
Pipelined Systems: Low Level

Parallelism

Ilcfardlc\\ 01 11ic :~pplica~ion 01' ;I computer \).\tern. [here i \ ;~lwavs \ o w mouva-
lion to cnlia~lcc thc bpeed ol exccurwn ol the bystern. One way to achieve th~s ia

to use a technology that operates at a higher speed. and many machines have used
this method to produce a system that performs more work in a given amount of
time. However, there arc practical limits to this method since there an practical
limits to how fast signals will travel. If speed increases are to be achieved
without a faster technology, then some degree of concmncy is necessary. If the
circuits can't function faster, then to incnase the apparent speed of the machine,
the basic modules of the machine should perform h a i o n s simultaneously. This
can be done if the functions to be performed are independent. That is, if the
results of one instruction are not needed for the execution of another. then the two
functions can be done at the same time. If this technique is successful, then
instead of one operation per unit time, N operations per unit time are performed
(for N independent units).

A variety of ways have been utilized to increase the amount of concur-
rent execution in computers. One method is to organize a number of identical
functional units in such a way that they can all perform the same operation on
different sets of data simultaneously. This is called single instruction stream,
multiple data sInxm processing (SIMD), since many processors arc executing
simultaneously, but the action is conaolled by a single unit. For certain classes of
problems, this can be a very beneficial organization. Machines that have used this
method of organization include the Illiac N [BaBr68, Thm761. the Massively Paral-
lel Processor [BatcSO, HwBr841, and the Connection Machine [HillSS].

Another method of pdotming simultaneous tasks is to divide the work to
be done into portions that can operate in the same period. For exampk, von Neu-
mann suggested that the UO operations could occur simultancou9 with processing
[BuGo46], which is a common practice in computer systems today. Overlap can
also be achieved by divi

di

ng insrmction execution into its constituent pans: fetch.

decode, and execute. That is, while one instruction is being decoded, it may be
possible to fetch the next instruction. And at the same time perform the work
prescribed by the previous instruction. In this type of mechanism, the results of
one step are used by the following step, and the process resembles a pipeline,
which is why the method is called pipelining.

We are familiar with the use if pipelines to transport fluids across long dis-
tances. The fluid is placed into the pipe at the origin, and after some delay, the
fluid becomes available at the destination. The material is kept flowing through
the pipe by forcing more material into the beginning or front of the pipe. Because
of the length of the pipe, a great deal of material may be sent into the pipe before
anything is available at the end. But once the flow has begun, then there is a
direct correlation between what enters the pipe and what leaves the pipe.

Other relatively common processes fit this description for pipelining.
Manufacturing uses pipelines. called "assembly lines." to produce goods in a
timely fashion. When the "pipeline" is flowing in an automobile factory, a new
car exits the pipe every few seconds. This is an interesting example since the
pipe is not homogeneous. That is. since not all automobiles are exactly alike, as
the basic unit (in this case a car) moves through the pipe (the assembly line).
features are added at the respective stations in the pipe according to a specification
accompanying the unit through the pipe.

Other processes that form pipelines are plentiful. One example is food
preparation in restaurants. where individuals perform specific functions on the
food as 11 is processed. Another example is an automatic car wash system, where
cars to he cleaned follow one another thouph ;I \v\tcm where the vanous cleanmg
steps are applied successively to each unit. Even school systems can be con-
sidered a pipeline process, since one class follows another through the educational
process, each learning concepts in a predetermined order.

In this chapter we will examine more closely this concept of pipelining, and
apply the principles to the design of pipelined computer systems. Two basic
kinds of pipes are used in computers: data pipes and control pipes. Both result in
higher execution rates, since more answers are available per unit time. And both
achieve effective results by overlapping independent functions. F i t we will
identify the limits to the process, and then examine practical implementations of
the mechanism. The information in this section is intended to k an introduction
to the concept of pipelining, and an examination of some of its characteristics.
Additional details can be determined by examining pipelines of nal computer sys-
tems. and by looking at the implementations of some of the classical machines.
Of particular interest are the scoreboard technique for reservation of time slots
[Thor&lj, and the Tomasulo algorithm for utilization of multiple functional units
with a pipeline [Toma67]. In addition, some texts present a more complete discus-
sion of many of the aspects of pipelining than presented here [Kogg81, Ston80,
HwBr841.

8.1. Plpellned Sysiems Overlap d Independent Processes

The use of pipeliing in computer systems is used to allow processes that can
p m c d independently to do so. For an example, consider the process of doing a
floating point addition. A block diagram of one method of doing this is shown in
Figure 3.25. which is repeated with a few modifications in figure 8.1. It is possi-
ble to perform the addition function as shown in Figwe 8.1. but since the

Chap. 8: Pipelined Systems: Low Level Parallelism 403

Process with Pipelining Registers Addes

Figure 8.3. Processing with Nonpipelined and Pipelined Mechanisms.

unrealistic assumption that Ts is the same for all sections. The results from the
section are saved in a register. and the register time is represented as TREC. The
total time for a section. then is Ts + TREC. Using this model of processing, let us
follow the execution 01' the process in a nonpipelined and a pipelined hytem.

To pcrtnmi A1 dil'fcrent operations on a nonp~pelined irnplrmentatlon would
require the applicat~on of the processing hardware M different times. as shown
in Figure 8.4. Thus, the total processing time for the M instructions would be
M X Tp.

On the other hand, the use of pipelining allows different sections of the unit
to be used in a single clock cycle. One way to visualize this is to construct a
space-time diagram for the hardware: that is, time is shown on the X axis, and the
functional units (in this case. sections of the pipelined process) an shown on the Y
axis. Then the progress of the M instructions can be followed through the system.
Such a diagram is shown in Figure 8.5 for the six section pipe of Figure 8.3. The
time for the first instruction will be N x (Ts + TW), where them are N sections of
a pipe. In this case, N = 6. If we assume that the cost of the register is not
included (Tm = O), and the initial process is equally divisible, so that Ts = Tp 1 N,
then the first instruction takes the same amount of time as the first instruction of a
nonpipelined implementation. Tp. The benefit comes fmm the other instructions,
since the second instruction will be finished Ts after the first instruction, and so
on. So, the total time required for M instructions is just the time required for the
first instruction [N x (Ts + TRBO)I. plus M - 1 additional section times [(M - I) x

- -
Time

Figure 8.4. Timing Rcquimnenw for Nonpipelii Implemmtstim.

Chap. 8: Plpellned Systems: Low Level Parallelism

Time

Fire 85. Ovalapped Execution of Inshuctions.

(Ts + Tw)]. So, the. total time for M insrmctions is (N + M - 1) x (Ts + Tw).
To see what the speedup is, we then calculate:

Time for ,W instructions without pipelining
Speedup =

Time for iW instruct~ons w ~ t h p~pelining

From the above times, this becomes:

For large M. the (N-1)IM tmn becomes negligible, and the speedup is:

If we assume that Tm is negligible, then the speedup is merely N, tht number of
sections in the pip. lhis agrees with our intuitive feeling of how much faster a
pipelined implementation should bc, indeed, we expect a six section pipe to pro-
duce results six times faster than the nonp ipe l i impltmentation. At the same
time, we must mncmber that this observation is valid only if we k g a r d the
time required for the storage function, and we also assume a steady atate cadition
where M is large.

Chap. 8: Mpelined Systems: Low Level Parallelism

It is instructive to also examine some of the other information evident from
the above discussion. First, pipelining implementations do not reduce the time for
an instruction. That is, the time from the stan to the finish of a single instruction
will not decrease with the use of pipelining. If anything, the actual time to
accomplish an insuuction will be longer than the nonpipelined implementation,
since the cycle time will be g c d to the longest section time, and the registers
will add real delays to the systctn. Thus, from the initiation of the operation to
the completion of the first instruction will take a time dependent on the cycle time
and the number of stages in the pipe. This time is sometimes called the "fill
time," since it is the time required to fill all of the stages of the pipe. Obviously,
for a larger number of stages in the pipe the fill time will be longer. This time
may become important in the operation of the pipelined process, as we shall see.

Once the first operation has been completed, the remaining operations will
follow at the rate of one result per clock cycle. This will continue as long as
operations are available to perform, or until there is a conflict within the pipe for a
resource. We will identify possible conflicts and some mechanisms for handling
them in a later section. When the pipe is full and producing new results at the
rate of one result per clock cycle, the system is operating at its highest efficiency.
One of the tasks of the system architect is to create a unit capable of supporting
the data movement needed to permit the pipeline to operate at maximum
efficiency.

Another observation concerns the effective speedup over a nonpipelined sys-
tem. The above equations can he plotted to identify the speedup achieved by
using the pipeline technique. To give home phyxal "feel" for the observation.
we will make borne assumptions about the process we are pipelining. Assume
that the nonpipelined system requires 100 nsec to complete. Thus, with no pipe-
lining, the process will have a speedup of 1. Then. as the amount of pipelining
increases, the speedup will increase. Fist, we will assume that the time required
by the registers can be ignored, which is not a realistic assumption. That is. we
will assume that TREo is zero. With a TS of 50 nsec, the speedup is 2; with a Ts of
25 nsec, the speedup is 4; and as the time per section, Ts, gets smaller, the effec-
tive speedup increases. It is evident from the equations that the effective speedup
will asymptotically approach the r axis. Thus, if the process w m infinitely
divisible, then the speedup could be infinitely large. A plot of effective speedup
versus Ts is shown in Figure 8.6. Ihe circled places on the c w e are the effective
speedups for N = 1 to 12.

'Ihe real gains available with pipelining are limited by two different
mechanisms. The first is the fact that a real process is neither infinitely nor
equally divisible. Thus, the time that needs to be considered is not TpIN, but
ratha the maximum section time resulting from dividing the initial process into N
sections. The second mechanism is the delay time added into the system by the
use of registers or latches. If we assume a register delay of 10 nsec, then the
curve of Figure 8.6 must be altered accordingly. This gives rise to the second
curve of Figure 8.6, which indicates that the effective speedup is W t l y impacted
by the register delays. An intmsting obsmation can be made by following this
second curve until the Ts is.zero. At this point the effective speedup is only 10.
Thus, even if the processing were frae, the time penalty incumd by the use of real
registers limits the speedup achievable with pipe1'ig.

