the 
memory. The number of bits needed in the address is Loog2 ~1.  We will use this 
model to represent a memory system, and recognize that for special systems 
appropriate changes must be made. In many systems, the size of the memory is 
given in bytes, although that is not the normal width of data transfers. One reason 
for this is that the systems are byte-addressable, and although the width of the 
transfer path may not be a single byte wide, the information is obtained by giving 
the address of the specific byte desired. Then. if more bytes an kquired, they are 
obtained as needed by the processing unit. 

The design of the memory unit is a series of tradeoffs, since a number of 
different factors must be considered. These include the size of the memory (N 
elements), the width of the data path (w), the organization method, and the speed 
of access. The speed of the memory depends on many factors, including technol- 
ogy of implementation and organizational method. Regardless of the mechanisms 
involved and the memory technology used, there will be a m i n i  time to 
access information, which we will call T,. This repments the shortest time 
required to retrieve the information, and includes not only the access time of the 
memory device, but also any delay caused by additional gates needed to provide 
sufficient drive capability for the address or the data. Another very imponant 
time is the minimum time between accesses. or the memory cycle time, which we 
will call T,. For "normal" memory interaction. where information is retrieved 
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Figure 7.1. Memory Model: Linear Array of Locations. 

from memory. then work is done on it. and then memory is accessed apain. r , ,  is 
not 3 lim~ting tactor, since the ;~ct~on ot the \ystem will not result in memory 
accesses which occur faster than T,.,. However, for burst mode access. where 
several consecutive memory elements are read or written, 7, is a factor that limits 
the rate of transfer. One simplifying assumption we will make is that the memory 
times are the same for the read and write cycles, which is not always me. 

The memory itself is configured in such a way that all of the necessary 
accesses can be made to it. That is, using one or more of the communication pro- 
tocols described in Chapter 6, the memory is co to elements that need the 
capability of data transfer with the memory. -3 le representation of Figure 
7.2 shows a memory that can be accessed by a pmxssor and VO devices. The 
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data path (bus system) is also used to allow the processor to control the action of 
the UO interfaces. The configuration shown in Figure 7.2 is a very simplistic 
representation, and the actual connections to the memory can be as simple or 
complex as the application requires. In general, however, we would like to create 
a memory with as large a size (N) as reasonable within the design constraints, 
with an access time (T~)  and a cycle time (7,) as short as possible. Let us look at 
the memory hierarchy mechanisms used to try to accomplish this, then examine 
details of the memory systems involved. 

7.1. Memory Hierarchy: Tradeoff$ in Size and Function 

In the description of their 1946 IAS machine Burks. Goldstine. and von Neumann 
recognized that "ideally one would desire an indefinitely large memory capacity 
such that [infonnation] would be immediately available ..." [BuGo46]. But the 
realities of the economics and the technology are such that compromises must be 
made. The IAS machine contained 4.096 words of 40 bits each for the main store, 
which "exceeds the capacities required for most problems that one deals with at 
present by a factor of about 10." However, they recognized that the time would 
come when this would not be sufficient storage for the problems to be solved in 
the future. and therefore looked forward to the "constructing of a hierarchy of 
memories. each of which has greater capacity than the preceding, but which is less 
qu~cklv accesshle." The machines of todav indeed match this concept. and can 
be represented by the block diagram \hewn in Figure 7.3. The fastest memory 
elements are those closest to the processor: most systems have a small number of 
very high speed locations, which we call a register bank. The T,, for the registers 
is minimal. and in general the infonnation stored in registers is available in the 
same cycle as it is needed. However, the cost of this type of storage is very high, 
whether the cost is measured in dollars, silicon real estate, or power dissipation. 
For this reason, the amount of register storage available in a system is relatively 
small, from eight to sixteen registers in most general purpose system. to over a 
hundred in some special purpose and RISC systems. 

The next element in the memory hierarchy is often a cache memory. The 
purpose of a cache is to enhance the operating speed of the prowprocessor by making 
available the most mently used information by keeping it in a high speed tem- 
porary storage. The T, of a cache is on the order of two CPU cycle times, and we 
will discuss methods of approaching cache designs in Section 7.4. The amount of 
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memory available here is generally small in comparison to the other elements of 
the system. For example, the VAX LlRsO has a 2-Kbyte cache, and some other 
processors have even smaller caches. However, as the cost of memory decreases 
with respect to overall system costs, larger caches are much more common. 
Many newer systems have caches that contain 16 Kbytes to 64 Kbytes or more 
incorporated with the processing unit. 

The purpose of the cache is to maintain current information for rapid 
retrieval. This is done in a manner that is transparent to the user. The program- 
mer does not know of the existence of the cache, except that the speed of the sys- 
tem is enhanced over a system with no cache memory. Thus management of the 
data is done in a fashion determined at design time. in contrast to the virtual 
memory systems discussed below. 

The information in a cache memory is a high speed copy of what is in main 
store, which is the "standard" memory of the computer. The amount of storage in 
a main store is system dependent, but it has increased with each passing year. In 
contrast to the 4.096 locations of the IAS system, many systems require a 
minimum of 8 Mbytes or more. The technology is now such that it is possible to 
get 8 Mbytes in eight packages, which is one of the reasons for the increased size 
of main store. The T, of main store is about an order of magnitude greater than 
the TA for cache. Thus, when a request is made for information, and it is deter- 
mined not to be in the cache. then the system pauses until the information is 
retrieved from main store. At that time the processing can continue. Some of the 
issues involved in the design of the main atore are discussed in Sect~on 7.2. 

The ~nforrn;rllon resident In maln \tore for a "\tandard" coniputrr system is 
a suftic~ent amount ol the opemtm_e aystem to maintain a cont~nuity of action. 
That is, a portion of the operatrng system. 110 storage areas, and other basic rou- 
tines are maintained in the memory of the machine. In addition, the active por- 
tions of user programs and data sets are available as well. The portions of the 
operating system and user programs and data that are not active are kept on the 
next level of the hierarchy, the secondary store. 

The purpose of the secondary store of this hie rid hy is to maintain copies of 
all of the programs and data needed by the computer. Generally this will be a 
disk, although it could be any block-oriented storage device with a large capacity. 
Such devices have been built with charge coupled devices, bubble memories, and 
large RAMS. This device is generally organized into files, and maintaining the 
files is one of the responsibilities of the operating system. In addition to the files, 
there is an area which is used to maintain the current copies of user program 
space; this area is often called "swap space." The swap space is also under the 
control of the operating system. The procedures and mechanisms established 
within the computer system to manage the use of the memory system are done so 
to effectively utilize the available system resources. With a combination of 
software/system policies and the appropriate hardware, only copies of currently 
active information need reside within the main store of the machine at any given 
time. Still, the apparent effect is that user programs execute in "virtual space," 
which frees up the user from being aware of the exact physical configuration of 
the system and the orientation of his program. 

Ihe TA of information on the disk is much longer than the TA for main store. 
Note that the cache is created from a (relatively) small amount of high speed 
RAM; and main store is also electrically and randomly accessible, but with lower 
cost, slower devices than the cache. Secondary store, on the other hand, involves 
electromechanical devices, and therefore requires relatively long times to find the 
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physical location of the information and effect the aansfer. The ratio for 
TAM - / TAc- is on the order of 10, but the ratio for TAuyawDUy , I 
TAM- is on the order of 100,000. For this reason, when information is needed 
by the processor. and it is not in main store, the operating system will request the 
needed information, place the current task on a queue, and get a new task to exe- 
cute while waiting for the information to be retrieved from the disk. This action 
of "context switching" allows the processor to be s M  effectively between mul- 
tiple programs; such systems are often called multipmgrammed or time-shared 
systems. To be effective, the secondary storage system must be sufficiently large 
to handle the swapping functions and the necessary file system operations. 

The last member of the hierarchy shown in Figure 7.3 is the extended 
storage. This consists of information stored on magnetic tape, which is slow in 
comparison to the disk storage. This storage is generally used for permanent 
storage of programs and data, as well as transfer of information from one com- 
puter to another. Some systems have automated tape storage capabilities. so that 
parts of the extended storage can be considered a random access system with 
capabilities similar to the disk systems. albeit much slower. 

The intended operation of the memory hierarchy is to provide a very large 
memory capability, with the response time of a cache system and the storage 
capability of a disk or tape system. The mechanisms used to perform these tasks 
is the subject of the following sections. 

7.2. '.Standard" Memory Systems: Random Access Storage for 
Programs and Data 

The storage of information in computer systems is accomplished by utilizing col- 
lections of individual storage elements, each of which is capable of maintaining a 
single bit. Thus, for a device to be useful as a memory element it must have two 
stable states, a reliable mechanism for setting the device to one state or the other, 
and a mechanism for interrogating the state. Memories have been built of a 
variety of devices that match this characteristic, including relays, individual 
vacuum tubes, storage tubes, and delay lines, which form a type of serial memory. 
In each case, information in the form of bits was entered into the memory, and 
then at some later time extracted for use by the system. 

Storage tubes and delay lines allowed for idonnation storage in some early 
machines, but the central memory technology next used by most computers util- 
ized the magnetic properties of iron. The mechanism utilized by these memories 
is depicted in Figure 7.4. A fenite material is fashioned into a circular, doughnut 
shape, as shown in Figure 7.4(a). The principle utilized by this device is the fact 
that the magnetic orientation of the fenite material will change to coincide with a 
forced magnetic field, if the field is smng enough. Due to the physical nature of 
the material, once the magnetic orientation has been established, it will remain in 
that orientation until a different magnetic field is created to change it. This is 
shown by the flux-vmuscurrent diagram of Figure 7.4(b), which is known as a 
hysteresis loop. When the current returns to zero, the orientation of the flux 
nmains in the d i i t i o n  that it was established. It will main in that orientation 
until a c a n t  is passed through the drive line in the opposite dinction. The resi- 
dual magnetic flux within the core is used to store a single bit. If the flux is 
aligned in one direction, the bit is a zero; alignment in the opposite direction 
represents a one. The use of the core for the storage of information n q u h  at 
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line 

Figure 7.4. Magnetic Memory Mechanisms (a) Magnetic Con for Single Bit. (b) 
Hysteresis Loop. 

least two wires passing through the center of the core. One line is used to write 
information into the core: 

Forcing current in the drive line as shown in Figure 7.4(a) will create a flux, 4). 
as shown: let this orientation represent a one. 

Forcing current In thc wlre in the opposite direction from that hhown in the 
tigure will reverse the orientation of Q: let this orientation represent a zero. 

The other wire is used to sense the content of the core. Note that establishing the 
orientation of the magnetic flux can indeed represen~binary values; but we not 
only need to establish the value, we also need to retrieve the value stored in the 
wre. The sense line uses the fact that a wire in a changing magnetic field will 
pick up a voltage: that voltage is sensed to identify the wntent of the core. The 
pmccss works in the following manner: 

A negative cumnt [opposite to the direaion shown in Figure 7.4(a)] is esta- 
blished in the drive line; the net mult is to leave the core in an orientation 
representing a zem. 
If the sense l i e  detects a voltage, then the magnetic field is changing. and 
hence the bit represented was a "one" before the process started. 

If the sense line detects no voltage, then the magnetic field is not changing, and 
the bit represented by the con was a "zem" before the process started. 

To produce i n f o d o n  needed by a procwsor, these characteristics an utilized 
by core memories in the following fashion: 

Read: To read the value s t o d  in a bit. a m n t  is sent through the drive 
line of the core for that bit Assume that the cumnt d h t i m  is that which 
establishes a "zero" in the core. If the new magnetic orientation agrees with 
the established orientation. no change is made and the smsed voltage is zero, 
which comspodds to a "zero" bit. If thm is a change in the magnetic orienta- 
tion, then a nonzero voltage is created on the sense line. which comspondr to a 
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"one" bit. In either case the bit representation of the magnetic flux at the end 
of the read is a "zero." 

The overall effect is to destroy the data stored in the core, and so core 
memories an? destructive readout devices. This is generally an unacceptable 
feature, so the value read out is stored in a register and immediately rehlmed to 
the core. For this reason cores generally have r, = 2 x TA since the data must 
be restored to the accessed location. 

Write: The first step in the write sequence is to place known data in all of the 
cores that will be used for the write: this places a constant. known value in the 
core. The value could be either a "one" or a "am." but we will assume that it 
is a zero. This is not absolutely necessary, but is usually combined with the 
electronics used for the read cycle: the first half of the read process above per- 
forms this function. Current is then directed to the drive lines on those bits 
which will have a "one" orientation. while current is inhibited from the cores 
for those bits that need to maintain a "zero" orientation. In this fashion, the 
correct orientation is established for the data to be written to the core. 