One of the assumptions implicit in the above observations is that then is no
pmblcm with keeping the pipe N1. However, in real pipelines this is a challeng-
ing problem, and later in this chapter we will identify some techniques used to

Chap. 8: Rpellned Systm: Low Level Parallellsrn

Figure 8.6. Speedup Achievable by Pipelining.

keep the pipe as full as possible. But suppose that the system is not able to keep
the pipe full. but for some reason the sections of the pipe are not utilized for a
fraction of clock cycles. How is the speedup affected? To answer this question.
kt us r e m to the speedup calculation:

T i for M insauctions without pipelining
'peedU' ' ~i for M instruaions with pipelining

Assume that a hactim of the cycles am unused. and let that frection be
qrwcnted byf. With this mmption, the amount of time requid to execute M
funaioMisnotN+M-l,butrather(N+M- l) x (l +f). Aodtheequatim
developed above chsnges to become:

Chap. 8: Plpellned Systems: Low Level Paraliellsm 409

Speedup = M X T p
(N + M - l) x (1 + f) x (T s + T R)

- Best speedup
1 + f

Obviously, a pipelined processor is designed in such a way that f is kept as small
as possible. However, it is instructive to note the effective degradation in perfor-
mance that occurs with different values off. Consider the previous example of a
process requiring 100 nsec to complete. and assume that the process is divided
into 6 equal sections. Figure 8.7 gives a plot of the effective speedup versus the

frequency of the pauses of the pipe. If the frequency is 1, then the effective
speedup is 3. That is, even if there are as many pause cycles as there are work
cycles, then the effective speed is still 3 times faster than a nonpipelined imple-
mentation. Thus, the pipelining technique is effective for improving the speed of
a process, even if the pipe cannot be kept full all of the time.

Pipelining is a technique that can be applied in any situation in which
sequentially related events can proceed on independent operations in the same
time frame. This will occur in the processing of data in arithmetic units and in
the processing of instructions in control units. Let us examine these two mechan-
isms and identify some of the techniques that can be used.

8.2. Arithmetic Pipes: High Speed Calculations

In Chapter 3 we identified several mechanisms for doing high speed arithmetic.
We will now examine some of these mechanisms with the intent of applying pipe-
lining techniques to speed up the arithmetic process. Many metrics are considered
during the process of dividing an arithmetic function into pipeline sections, and
each designer will arrive at a compromise that meets the system design goals. As
stated in the previous section, the objective of utilizing pipelining in arithmetic
units is to achieve a speedup by performing operations concurrently for indepen-
dent data sets. The questions to be asked by a designer in search of higher perfor-
mance deal with timing issues and overall system issues:

How can the initial process be subdivided to obtam the best results?

What clock cycle time satislies the various components of the process?

What changes nad to be made in the system to provide the overall data move-
ment needed to sustain continuous operation by the pipeline?

What metric is most meaningful to the overall system design goals?

The divisibility issue is one that can be dealt with in different ways to meet
different design criteria Let us look at floating point multiplication for an exam-
ple of a data operation which can be pipelined. The basic organization for this
system is shown in Figure 8.8. 'The data movement within the system must

Figure 88 Diagram of Floating Point Multiplication Unit in System.

Chap. 8: Plpellned Systems: Low Level Parallelism

provide the operands for the unit in question, and in this case the multiply unit
will perform the operation. ?he desired improvement is to speed up the operation
as much as possible or feasible.

As can be seen from the diagram, one degree of pipelining is already avail-
able. That is, the floating point multiply unit can provide the action of multiplica-
tion, but the data system is responsible for supplying operands and handling the
results. Thus, three operations can be overlapped in time, or pipelimd: the fetch-
ing of the input operands to provide data to the multiplier, the multiplication
function itself, and the storage of the nsult. Our concern here is with the actual
floating point hardware, and the steps taken to pipeline the unit. We will examine
the particular questions raised by this example, and also examine some of the
other system questions.

As described in Chapter 3, the floating point multiplication can be accom-
plished in a number of ways. We will assume that the floating point number is in
a 32-bit format. with a sign bit, an 8-bit exponent, and a 23-bit fractional
mantissa. with hidden bit. Thus, to obtain

where the output and both inputs are in this format, then

MANTISSbm X 2EXPwr = MANTISSA, X ZEXP' X MANTISSA8 X 2EXPn

The exponent is the sum of the two operand exponents, and the mantissa is the
product of the mantissas of the two input operands. With a base two repnsenta-
tion, the product can either be comct or require a I-bit normalization step.
Hardwan can be configured in many ways to perform the operations identified
above, some more efficient than others. For the purposes of illustration of prittci-
pks, we will select a mechanism and attempt to pipeline it.

The formation of the f l~ t ing point product can be b k e n into different sec-
tions depending on the d e s i i results. The initial hardwarc organization is shown
in Figure 8.9. The process is performed in three steps: partial product formula-
tion, partial product addition, postnormalization, and exponent formulation. The
initial exponent formulation can be done in parallel with parrial product formula-
tion and addition, and then adjusted appropriately when the necessary postnormal-
ization is performed.

The partial products are formed by Am27S558s. which are 8x8-bit multi-
pliers. Thus, for 24-bit mantissas, nine individual multipliers are mded. This
form three rows of partial products, but the significance of the partial products
formed in this process overlap one another. These partial products are identified
as PI through P9, with the significance of the bits identified in Figure 8.9. These
pamal products arc then summed in an adder tree made of 74AS881s. 74AS882s.
and 74AS182s. The net result is a 48-bit number that may or may not have a "1"
in the most significant bit position. Thus, a normalization step is q u i d , and
this is formed by a set of multiplexers. 74AS157s. The addition of the exponents
b handled by 74AS881s. Ihe element not shown is the sign bit. and the s i p bit
of the result will mercly be the exclusive-OR of the sign bits of the two input
operands.

Chap. 8: Pipelined Systems: Low Level Parallelism

P3(31 :l6) P2(23:8) Pl(15:O)

B(23:16)

P6(39:24) P5(31:16) P4(23:8) Partial

A(23:16)
Product

Generation
Sectkn

B(23:16)

32 Blt Adder P7(31:16), I '8818 & ,682

Addinon

48 BI Adder
'8819 6 192

Post Normal- MuMplexers Pea
Normalizcnion

s@ubn

Chap. 8: Pipelined Systems: Low Level ParalWkm 413

The time required for the hardware shown in Figure 8.9 is the sum of the
time nquired for each of the three sections. The formation of the partial products
requires 75 nsec. The addition of the partial products requires another 73 nsec.
And the mantissa out will be available 11 nsec later. However, the adjustment of
the exponent requires 18 nsec, so the mantissa is actually available about 9 nsec
before the exponent. Thus, the whole process can be accomplished in 166 nscc.
If this is to fit in a saucture as shown in Figure 8.8, then an additional 14 nsec is
required for the setup time, hold time, and the propagation delay time through a
register, such as the 74AS574. Thus, the entire operation will require 180 nsec.

If we place registers in the process between the major sections, then the
result could be represented as shown in Figure 8.10. With the initial process bro-
ken into three sections, we would like to see a speedup of three. But the clock
cycle time of the system must be adjusted to accommodate the maximum time of
the individual sections. Thus, for this example. TCLoCK CYCLE = TP + TREG =
75 + 14 = 89 nsec. This results in a speedup of almost exactly two, which could
be disappointing. However. in the process of doing this type of a design. loca-
tions that need attention if more speedup is required are identified. In this case,
we are limited by the formation of the partial products. Slower speed parts can be
used in the posmonnalization section, and other changes can be made to the par-
tial product addition section. But until a faster method of determining the partial
products is obtained, the system will not run faster.

The multiplication example identifies several problems that need to be
solved. The description above is for a very simple multiplier. and several things
need to he done to the tlesi~n to rnclkc i t a real system. For example.

How is overHow/undertiow checked?

How much hardware is required, and how does it affect the speed of the sys-
tem?

With respect to the allowable numbers, is unnormalized operation to be pennit-
ted? If so, how is the overall system to be changed?

Is it necessary to compute the entire partial product array? Of the 48 bits
which result from the multiplication, only 24 will actually be a pat of the
result. Therefon, may it be acceptable to create only the most significant por-
tions of the partial product array under some conditions?

When the appropriate bits are available, what k i d of scheme is used for deal-
ing with the extra bits? Truncation? Rounding? Round-to-zero? And is this
to be done before or after post normalization?

Register Register

Result

Fipun 8.10. Block Diagram Level RepruKntation of Hardware Floating Poiit

Chap. 8: Plpelined Systems: Low Level Pamllellsm

All of these questions must be addressed in a real implementation, and the
answers will reflect the priorities of the designers.

Example 8.1: Costs of pipelining: Consider the floating point multiply
example discussed above. With the use of pipelining, the speed of the sys-
tem was doubted. What costs are associated with this speed incna~e?

Many different costs are associated with various designs. so we will
identify only two: board space and power. The chip count is indicative of
the amount of logic required by the system, and using board space is a more
accurate measun of how "big" the system becomes. It is also indicative of
how good the job of subdividing the system has been done. Another view
of the system being used for this example is shown in Figure 8.11. The
basic parts that could be used in a Tn implementation are identified with
each major section. A summary of the parts needed is:

Parr Unir Area Tor. Area Unit Power Toral Power
Name Quantify (sq. in.) (sq. in.) (W) f w)
25S558 9 1.47 13.23 1.4 12.6
74AS881 36 52 18.72 .675 24.3
74AS882 4 .52 2.08 36 1.44
74AS182 1 .36 .36 .1 .I
74ASlJ7 6 .36 2.16 I .6

36.55 39 04

The total area needed by this system is 36.55 square inches, using DIP pack-
ages. A system that used leadless chip carriers would be smaller, but the

blgum 8.11. IC Requiremum fa the WWPC Floating
Point Unit

Chap. 8: Plpelined Systems: Low Level Parallelism

same method of comparison would apply. We will assume that the registers
between stages will be comprised of 74AS574s. which are 20 pin chips.
Counting all of the lines that need to be saved from p d a l product forma-
tion to the adder tree (and the conesponding exponent), then are 153 bits of
information to save. And between the adder tree and postnormal'ition
there are an additional 33 bits. Thus, 25 register chips are needed, which
will require an additional 11 square inches of space.

The power nquind by the devices is similar to the board space. The
overall power for the unpipelined version is 39.04 watts. The register chips
will require an additional 0.395 watts each. for a total of 9.875 watts. Thus.
the speedup by a factor of two has caused an increase of board space of
30%. and an increase of power of 25%. For a resource investment of
25-3070 the rate of operation of the floating point multiplier has been dou-
bled.

The above example underscores some of the promises and pitfalls of pipe-
lining. The original process was divided into three separate functions. bur the
speedup was not three. Because of the real effect of adding registers, and the
requirement that the clock cycle time be the maximum of the times for each of the
individual functions. the resulting operational rate was hvice the original rate.
Thus, the actual maximum speedup is a function of all of the factors involved in
the design of the system.

One of the basic tenets of pipelining is that to achieve the maximum avail-
able speedup (Tp / I T5 + TR I) the pipeline must be kept full. To achieve this. the
pieces of the "Data System" \hewn In Figure 8.8 must supply the appropriate
operands in a timely fash~on. and also handle the results as they become available.
For the example system shown above, this means that every 180 nsec, two Cbyte
operands must be made available to the Roaring point unit, and one Cbyte
operand must be removed. This leads to a data rate of 12 bytes/l80 nsec = 66.6
Mbyteslsec. If this data rate can be sustained, then the floating point unit is capa-
ble of achieving an operation rate of 5.55 MnOPs. The rate of operation for the
pipelined system is twice the rate of the unpipelined system. so to maintain the
advantage of the speedup available with the p i p e l i i implementation, the data
system must be capable of handling information at a rate of 133.3 Mbytes/sec.
This places a severe restriction on the types of information systems that can effec-
tively be utilized by systems with data pipelines.

Example 8.2: Data rates for pipelined systems: The CRAY-2 computer sys-
tem has a clock cycle time of 4.1 nsec. Assuming a single data pipeline
system, what is the data rate necessary to keep a pipeline full?

A single pipeline will be full when two input operands and one result
arc handled in each data cycle. The CRAY-2 system, as well as other
scientific systems, has a word width of 64 bits, or 8 b p s . Thus, for a full
pipe. 3 X 8 = 24 bytes must be handled every 4.1 nsec. This is a data rate
of 5854 Mbyteslsec. To achiive these data ram, multibank memories, wi&
data paths, and short transfer times are required.

As we have san, the effectiveness of data p i p e l i i is limited by several
factors involved in nal mwhines, such as the divisibility of the original process,
the addition of registers to the system, and the problems associated with transfer-
ring information at the high data rates needed to keep a pipe full. In addition to

Chap. 8: RpeHned Systems: Low Level Pamllellsm

the problem of physically supplying the information, there is a problem with the
availability of the correct information. That is, even with a data system capable
of exaemely high data rates, there will be a problem when om operation cannot
enter the pipe because of data conflicts. Data conflicts will occur when the results
of one operation are needed by a following operation. Consider the following pair
of operations:

A = B X C
D = A X E

The value of A is needed before the second operation can proceed. This same
behavior is also observed in some array operations:

In this operation, the calculation for X[9 1 cannot proceed until the value for X[8 1
has been obtained, and so on. Both of these operations exemplify the fact that a
data calculation cannot proceed because a value is not available. The calculation
that follows cannot proceed until the data from the preceding operation has been
made available. Thus, the pipeline must halt until the data is ready, at which
point it can proceed. This reduces the effective speedup, and hence it is a situa-
tion to be avoided as much as powble.

One observation about the interact~on between the p~peline and the data pro-
cessing concerns the length of the pipe. The longer the pipe, the longer it will
take to get information from a previous operation. That is, if a process is subdi-
vided into three sections. then the largest number of clock cycles needed to obtain
a previous result is two. However, if the same process is divided into six sec-
tions. then up to five clock cycles can be needed to obtain the results of a previ-
ous calculation. Thus, two different arguments can be made for the optimal
number of stages in a p ipe l i : for a large specdup, divide the initial process into
many sections; to minimize the penalty of data conflicts, keep the number of sec-
tions small. The designer must then trade off the benefits and costs of processing
with a data pipeline.

Another observation concerning the effective use of data pipelines deals
with the operands used in the caiculations. So long as the operands are indepen-
dent, there is no possibility of penalties due to data conflicts. Thus, streams of
operations consaucted in such a fashion as to minimize the data conflicts will
result in the highest performance. The guaranteed independence of vector
operands is the mechanism used by vector machines to achieve very high data
rates. For example, consider the problem of addiig two l iear arrays of informa-
tion together. The organization of the data into arrays comsponds to storing the
information into vectors, where a vector is an organized set of data. The addition
of the two arrays is then accomplished by streaming the information out of the
storage locations to the arithmetic unit, and the nsults back again. Such ao
arrangement is shown in Figure 8.12 llc two input operands actually consist of
N pairs of numbers to be added. And the result consists of N numbers. each of
which is the sum of the anresponding elements from the original vectors. S i
all elements of the vector are available before the operation begins, the pnxxs~ing
unit can process information without any conflicts.

Chap. 8: Plpelhed Systems: Low Level Parallelism 417

Data
Input:

0P"A"d >
N Values

Add Unit

Data
Input:

Operand
B

N Values

Figure 812. Processing Information with Vectors: Vector Addition.

The location of the vectors A, B, and R is dependent on the type of instruc-
tion level architecture used by the vector machine. One mechanism is to hold all
of the vectors in memory. and >[ream the oper~nds to the functional units directly
lrom mctncry, and return [he rewlts l o ~~iernory. Thih la a memory-to-memorv
architecture. and was the design tnechan~sm used. for example. in the Cyber 205
vector machine. The instruction must then identify the locations of the vectors in
memory and the length of the vectors (how many numbers in each).

A more common mechanism is to use vector registers. a concept similar to
the use of general purpose register sets in a "standard" general purpose machine.
The operands for vector instructions are then supplied directly from high speed
registers, and the results also stored in the registers. The vector insmtions for
this type of a machine med not identlfy memory locations. which require long
addresses. but rather vector registers, which can be specified with a few bits.
However, before the vecton can be combined from the registers the vectors must
be moved t h m from memory. This type of architecm balances the probability
that the information in the vectors can be used more than once before memory
interaction is needed with the additional instructions required to transfer the data
to and from memory.

Regardless of the mechanisms used for storage of the vector operands, one
of the reasons that vector machines achieve high operational rates is the
guaranteed independence of the operands being sent to the arithmetic units. The
operand independence ensures that the pipeline will be kept full, and that there
will be no data conflicts. This situation leads to the highest computational rates
achievable by a pipelined machine.

Example 83: Pipelines in a vecror system: The CRAY-I computer system
was one of the first "popular" vector machines, and made extensive use of
data pipelines to provide high computation rates. Other members of the
CRAY family have added multiprocessing capabilities to the system, and
extended some of the featuns availabk to the user. What an the data pipe-
l i i used in the CRAY-2 computer system? What is the peak floating point
operation rate for the system?

Chap. 8: Plpellned Systems: Low Level Parallelism

The CRAY-2 computer is actually a multiprocessing system, with four
processors available for use on pmgrarns. A block diagram of one computa-
tional section of a CRAY-2 is shown in Figure 8.13. As can be seen from
the diagram. this system is not a memory-mmemory architecture. Informa-
tion is transferred from the memory system to the vector registers (or scalar
registers), and all arithmetic is done in the registers. Nine different data
pipelines an available for use in the system, and they an:

Dam Pipe Pipe Sections

Address add
Address multiply
Scalar integer
Scalar shift
Scalar log~cal
Vector integer
Vector logical
Floating point add
float~ng pomt multiply

The complexity of the arithmetic to be done determines the number of sec-
tions required in the pipe for that arithmetic unit. The simpler operations
listed in the table result in pipelines containing fewer sections than the more
complex operations. The vector rezisters are each capable of storing 64
number.\. and so the veclor tnmucttons can operute on wts o t data contam-
ing up to 64 values (vector length 2 64). Longer vectors must be divided
into sections of 64 elements or less.

When vector operands an being supplied to a pipelined functional
unit, a new result is generated at the rate of one value each 4.1 n w . This is
a computational rate of 243.9 Mflops. When circumstances permit. two
functional units can be utilized simultaneously, which gives a computational
nlte of 487.8 Mflops.

As we have seen, the time nquired for a pipeline section is dependent on
several factors. We have padtimed the function performed in a section into two
paas: the arithmetic or logical portion, and the storage or register function. In
general, a designer will aaempt to minimize the time required for both of these
portions, so that the system will have a small clock cycle time. This situation is
shown in Figure 8.14. Since any combinational function can be formed in two
gate delays, if enough gates with a high enough fan in are used, a tradeoff is per-
formed between the number of levels of logic and the total amount of gating
required to accomplish the function. This may mul t in implementations that util-
ize many gate delays to accomplish their work, but that an beneficial because of a
small gate count (or silicon area). The output of the function is directed to the
storage element to be sent to the next section of the pipeline.

The ingenuity of the designer in using the availabk logic has a direct impact
on the perfomawe of the system. For example, consider the circuit shown in
Figure 8.15(a). The logic portion is a two level gating h i t that implements the
sum function, given proper logic levels for the two inputs and the carry. The out-
put from this gating system is d i i to a gated latch. When the CLOCK-H line
is asend, the output will be set to agree with the level of the sum network. The
W delay through this circuit. if the clock line is asserted, is six gate delays.

Chap. 8: Pipelined Systems: Low Level Parallellsrn 419

However, since this is a gated latch rather than an edge-triggered register, care
must be taken to be sure that the value does not propagate too far while the clock
is asserted.