This technology was used for many years to create the main memory for 
most computers. However, the cost and size of the memories, as well as their 
speed, became a disadvantage as semiconductor memories were developed. Each 
bit in the memory required a separate core, with at least two, but usually three, 
wires through it. The technique of storing information by the magnetic orienta- 
tion of a ferrous material is now used more prevalently for other types of storage 
than for the central memory ot a computer. The magnetlc orientat~on of a repon 
of ferrous material on a surface is used to store a bit. and this surface is most 
often on a rotating magnetic disk, or on a magnetic tape. The reading of the 
information still q u i r e s  a moving magnetic field, but in a disk or tape unit the 
movement of the field is caused by physical movement between the surface and a 
detecting element called a head. The head is also used to create the proper fields 
for writing the information to the magnetic surface. Disk units are utilized to 
store thousands of bytes, such as floppy disks on a personal computer, to billions 
of bytes on larger machines. Tapes have a similar range of storage abilities, and 
are used on computers of all sizes. 

Different types of electronic technologies have been used to store informa- 
tion in computers, from tubes to semiconductors. At one level we can examine 
the storage mechanism by looking at the gate level; another level is the device 
level. Figure 7.5 shows two different gating implementations for storing a single 
bit These can be cascaded into several bits to store bytes or words. One method 
of maintaining a bit is to put it into a latch, as shown in Figure 7.5(a). The sim- 
plest gating arrangement to store a bit is cross coupled gates, and these are shown 
in the figure. The information placed in these gates is established by the input (D) 
when the enable line (ENB) is asserted. As long as the enable line is asserted, 
whatever information is on the data line will be passed to the storage element. 
When the enable line is deasserted, the last value for the data will be retained. 
This behavior is useful for many computer functions, and can be used to store 
information when needed. 

The latch behavior is not the most prevalent mechanism used in storage ele- 
ments in a processor. The gates shown in Figure 73.b) implement an edge- 
wigged function, the behavior generally associated with a register. The mechan- 
ism shown in the figure is used to capture the value of the data (D) on the rising 
edge of the clock (CLK). Analysis of the gates implementing the latch is 

Chap. 7: Memory Systems 



Figure 7.5. Possible Arrangements of Gates for Storing a Single Bit. (a) Latch (Single 
Bit). (b) Edge-Triggered Flip-Flop . 

relatively straightforward. but the register funct~on is very involved. However, in 
both cases the data must be stable for some window of time around the active 
edge of the clock (or enable). If this condition is not true, the unit can enter a 
metastable condition that will cause problems in high speed systems. 

The circuitry shown in Figure 7.5 requires many individual transistors or 
other active devices to create. Therefore. they are used in small numbers in 
places where the \torage requirements are not rxtenslve. Creatin: enouch resister 
or lakh type cclrcuclcx 111 JII ~nkgrared circuclt ro \tore a lot ol' intormauon would 
not be a good use ot silicon real estate. Two types of mechanisms for storlng 
information in semiconduction memories are shown in Figure 7.6. Figure 7.6(a) 
shows an arrangement of parts that implements a static memory cell. As in the 
case of the latch, there is cross coupling between the elements, and the device has 
two stable states. The active action of the system makes ure that the value of the 
cell remains as set until an external event causes a chan d e. Thus, a value written 
to this cell will be maintained until the power is lost, or until the contents is 
changed by the write action. In this it differs from core memories, since it is not 
a deshuctive readout mechanism. 

Static memories generally have a smaller number of bits per package, and a 
higher power consumption, than dynamic memories. The static mechanism of 
Figure 7.6(a) requires six transistors in every cell; other static memory 
configurations utilize fewer active elements. One of the tasks of memory 
designers is to reduce the number of components needed in an individual storage 
cell, since fewer elements means that each individual cell can be smaller and 
require less power, which in tum leads to larger memories. The memories with 
the largest capacities use not a static mechanism, but rather a dynamic mechan- 
ism, as shown in Figure 7.6(b). Here the value of the bit is not determined by the 
cwent flowing through one of two different paths, but rather the bit value is 
determined by the amount of charge stored on a capacitor. The capacitor is 
created with semiconductor technology, and is exmmely small. The sensing of 
the charge is also very difficult, and handled by circuitry on the device itself. The 
information is placed on the capacitor by opening an electronic gate and establish- 
ing the proper charge level. Then, the gate is closed, and the charge maintained 
on the node by electronically isolating it from surrounding influences. However, 
the time which the charge can be reliably maintained in this manner is not long, 
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Figure 7.6. Bit Storage Elements for Semiconductor Memories. (a) Static Memory Cell. 
(b) Dynamic Memory Cell. 

and y o  i t  must he re-establihhed per~odically. This is done by a "refresh cycle. 
which detects the appropriate bit values and refreshes the hits. The length of time 
between refresh cycles varies from memory to memory, but a common value is 8 
msec: each row must be visited at least once every 8 msec. For this reason 
dynamic memory controllers are designed to periodically access rows to assure 
that the data is maintained in the memory cells. 

The storage of the information in the cells is only a part of the memory 
problem. The bits stored must be organized in a reasonable fashion to access the 
information. The two most prevalent mechanisms are random access and serial 
access. As the name implies, random aaxss memories are organized such that the 
information can be accessed in a random fashion. That is, each location has the 
same access penalty, TA. and the order of access can be entirely random. The only 
requirement is a mechanism to decode an address of a specific location, and a data 
path such that any location accessed can provide the necessary information. 

On the other hand, serial access mechanisms are organized such that the 
data is written and accessed in a serial fashion. Thus, the TA varies depending on 
the location of the information in the memory, since the data must pass a mechan- 
ism for reading each bit. Examples of serial access devices include magnetic sur- 
face systems, such as tape and disk, and serial semiconductor systems, such as 
shift registers and charge coupled devices. 

A simplified block diagram for the random access mechanism is shown in 
Figure 7.7. The size of the decoding mechanism is dependent upon the size of the 
array of memory elements; the number of bits in memories incnases each year. 
The mechanism used to decode the address can be designed in a variety of ways. 
The two most basic mechanisms are the one dimensional (I-D) and two dimen- 
sional (2-D) decoding schemes. The I-D scheme accepts an N-bit address. and 
uses an N to 2N decoder to identify one of 2N individual elements. The location 
identified is then used in the read or write operation. The 2-D s c h  accepts the 
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Figure 7.7. Random Access Memory Block Diagram. 

N-bit address and divides it into two groups, which we will call X and Y. Thus, 
X + Y = N. These two groups of address lines control X to 2' and Y to 2r 
decoders, which jointly specify a single element. Note that the memory cells used 
with the I-D arrangement need only have a single enable line, while the memory 
cells used with the 3-D arrangement need two enable lines. Thus. the I-D 
arrmgetnenr has a himple cell and a more complicated decoding scheme, while 
the 2-D arrangement has a slightly more complex cell, with less loglc required in 
the decoding mechanism. These methods are depicted in Figure 7.8, which shows 
the addressing mechanism for an array of eight cells in a 1-D decoding a n y e -  
ment, and sixteen cells in a 2-D decoding arrangement. Mechanisms use by 
manufacturers internal to memories include both the I -D and 2-D methods, as well 
as other variations of the schemes. Note that there is no reason to stop at two 
dimensions. and higher mechanisms could be useful in some systems. 

I h e  basic ideas of the preceding paragraphs apply not only to individual 
bits, but also to collections of bits. That is, many memories are not organized as 
1-bit entities, but rather some multiple that makes logical as well as manufactur- 
ing sense. Memories containing Cbit words are very useful for storing BCD 
digits, and for use with 4-bit microprocessor systems. Memories organized 8 bits 
wide are useful for ASCII characters, 8-bit microprocessor systems, and byte- 
addressable memory systems. Combinations of Cbit and 8-bit systems can be 
used as needed to meet other system needs. In deding with the memories or 
other storage elements, the principles used in identifying a bit in a memory array 
can be applied. That is. the individual components can be organized in a one 
dimensional fashion, a two dimensional fashion, or in some combination of the 
above schemes. 

Example 7.1: I-D Design of a register set: Design a register array that con- 
tains eight registers, and that operates with an 8-bit bus. The m y  should 
have two control lines, a read line and a write line. Use individual registers 
in the ALS technology, and a one dimensional addressing scheme. How fast 
can information be made available on a read? What is the data requirement 
for a write? 
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One solution to this is shown in Figure 7.9. The register selected here 
is the 74ALS299, which has inputs and outputs on the same pin. The inputs 
not shown in the figure have been appmpriately disabled. With the enable 
lines (GI, G2) tied low, this device will output its information when the 
function select lines (SI, SO) are both low. When the function select l i e s  
are both high, the outputs are disabled, and a value can be accepted from the 
bus to the internal register. The address is decoded by two 74ALS138s. 
When the read line is activated, the function select lines of the appmpriate 
register are asserted. The delay from assertion of the read line to the output 
data stable is the sum of the enable-to-output-stable delay of the 74ALS138 
and the function-select-to-data-stable delay of the 74ALS299. The sum of 
the maximum times is 39 nsec; typical times would be shorter. When the 
write line is asserted, the clock line of the appmpriate register is activated. 
The loading of the register occurs on the low-to-high transition of the clock 
at the register, which corresponds to the high-to-low transition of the clock 
line in the figure. since there is a change of assertion level through the 
74ALS138. The maximum delay through the 74ALS138 is 17 nsec. and the 
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Figure 7.9. Registers with One Dimensional Addressing. 
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data must be stable on the bus for 16 nsec prior to the rising edge of the 
clock (at the register). 

The arrangement of the pans as shown in the figure gives a register 
bank with eight registers in ten DIP packages, and a power consumption of 
about 1.6 watts. This is not a very efficient use of the board space or sys- 
tem power, but the unit can meet some requirements for special systems. 

The use of individual registers as shown in Example 7.1 can be used to 
meet some special requirements, but the normal manner of operation is to use 
memory elements that contain a larger storage capacity. Nevertheless, the same 
principles apply, and the memories can be organized in a one dimensional or two 
dimensional manner. 

Example 7.2: 64-Kbyre sraric RAM system: Design a memory system for an 
8-bit microprocessor system. The memory system is to contain 64 Kbytes 
of static RAM memory, using 8K x 8 RAMS. such as the pPD4464 from NEC 
Electronics Inc. Do this design in two ways, first as a one dimensional 
scheme, then as a two dimensional scheme. Communication lines to the 
memory include the address and data buses, a write line and a read line. 
Write and read lines are asserted low. 

The 4464 is an 8K x 8 RAM with thirteen address lines, two enable 
lines, an output enable. and a write line. One of the enable lines is asserted 
high. while the other is asserted low: the write line and the output enable are 
both uswted low. To .ittam the 64K \pace. eifht qeparate rnernorles are 
requ~red. Figure 7.10 show5 one of the possible I-D organizations that can 
be used. The lower address lines are shared by all memories; the current 
requirements of each input is only I pa. which does not cause loading prob- 
lems. The upper t h m  address lines are directed to a 340-8 decoder ('138). 
which enables only one of the memory chips. This allows sharing of all of 
the read and write lines. as only one memory element will be active at any 
one time. The burden is on the user of the system to be sure that the 
address lines do not change while the write line is asserted, such action will 
cause the data to be corrupted in the memory. 

Note that this arrangement can be extended to include more memories 
by utilizing the unused enable lines of the 340-8 decoder. That is, addi- 
tional decoders combined to make larger decoding systems (440-16; 5-to- 
32; etc.) can be used to make larger 1-D memory systems. 

The two dimensional implementation is shown in Figure 7.1 1. Many 
of the characteristics are identical: the read and write lines are shared 
between all of the memories; the 13 least significant address lines are com- 
mon to all memories, and the data bus is used by all chips. However, two 
2-to-4 line decoders ('139s) are used to implement the decoding of the most 
significant address lines, instead of a single decoder. The use of the '139s 
allows for doubling the size of the memory (not shown) without the addition 
of more decoding capability. If the larger capability is not needed, then the 
function of the second '139 can be filled by an inverter. 

The systems shown in Figures 7.10 and 7.1 1 demonstrate the use of 
decoders to make one and two dimensional systems. However, certain 
design criteria have not been considered in the discussion that must be taken 
into account in designing a specific system. For example. the time from 
chip enable to output valid for the pPD4464 is twice the time required for 
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Figure 7.10. 64-Kbyte Memory Amy from 8K x 8 Memories; I-D 
Organization. 

output enable to output valid. If the speed of the system is critical. then a 
different anangement may be desire& one in which the chips are mabled all 
the time, and the output enable lines and write l i  activated as needed to 
perform rcads and writes. This changes the configuration of the system, 
since the nad and write h s  can no longer be common to all memory 
chips, but the same basic concepts an still applicable to the memory. 
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Figwe 7.11. 64-Kbytc M a n o y  Array fmm 8K x 8 Memoria; 2-D Organization. 

'Ihe concepts involved with the address mechanisms are not limited to the 
examples examined above. Consider the following example, in which dynamio 
memories are used to create a large random access memory. The addressing 
mechanism for identifying the appropriate memory module to activate is 1-D in 
nature, while the actual memories involved are selected in a 2-D fashion. 

h p l e  7.3: Dynumic memory system: Design a memory to be used with 
the time multiplexed addressldata bus of the NS32332 shown in Figure 6.10. 
The address will be supplied on the bus during TI. along with a data direc- 
tion indication (DDIN). The manory should respond to the d o n  of the 
eddnss strobe (ADS-L) by initiating a memory request. If it is a mite, the 
data will become available during T3; if it is a read, the data should be s u p  
plied as soon as possible, but no later than the beginning of T4. Use 
dynamic memories to provide as large a memory space as possible. 
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To discuss a system with dynamic memories, first let us examine 
some of the mechanisms of dealing with the memories. Thm an a number 
of device-specific characteristics, but the basic cycle for a rrad in a dynamic 
RAM is shown in Figure 7.12(b). Usually, large RAMS such as the dynamic 
RAMS shown here require so many I i i  that the address divided 
into two parts and time multiplexed on a single set of address lines. These 
two parts of the address are called the "row address" and the "column 
address." After the mw address is prrsented on the addnss lines for a 
required period, the mw address strobe (W) is asserted. The address is 
held for a shm time, then changed to be the column address. After a 
required setup time, the column address strobe is asserted (CAS), and the 
memory access begins. Some time later, which is the access time of the 
memory, the data becomes valid (T,,,). When the RAS is released ( T d .  
the output data will return to the tri-state condition. A write requires the 
same operation. but the write enable line is asserted during the operation, 

Dynamic RAM Module 

with 22N locations 

CAS I 
-[Data In Data Ou 

Address 

I I 

Data -- 

(b) 

pburc 7.12 Dynamic RAM. (a) Symbol. (b) Tuning f a  Rcd Cyck. 
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and the data is asserted on the data lines by the module requesting the write 
action. As long as the rows are accessed every T,, the information 
should be maintained. Thus, one of the design requirements is to access 
each row within the refresh time, which in many memories is 8 msec. 

These individual packages can be combined in reasonable ways to be 
used in systems. For example. for bused systems the data in and data out 
pins can be tied together and connected to the system bus with transceivers. 
One commonly used configuration is to put nine individual memory 
modules on a single in line package (SIP), which is sufficient for a byte plus 
parity. This SIP module is used in this example; each SIP contains 256 
Kbytes of information. SIP modules that contain 1 Mbyte and 4 Mbytes of 
information are also available. 

Using modules with 256 Kbytes, an 8-Mbyte memory can be con- 
structed with just 32 modules. Drawings of the memory are contained in 
Figure 7.13(a)-(c). A more complete set of drawings are found in Appen- 
dix B. Figure 7.13(a) contains the memory elements themselves and the 
data buffering transceivers. Note that the data lines are buffered from the 
bus system with a transceiver. Although the data line of each memory 
module does not present a large load, there are enough individual memory 
modules in the system to provide a nontrivial load. The buffer (transceiver) 
has the effect of isolating the loads from the bus and minimizing the effect 
of the wires required to carry the signals. Also note that the organization is 
such that the 4 bytes required for n 32-bit word (assuming that the word is 
.iliped correctly) are all .~ccc.wxl wth the \ame R.AS and C.\S line. 
Acceaseh of ~nformar~on nor al~gned on ;I word houndary must u x  the 
proper set of lines, and this is the responsibility of the mtiator of the tran- 
saction. 

The generation of row and address strobes is done by drivers capable 
of supplying a sufficient amount of current, and these are represented in Fig- 
ure 7.13(b). The selection of the appropriate megabyte is accomplished by a 
decoder, which is a I-D technique. The most significant address lines are 
used to identify the appropriate megabyte; expanding to a 16-Mbyte address 
space would require an additional decoder. The decoding is done by a '538, 
which is chosen for two reasons. The first is that the assenion level of the 
output is selectable, so that the assertion level is selected to match the gates 
that follow the decoder. In this case, the gates that follow are '801s which 
were selected for their drive capability: each RAS and CAS line has 36 indi- 
vidual memory modules attached to it (32 data, 4 parity). The second rea- 
son for the selection of the '538 is that, with the proper activation of the 
control signals. all of the outputs can be asserted simultaneously. This is 
very useful to allow all 8 Mbytes to perform a refresh cycle at the same 
time. 

The address latches are also included in Figure 7.13(b). The latches 
accept the address during the first cycle of the transfer, and the address is 
then broken into three groups: nine bits for the row address, nine bits for the 
column address, and the most significant bits for identification of the active 
megabyte. The two least significant bits are not included, since the system 
is byte-addressable, and these bits merely identify the appropriate byte. 
Since all 4 bytes are accessed on every cycle, the least significant address 
lines are not needed here. The 9-bit row/column address bus (RC-BUS) is 
then presented to four sets of high cumnt drivers. which have the capability 
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Figure 7.13(a). 8-Mbys Memory System: Manwy Amy and Data Buffering 
Transceivers. 

of providing the current needed by the collection of memories. The outputs 
of the high c m n t  drivers an conditioned by damping networks to minim- 
ize the undershoot and overshoot, which will occur when switching the l i  

betwan high and low logic levels. The address Iims of the individual 
memories are supplied from the damping networks by four separate sets of 
lines (BAA-BAD). This buffering is required to provide sufficient drive 
capability, since each address line (BRA(0)-H, for example) supplies the 
addms to 72 separate memory modules. Also included is the mw counter 
that identifies the appropriate for rnfrrsh. These memories nfrtsh 
two mws simultaneously; so the 0 line is not involved in the count. 

The control logic shown in Figure 7.13(c) coordinates the d o n  of 
all of the signal lines. The coordinator of all of the work is a state machine 
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Figure 7.13(c). 8-Mbytc Memory Systrm: Control Logic. 

H I  tluhlne REFRESH 
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controller (82S105). which has the responsibility of asserting the signals in 
the order explained above. It is driven by a clock (PAST-CLK), which is 
four times faster than the bua clock (BUS-CLOCK) and synchroniEed with it. 
Thus, the bus clock and the fast clock  an^^ atnnally and supplied 
a the memory system. Using these two clocks in this manner allows the 
signals to be aeatcd- iu rvtimely fashion.. ?he rdnsh counter is connened 
to the bus clock, which it counts down to identify the p q e r  time to do a 
refresh. When the nfnsh is needed it sets an intend flag rhat provides an 
input to the mte machine, when the re- is lecognized the flag is reset. 
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The other inputs to the state machme are a Aag to identify the \tart of a 
memory cycle. and the signal TSO. wh~ch comes from the timing unit o f  the 
mtcroprocessor to identify the end of  a cycle. The outputs of  the state 
machine are used to assen RAS. CAS. and the other signals assoc~ated with 
the dynam~c RAM. The signal MEMORY-CONTINUE is used to inform the 
rest of the system that the memory information is ready. This is necessary 
since the RAM may be in the middle o f  a refresh cycle when the system 
makes a memory request. 

The two sets of  gates in  Figure 7.13(c) are to assen the write enable 
linea and the data transceiver mable linea at the appropriate time. The time 
is identitied by the state machine controller. hut the appropnote byte is 
identitied by the byte enable vgnals generated by the proceawr. This 7-D 
mecharmm chooses the appropriate hytes. One dinienaion I\ prov~ded bv 
the addre\\: the second dimcn\~on I\ \upplied hy the proce\\or. Thu\. the 
proce\\or must aswnie the rcspc~nr~h~l~t! (11' reail~ng and n r l t ~ n ~  ~ntc~rniatlon 
that I\ 1101 ; I I I ~ x I  CX;IC~I? on a 32-htt hountlar!.. 

.A p l ~ ~ t o p p l i  of WCII ;i \!\te~n I\ \I~IIW!I ill 1,'iyurc 7 .  I .;(dl. TIii\ \!\- 

tcm contains X Mbytes of Iiiemory and a 33132 sptcm. 

The concepts d~scussed in this sxt lon are applicable to a wtde range of  
memory orynvx ions and conaiderat~ons. For moat proces\ing done by general 
purpow L.trrripuier\. rundoni acce\\ I\ reqwrcd to the riicml)r!.. Thi\ i\ true of  core 
111cmorIc\. w i i ~ ~ o ~ ~ d ~ ~ t o r  IIICIIIO~IC\. ,111~1 otlicr I~CIIIIOIOCIC\ ,I\ ~ ~ 1 1 .  H C ~ C C .  the 
l l l~l l \ l l l~l . l l  cI~~ll1cl11\ ;11t1\1 IhC l1 l l l l \ l ~ l~ l~ l l l \  . l l ldlc\\ , l l l l~~ .lll<l , I ~ L ~ \ \ I I ~ I L ~  l l l r l l l l ~ l l  1I1e 

Figure 7.i3(d). 8-Mbyte Memory System: 32032 System with 8-Mbyles Dynam~c RAM. 
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Memory System 

Figure 7.14. CPU with Four Bank Interleaved Memory System. 

bus structure. The organization of the memory to access the addressed location 
can be done in a 1 4 ,  2-D, or related fashion, as long as only one location is aCN- 
ally enabled. 

Creating larger memories. or memories with differing characteristics, can be 
accomplished by combinations of the mechanisms discussed here. For example, 
one of the figures of merit for a memory system is bus bandwidth, represented in 
bytestsec. Since information can be transferred over a bus structure faster than it 
can be retrieved from a large memory, one of the ways to increase the bandwidth 
is to create memory in banks, and interleave the memory banks in time. Consider 
the system shown in Figure 7.14. The memory requests are sent to all four banks. 
and the response sent to the processor in different time slots. If the bus width is 4 
bytes, and the memory access time is 200  nsec, and if 4 bytes can be sent every 
50 nsec, then all four banks can be kept busy (assuming that there are sufficient 
requests). But each bank is individually organized as a random access ystem. 
and interfaces In the huh \ystcm in .I manner which will allow the translers to 
occur In a reasonable iash~on. This requires more circuitry, but speeds up the 
overall data rates. 

The choice of a memory organization and the technology in which it is 
implemented must reflect the constraints of the entire system. The choices will be 
based on optimizing performance for a given set of resources. If a major require- 
ment is speed, then the designer can afford to put more resources (silicon real 
estate. board space, power, etc.) in the memory to provide for a minimum 
nsponse time. If the critical resow is power, such as a battery operated system. 
then the complexity cannot be incrrased, and the parts and design mechanisms are 
optimized for minimal power consumption. Nevertluless, the system atchitect 
can choose from a variety of memory and ptucessor organizations to create a sys- 
tem that will fit a particular need. 

7.3. Virtual Memory Systems: The Illusion of a Memory spa& 

One of the principal tenets of stored program computers is that the program 
resides in a memory space, and the instructions are extracted from memory and 
executed. If the instruction calls for data manipulation, then the data is identified 
and utilized to perform whatever calculations are called for by the instruction. In 
most programs the data also resides in the memory, at least at the beginning of the 
program, when data is brought into the system, or at the end of the program, when 
data is prepared for output to the destination device. Thus, the program is I& 
into the memory, started and whatever data manipulations are called for by the 
program are executed. The program then terminates, and the system moves on to 
execute the next program. 
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The statements made in the previous paragraph reflect some assumptions 
often made about the use of the computer. Most machines used today have a col- 
lection of system facilities that we have come to call the operating system (0s). 
The operating system has the responsibility of doing many things, among them 
transferring programs and data to and from memory. When the program has been 
loaded, the operating system starts execution of the program at some predeter- 
mined point. However, most users of computer systems do not consider the effect 
of what the OS is doing; rather, they have a "model" of what the machine is, and 
they are operating under the assumption that the model is at least functionally 
correct. Such a model may appear as shown in Figure 7.15. 