The amount of time requind for the sum and register functions of Figure
8.15(a) can be reduced by combining the sum logic with the latching logic. The
function of Figure 8.15(a) is accomplished by the logic of Figure 8.15@), with
some obvious changes. The ORing function of the logic has been combined with
the ORing function of the latching gates, and the ANDing function of the gated
latch has been combined with the ANDing gates of the requiml logic function.
The net result is a system that requires only three gate delays to complete, from
clock and data stable to outputs stable. Note that both asserted high and asserted
low outputs are available in the Figure 8.15(b). This will be useful for functions
that follow this stage in the pipe.

Obviously, it would not be reasonable to combine all of the logic of a stage
of a pipeline with the latching function, but the mechanism shown above of com-
bining one level of the logic with the latch will reduce the timing impact of
adding the latching function to the logic required by the function.

One of the disadvantages of the latches implemented in Figure 8.15 is that
the time to output stable from the clock is nm always equal. That is, the required
time for the data to become stable is a function not only of logic input and the
clock, but it is also a function of the level stored in the latch before the assertion
of the clock. Consider the four possible combinations of the input data [LAT-IN-
H in Figure X.I5(a)l and latch output:

LIT-IN-H OUT-H Deluy from CLOCK-H

0 0 No change = zero delay
0 1 2 gate delays
1 0 3 gate delays
I 1 No change = zero delay

This difference in time required fot the function results in an unwanted skew in
the time for a section of logic. With latches designed as shown in Figure 8.15,
the problem will always exisr

A number of different solutions to the problem have been suggested, one of
which is the Earle Latch. which was used extensively in the IBM 360 pipelined
machines. This latch is shown in Figure 8.16(a). One obvious difference is that
the latch does not need (nor does it provide) both asserted high and asserted low
inputs to function properly. If we repeat the above table to identify the speeds of
the Earle Latch, we have:

UTJN-H OUT-H Delay from CLOCK-H

0 0 No change = urn &lay

0 1 2gatcdClays
1 0 2gntedClaya
1 1 No change = zero &lay

Chap. 8: Plpellned Systems: Low Level Parallelism

Thus the maximum time to data stable is always two gate delays, assuming that
the m a t i o n time through a gate is always the same. The only major difficulty
with the system shown in Figun 8.16 is that both assmed high and a s s c d low
clocks are required This requirement is not mtrictive since the clock signals will
be needed by all of the stages.

DATA-H WT-H

1

CLOCK-H -
I I

chap. 8: Pipelined !jvstems: Low Level ParaWSm

The technique applied above of combining the logic of the function with the
logic of the latch can also be utilized with the Earle Latch. The sum function of
Figure 8.15 is combined with the Earl Latch as shown in Figure 8.16(b). Again.
the designer must identify which combination of function and latch logic, with
their associated costs (number of gates, or scmiconduaor area, or ...), matches the
design goals of the system.

The use of p i p e l i g techniques to speed up the processing of data manipu-
lations results in enhanced throughput for data operations. The operations that
must be performed an identified, and these an partitioned into appropriate sec-
tions. Storage elements an inserted between the sections to synchronize Ihe
actions of the system and to hold the data meded by the sections that follow. The
performance achievable by the use of pipelining is a function of many factors, as
we have seen. The divisibility of the original process, the register delays, and the
amount of available logic all influence the basic data rate at which the pipe can
operate. External influences that affect the operation of the pipe include the
independence of the operands needed by the function, and the ability of the sys-
tem to handle data at a sufficiently high rate to keep the pipeline full. A system
that satisfies the internal and external requirements for correctness and data move-
ment can achieve substantial speed improvements over nonpipelined implementa-
tions.

Example 8.4: Pipelining in data svstems: The concept of pipelining for data
operations can he used in manv applications where an increase of speed is
needed. even ~f the operations do not lend themselves to division. Cons~der
a hardware system constructed to calculate the fast fourier nansform (m).
as shown in Figure 8.17(a). Can pipelining be used to increase the speed of
operation of the system?

In the system depicted in Wgure 8.17(a), the data is stored in a
memory and extracted as needed to perform the calculations. The arithmetic
is performed in a set of special pwpose hardwan. One method for calculat-
ing the buttcrtly is shown in the data diagram: two values (DU and 03 form
the inputs. and the outputs (DL and DL) an mumed to the memory. The
values an complex in nanrre. and as such consist of two parts. the real and
the imaginary. The arithmetic involved consists of a complex multiply, a
complex add. and a complex subDan The weighting factor (W) is derived
from a set of constants, and supplied by a memory not shown in the
diagram. The complex arithmetic requind by each set of butterfly calcula-
tions can be accomplished by four multiplications and six additions. With
memory transactions, additions, and multiplications all requiring about the
same amount of time, the system is fairly well matched at this point. That
is, each bunertly will require a minimum of eight cycles, since that much
time is required to extract a real and imaginary value for each of Du and DL,
and place the calculated values back into memory. For six of the eight
cycles the adder will be busy, and for four of the eight cycles the multiplier
will be busy.

Pipelining can be applied to this system by rrcognizing that the
rcquircP a number of passes through the data set The number of passes is
log2 N, whm N is the total number of data points, and also a factor of 2
The mults of one pass form dre information needed by the next pass.
Thus, the basis for a pipeline exists, since the data is to be p a d from one

Chap. 8: Plpellned Systmq: Low Level Parallelism

FFT System

imaginary Hardware
Darts of

Camputation portion

be returned to memory

Memory Memory Memory Memory Memory Memory Memory Memory Memory

Butterfly Butterfly Butterfly Bunerfly Butterfly Butterfly Butterfly Butterfly
Hardware Hardware Hardware Hardware Hardware Hardware Hardware Hardware

Figure 8.17. Fast Fourier Transform Systems: (a) Nonpipelined Implementalion;
(b) Pipelined Implementation.

module to another, where each module is responsible for one pass of the
bunerfly through the data This arrangement is depicted in Figure 8.17(b)
for a system which computes a 256 point transform. Eight stages are
needed and the memory output fnnn one stage feeds the memory input of
the next stage. The memories are depicted as duals. since the information
will be input by one stage and extracted fnnn the next. Thus, the memories
must either "ping-pong" between two sections, or be interleaved in such a
way that the desired information is available as needed.

Pipelining as shown in the figure will produce results eight times fas-
ter than a nonpipelined implementation, but requires eight times as much
hardware. Nevertheless, if the speed is needed to maintain real time opera-
tion, then the hardware resources may be justified.

8.3. Control Plpeliner: Overlap of Independent Control OpemHons

In the preceding section we looked at improving the speed of data operations by
executing different, i n d e p d m t portions of the calculations at the same time in
specifically designed portions of hardware. The principal requimncnt for comet
functionality is that the operations be independent one stage of the pipe cannot
pmduce corn* nsultp until all of the input information is canrct. Pipelining is
also applicable to other types of processing, so long as the independence require-
ment is satisfied, and the nectssrny processing can be appropriately patitionmi.

Chap. 8: Plpeiined System: Low Level Parallelism

In this section we will examine some of the mechanisms for pipelining control
functions, and identify some of the limitations of the achievable performance.

As discussed in Chapter 4, a stored program computer basically operates on
a fetch-decode-execute mechanism. An instruction is fetched from memory,
decoded, and then the work specified by that instruction is executed. These
processes are sequential in n a m , and basically independent. so they satisfy the
fundamental nquirements for pipelining. The responsibility of the designer and
system architect is to organize the data paths and registers in such a way that the
various functions can be executed concunmtly. If this can be accomplished, then
the same type of speedup enjoyed by the data pipes of the preceding section can
be realized.

One of the simplest pipelines of this nature is demonstrated by the fetch-
execute mechanism of microcoded engines, one example of which is shown in
Figure 5.31. This is shown in block diagram form in Figure 8.18. The address
sequencer has the responsibility of identifying the next microinstruction to exe-
cute. and obtaining that instruction from microcode memory. This instruction is
loaded into the microinstruction register. Durmg the next clock cycle. the execute
section will decode the control bits contained in the microinstruction register and
perform the requested work. These two functions form a two stage pipeline, since
the fetch section is always obtaining the instruction one clock period before the
execute section performs the work. For this reason, the microinstruction register
is sometimes referred to as the "pipeline register."

Each of the hasic procesws of in\tmctton cxecutlon can he divided further
than the microcode engine cxarnple. and many machines ut~lize this technique
internal to the control untt. We will part~tion the activities of a control unit into
the six units shown in Figure 8.19. These units have the following responsibili-
ties:

M i i Memory

Pipeline
Register

I I Data Manipulation Hardware I I

Pigurc 818. Fetch-Execute Mechanism of a Piplined Engine.

Chap. 8: Plpelined Systems: Low Level Parallelism

Memory System s
Figure 8.19. Block Diagram of Control Pipeline for Basic Machine.

A *

Memory Svsrem: The memory system contains all of the memory utilized by
?he computer system. This includes the mass storage devices as well as the
mam \tore. This ponlon of the \?\tern is responsible for providinz the needed
inhtruct~ons and data ah rap~dly as pos\~blc.

High Speed Storage: The high speed storage section contains both the cache
memory and the registers utilized by the system. The active data is stored in
such a way that it is available as needed by the program. In the discussions
that follow, the high speed storage section will be considered perfect. This is
not a reasonable assumption in red systems, but will facilitate understanding of
the issues related to the pipeline. and m o v e from consideration the problems
resulting from the interaction of the pipeline with an impetfect memory system.

High Speed Storage
(Cache and Registers) InstNction, Buffer

Instruction Bfler: The insauction buffer is a small storage area that contains
the instructions currently executing. This storage a m is managed by the
instruction fetch hardware, and contains the active portion of the cumntly exe-
cuting program. Real sizes of instruction buffers vary with manufacturer and
purpose from a few bytes to a few kilobytes. The information contained in the
instruction buffer may come from directly from the memory system, or it may
be provided by the cache memory. As with the high speed storage, we will
assume that the instruction buffer is perfect, so that any information needed by
the instruction fetch unit is immediately available.

I

Instruction Fetch: Instructions needed by the program are obtained by the
instruction fetch section. This unit identifies the next insauction to execute and

I

Fetch

-

presents it to the decode section.

Decode: The decode section obtains an insmrtion from the insauction fetch
unit and identifies the work to be done. It then pnpans the information that
will be used by succeeding sections to identify opemds and actions, and these
bits will be forwaded to the sections as rcquircd by the ihshuction flow.

I I P I

Chap. 8: Pipellned Systems: Low Level Parallelism 427

-4 Store Fetch
Operand

I

4
Generate
Operand
Address

Decode- - - Execute

Generate Operand Address: This unit is responsible for identifying addresses
of operands. For example, in the two address move instruction:

MOV *RI, RO

data is moved from memory to RO. The generate operand address section
would identify the fact that RI contains an address, and provide that address to
the high speed storage section. More complicated addressing mechanisms are
possible, and this section of the pipe must be able to provide the requested
address. Any address generated by this section of the pipe will be utilized by
the next pipe section to obtain the required data.

Fetch Operand: The fetch operand unit identifies the location of the data
needed by the instruction, and fetches that information fmm the high speed
storage unit. The data is available to be utilized by the functional units in the
data path during the cycle controlled by the execute section.

Execute: The execute unit has the responsibility of doing the work called for by
the instruction. The previous sections of the pipe will have prepared the data.
and so both data and instructlon information will be available. The result of
the instruction will be provided to the store unit to be saved as needed.

Store: The store unit takes the information resulting from the execution of the
instruction and saves it as necessary in the high speed storage unit. Thus, any
necessary modifications to registers or memory locations are performed by the
store unlt.

With the original process divdrd Into six sections. it would appear that we
should be able to get a speed up of six over a nonpipelined implementat~on. As
we have seen with the data pipes, this will not be the case for various reasons: the
process will not be equally divisible into six sections; the delays caused by regis-
ters adds a real increment of time to the process; and increased speed of data
transfers may not be physically possible. However, if we assume that solutions to
these problems have been provided, then we can envision the execution of the
instructions as shown in Figure 8.20. Ibis is essentially the same as Figure 8.5,
but we have added a few more instructions. The reason for this will become evi-
dent in the following paragraphs. As with the data pipe, t h m is an inherent delay
caused by the various stages of the pipe, and insauctions will require a time (TI)
to complete. If instructions can be insened into the pipe on each clock, then the
effective instruction time will equal the clock cycle time.

Figure 8SO. Space T i Rcprcscntation of Irwuaicna in Control Pipe.

Chap. 8: Plpelined Systems: Low Level Porallellsm

Aside from the physical problems that we have assumed can be handled in a
maonable way by a complex hardware system, the conflict problem limits the
achievable performance. With a data pipe, we used the tmn "conflict" to describe
the case when one operation could not proceed because it needed information
fmm an operation that had not yet completed. Insrructioas in a pipe in- with
one another in much the same way, which prevents the pipe from remaining full
at all times. We will describe three different types of conflicts:

A data conflict
An address conflict
A branch conflict

1. As in a data pipe, a dora conflict results when one instruction cannot
proceed because an operand is needed that is the result of a previous instruction,
and that instruction has not yet completed. For example. consider the following
set of instructions:

1 ADD RO, R3
2 MOV RO. R7
3 ADD RO. RS
4 ADD RS. R4
5 SUB R8. R9
6 M O V R I . R 2
7 ,ADD KI . R3
8 ADD R?.. R6

'Ihe flow of these instructions through the pipeline is shown in Figure 8.21. The
first three instructions have no difficulty executing, assuming that all of the infor-
mation initially needed is available. However, thm is a conflict between instruc-
tion 3 and insuuction 4: the work specified by instruction 4 is to add the contents
of RS to the contents of R4; however. before this can OCCUT, instruction 3 must
first modify the contents of RS. Thus. the operand fetch section of the pipe wi l l
be unable to fetch the desired value until the sum section of the pipe has placed
the result of instruction 3 into the register. This nsults in the two penalty cycles
shown in Figure 8.21. The instructions waiting in the pipeline pause until the
q u e s t can be satisfied. and then proceed. Similarly. instruction 8 collides with
insauction 6. When instruction 6 has modified R2. then instruction 8 can obtain
the value and proceed. However, as shown in the figure, since thm is an
independent instruction between 6 and 8, the effective penalty incumd is only
one cycle instead of two.

SZL Psnrltiu A m c i a d with Data Carflick

Chap. 8: Plpellned Systems: Low Level ParalWlsm

The analysis of the effective execution rate is performed in the same manner
as the analysis of the pauses which w a e disnwed in the previous section. In
fact, the resulting formula will have the same form:

Effective speedup = Best speedup

1 + Z P I X P I

Hnr pi is the probability that then will k a conflict. and Pi is the penalty associ-
ated with that conflict Figure 8.21 identifies a conflict with a pmalty of two
clock cycles, and a conflict with a penalty of one clock cycle. A plot of the above
equation is shown in Figure 8.22. Cwes are included for the case when all
conflicts incur two penalty cycles and the case in which all conflicts require a sin-
gle cycle. In practice, the actual penalty incumd because of conflicts in a system
of this type would result from a combination of conflicts that incur both penalties,
and hence a line representing the effective conflict penalty would be found
between the two lines in the figure. Obviously, it is beneficial to reduce the
required number of penalty cycles, and we will identify some mechanisms for
doing that later in this section.

0.0 0 2 0.4 0.6 0.8 1 .O

P, Probebility d Whbn

pbum 8.22. Effect of c4nlli on Speedup

Chap. 8: Plpellned Systems: Low Level Parallellsrn

'Ihe pipeline must be designed in such a way that the resources needed by
each instruction are properly coordinated. Two instructions that use the same
nsounx, such as a register, can either read or write to the resource. This gives
rise to four possible orderings:

Fim Second
l~ t ruct ion Instruction Conflict Handling

READ READ No conflict; instruaim need not c w d i aceas to n%ounx.

READ F i t instruction must obtain comct value before second
insrmction is allowed to modify it.

WRITE READ Second insauction must wait until first instruction has
appropriately modified resource before obtaining the value.

WRITE WRITE Sequence conflict only. The control must assure that the value
of the resource is that set by the second instruction.

The control system must examine the resources being utilized and the ordering of
the instructions, and assure that the results are compatible with an implementation
that does not make use of pipelining. Therefore, the control unit of the pipeline
must coordinate the use of the resources identified by the instruction set indepen-
dent resources need no special care, while resources utilized by more than one
instruction need to be closely monitored. Thus, the control unit becomes more
complex as the amount of overlap increases, which results in a pipeline which
contam more \[ages.

2. Like a data conflict, an address conflict results because of the unavaila-
bility of information. However, rather than a penalty that is the result of unavaila-
bility of data, the address conflict occurs because the system cannot generate the
address of the data. In the organization of the system as shown in Figure 8.19,
the generate operand address block has the responsibility of identifying the loca-
tion of the data. If the location of the information is specified by values that have
not yet k e n updated, then the system must wait until that information is a v l -
able. For examplc, consider the following set of instructions:

1 MOV R l , R 9
2 MOV EQWUI~~. R8
3 INC RO
4 MOV (R7 i RO). R6
5 ADD R4. R3
6 ADD (R6L RZ

The resource utilization diagram comsponding to these instructions is shown in
Figure 8.23. Instruction 4 moves a value to R6; the location of that value is
identified by indexing R7 by RO. However, instruction 3 increments RO. There-
fore, the value contained in RO cannot be used in the calculation of the address
uritil it has been modified by instruction 3. This causes a penalty that is one
greater than the data conflict penalty. The conflict between instruction 3 and
insrmdion 4 causes a penalty of three clock times, while tk conflict between
instruction 4 and instruction 6 incurs a penalty of two clock times. T k analysis
of the effect on the overall speedup procads exactly as the above analysis of data
conflict effects, except that the penalties are larger.

3. Branch conflicts occur for the same reasons as other conflicts: the infor-
mation needed is not available. However, the penalty for branch conflicts is

Chap. 8: Pipelined Systems: Low Level Paralleilm 431

Flpre 8.23. Pmalties Associated with Address Conflicts.

greater than the other types, since the fetch and decode portions of the pipe occur
first. When a conditional branch occurs, the instruction to be executed next is not
known until the target of the branch is properly identified. That is, since the con-
dition on which the branch will be made is not available, it is not certain whether
or not the branch will be taken. For example. consider the following instructions:

I label ADD R3. R4
2 SUB R X R 9
3 MOV R4. (R7 i RI)
4 CMP RI .R3
5 INE label
6 ADD RO. R I

Lnstmct~on 5 determines whether the program flow returns to instruction 1 or
moves on to instruction 6. However, the condition on which that decision is
hmsed is not available until the comparison of R1 and R3 (instruction 4) is accom-
plished, and the nsult of that comparison has been placed in the status register.
The resource utilization for this instruction is shown in Figwe 8.24 for one imple-
mentation and branch path. Other implementations will incur d i f f e ~ n t costs. and
different branch paths will result in different resource utilizations. As shown in
the figun, the system dow not know which insrmction follows instruction 5 until
instruction 4 completes. lh i s results in a penalty of four clock times.

As we have seen, contlicts in a control pipeline result when infomation is
not available because the action specified by prior inseuft im has not been com-
pleted Data conflicts occur because an instruction needs data that will not be
available until a previous insauction completes. Addnss conflicts occur when an
instruction cannot calculate the address of a data refmnce because the infonna-
tion needed to identify an address will not be available until a previous instruction

P(pvc 834. B m h C d k ~ Paulty fa One System Implrmcntrtioh

Chap. 8: Plpellned -ems: Low Level Porallellsm

completes. And branch conflicts occur when the next instruction to execute will
not be known until the results of a previous instruction are available.

A number of techniques have been utilized to minimize the overall effect of
conflicts. and we will examine four of the methods. Each of the methods uses a
different mechanism to d u c e the resow u t i l i o n , but the goal is the same:
minimize pmalty cycles due to conflicts.