In multiprogrammed systems, we know that other programs will also be 
utilizing the machine, but generally we think of the machine as "ours," at least for 
the duration of our program. Knowing that a program will have a program sec- 
tion and a data section. we often think of the machine as shown in Figure 7.16. 
This simple block diagram shows only the memory and the processing capability. 
The possible connection between the two is identified by the instruction set. and 
using that instruction set we are able to perform work. where work is defined as 
manipulating data. The machine as seen in Figure 7.16 is what we think we have: 
hence, we call it a "vinual machine." In our mental model of the machine, the 
program starts at location zero and executes through the instructions in order. In 
the physical machine, the program was not loaded at location zero; rather, the 
operating system placed the information at a location which. for some reason, was 
available to be used. The operating system. then. is responsible for ascertaining 
what pans of memory are available: if no memory is available. then the OS makes 
some memory available. In a Iocatmn known to the operating \ystem there is 
kept a correspondence between the vinual space, which the program has the illu- 
sion of controlling, and the physical space, which contains the actual information 
being manipulated. 

The mechanism used to define the relationship between the memory space 
that the program thinks it is conmlling, and the actual memory locations being 
utilized, is called a ''virtual memory mapping." The memory mapping mechanism 

Figure 7.15. Block Diagram of a "Model" Computer. 
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Figure 7.16. User Model for a Computer and Program 

is therefore responsible for convening an address issued by the program (the vir- 
tual address) to an address that will be used by the memory system to access the 
information (the real address). Two common mechanisms often considered are 
segmentation and paging. and some systems utilize both concepts in their lmple- 
rnmlntlon. I t  IS  not our intention to d~scuhs the pro\ and cons of one mechnrnsm 
over another. That can he dealt w~rh more ctfcct~vely In a discussion of operotins 
bystems themselves IBrHa73, PeSiX3, De1tX4. BiShXXI. Rather. our interest is in the 
low level operations required to make vinual memory work. 

Information is stored in real, physical memory, and, as such, it must be 
referenced with a valid memory address. However, within the executing program. 
references are made by the program in any one of a number of different ways. 
The addressing mechanism, be it a program counter reference, an indirect data 
reference, or any other method to specify a location in memory, identifies the tar- 
get location in the v i d  space of the program - where the program thinks the 
information is located. The memory mapping mechanism manipulates this (vir- 
tual) address in such a way that the proper location in memory (the d address) 
is accessed. 

One simple mechanism that can be used to allow multiple programs to 
coexist in a memory, each executing in its own address space, is depicted in Fig- 
ure 7.17. In this case the operating system has placed the various progbrns into a 
large memory, and it will keep a record of the base address for each of the pro- 
grams. In addition. it will keep a record of the sections of memory not used, in 
order to accommodate other programs a5 needed. Then when Pmgram 2 is to be 
executed, as in the figure, the OS will place the base address of the program into 
the base address register, so that all references made by the CPU to memory are 
made relative to the base location of the program. This is an example of register 
relative addressing. except that all references to memory arr made relative to the 
base register. In this way, the v i m 1  address of the program (the address the pro- 
gram thinks it is using) is tramslated to a physical addnzss, the actual location of 
the information, by a simple addition. This mechanism will allow a large memory 
to be used by a system limited in some other way. For example, the instruction 
set architecture of the PDP I I family of compums limit8 the size of a single 
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Figure 7.17. Multiple Rograms in r Single Memory. 

process to 64 Kbytes, the amount of byte-addressable memory that can be reached 
with a 16-bit address. Yet using the scheme depcted in Figure 7.17, several such 
programs can exist in a memory that is much larger than 64 Kbytes. The opera- 
ing system can share the resources of the system between the programs in a ma- 
sonable way. In this way, a multiprogramrned environment can be created, allow- 
ing programs to share processor and VO capabilities of the system. 

The above scheme considers each program an indivisible block, and must 
deal with the programs in that manner. However, an extension of the scheme is 
to div~de each program Into logical segments, and load the segments into the~r 
own sections of memory. This would correspond to the program model shown in 
Figure 7.16. Then, as the address was created by the system to access a parucular 
piece of informat~on, the address generated by the program would be offset by the 
value in the appropriate segment register, and the resulting address would be sent 
to the memory. 

The above process can be visualized by considering a program which has 
bem broken into segments, such as shown in figure 7.18. 'Ihe program 
represmted in the figure consists of four segments: a main program segment. a 
sub& segment. a data segment consisting of read only data, and a data seg- 
ment with locations that can be both read and modified Fot this system the pro- 
cessor will generate addresses consisting of a segment number and an offset 
within that segment. The memory management mechanism must then malate 
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this into the proper real addreM 'Ibe nal address. ADDR-, can be reprrsmw 
'8s the sum of the base of the segment and the offset within the segment 
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Thus the creation of the comct address in the system involves identifying the 
c a t  segment base and adding to it the segment offsef Part of the addressing 
mechanism is then to consult the program segment table (PST) for a h  access: 
the segment number identifies the element of the PSl' that refers to the desired 
segment and. using that information, generatea the correct physical address. The 
example shown in R g w  7.18 indicates that address 154 in the main program 
segment is convened to physical address 1464. The hardware of the system 
should make this conversion as quickly as possible. and at the same time check 
the legality of the ref-. That is, does the address exceed the length of the 
segment? Or is the reference a write request into a read only segment? A number 
of systems include segmentation capability in the processor. the most prolific of 
which is the 80x86 family of microprocessors. Figure 7.19 gives a register level 
diagram of the microprocessor. in which the segment registers play a prominent 
part. Note that the segment descriptor registers work in conjunction with the vir- 
tual address generation hardwdare, and that jointly they can generate the required 
address. Thus, the mechanisms discussed are built into the hardware of the sys- 
tem. 

If a virtual memory system is implemented by using segments, then the OS 
has the responsibility of maintaining the segments, and loading the segment regis- 
ters with the addresses for the currently executing program. If another program is 

Viltual Address Generation 

User kces&b Registers 
1 / 

Fl@ue 7.19. Block Diagram of 8 80386 Rocemor. 
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needed, then all of the segment registers an changed appropriately. Note that this 
does not exclude the operating system from using the same physical segment for 
more than one pmgram. For example, the pmgram section of an editor may be 
needed by several users, and the operating system can be aware of this and set up 
the segment registers accordingly. 

One of the mechanisms alluded to but not actually described has to do with 
the location of the programs when they arr not in the memory executing. The 
secondary storage medium is used to hold the programs, or portions of the pro- 
grams, until they are needed. This secondary storage is usually disk, but could be 
any storage area large enough to hold the entire pmgram, or collection of pmgram 
segments. One of the tasks of the OS is to control the use of the memory; that is, 
the programs or program segments that reside in the memory at any given time is 
determined by the OS. If a segment is needed during the execution of a program, 
and that segment is not in memory, then the OS brings in the information from 
secondary memory. In the process of doing so, it may be necessary for another 
segment. which is not currently active. to be returned to secondary storage. In 
this way the OS brings into memory the active programs and data, and those that 
are not currently active will migrate out of main store as the programs currently 
running need more memory space. 

A segment is a logical entity, such as a pmgram segment or data segment. 
There is no inherent size of such an entity, so there is no standard size of seg- 
ments involved in a computer system. Thus, the operating system must keep 
track of the startins address of [he hepent, its length. and other infomation that 
dc:ll> nirh :iccc\\ pr~v~lr.gc\. l'111f ~t~lorrnatlon i \  hhown a h  part ot [he proqarn 
\egnietlt table 111 Figure 7.18. One ut the protectton 15sues to be addreswd in a 
system is the containment of programs: a program must not be able to access 
memory, except as that specific privilege has been granted to the program. As a 
program requests information in a segment, the OS must maice sure that the pro- 
gram should have access to that segment. When accessing the information in a 
segment, the program should be prevented from addressing information beyond 
the length of the segment. One way to enforce this is to include in the system 
bounds checking capabilities that compare the requested address against a given 
maximum. This will allow the system to protect the segments against unauthor- 
ized access. 

Example 7.4: Memory mapping with segments: Give a block diagram level 
representation of an address translation mechanism involving segments. 
The address supplied by the processor consists of two values, the segment 
number and the offset within the segment. If an out of bounds request is 
made, the unit should issue an interrupt. The mechanism should be capable 
of keeping track of 16 programs, each capable of accessing 16 segments. 

A block diagram of one solution to this problem is shown in Figure 
7.20. The hardware logically sits between the generation of the addresses 
and the actual memory. The addresses att generated in pairs, consisting of 
a segment number and m offset within the segment. Before the prognun 
can run, the 0s loads the appropriate segments into the actual memory, then 
sets up the addresses and lengths in two memories shown in the figure. 
Then the OS sets the correct pa- in the Rogram ID register and initiates 
the program. The address to be used for the information access in the actual 
memory is obtained by adding the base address of the segment to the 
address within the segment. However, the address within the segment is 
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hm directed to a &mparator that chech the address against a maximum. If 
the address is too large. then the out of bounds signal will be asserted, and 
the system will be informed of the problem. The 256 locations in the seg- 
ment sizes and segment addresses memories allow up to 16 different pro- 
grams to reside in memory at the same time, and switching between them is 
accomplished by placing a different pattern in the program ID register. Note , 
that some data paths are not shown, such as the path from the data bus to 
the segment information memories. Note also that the memories are 32 bits 
wide, which would allow for alignment on any byte boundary (for a system 
with 32 address lines). Since most memories are organized (at least) 4 
bytes wide, these memories could be 28 bits wide, with the understanding 
that all segments must be aligned on a doubleword boundary. 

4 B i i  40.b 
Add; Addr 

256 x 32 Memory 

Segment Addresses 

Data 

As demonstrated by the preceding example, the virmal to 14 translation is 
not free, some time is required to generate the I4 address from the information 
supplied by the processor. 'Ihe times involved are the time to access the segment 
addresses and segment sizes information, and the time to add that information to 
the address within the segment 'Ihi o v d m d  is imposed on all refmnces to vir- 
tual memory in this scheme. In addition to the overhead on a per rcfmnce basis, 

Memory 

Address 
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there is also the overhead of managing the memory space. allocating segments in 
the available space, collecting the empty space, and so on. All of these operations 
add to the overhead of the system, and lead to a discussion of different approaches 
to memory address mechanisms. 

Another mechanism for mapping virtual addresses to physical address is to 
divide the original program and data space into pieces based not on logical boun- 
daries. but rather physical boundaries. Thus the program model shown in figure 
7.16 can be modified as shown in Figure 7.21. The pages have the characteristic 
that they all have exactly the same size, as compared with the segments men- 
tioned above, where the size is not a standard value. This organization allows for 
the individual elements (in this case pages) to fit in any location in a page frame, 
since all pages have exactly the same size. The pages all begin on a page boun- 
dary. The process of address generation is basically the same as that for segmen- 
tation: 

The principal difference is that the addition called for in the above equation is a 
concatenation, not a full addition. That is, since the pages are forced to begin on 
page boundaries, the least significant adQess bits (for the first location of a page) 
are all zero. The address bits that identify the location within the page will not 
extend into the nonzero bits of the address for the page boundary. Hence. no 
addition time IS  required. 

The d~fference ktween the paglng scheme and the segmentatwn hcheme 
presented above can be visualized by a different view of the program of Figure 
7.18. The addressing scheme is modified to a paging scheme as shown in Figure 
7.22. As far as the program is concerned the only difference is that the accesses 
are made by specifying the page number and offset within the page, not the seg- 
ment number and offset within the segment. As before, the correlation between 
the virmal and physical addresses can be represented in tabular form, shown in the 
figurr as the page table. As shown in the figurr, the instruction located at location 
344 of page 2 has a physical address of Z44. Note that the addition is m l y  a 
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concatenation, since 2C00 + 344 does not have any nonzero overlap (0010 1100 
0000 0000 + 001 1 0100 0100 = 0010 11 11 0100 0100). 

The OS burden changes under this scheme, since the question asked is not if 
a page will fit, but rather, where should the page be placed. This decision is a 
function of the method utilized by the operating system to maintain the memory 
space in the machine, and how much information is dealt with with each page 
operation. Some systems bring in only those immediately requested by the pro- 
gram. Other systems load into memory not only the requested page, but some 
surrounding pages as well. For a discussion of the various decisions and their 
impact on overall system performance see [PeSi83, Deit84, BiSh881. 