The first technique has little to do with hardwam and much to do with the
way that the program is configured for the machine. We have seen that the effect
of the conflicts is minimized when the instructions are i n d e n t Thus, one
method to reduce the overall effect of conflicts is to arrange the instructions in an
order that will result in the same answers, but that will execute faster. For an
example of this technique, consider the simple statements:

V X = VCC+(RESI +RESZ)x l l
VY = VCC + (RES3 + RES4) x 12

If we assume that these instructions are to be executed by a machine of the type
that we have been discussing, then a very simple translation of the above state-
ments into an assembly language might produce code similar to:

MOV I)<VCD. RO
MOV *cRESI>. RI
MOV kRESZ>. RZ
ADD R I . RZ
MULT W l > . K?
ADD KO. K?

MOV R2. @kVX>
MOV RRES3>. R3
MOV x<RW>, R4
ADD R3. R4
MULT #cI~% R4
ADD RO. R4
MOV R4. @<W>

Get VCC to RO.
Get RESl to RI.
Get RES2 to R2.
Add RESl and RESZ.
M u l r ~ p l y by 11.
Add In VCC.
Store result in VX.
Get RES3 to R3.
Get RE% to R4.
Add RES3 and RES4.
Multiply by 12.
Add in VCC.
Store rrsult in W.

This is a very simple set of code, yet it contains a number of data d c t s . If the
code is executed as it appears above, then the resource u t i l i o n would appear as
shown in Figm 8.25(a). 'Ihe instructions that cause conflicts en i n s t d o n s 4,
5.6.7, 10, 11, 12, and 13. Since all of the conflicts are data conflicts, they each
incur a penalty of two clock times. The resulting time to complete the code seg-
ment, not including the fill time, is 29 cycles.

If some information is available about the organization of the pipeline. then
appmpriate choices can be made concerning the methods used by the assembly
language implementations of the high level language statements like thoae shown
above. By optimizing the order to help the conflict pmblem, then the time
required to execute the code segment will decrease. In Figure 8.25@), the same
set of instructions is executed, but not in the order specified above. Rather, the
order is specified in such a way as to guarantee that the operands are ready when
needed by instnrtions which follow. In this way, the time quired to wait fa
operands is minimized The results of the calculation will be the same a8 those
shown in R g m 8.25(a), but the number of cycles required has been m i d to
16 cycles. Notice that independent instructim could be inserted into three spaces
in the figure. If this wen to be accomplished. then the pipetine would be func-
tioning at maximum efficiency.

Chap. 8: Plpellned Systems: Low Level Parallelism 433

29
 C

yc
le

s

Fi
gu

re
 8
35
.

R
e~

ou
nr

 U
til

iz
at

io
n

fo
r C

od
e

u1
1l

1 I)
.r

ld
 C

on
fli

ct
s:

 (a
)

Sl
rn

pl
e

A
rr

an
ge

m
en

t o
f

In
st

ru
ct

io
ns

; (
b)
 ln

st
lu

ct
io

ns
 K

~
r~

d
c

re
d

lo

 M
in

im
iz

e
C

on
ll~

ct
r

Example 85: Pipeline speedups for real sys~ems: The effective speedup of
a pipeline is a function of the probability of conflictand the penalty of that
mdict. For the pipeline as shown in Figure 8.25. is the farmula a reason-
able representation of the actual speedup?

S i we an assuming idcal conditions. we will assume that execution
of the instructions in a nunpipelined system will require six cycles per
instruction. 'Il~us, the 13 instructions of the code segment will require 78
cycles to complete. If the pipeline is kept full, and thm are no conflicts,
we would expect a speedup of six. Fmm the code segment and from Figure
8.25(a), we identify that 8 instructions cause conflicts, and that the penalty
of each is 2 cycles. Thus,

Best speedup Effective speedup =
I + p x P

The analytical approach says that we should see a speedup on the order of
2.69. Using the steady state number of 29 cycles, the speedup of the system
that executes according to the method demonstrated by Figure Y.25(a) is:

78
Effective speedup = -

29

which agrees with the calculated speedup. If the instructions an nordawl
as shown in Fig= 8.25(b), then a different calculation is in order. H m
thne insrmciions (1 1, 12, and 13) have penalties associated with them, and
the penalties an only one cycle. Thus,

Effective speedup = &st speedup
I + p x P

The actual time demonstrated by Rgun 8.25(b) is 16 cycles:

78
Effective spaadup = -

16

It is intmsting to mxe that the reordering technique, white not modifying
the hardware in any way, resulted in an incnape in the effectivmess of thc

Chop. 8: Plpelined Systems: Low Level Parallelism 435

pipeline from an effective speedup of 2.689 to an effective speedup of
4.875. This is an incnase of 81%.

The &ring scheme can be u t i l i i by those who program the machine at
the assembly language level. But more importantly, the technique can be used by
compiler writers to generate code that will execute in a minimum amount of time.
For example, one obsmation concerning the use of system resources in the above
example is that better use could be made of the registers as temporary storage.
By specifying different registers for each temporary variable, the conflicts could
be minimized.

Performance enhancement can be accomplished by reordering since the
technique works to organize the operations in an independent fashion. and
independence leads to operation without conflicts. Another technique is to recog-
nize that there will be conflicts in the instruction stream. and to attempt to minim-
ize the penalty of a conflicts. One way to reduce the time required by many of
the conflicts is to expand the capability of the storage function so that results are
not only stored in a cycle. but they are. also made available to other stages of the
pipe. That is, when the execute unit has completed an operation, the results can
be supplied not only to the store unit, but they can also be provided to the other
elements of the pipeline as needed. One representation of this path is shown in
Figure 8.26, where the execute unit has a private data path that it can use to
transfer information to other units in the pipeline.

The addition of the feedback path will reduce the penalty of many of the
contl~ct& by one cycle. hince the ppe xc!lon\ need not wait until the \lore unll
places the information Into the memory or a register. The fetch operand sectlon
can obtain the data required for instructions following in the pipe. The generate
operand address section can receive the information needed to specify operand
addresses. And the instruction fetch/dccode sections can identify the target
address one cycle earlier, since the status information is made available at the
same time that the status register is being updated. The overall effect is to greatly
nduce the cycles consumed by all types of conflicts.

Example 8.6: Pipeline penalty reabetion with internal data prh: Assume
that a feedback path exists in a pipelined unit as shown in Figure 8.26.

High Speed Storage
(Cache and Registers)

Flllure 8.26 Block Diagram of Conhul tipcline with Imemal Data Fadback Path.

C & & -

Chap. 8: Plpellned Systems: Low Level Parallelism

Fetch

T t T I

Ina~Ubft,--
Generate

zer 4 Fetch
Operand Execute - Store

Store

Exeane

Opr
Decode

Fekh

store

Execute

Opr Fetch

W Addr
Decode

Fetch

What will the effect be on the execution of the assembly language code
used in the previous example?

The addition of the feedback path reduces the data d i c t s penalty by
one cycle, and this should be evident in the graph of resource utilization for
the pipe. The code is rrpeatbd here for convenience:

1 M O V k V C D , R O
2 MOVII<RESl>. RI
3 MOVtkRESZ>.RZ
4 ADDRI.RZ
5 MULTI1<II>.R2
6 ADD RO. R2
7 MOV RZ, @ < V X .
8 MOV WRES3>, R3
9 MOV kRES4>. R4

10 ADD R3. R4
11 MULT k 1 2 > . R4
12 ADDRO,R4
13 MOV R4. @<VY>

The graph of the resource utilization is included as Figure 8.27. As shown
in part a, the simple, nonoptirnized code now executes in 21 cycles, not

Chap. 8: Plpellned Systems: Low Level Parallellsrn 4 7

including the fill time. Instructions 4, 5, 6, 7, 10, 11, 12, and 13 still incur
penalties. but now the penalties require only a one cycle delay. The result-
ing speedup becomes:

Best speedup
Effective speedup =

I + p x P .

The reduction of the penalty from two cycles to one cycle has increased the
speedup from 2.689 to 3.71, an increase of 38%. And examination of Fig-
ure 8.27(b) indicates that there are no unused cycles, so for the optimized
case the speedup is at a maximum. By including the feedback path, the
reordering technique in will produce results that are more effective than a
system without the ability to bypass the storage function.

Reordering of instructions can be effective because of the use of indepen-
dent instructions, since independent instructions do not compete for resources.
Enhancing the data transfer capabilities of a pipeline to bypass the storage func-
tion reduces the penalties associated with all kind of conflicts. As we have seen,
the penalties associated with the branch conflict are some of the largest penalties.
\o varlouh tcclmiquch have hccn dcv~hcd 10 try to rnmirnue the overdl branch
contlict penalty. We will now describe one of these techn~ques and ident~fy some
of the additional problems created by the solut~on.

The main reason that branch conflicts cause delay is not that the functions
cannot be performed, but rather that the machine docs not h o w which of the
functions (instructions) are to be done. The c o m t "next" instruction following a
conditional branch will not be identified until the condition on which the branch is
based is known. However, one method to minimii the overall effecr is to make
a guess as to which of the insmtion paths will be followed, and start execution
along that path. Then. if the guess was comt . the penalty reduces to zero.
However, if the guess was not comct. the time penalty will be the same as if m
guess had been made.

To visualize this process, consider a set of instructions similar to those
already examined. We will construct the set of insuuctions so that the only delay
is a branch conflict, but with some problems that will demonstrate the added capa-
bilities needed by the pipeline. The following instructions could be used to move
data from one location to another.

I MOV lkFROM>. RO RO points to source of info.
2 MOV m, RL RI pointa to w h m it goes.
3 MOV X<1024>, R2 R2 is counter.
4 Lbcl MOV *R&, *RI+ Move daIa, bump pointas.
5 Dec R2 Dccmnalt counter.
6 INZ Lbcl If not zero, mae d.u to move.
7 MOV RS. RZ WhendOnemoving*dothis.