Pages are generally much smaller than segments, ranging from 256 bytes to 
1.024 bytes or more. Since the page size is smaller than a segment size, there 
will be, in general. many pages in a system. Thus, the table of entries cannot be 
limited to 16. However, the overall organization of the memory mapping scheme 
will be very similar. Consider the following example that proposes some 
hardware to provide a virtual address to real address translation. 

Erumple 7.5: Memory mapping wirh pages: Design a virtual memory 
mapper that uses pages of 512 bytes. The page table must be capable of 
supporting 2,048 pages. The mechanism should function as indicated by 
Figure 7.22. What is the speed of the address translation mechanism? 

One solution to the stated problem is shown in Figure 7.23. The 
address received from the processor i s  dealt with in  two sections: the page 
idrnt~lier m d  the otfwt within [he pqe .  Thtrs.  with 517  byte\ per p;~cc. the 
'1 Icast \~gn~flc:tnt hit3 (;\UI>KESS(X:O)-14) ;Ire uscd to idenut'y the location 
w~thin the page. and the rcmain~ng bits of the address are used to specify 
the appropriate page. Also note that with 2,048 pages. each with 512 bytes, 
the addressable memory is only a megabyte. This is not a large enough 
memory space for general usage, but will be large enough for some applica- 
tions. The stated requirement of 2,048 pages necessitates I I bits of address 
to identify the appropriate page. The width of the page table memory for 
this design is 17 bits, which allows 15 bits of address and 2 bits to indicate 

' 

the status of the addressed page. One bit is used to indicate if the addressed 
page is in main store or not; the other bit is used to identify whether the 
page has been modified since it was loaded. If the page has not been 
modified, then, when the time arrives for it to be removed to make room for 
a new page, the old page need not be returned to the mass storage device. 

Three basic modes of operation of the mechanism are shown. In one 
mode the page table can be filled with information. In this mode, the 
address of the page table is provided by the PIO-DATA path, and data can 
be loaded into the table with the chip select (CS) and write enable (WE) 
lines from the control logic. The information to place in the page table is 
loaded from the data bus, via the transceiver. The second mode of opera- 
tion is normal behavior for the system. In this mode, the 9 least significant 
lines of the address are obtained directly from the address bus. Since there 
are 24 address lines total, the remaining 15 lines must come from the page 
table. The applicable location of the page table is identified by the 11 
address lines of higher significance than the lines that identify the location 
of the address within the page (ADDRESS(19:9)). These lines are fed to the 
address of the page table, and also the output enable (OE) is asserted. 
Under these conditions. the page table will output the base address of the 
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selected page, which will then be concatenated with the 9 least significant 
lines to form the physical address of the desired virtual location. 

The third mode of operation is for addresses that do not need virtual- 
to-real translation. This could be used, for example, by the OS when it 
interrogates tables at known physical locations in memory, or activates 
memory mapped ID. 

Not shown in the logic diagram is any method for keeping track of the 
order of use of the pages. When a new page needs to be loaded into main 
store, a number of algorithms may be used to identify the page to be 
replaced. The algorithm that feels most intuitively correct is to replace the 
least recently used page. But the hardware required to keep track of the 
pages in the order of their use is nontrivial and not shown. Other algo- 
rithms are also available that optimize the behavior of the system under 
specific circumstances [PeSi83, Deit84, BiSh881. 

As stated earlier, the addition process is one of concatenating the bits 
in the proper order. and no real addition is required. Thus the time required 
for the circuit shown in Figure 7.23 is the sum of the delay times in the 
respective elements: 

= T~41 + T~~~ 

For 74AS541s and 30 nsec memory. this totals about 42 nsec. 

The paging scheme has many advantages that make it very attractive for 
systems. Since all pages are the same size, any page can be placed in any page 
frame in memory. The system is able to more effectively utilize all space, and 
memory does not tend to fragment as it does in systems utilizing segmentation 
only. The creation of the addnss utilizes a concatenation process. which saves 
time over a system that requins an addition. Nevertheless, some problems need 
to be addressed in real systems. One of the problems is illustrated by the preced- 
ing example. Even with a page table memory of 2.048 entries, the maximum size 
of the memory available to a program in this system is 2.048 x 512 = 1 Mbyte. 
Since the amount of space used by programs has increased drastically as the rela- 
tive cost of memory has decreased, this is not large enough for most programs. 
The 24-bit address space provided by many processors allows for 16 Mbytes of 
memory, and this is not enough for many programs today. In a simple program 
used in a university environment for some research problems, the virtual memory 
space needed by the system exceeded 50 Mbytes. Thus, it is necessary to provide 
a sufficiently large page table to allow programs to grow to the necessary size. 

Any limit on the number of pages that can be accessed by a program will 
eventually limit the usability of the system. Thus, the approach suggested by 
Example 7.5 is not sufficient, and the system needs to be modified to allow a 
larger page capability. This can be accomplished by keeping the page table. not 
in hardware, but in the memory of the system itself. However, if all accesses 
needed to obtain page addresses by going to main store, the performance penalty 
would be very large. One solution is to keep in hardware not all of the page table 
entries, but rather the most active page entries. In this manner the hardware 
requirements can be nduced, and still maintain critical page information to speed 
up the processing. 
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This is the approach taken in the NS32082. which is the memory manage- 
ment unit (MMU) for the NS32000 processor series. A block diagram of the 
NS32082 is given in Figure 7.24. This unit has been designed to work in conjunc- 
tion with the time multiplexed bus of the NS32000 series pnxxssors, an example 
of which is given in Figure 6.10. When the pmewx generates the ADS signal, 
the MMU accepts the address and examines a 32 entry page table to see if it is an 
active pge. If the match is suuxssful, then the w m t  physical address is made 
available in the next bus cycle, and the bus transactions continue as expected. 
Thus, the overall effect of the virmal to real lranslations carried on by the MMU is 
to add one additional cycle to the four cycles needed for a bus transfer. This 
increases by 25% the time required to fetch information fmm memory. Studies 
indicate that for most programs the needed page information will immediately be 
found in the 32 element page table for around 98% of all accesses. When the 
address provided by the processor does not match one of the enmes in the 
hardware page table, this does not mean that the page is not in memory. Rather, 
the information must be sought from the real page table. which is kept in main 
store. The NS32082 automatically generates memory requests to fetch this infor- 
mation from main store, whereupon it updates its hardware page table and contin- 
ues the intempted processing. This should occur for about 2% of the memory 
requests. A system block diagram of a NS32032 CPU with a NS32082 MMU and 
other support chips is shown in Figure 7.25. Note that the ADS signal is directed 
only to the MMU. which then creates the comct physical address and asserts PAV, 
physical address valid. 

Like segmentation. the paging mechanism allows the system to create (I 
"v~rtual" memory, which is the appearance of a memory space as it is accessed by 
a program. This allows the program to access more memory than is resident in 
the computer, since nonactive porhons of the information are maintained on 

VO 
wers 

and 
Latchm 

Control Translation I I I Z I  

Figure 724. Block D i i  of NS320112 M a ~ y  Management Unit. 

Chap. 7: Memory Systems 





secondary storage. However, this is not the only application of the concept of 
paging. A number of instruction sets can access a limited range of memory, and 
paging can be used effectively in these systems as well. For example, the 8080 
system has been used for many years, and it has an addressable range of 64 
Kbytes. The same can be said for the PDP 11 architecture or the TI9900. How- 
ever, with newer memories we can get 256 Kbytes to 1 Mbyte or more in a single 
SIP, which is far more that a single program can address. One way to effectively 
utilize the memory is a multiprogramming environment. In this fashion, each of 
the programs can have its own portions of memory, and accesses can be made 
with the paging mechanisms explained above. 

The use of paging to effectively utilize a large memory for systems that 
limit the memory addressable by a single program allows several programs to 
reside simultaneously in a memory. Then. as the addresses are created by the pro- 
gram, a translation is performed m access the proper page. Texas Instruments. 
Inc.. manufactures an LSI device used to perform the mapping for the case a large 
memory and a small inherent address capability. The block diagram of the dev- 
ice. which is the 74LS612, is shown in Figure 7.26(a). The assumption made by 
system designers utilizing this device is that the address space is broken into 
pages of 4,096 bytes. Thus, the 12 LSBs of the address are not touched by the 
paging mechanism. The 4 MSBs of the address are used to identify one of 16 
locations of a page table memory inside the device. Each of these locations con- 
tains 12 bits. which identify one of 4.096 pages in the real memory space. With 
this device mapping can be implemented to a real memory space of 16 Mbytes. 

The operam@ system i s  responsible h r  loading the proper page addresses 
into the page table. which it does by using the programmed 110 instructions and 
addressing the appropriate register with the RS lines. Once the system has 
prepared the table, the processor can access up to 16 pages by mapping the 
addresses into the real memory system. That way, 16 complete programs could 
reside in a 1 Mbyte memory, and be accessed through the 74LS612. A diagram 
showing its use with an 6800 system is given in Figure 7.2qb). Logically, the 
device resides between the processor and the memory. And the operation of the 
system mates a virmal space that is smaller than the physical space available, and 
yet uses the concepts presented above. 

The use of virmal memory techniques allow effective use of the real 
memory, whether the available memory is larger or smaller than that needed by a 
specific program. The program operates under the illusion that it has access to its 
own memory, independent of other events that may occur in the system. With 
large processor systems, this results in the use of less real memory than called for 
by a single program. The use of a large memory with processors that cannot 
access all of the available storage results in systems that can load several com- 
plete programs into the available physical memory. But the basic reason that the 
systems are effective comes from the observed behavior of programs in execution. 

Rograms generally exhibit locality when they are running. That is, at any 
given time, or during a short period, a program will tend to use information in a 
small number of locales. a program is executing a loop, the instruction 
fetches are confined to the memory area where the loop is located. The loop may 
access an array, and. while the array accesses an going on, the data references are 
limited to the a m  where the array is located. But the net result is that the amount 
of memory needed by a program during any small period will not be the entire 
addressable space, but rather a portion of i t  Thus, a pmgram may quire  a small 
number of all of its pages during any particular time slice. This behavior allows 
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possible. The virtual memory system must work with the secondary storage ele- 
ment and the main store to coordinate the transfer of information between the two. 
The interface mechanism will be a data transfer protocol as was discussed in 
Chapter 6: the controllers an activated by the pnxessor and perform whatever 
tasks they an given, moving information from the secondary storage area to main 
store. The OS is responsible for requesting these transfers in a reasonable fashion. 
and maintaining page tables as needed to reflect the contents of system memory. 
The more pages that exist in main store, the greater the probability that a program 
will find the information that it needs. Nevertheless, evenndly the program will 
access information on a page not in main store. The virtual address translation 
mechanism recognizes a request for data that is not in main store and interrupts 
the processor. The OS then must deal with the program in a reasonable way. 
Most often, the program is temporarily halted and the system requests that the 
unavailable information be brought into memory. Meanwhile, the cumnt state of 
the program is saved, and the information for another program is loaded into the 
registers of the CPU. The system can then continue execution on another program 
while awaiting the arrival of data from secondary storage. 

Example 7.6: Secondary storage access: Consider the block diagram for a 
virtual memory system as shown in Figure 7.27. As long as the processor is 
requesting information from main store, the system will continue executing. 
When the processor detects a page fault. the OS will need to bring in the 
appropriate page. On the average. how much time will transpire before the 
requested information ih  brought into main \tore? Assume that the access 
time to main store 1s 750 nsec. Also ahsume that the disk rotates at 3600 
RPM. that there are 48 sectors per track, and that a sector and a page have 
the same size - 5 12 bytes. 

The time required for the transfer will break down into three different 
times: 

The seek time for the disk, which is the time for the disk to find the desired 
track. 
The rotational latency, which is the time for the disk to rotate until the 
desired sector is under the read head. 
The transfer time, which is the actual time to transfer the information to the 
memory. 

Thus the time will be: 

Plgure 737. Simplified Block Diagram of Manory System. 
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The seek time is a characteristic of the individual disk being used. The time 
to seek to the next track is much smaller than the time to seek to a distant 
track, but an nasonable time is approximately 20 msec. -The rotational 
latency, on the average, will be half the time for o m  revolution. At 3,600 
RPM. the disk makes 60 revolutions per mxnd. or one every 16.67 msec. 
and half of that is 8.3 msec. Since there are 48 sectors per track. the 
minimum transfer time is 1/48 of a revolution time, or about 347 pet. 

Thus, the time for the transfer is dwarfed by the other times involved. So, 

= 20 msec + 8.3 msec + 0.347 msec 

= 28.647 msec 

Note that we have not included in this figure all of the times involved. since 
some time will be required by the processor to identify the appropriate page 
and issue the request to have the page transferred to main store. This time 
is not negligible, and should be accounted for in identifying the detailed 
costs of the transaction. 

Some observations can be made at this point regarding the dat ive 
times of the transactions. One interesting piece of information is the ratio 
of the access time of the disk to the access time of the main store, which we 
will c:~ll Nv\,. \Ince this ih the \lorase r:mo mvolvrd w~th v~nuul memory. 
Thus. 

28.647 msec - 
250 nsec 

This indicatw that over 110,000 transfers could take place while the disk is 
accessing the information not in memory. Another observation is that, dur- 
ing that period of time a 2 MIP machine (a machine capable of 2 million 
instructions per second) could execute almost 60,000 instructions. Since a 
significant amount of work can be done in the time required to obtain the 
information from secondary storage, an operating system will suspend the 
pmess that incumd the page fault, and allow another process to utilize the 
computational resources of the system. 

Another observation is that the principal time involved in TAC- is 
the seek time. Thus, systems that strive for high speed can benefit from a 
device that does not need a physical seek to obtain the information. Two 
such devices are drums and head-per-~ack disks. These devices have a 
much higher cost per bit for storage. but can be used if the circumstances 
wanant. 

As we have seen, virmal memory can be used to more effectively utilize the 
reswrces available to a system, and in particular to use mrmoty in an efficacious 
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manner. Segmentation approaches the task by accessing information in logical 
units, such as programs, subroutines, and data areas. Note also that a system can 
organize the information that it needs to access as segments, so that individual 
data entities can be organized as individual segments. Paging accesses informa- 
tion by organizing information into pages, using a standard physical unit as the 
common denominator in al l  uansactions. Both concepts allow the program to 
divorce itself from the placement of the information in physical memory, and 
allow the instructions to identify the location of information within a virtual 
memory framework. It is not necessary to use only one or the other method, and 
some systems combine the two together to form a paged system that also under- 
stands segments. This type of an addressing scheme allows the creation of seg- 
ments, which have unique characteristics, and the further benefits of paging, 
which allows a regular placement policy. 

7.4. Cache Memory: Speed-Up for Main Store 

Cache memories are (relatively) small. high-speed memories inserted into the sys- 
tem between the processor and the main store. The purpose of cache memory is 
to speed up the processing rate by allowing the processor to execute at a higher 
rate than that possible by using main store alone. It utilizes many of the same 
concepts used with virtual memories. but in a slightly different fashion. One of 
the I~r.;t machines to ut~llze this mechan~m was the IBM 360/XS ILiptbXI, but the 
concept liab become wdely implemented In machines of all sues. Before u cache 
system is implemented, a thorough study of the behavior of the memory system 
under expected operating conditions must be conducted. In this section we will 
study some of the mechanisms utilized by cache systems, and determine their 
effectiveness in different conditions. For a relatively complete discussion of a 
number of the techniques and their relative merits, see [Simt82]. 

The virtual memory mechanisms discussed in the previous section allow 
programs to execute using a virmal memory space, a space that appears different 
to a program than the actual space being utilized. The program need not have a 
comet understanding of the amount of memory actually available. Programs can 
IWI using very large virtual spaces with a relatively small actual main store. or the 
program can, by its inherent instruction and reference limitations, access only a 
portion of the actual memory available. In either case, systems that utilize virtual 
memory tend to have only portions of the pmgram loaded into main store at any 
one time. These portions are sometimes referred to as the active portions of the 
pmgrams, and during the execution of a program the active portions will change. 

One effect of the use of virtual memory techniques is that the apparent pro- 
cessing speed of the system is higher, because the CPU is more effectively utilized 
by a number of programs, and the amount of time that the CPU is idle is minim- 
ized. Of course, one exception to this speed enhancement will occur when the 
pmcessing being done is limited not by the processor, but rather by the UO capa- 
bilities of the system. That is, a set of VO bound jobs will not experience the 
spaedup improvements that would be seen by a mixture of W) intensive and com- 
pute intensive programs. Nevertheless, the system benefits from having only the 
active portions of the programs reside in the main store at any one time. 

Cache memories operate on the same basic principal: keep in the memory 
(in this case the cache) only those portions of the information needed and active. 
In this manner, the cache and the virmal memory mechanisms are similar. 
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However, there are some major diirences between the virtual memory and cache 
memory implementations. The two most obvious differences are the visibility of 
the mechanism and the ratio of access times. 

A virtual memory system has high visibility to a program and to the operat- 
ing system, since the ' V m  machine" as seen by a program is accessed by the 
virmal memory system, which in turn is managed by the operating system. For 
example, a user has the capability to access more memory than the system actu- 
ally has through the use of virmal memory, and the OS must maintain page tables 
and other information in the system to control the various facets of the system 
operation. The cache, on the other hand. is usually hidden from the user and the 
system. The decisions as to the operational modes of the cache are made at 
design time and built into the system. Thus, a program will not know that a 
cache is being w d ,  except by the speed of processing. 

The ratio of access speeds for the cache. RcA, also differs drastically from 
RVM. The definition of RcA will be similar to RVM: 

TAUAIC m.e RCA = - 
T ~ C K W  

Access times for main store and cache memories improve each year, but typical 
times might be 250 nsec for TAW - and 40 nsec for Tb. Using these times. 
Ra becomes: 

250 nsec =- 
40 nsec 

Instead of a ratio in excess of 110.000 as for RVMI RC\ is on the order of 6. This 
ratio will vary fmn system to system. but the effect will be the same: thm is not 
enough time to change the task in the procwm. Thus, the processing element is 
halted until the information which was not in cache has been obtained, and then 
the processing continues. 

One of the basic questions is how good the cache memories are, and how to 
quantify the effect The tmn "good" is a relative measure. and indicates how fast 
the processor is operating with the cache compared to the operating rate without 
the benefit of the cache. To identify the effects involved with the cache, let us 
consider a system organized as shown in Figure- 7.28. This simple figure indicates 
the logical organization of the system. but not necessarily the physical organiza- 
tion. The figure of merit that interests us hen is the T,, which is the effective 
access time of the memory system, considering the cache and main store 
memories together as a single system. A very simplistic formula for this time is 
given by: 

~haeT~istheaccarstimeofthecacheandT~istheaccesstimeoftbemein 
stan. Thc other tnm in the equation. h, is the hit rate, or the fraction of the refer- 
ences found in tbe cache. Thus, (1 - h) is the miss rate, the fraction of the 
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Figure 738. System with Cache and Main Store Memories. 

references not found in the cache. The first term, h x Ta, indicates that of all the 
references to memory, the fraction h will incur a penalty of TCA. And the second 
term, (1 - h)  x (To +TMs), indicates that the remainder of the references, 1 - h. 
will incur a penalty of TcA + TMs The TcA term appears here to identify the 
amount of time that is required to ascertain that the desired reference is not in the 
cache, and the This term identifies the amount of time then required to go to main 
store to obtain the requested information. With a little algebra, the equation can 
be further reduced: 

This is a very simplistic formula. since ~t does not include the effects of many of 
the real problems that occur in caches. But it is sufficient to give some insight 
into the effectiveness of a cache memory organization. 

The formula for TepF is a linear equation, and will specify straight lines on a 
linear plot Figure 7.29 gives a plot of Tm as a h t i o n  of the hit rate, h. Four 
different lines appear in the figure. for Ru values of 2.5. 5, 10, and 20. The 
access time is given in terms of Tw, SO that, if Tne exceeds 1.0, then the response 
time of the memory system with cache would be worse than the response time of 
the system without cache. The figure identifies that indeed this situation can 
armr, but the hit rate must be very poor for Te~p to be grrater than 1.0. 

A graph that gives a more intuitively pleasing obsavation of the effect of 
wing a cache is given in Figure 7.30. H m  we plot the speedup of the system, 
when the speedup. S. is defined as a ratio of the access times without and with 
cache memory: 

The plot indicates that, as the hit rate approaches 1.0, the speedup improves 
dramatically. This a p e s  with expeaations concerning the use of caches. 

This simple formula is not an accurate model of the exact behavior of a 
cache memory. since it does not account for many details. We will return later to 
the calculation of Tm but let us now consider some of the implementation 
mahods. 

Implementation details vary for cache memories, and the following descrip 
tions can be modified to produce mults slightly different fran those included 
hem. For exampk. the addresJpb1e units in a cache will vary depending on the 
application, from small units in caches that are inherently small, to large units, for 
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Hit Rate 

Figure 7.29. Effective Memory Access Tie ,  T, as a Function of Hit Rate, h. 

caches with an increased memory capacity. But the basic principles of operation 
will be the same regardless of the implementation. 

For our example cache organization we will use a cache size of 32 Kbytes. 
The system memory may be 16 Mbytes or larger, so the cache can only hold a 
fraction of the information resident in main ston. Thc cache is organized to 
access information in some basic unil which we will call a l i .  We will let the 
line size be 32 bytes, so the cache will contain 1,024 l i .  The main, store will 
also be organized as lines, so that lines can be exchanged between the cache and 
main store. This basic organization is depicted in Figure 7.31. Whenever then is 
a hit, the cache provides to the processor the information that was requested. This 
will occur at the speeds of the processor itself, and only the specified information 
(byte, word, double word, etc.) is transferred. However. if thm is a cache miss. 
then the data must be brought from the main store into the cache. Thc informa- 
tion is transferred from the main store to the cache by moving an entire lie. 
Some cache organizations also have the capability of requesting a transfer involv- 
ing multiple l i  

To this point we have placed no restriction on the location of information in 
the cache. If the system permits any line from main store to reside in any l i  in 
the cache, then we say that the system id a fully associative Opganization. Thus, 
when the pmxssa identifies an address, all of the l i  in the cache must be 
interrogated to apattain if the d d i  information is in the cache. This leads to 
very expensive hardware. since, for the example of Figue 7.31, 1,024 locations 
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must be searched. The hardware required to search for the address in question 
wi l l  be greatly reduced if resaictions are place on the allowable locati~ll~ in the 
cache of the l i i  in main store. If a line in main store has exactly one location in 
rhe cache when it can be found, we b y  that the cache has dirat mapping. With 
direct mapping, only one location in the cache needs to be queried to find out if 
rhe addressed information is available or oot. With dirrct mapping in the 
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organization of Figure 7.31, each line in the cache can hold information from any 
of 512 lines in the main store. But each line in main store maps to only one line 
in the cache. 

A compromise between the fully associative and direct mapping mechan- 
isms involves a technique known as "set associativity." If, instead of only one 
location in the cache, a l i i  in main store could be located in om of two loca- 
tions, we say that the cache is two way set associative. or set associative with a 
set size of two. Likewise, if the line can be located in one of four locations, then 
the organization is four way set associative, or set associative with a.set size of 
four. Other set sizes are possible, such as eight and sixteen. The more elements 
in a set, then the more hardware is required to implement the cache. With set 
associativity. a line can be found in a limited number of locations, and the 
hardware needed for the parallel search of those locations is manageable. 

If the cache of Figun 7.31 is organized as a four way set associative cache, 
then then are 256 sets, each with four lines. The organization of the system is 

Processor Address 

8 Bits 5 Bits 

32 bit address. T + T = 19 bits 
24 b ~ t  address. T] + T: = 11 bits 

Each set contains 4 lines and their tags Each llne contains 32 byte8 

Rpve732. ~ 0 n o f a S s t ~ v e C a c h s W i t h F o u r ~ .  
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shown in Figure 7.32. The address, as supplied by the p m s o r  is divided into 
fields, each of which has a specific function. Since there are 32 bytes in a l i e .  
then the 5 least significant bib are required to identify the target location within 
the line. If the architecm is not byte-addressable, then this requirement changes 
accordingly. Since most general purpose machines have byte-addressable 
memories, we will proceed under that assumption. With 256 sets, then 8 bits of 
the address are needed to specify the appropriate set. The remainder of the bits 
form pan of a collection of information called a tag, and are stored in a memory 
that mirrors the organization of the data area of the cache. The tag bits include 
the remaining bits of the address, a method to identify if there is &ta in the l i e  
(since the cache will be empty upon startup), a dirty bit (to indicate if the l i e  has 
been changed since it was brought into the cache). and other information that is 
needed by the system. For example. one of the useful things to know is the order 
of use of the lines in a set. If this information is available, then when one of the 
lines needs to be removed to make room for a new line, the least recently used 
line can provide the location for the new information. Thus, each line in the data 
section has associated with it a tag in the tag section. The line resident in the tag 
section is uniquely identified by that tag. The process of ascertaining the presence 
or absence of information in a cache then consists of examining M tags, where 
there are M elements in each set. 