The pipeline system will make a guess as to the appropriate next instruction from
6. In this case, it is obvious that 1,023 times the next instruction is located at

Chap. 8: Plpelhed Systems: Low Level Parallelism

"label," so most of the time the correct choice will be instruction 4. If the
designers of the system find that the JNZ instruction is indeed found principally at
the end of a loop of this nature, then the system can be designed to assume that
the branch is taken. Then the resource utilization graph for an iteration of the
loop may appear as shown in Figure 8.28. The sequence of instructions indicated
by the graph assumes that the next instruction after the jump will be instruction 4.
Thus, that instruction is initiated, and the pipeline continues as if it were an
unconditional jump. This should cause no problem until the operand fetch portion
of the next instruction 4 that is to execute. Instruction 4 causes RO and R1 to
increment, and if the branch is not taken, the values should not change. There-
fore, a pipeline system that allows a conditional branch to follow one of the paths
must be capable of flushing the pipe of the effects of the instructions if the path
turns out to be the incorrect action. Thus, the operand fetch portion of the
instruction circled in Figure 8.28 must not cause changes (in RO or R I) until after
the validity of the path has been established.

By allowing the machine to continue execution. branch prediction tech-
niques allow a system to minimize the time required to wait for conflicts to be
resolved. This results in an overall speedup, even if the guesses are correct for
only a fraction of the instructions. The larger the fraction, the greater the
speedup. The cost of this speed enhancement is the additional hardware needed to
allow the effects of a branch that should not have been taken to be removed from
the pipe.

The tinal mechanism we will examine is another technique for minimizing
the effect of conditional branches. Thih techn~que requlres (I combinat~on of
hardware and software to be effect~ve, and hence must be applied In a system
solution. That is. the hardware can provide the capability. but unless the software
(compiler in conjunction with the operating system) makes use of the technique.
no benefit will result.

One of the observations made earlier concerning the conditional branch
penalties is that the target of the branch is not known until the condition on which
the branch is based has bem m l v e d . One approach to pipeline implementation
is to cause the action of the system to stop until the condition has been deter-
mined. Since the desired effect of pipelining is to utilize the stages of the pipe as
much of the time as possibk, another approach is to design the pipeline in such a
way that the instruction following a conditional branch is always executed. With
this technique, an instruction that is always executed in the body of a loop can be
placed directly after the conditional branch that determines the end of the loop,
and it will produce the correct results.

-re 6.28. Resource Utilization fa Pipline with Branch Guess.

Chap. 8: Pipellned Systems: Low Level Parallelism

This technique results in more effective utilization of the stages of the pipe-
line, since an independent instruction is executed during the time required to iden-
tify the target of a wnditional branch. To visualize this process wnsider the fol-
lowing set of insauctions:

1 lrbel ADDRI. IU Add two regs together.
2 ADD R2, R4 Add two otha regs.
3 mc RO Bump another reg.
4 CMP R3. R8 Do a compPrison and if ...
5 BNE label Values are quai, h h .

This code segment may result from a loop in a high level language. Note that
instructions 1. 2, and 3 are executed each iteration of the loop. The result of
applying this technique to the pipeline used as an example throughout this section
is shown in Figure 8.29. Pan a of the figure indicates that the above loop will
execute in 8 cycles. assuming that instruction 5 must wait until the execute por-
tion of instruction 4 determines that the next instruction will k instruction
number I. With this assumption, as soon as instruction 4 completes the execute
section, instruction I can begin. Reordering the instructions to take advantage of
the fact that an instruction following a conditional branch would result in the
mom utilization shown in part b of the figure. Instruction 3 has been placed

1- Loop execut~on m 8 cycles +

Store

E x m e

Opr f%tch

Oprw

Flgwe 83). Rgourcs Utiliution With and Without Using Technique Thu Alwya
Execurer hmction Afta Bnnch: (3 Execution of In&uctiom in "Namrl" Faahim
(b) Itumrtion Execution When Iortnrtion Following Bnnch Always Exeaaa.

Chap. 8: Plpelhed Systems: Low Level Paraflellsm

a k the branch, and the system is designed so that the instruction will execute
regardless of the result of the branch. With this technique applied to this pipeline.
the resulting loop execution time is reduced by one cycle.

Studies have shown that this mechanism can be effectively u t i l i from
60-80% of the time, depending on the job type and the mechanisms involved. If
it is determined that the instruction that follows the branch cannot be effective
u t i l i . then a NOP (no operation) instruction is used in that slot The net result
is that when the instruction following the branch is not a NOP, the branch penalty
is reduced by one.

Example 8.7: RISC system pipeline: One of the available RISC systems is
made by MIPS Corporation. What are the pipeline stages involved with the
system? The pipeline of the MIPS system is shown in Figure 8.30. Basi-
cally, five sections are identified in the figure. The time for execution is
indicated in the figure. and each section utilizes a time of one cycle, except
the write back section. The first section is used for insmction fetch. and it
has the responsibility of determining the real address of the instruction using
the translation lookaside buffer, and then initiating the cache request for this
information. This architecture calls for two separate cache systems, one for
the instruction smam and one for the data stream. The instruction will not
actually be provided until the first part of the decode stage.

The readldecode section obtains the instruction. decodes it, and reads
any needed operands from the appropriate CPU registers. (RF stands for
register fetch.) The ~nformation is then presented to the ALU \ta_pe.

The ;\LC \[age performs any required work on operands obtained by
the decode section. In the instruction is a LOAD or STORE, the TLB is inter-
rogated to perform the virtual to real address translation to identify a spot in
the data cache.

The memory section is responsible for handling LOAD and STORE
instructions. The system does not allow operands used in arithmetic or
logic instructions to be located in memory, so this section is responsible for
moving the information needed for instructions to the appropriate system
registers, and also for transferring information from registers back to
memory. The addresses needed for this are generated in the half cycle
preceding the memory request

The final section has the task of writing back ALU results or values
loaded from the data cache to the register file.

This pipeline is capable of having five instructions executing at any
one time, each in its appropriate section of the pipe. Note that TLB access
is required for both the instruction address and the data address, and that
these requests occur in different halves of a clock cycle. Thus, the TLB
accesses will not slow the execution rate of the pipe.

I T L B t ICache t RF t

psM 8.30. Pipelii suges for MIPS System.

Chop. 8: Pipelined System: Low Level Parallelism

lnaruction
FeWI

Read1
Decode ALU Me-

Write
Results

The pipeline utilizes the delayed instruction technique for conditional
branches, which we discussed above. However, the delayed availability of
operands when performing load opemtions creates a condition similar to the
conditional branch. 'Ilte system utilizes the same technique with loads and
stores as with branches. interlocks am not built into the hardware, but the
software must be configured to assun that data not yet available is not
requested for an operation. If there is no independent instruction which can
be placed in the "delayed slot" after a branch or between fetching informa-
tion from memory and using it, then a NOP must be inserted in the code.
This policy makes the hardware easier to build, since conditions for halting
the pipe are removed by careful attention to the software before the program
mns.

Pipelines for control and instruction functions appear in virtually all high
speed processors, and many microprocessors and smaller systems as well. The
benefits obtained by execution of independent instructions in different sections of
a pipeline justify the complexity of the system. In those systems with a possibil-
ity of using multiple system resources, interlocks must be provided to assure that
the instructions will produce the proper results. Other systems, especially systems
with short pipelines and systems that are RISC in nanue, use software systems that
create programs so that the results are correct, by presenting sequences of instruc-
tions that do not have resource conflicts.

8.4. Summary

The execution rate of computing systems can be increased by dividing the pro-
cessing that needs to be done into small pieces and executing these pieces for dif-
femt opedons in the same time period. The division process breaks the
required processing into sections each of which perform a ponion of the overall
function; the computational action is accomplished by passing information from
one section to the next, and an operation is complete only when it has accom-
plished the work needed by all of the sections. Both data functions and control or
instruction functions can be divided into basic sections and utilize the comxpt of
pipelining.

With this technique, many different operations can be in progress at the
same time, and each operation occupying a different stage of the pipeline. The
highest rate for execution of operations with pipelining occurs when the pipeline
is entirely full. When this is the case, each clock cycle results in another com-
pleted function, and extremely high computational rates can occur. To support
this high execution rate, the data transfer mechanisms of the computational ele-
ment that move information to and from memory, and to and from registers
within the system, must be able to transfer operands and instructions at a rate
sufficiently high to keep the system busy. If the data system is not capable of this
high transfer rate. then the full benefits of pipelining will not be realized

If the data system is capable of supporting the data transfers needed to
maintain high data rates within a computer, then performance degradations will
occur only when operations within the system arr not independent. If the ~csults
of one operation am required by the next, then the apprapriate p i p e l i section
must wait until the data is available to pmceed. The independence must k rnain-
tained in pipelines for both computational functions and control or instruction

Chap. 8: Plpellned .SJ&BN: Low Level PoraUellsm

functions. Pipelines can be requind to wait for data information (data conflicts).
for information needed to generate operand addrrsscs (address confficts). and for
status information needed to idenafy the target of a conditional branch (bmnch
conflicts). These conditions arise when operations within the pipe an not
iadcpendent

Performance improvements will occur in pipeline systems wheneva steps
are taken to d u c e the pmalties associated with nonindepen&nt operations. 'Ihe
four techniques presented in this chapter all seek to reduce the time required to
resolve conflicts incurred by use of common system resources. The first tech-
nique requires no hardwan commitments; rather, the software is manipulated in
such a way that the instructions are fed into the pipelined instruction unit in such
a way that the operations are independent. This results in a higher apparent exe-
cution rate. The second technique is to provide an internal dam path within the
pipeline. so that operands can be obtained by sections of the pipe when the
operands become available. rather than waiting for them to be stored. This
reduces the time needed to wait for results.

Another technique presented is to allow the pipeline to identify the expected
target of a conditional branch and begin execution at that point. This reduces to
zero the penalty associated with the branch if the guess is comct, but incurs the
cost of being able to flush from the pipe the effects of those instructions followed
if the guess is incorrect. The final technique presented is to design the system in
such a way that the instruction following a conditional branch is always executed.
and relv on the users of the system (compiler writers. assembly language pro-
grammers. L'IC.) to create the programs in such a way that the ~nstmction after the
branch is effectively utilized.

81 Develop a formula for Trm, the total time required to perform N independent
arithmetic operations in an arithmetic pipe. Assume that the arithmetic pipe
contains 6 stages. and that each stage executes in 100 nscc.