One of the characteristics of the cache mechanism is the order in which the 
lines of a cache are accessed for a given set of physical addresses. Consider, for 
example. a large 5et of addresses that is monotonically and uniformly increasing, 
each sddrehh bemg 4 hyres greater than its predecesor. In Figure 7.32 the proces- 
sor address is divided into three different groups: set ID bits, byte ID bits, and two 
groups of tag bits. The byte ID bits are the 5 least significant address bits. The 
remaining bits in the address comprise the set ID bits and the tag bits. Eight bits 
are required to specify the ser: these 8 bits form the set ID. 

The remaining bits are tag bits, and are further divided into two portions. 
which we call T, and T,. If there are zero bits in T, and all of the tag bits are in T,, 
then as the address incnases successive lines will be placed in successive sets. 
However, if there is a single bit in T, and the set ID bits are relocated in the 
address accordingly, then a different addnssing pattern is formed. As the addnss 
increases. then two lines will be located in each set before moving to the next set 
in sequence. If T, has two bits, then four lines are allocated to a set before mov- 
ing on. The mechanism which is most beneficial may be determined from the 
expected workload via a simulated address trace. 

Example 7.7: Set associative cache system: Give a data path block diagram 
for a two way set associative cache memory with a capacity of 32 Kbytes. 
Identify the width of the data paths and the function of each block. Assum- 
ing that the memories used in the cache have an access time of 25 nsec, 
how quickly can the ptesence of the line in the cache be detected? 

With 32 Kbytes in the cache, organized in a two way set associative 
manner, there are 512 sets, with the previous assumptions. That is, with a 
line size of 32 bytes, there are 1.024 lines, and with two lines per set, then 
are 512 sets. Thus. the cache can be made with 512 x 8 memories in a very 
natural way. A data path block diagram of such an organization is shown in 
Figure 7.33. Using byte wide memories, thrse devices would be needed for 
each tag array, and 32 devices would be needed for each data array. Thus. 
70 memory devices would be needed for the cache. The address is divided 
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to that line in the cache. Since the memory changes are not immediately com- 
municated to main store, systems with multiple processors that share a common 
memory will need additional capabilities if this scheme is used. This is some- 
times called the "stale data problem," or the "cache coherency problem," and we 
will examine it in more detail later. The write back mechanism rewards programs 
that cause writes to memory to occur in clusters, since several writes can be per- 
formed at cache speeds before any main store penalty is incurred. When the write 
occurs, a mechanism to temporarily hold the line being written out will minimize 
the overall time penalty. 

The transfer mechanism with its associated storage buffer is an example of 
combining the various techniques discussed. For the purposes of discussion, let 
us use the system shown in Figure 7.34. The overall block diagram indicates that 
the CPU receives its information from (and provides information to) the cache. 
Meanwhile, the cache is connected via a bus system to four memory banks. Each 
bank of memory is essentially an independent unit, with addressing and timing 
capabilities needed for random access. The coordination of information transfer 
on the bus is handled by the bus controller. One of the assumptions made in this 
orgilnization is that line size is 32 bytes, and that each bank holds 8 bytes of each 
line. Another assumption is that the transfer of information across the 8-byte bus 
requires 50 nsec, and that the access (read or write) to information in a memory 
bank requires 200 nsec. So, for a write back memory, the following sequence of 
events is one mechanism for performing the data transfers required. There is a 
cache miss. and a line needs to be brought in. Assume that the line currently in 
the cache In the location in which the new line i \  to he pllrccd 1s not dinv - it 
h:~s no1 hccn ~.hangcd \~ncc h c q  rctrlcvcd lrorn memory The accrsaes lor the 
needed line are ~nvoked In each bunk of the memory. When Bank 0 has the 
required line, which occurs 200 nsec after initiation of the read access. it will 
transfer the information to the cache. This will be followed by the transfer for 
Bank 1, which is ready by the end of the transfer of information by Bank 0. The 
transfers for Banks 2 and 3 follow. Thus, 250 nsec after initiating the request, the 
first information is available, and 400 nsec after the request starts, the entire line 
has been accessed and transferred to the cache. 

The second case includes the write back of information, as well as the 
obtaining of information for the cache. This will occur when a "dirty" line is 
replaced. In this case, one method of implementing the transfers recognizes that 
the bus is not used for the first 200 nsec of the above cycle. The information is 
obtained from the cache and sent to the interface modules of the respective 
memory banks during the first 200 nsec, and the information is then written back 
to the banks as shown in Figure 7.34(b). As shown in the figure, this policy leads 
to the desired information being loaded into the cache within 400 nsec, and the 
write back portion completed within 600 nsec. However, by staggering the 
requests in time. the effective time can be made 400 nsec. Thus, the write back 
scheme can benefit from this one level of storage buffer and increase the apparent 
speed of operation. 

Euunple 7.8: Eflecfive time for cache access: Develop a formula for the 
effective access time for a cache memory that uses a write back scheme. 
Assume that the system must bring information into the cache to modify it. 
rather than to have writes that modify information not in the cache go 
directly to memory. (This assumption is made to crcate a simpler fonnuh, 
not to reflect reality.) Assume that the probability that the access is a read 
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is P-, and that the probability that a cache miss causes a dirty line to be 
written to main store is PmW Also assume reads and writes to main 
store incur the same penalty, Tm, and that k c  is no storage buffer in the 
system. (Again, this assumption is for a simpler formula rather than to 
reflect reality.) 

The aW.Unpti0nS s m d n g  chis problem have been made in such a 
manner to simplify the m d b g  formulas, rather thau to reflect how a 
specific cache has been designed. To identify the costs auociatcd with the 
various accessing mechanisms. we will examine the costs in each of the four 
obvious cases: read hit, d m i a p ,  mite hit, and write miss. Tbe total solu- 
tion will then be a weighkd sum of these cases. 

Mem 
Bml'3 

Bus lntefface 
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The read and write hit cases are identical: the desired address is in the 
cache, and the cost of the access is the cache access time: T* 
The read miss will incur a penalty of Ta to ascertain that the information 
is not in the cache, and then a penalty of TM to bring in the information. 
However, this is not sufficient, since then may be a need to write back to 
main store a dirty line. This incurs a penalty of TMS but occurs only with 
probability PDm. 
The write miss will also incur a penalty of TcA to ascertain the target 
address is not in the cache.. In addition, it will require a time TMS to 
bring in the desired line. It will also require a time TMS with pmbability 
PDIRn to write out a line being displaced. However, once the line is in 
the cache, another TcA is required to write to the spot selected. 

Thus, the costs can be summarized by the following table: 

Hit Miss 

= T c A X [ l + ( l - h ) ~ ( ~ - P m ) ] + T M s ~ ( l - h ) ~ ( ~ + P D m )  

A family of plots of this equation and its inverse ate shown in Wgure 7.35. 
The various lines are for different values of the probability of a dirty line 

(PDIR). The assumption here is that the cache. time Tm is omtenth the 
main store time TMS. As can be seen from the figure, the pmbability of a 
dirty line has a large impact on the performance of the system. 

Other equations can be derived to more closely reflect reality. The differ- 
ence will be in the complexity of the analysis, but the approach will be the same. 

A number of other issues need to be dealt with in a real system. For exam- 
ple, how does the hardware handle a request for a word aligned across line boun- 
daries? That is, since the system has been assumed to be byte-addressable, what 
happens when the request is for 4 bytes, the hrst of which is on one line and the 
other three ate on another line? A real system must be capable of handling this 
situation. (Note that one solution is to define the system in such a way hat all 
memory accesses an made on 32-bit boundaries, and obtaining information within 
must then be done with software rather than hardware. This aadeoff must be 
made by the system architects at the time of the system definition:) Another d 
problem concerns the mechanism for physically writing information to the c~che. 
We have not shown in the block diagrams or other examples the data paths nor 
logic required to write information beck to the cache., but this must be done in a 
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timely fashion. A third troublesome reality is to coordinate the writes that occur 
because of the processor with writes occurring because of M) transfers. Some 
provisions must be made to keep all of the information current and under control. 

One of the side effects is the cache coherency problem, which exists for a 
system with multiple processors, each of which has its own cache. This situation 
is depicted in Figure 7.36, which shows a multiprocessor with two pnxxssing ele- 
ments, each of which has its own cache. The cache cohemcy problem is 
exemplified by the following sequence of events. Rucessor A accesses a location 
in the memory, and the line is then loaded into Cache A. Subsequent accesses to 
the line will be found in the cache, rather than requiring the main store penalty. 
Processor B now needs the information in the line, so it accesses main store and 
gets its own copy of the information into Cache B. Further accesses of Processor 
B for the information are fielded by Cache B. Rocessor A now changes the infor- 
mation in the line. Processor B no longer has a valid copy of the line. since the 
information it has in Cache B has been superceded by the action of Processor A. 
Thus. the information is not coherent. and the situation has the label of the cache 
coherence problem. 

If the write back scheme is used by the cache, then then is indeed a prob- 
lem, since not only is the information in Cache B incomct, but Cache B cannot 
obtain a valid copy until the information has been updated in main store, which 
will occur at some indeterminate time in the future. A write through scheme will 
provide a better basis for action. since the information needed by Cache B will be 
avatlable in main $tore. Thu.\. the actlon of Processor A in updating the line in 
Cache A bhould also mark the line in Cache B ~nvalid. so that when Processor B 
needs the information, it will be required to go to main store to find it. This is 
not the only solution to the cache coherency problem, but it does indicate why 
systems capable of multiprocessing organizations 0 t h  choose a write through 
scheme as opposed to the write back scheme. 

Example 7.9: A cache coherency solurion: The Sequent system is a s h a d  
memory multiprocessing organization. What mechaniirn is used to allow 
each processor to have its own cache? 

The Sequent system is a very inte-resting combination of the various 
mechanisms discussed, both for interface methods and for caching policies. 
A block diagram of a sample Sequent system is shown in W g u n  7.37. The 
CW module utilized in this system is the 80386, and included with it are the 
other devices that allow it to m a t e  the information needed by the memory 
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system. That is. there is a virtual-to-real address translation mechanism 
included with each CPU. .Also. high speed Hoating point units [hat utilize 
the IEEE Houung pomt \?\tern are avxlable. which w ~ l l  enhance the normal 
Hoatmg point capabilit~es ot the 80386 chip set. The cache system that pro- 
vides the CPU with the information it needs is a 2 way set associative cache, 
with a capacity of 64 Kbytes. It is organized with a line size of 16 bytes; 
this gives 4,096 lines. or 2,048 sets. The mechanism used by the cache to 
communicate with the main store is a modified write back policy, which 
violates the intuitive feeling about how cache memory systems for multiple 
processor/multiple cache systems should work. The reason that the system 
functions properly can be understood by looking at the mechanisms 
included with the system bus. 

The system bus is a synchronous, time multipkxcd bus similar in 
function to the SBI. However, there ate some important differences. The 
speed of the bus transactions is 100 nsec, and the mechanism for data 
transfers is address-datadata. as in the SBI. However, the width of the data 
path is larger in the Sequent than the 4-byte data path of the SBI. During 
the address portion of the transfer, the address is asserted on the lines. Dur- 
ing the data portion of the transfer, 8 bytes of information are placed on the 
bus. This allows 16 bytes to be transferred in one addressdatadata 
exchange. This is designed to be the amount of information in a line, and 
so transfers from memory to the caches always occur in increments of one 
l i e .  With 16 bytes per 300 nsec. this leads to a maximum data rate of over 
50 Mbytedsec. 

Solying the w h e  coherence problem requires the work not only of 
the system memory, but also of all the. cache systems as well. The cache 
modules are organized such that there is an interfax to the CPU for the 
transfer of information to and from the processor. as well as a watch dog 
interface. which monitors all of the transactions on the system bus. Since 
the bus is a synchronous protocol, this can be effectively managed. The 
interface between the cache and the system bus serves two purposes. The 
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first is to exchange information with the system memory to maintain the 
cache information as a normal cache system should. The second purpose is 
to watch for memory transactions that take place with the lines it cumntly 
has in the cache. The second function permits the write back policy to be 
utilized in the system. 

The problem explained above in Figure 7.36 involved two processors 
accessing the same location in memory. That set of events would proceed 
in a slightly different fashion in the Sequent system: 

Processor A accesses location X Y Z  in system memory. The system 
memory responds with the appropriate line. Cache A accepts the line and 
uses it. However. it keeps track of the fact that it has a private copy of 
the line. 

Processor B accesses location XYZ in system memory. The system 
memory responds with the appropriate line. Cache A also has this line: 
however, Cache A keeps track of the fact that it has not modified the line, 
so that the copy in system memory and the copy in Cache A are identical. . 
Cache B accepts the line and uses it. However, it keeps track of the fact 
that it has a shred copy of the line. In addition, the watch dog interface 
on Cache A also notes that the line has been obtained by another cache, 
and marks it as shared. 
Processor A modifies location XYZ: this takes place in Cache A. and does 
iiot prop:yaw ro \y\tem mcmorv. Ilowcvcr. Cachc h doe5 \end out onto 
the hus a notice to other caches that the line has k e n  mod~tied. The 
watch dog interface on Cache B sees this and marks the line as invalid in 
the cache. 

Processor B accesses location Xn; the line in Cache B has been marked 
invalid, and the cache then goes to the system bus to get the information. 
When Cache A notices that someone needs information from location 
XYZ, and that it has the updated copy of that information, it signals the 
system memory not to respond to the request, and the information comes 
from Cache A instead Thus, when Cache B requests the information, it 
does not know from what source the information will come, only that 
some bus cycles later the information will be provided on the bus. 

The use of active interfaces between the cache and the system bus to moni- 
tor the data transfers on the bus allows the write back mechanism to func- 
tion properly. The system will execute the programs as specified by the 
instruction streams. This organization also allows the creation of the locks 
needed for system operation. The interlock instructions of the 80386 an 
executed on a location in memory. The cache first obtains a private copy of 
the location, and then does not respond itself (nor allows the system 
memory to respond) until the interlocked transaction is complete. 

At this time some comments on cache systems and their u t i l i o n  are in 
order. First of all, in our discussion on caches, we assumed that the available 
address directed the cache to the proper spot to find the information requested. 
However, the question studiously avoided was, which ad- should be presented 
to the cache? Is it a virtual address or a physical address? Machines have been 
built that utilize virmal addresses for the cache access. but the mom common 
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mechanism is to use physical addresses. The problem remains, then to provide 
the vid-to-real  address translation to d i ic t  the request to the proper location. 
To aid in this process, an often used mechanism is called the translation lookaside 
buffer (TLB). This table, located in fast registers or fast memory, contains the 
most recent virtual to real translations. and. with this information, the proper 
address can be presented to the cache. This unit can be organized in a fashion 
similar to the cache, or in any manner that will satisfy system requirements for 
rapid address generation. Basically, this unit provides for the cache memory the 
same function provided by the 32082 for virtual memory - maintain in a rapidly 
accessible location the translations needed by the system. 

As the relative costs of system resources change, different approaches to the 
organization of the cache may be appropriate. In this section we have discussed 
some of the mechanisms used with set associative caches. One of the mechan- 
isms is the replacement of information within a cache. The decision made con- 
cerning which member of a set to replace requires hardware to implement - 
'hardware (memory) to remember something about the order in which the 
members of the set have been accessed. and hardware to use that information to 
ascertain the proper member to replace. As memory costs continue to drop, one 
of the approaches that becomes more attractive is to use larger cache sizes and a 
di ict  mapping policy. With direct mapping, the hardware needed to maintain 
replacement information and to determine replacement priorities is nonexistent, 
since the target location can be found in only one location in a cache. By using 
this mechanism. the apparent speed can increase. aince no multiplexing is needed 
between ~nenibers u i  a \ct. .It the mne time. tlie h i t  ratlo renialnh high because 
the cache is sufticirntly large to provde the mformatwn needed. 

Cache systems allow processors to obtain the data that they need in a timely 
fashion. So long as the information required by a processor is in the cache, then 
processing continues without u ~ e d e d  delays for slower memory systems. This 
mechanism is useful in both "standard" memory systems for uniprocessor systems 
and for multiprocessing organizations. The added benefit in multiprocessing sys- 
tems is to localize the information q u e s t s  and to minimize the requests to system 
memory. 

7.5. Summary 

Memory systems in computers are used to maintain the programs and data needed 
by user and operating system alike. In all system components, information is 
maintained in devices with two stable states; this enables representation of a "one" 
and a "zero." Collections of these memory mechanisms allow the system to 
"remember" infonnation that it needs. The principal requirement for an effective 
memory mechanism is the ability to store and retrieve the information in an 
organized fashion. 

The speed and retrieval mechanisms used by a memory system lead to 
differing functions. The slower, serially organized elements are used to maintain 
large files and other information that can be effectively retrieved in a serial 
fashion, instead of a random access scheme. 'Ihe faster storage mechanisms are 
used to maintain information accessed by the computing sys& in a time critical 
fashion. The storage elements that can supply information in the shortest time are 
used in register ~d cache systems: elen&& that are not quite so fast can be 
effectively used as main memory elements. Organization of the random access 
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elements can be done in a I-D or 2-D fashion or with similar mechanisms, the. 
requirement being that only one of the various locations is accessed at any one 
time. 

Virmal memory systems allow the user to operate in "victual space," which 
is not the same as the actual physical space. The virtual machine is the view of 
the system as seen by the user, and includes those resources of which the user is 
aware. The physical machine can be quite different the physical model is limited 
by the exact configuration of the system. The virtual machine concept allows 
users to use more resources than the system actually has, such as larger memory 
spaces. The same concept allows more memory resources to be shared among 
many users who are not aware of the entire extent of the system. The virtual 
memory mechanisms, segmentation and paging, translate requests from the virmal 
system to the actual physical system. This results in systems with a higher 
apparent system speed because of the locality observed in programs: during a 
small portion of the program, only a fraction of the total memory is used by the 
system. 

The locality of programs also allows cache systems to function effectively. 
The cache allows a small, high speed memory to keep only the most active por- 
tions of a program and its data accessible to the CPU. But, since it operates at 
CPU speeds, the cache mechanism speeds up the overall processing rate of the 
computer. 

7.6. Problems 

7.1 Design a 16 element register bank using I-D techniques. For register ele- 
ments use the '299 as shown in Figure 7.9. 

7.2 Design a 16 element register bank using 2-0 techniques. For register ele- 
ments use the '299 as shown in Figure 7.9. 

7.3 The IDT1164 is an 8K x 8 static RAM with 13 address lines and 8 
input/output lines, as well as two chip selects (CSI-I, CS2-H), a write enable 
(WE-L), and an output enable (OE-L). Using this device, design a 64-Kbyte 
memory using I-D organizational techniques. How many nonmemory dev- 
ices are required for this memory s y w ?  

7.4 Use the IM7164 described in Roblem 7.3 to create a 128-Kbyte memory 
system. Use 2-D organizational techniques. How many nonmemory dev- 
ices are required for the memory system? 

7.5 Design the dynamic RAM controller shown in Figure W.5. The inputs are 
an 18 line data address, a 9 line refresh address, a refresh request line (REF- 
H), and a data read line (READ-H) that initiates a read action. The outputs 
are a 9 line address, which is to go to the dynamic RAM, the row address 
strobe (RAS-L), the column address smbe (CAS-L), and the ready line 
(READY-H). 

The behavior of the &vice is as follows: A refresh cycle is accom- 
plished by asserting the refnsh address on the RAM address lines (and 
allowing a nscc settling time), then asserting the RAS signal for 150 nscc. 
and releasing both RAS and the addnss lines. A nad cycle is accomplished 
by asserting 9 bits of the addrrss (and waiting the 50 nsec q u i d  for set- 
tling), asserting RAS. waiting another 50 nscc, then changing to the other 9 
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Flgurc P75. Dynamic RAM Controller. 

address bits, (and another 50 nsec wait) asserting CAS, waiting 100 nsec, 
and then asserting the ready line. This condition remains until the READ is 
released. whereupon the system returns to the quiescent state. Assume a 
system clock at 20 MHz. To complete the design: 

a. Give a data path block diagram. Assume the existance of N-bit 2-1 
muxes with hi-state outputs and N-bit tri-state drivers. (These could be con- 
srmctcd from multiple copies of a '257.) 

b. Give a state diagram describing the action of the device. Include signal 
names and assertion levels. 

c. Design a c~rcuit to do [he work of pen b. 

d. Describe what modilications or additional logic would be required to 
implement the write capability as well as the read capability. 

7.6 The block diagram for a general purpose system shown with Pmblcm 4.7 is 
included he= as Figure P7.6. Modify the block diagram to include a seg- 
mentation register. That is, provide a way that all addnsses to memory can 
be offset by the value in a segment register. Describe the modificatiolls that 
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must be made to an instruction set to control the system with this 
modification. 

7.7 In general, the single segment register of Problem 7.6 does not provide 
sufficient capabilities to a computer system; a system must be capable of 
handling several segments. Modify the block diagram of Figwe P7.6 to 
include the capability of several segment addresses. What contributions are 
made by this enhancement of the arrangement of Problem 7.61 

7.8 Access to a memory system by a number of programs can be enhanced by 
the use of paging. Modify the block diagram of Figure P7.6 to include a 
hardwan page table, and specify the manner in which the page table is used 
to generate the effective memory address. Why will this method be faster 
than the segmentation mechanism of Problem 7.7? 

7.9 A computer system is configured with a disk to provide high speed file 
storage. The disk system has 32 sectors per track, and stores 512 bytes per 
sector. The rotational speed of the disk is 3.600 RPM. The average seek 
time is 30 msec. The average lnstructlon execution time is 1.5 pec.  When 
a page fault occurs, how much time will be required before execution can 
continue on that program? Identify each of the contributing times, and 
describe what is happening during that time. How much would the delay be 
modified if the seek time of the disk were reduced to 24 msec? 

7.10 Consider a cache orpnization with the foilowing characteristics: 

Main memory we:  
Cache memory size: 
Cache line size: 
Cache cycle time: 
Main memory cyclc. 
Robability of cache hic 
Robability of write: 
Rubability line d i :  
Cache organizntiw: 

16 Mbytes 
32 Kbytes 
64 bytes 
50 nanosarondc 
MI nanosccrmdr 

.7 
25 
.L 

4 way set arsociative 

a. Give a npnsentation of the address space. That is, what bits in the 
address are for what? Assume that then are 2 bits between the byte identi- 
fying bits and the set identifying bits. 
b. Assume that 128 x 8 memories are used to build the cache. Give a data 
path block diagram of the cache system. Assume that no parity checking is 
needed, and that the cache is a write back cache. 

c Find the effective time for a memory access. 

7.11 A certain cache memory machine uses a cache that can store 512 blocks of 
64 words each. Assume a main memory size of 1,048,576 words. 

a. Which bits of the word a d d m  should specify the block number? 

b. If a set associative scheme is uced. which bits should specify the set 
number? 

c Describe the worst case reference paarm (for maximum cache miss) 
assuming (i) d k t  addressing, (ii) set awciative with two blocks per set, 
(ii) set associative with four blocks per set, (iv) fully associative cache allo- 
cation. How likely are these worst cases? 
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7.12 A certain computer has a IdMbyte main memory, cycle time of 350 nsec. 
It also has a 32-Kbyte cache, cycle time of 25 nsec. The cache is set associ- 
ative, four lines per set. 32 bytes per line. 

a The address space is parbally defined below. Complete the speci6catioh 

Tag Bits I Sa Bits ( Tag Bits I Byte in Line 

1 3  1 5 

b. Assume that an address trace of a program is such that the lines in use 
are accessed in the following order ... 0 1 2 3 0 1 2 4 0 1 2 3 0 1 2 4 ... If 
this addressing panem is continued, what will the effective memory access 
time be? 

7.13 Develop a formula for the effective access time for a cache memory that 
uses a write through scheme. Assume that writes that are cache misses do 
not have any effect on the cache at all. except for the time involved in the 
transaction. Assume also that no buffering is provided for the writes to 
main store. State all assumptions that you make in the process of problem 
solution. 

7.14 Repeat Problem 7.13 assuming that a buffer is available between the cache 
and main store. This buffer will allow the operation of the memory system 
to continue once a write has becn in~tiated. However. if  a write is needed 
and the buffer is in use. the system must wait until the data .tan the buffer has 
been transferred to main store. 
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