8.2 Design a pipelined floating point add lmit To eccomplish this:

a. Give a block diagram of the floating point add operation.

b. Describe each element in the block diagram, and specify the hardwm
nteded to perform the work of that block.
c Identify the delays associated with each of the blocks in the block
diagram.
6 Insert registers at appropriate locations in the block diagram. (What
&lays are associated with the registers?)

c Assuming that collision avoidance is handled by another piece of the sys-
tem, identify the controls needed in the pipelined unit, and show how the
control is handled

83 Assume drat a high speed floating point multiply is available at a rea-
sonable cost. Give r block d i a p m of a pipeline used to provide a divide
opedon. If a ROM is available to specify the first ooefficient to 15 bib.
how many stages are requind to provide a mult correct to 56 bits (double

Chap. 8: Pipelined Systems: Low Level Parallelism

precision floating point)? If the multiply takes 120 nsec, and the register
requires 10 nsec, what is the floating point divide rate? What must the data
rate of the memory system be to sustain the highest operation rate?

8.4 Show a block diagram level design for a pipelined vector floating point add
system. Include vector registers capable of holding up to 64 ekments of a
vector. Show on a time plot the action of each of the elemenrs of the sys-
tem for a period of 10 clock cycles.

85 Give a detailed logic diagram for the pipelined system of Problem 8.4.
Assume that you have memories which an 64 x 8 to work with, and that
these come in 20 pin packages. For this problem:

a Use the block diagram of Problem 8.4. Remember to include whatever
address registers are. needed to identify the elements of the vectors.

b. Specify the devices needed to implement the system.

c. Identify the control lines needed to control the flow of data in the aystrm.

d. Create a control system that will assert the control signals in the proper
fashion to do the calculation as specified.

e. Provide the logic diagrams of the system.

8.6 Discuss possible alternatives, as well as their advantages and disadvantages,
for the organization of a memory system to be used with the pipelined sys-
tem of Problem 8.4, and the interconnection hetween the memory ;mtl the
vector re~isters.

8.7 ident~ly the mtdilicauons required to add another pipelined functional unit
to the system of Problem 8.4. That is, the system as specified is capable of
doing a floating point add for vectors of values. What would be q u i d to
add a functional unit that would utilize the same vector registers, but that
would do a floating point multiply for vectors of numbers?

6.8 A pipelined control unit has six separate stages. The various collisions th(
can occur in the system can produce penalties of one cycle, two cycles, threrr
cycles, or four cycles. Develop a formula that will give the e f f d w
s p d u p for the system aa a hction of the probability of each of the &ma
penalties. Plot the formula such that the abscissa is the effative s p d u p ,
and the ordinate is the probability of collisions. For the plot, vary only om
probability at a time, leaving the other thra probabilities zno.

8.9 The instruction portion of a certain computer has been broken into five d k
tinct parts for purposes of pipelining: instruction fetch, insauction dcco&
operand fetch. instruction execution, and storage of nsulrs, where necesMtyl
Assume that all instructions must take all five cycles to execute. AmnW
also that results are not available until after the end of the fifth sectiohl*
code segment that is to run on this fictitious machine is:

MAD R l wim -512
LOADR2witJ14mo
LOADR3wihMOO
L O M R 4 w i m ~

OVER MOW 'R2 R8 * is indirection. &tidon is R8.
MOW 'R3, R9
ADD RE. R9

Chap. 8: Apelined Systems: Low Level Parallelism

MOW R9, *R4
ISZRZ ISZ is incmnent and skip if mo.
ISZR3
ISZ R4
lSZ RL
JNZ OVER

a. If there wm neva any problem with collisions, how much faster would
the pipelied system run than unpipelined system?

b. How long will it take to execute the above section of code? Assume that
the time step is 100 nsec.

8.10 Consider a two address computer designed with a pipelied m m l section.
The sections are instruction fetch, decode, operand I fetch, oprand 2 fetch.
execute. and store. Each section does its work in one cycle. The store sec-
tion can be bypassed for data needed for either operand fetch section. The
status bits are available for testing directly after the execute section. The
branch guess is the next instruction in line. How many cycks does it take
to compute the following section of code:

MOV 100. RO 100 decimal to counter.
label MOV RO, R2 Count to temporary.

ADD R3. R2 Add constant to temporap
MOV R?. *KO Store In memory.
DEC KO Decrement counter.
BNZ label Loop ti1 done.

8.11 Consider a computer with an instruction time of 8t units. APEme that con-
ditions are ideal and that this computcr can be redesigned to t3te advantage
of pipelining. and that thc pipeline consists of four equal segrmns. For this
new machine:

a. How long will it take to s m and complete a sequence of 40 iaruuctions?
R A time pmalty is associated with muisions in the pipelin. That is. the
pipeline must halt for some period of time whm an a p p W collision
occurs. (Remember that independmt instructions do not c u e collisions,
md that mIlisim mult in modified dataladdnss do not b a penalty.)
How long does it take to completely execute the following code to add two
vectors? (I, J. K. L stored in registers.)

10 + I
m + J
30 + K

-m + L
Irkl: M

ADD Mm
mc I
ADD MIJI
N C J
Sn) -1
M C K
lSZL
IMP lrbel
HALT

LJ.K can be wed 8s addr*lsa.

Cleu thc rcumul.tor.
Add in one value.
BumpthcAddrcsa
Add in lnotha value.
Bumpthe*
stare thc hct
Bump the ddrru.
awcLtoseeifdone.
Ifnocdonc,gobrL.
omaarish quit

Chap. 8: Plpellned Systems: Low Level Parallelism

8.12 Consider the instruction unit of a computer; a design team wants to pipeline
the system. Cumntly the poccss of fetching, dtcoding, and executing
insrmctions taka 600 nsec. By very clever work, you have been able to
divide the unit into six separate actions: fetch, decode, operand 1 fetch,
operand 2 fetch. execute, store result. Each of these actions will take 100
nsec, and single operand instructions do nothing during operand 2 fetch. A
data collision in a register must wait for the c o w value to reach the ngis-
tcr. By being extmncly clever the design team has eliminated the address
collision problem.

a If this machine executes 60 instructions, all independent so thm are no
collisions, how much time elapses between initiation of the first instruction
and completion of the last?
b. The following set of instructions adds two vectors together and stores the
final value in a new vector. The conditional jump instruction here is
designed to assume that the jump will be successful. How long will it take
to complete this set of instructions?

300 -t I (a register)
400 -t K (a register)
20 + L (a register)

LABEL: MOVE MEM(L1,N (N is a register)
ADD MEM(I1.N
DEC J
STORE N.MEMIKI
DEC K
DEC L
JNZ LABEL
HALT

c If the machine w m to stay in the above loop (LABELJNZ) forever, what
would the effective instruction time be?

[AoSp67] Aadawp D. W.. F. I. Sparacio and R M. Tomoulo, "Ibs IBM S w
Model 91: Machine Philoqhy ad Instruction- andl ling, IBM Jownal d R e d
and Developments. VoL 11, No. 1. January 1%7. pp. 8-24.

[Bad41 Baa, J. L, 'Tomplter Architectwe," Computer. Vd. 17, No. 10, OMbrr 19%
pp. 77-87.

[B d] Baa. J. L. Compwcr System Architecture. Rockville. MD: ComplM
Resr. 1980.

pas] B-, G. &. R M. B ~ o m M. Kato, a d.. 7 % ~ Illirr lV Canplta. Im
Ttunsacn.0~ on Computers. Vol. C-17, No. 8, Au- 1%8, pp. 746-757.

@cM7l] Bdl, C. 0. ad A. Nswell, Computer Structure;: Rrodings and
Y& Mcanw-Hill Book Compny, 1971.

Chap. 8: Plpellned Systems: Low Level Porallelkm

[Caaso] Chac T. C., "Overlap and Pipeline Raxssing." in [StmBO], pp. 427485.

(-711 Chm, T. C.. "Parallelism P i p e l i g , and Compwr Efiicicacy." Computer
Design. Vol. 10, No. 1, January 1971, pp. 69-74.

D v i 7 l l Davidson. E S.. The Design and Control of P i p e l i Functim Generatom."
Proceedings of the IEEE In Ien~ ioml Conference on System Nehuarb and Corn-
pwers. 197l.pp. 19-21.

[DRG185] DcRosk J., R. Glackemeyer. and T. Knight. "Design and Implementation of the
VAX 8600 Pipeline." Computer. Vol. 18. No. 5, May 1985, pp. 38-48.

[FoME851 Fossum. T., 1. B. McEIroy, and W. English, "An Overview of the VAX 8600
System," Digital Technical Journal. Hudson, MA: Digital Equipment Corporation,
1985. pp. 8-23.

[BrHe821 Gross, T. R.. and I. L. Hemessy. "Optim~zing Delayed Branches," Proceedings
of the 15th Annual Workshop on Microprogramming. New York, NY: IEEE Com-
puter Society Press, 1982. pp. 114-120.

[Hill851 Hillis, W. D.. The Connection Machine. Cambridge, MA: MIT h, 1985.

[HwBrW] Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing.
New YorL: Mffiraw-Hill, 1984.

[Kane87] Kane. Gerry, MIPS R2WO RlSC Architecture. Englewood Cliffs. NJ: Rentice
Hall. 1987.

[Ke11751 Kcller. R. 41.. "Lookahead Processern." ACM Cumpurrn~ Sun'eys. Vol. 7, No. 4.
1975, pp. 177-195.

[Kogg81] Kogge, P. M.. The Architecture of Pipelined Computers. New YorL: McGraw-
Hill, 1981.

[KuS&] KunLcl, S. R, and J. H Smith, "Optimal Pipelining in Supercomputas."
Proceedings ofthe 13th InIenorionol Symposium on Computer Architecture. Wanh-
in- DC: lEEe Computer SoEiay Pies 1986. pp. 404-411.

W 7 7 1 Ramunoolthy. C V., and H. F. Li "Pipline Architcctllre," ACM Computing Sur-
WS. Vd. 9. NO. I. h h 1977, pp 61-102.

-781 Russell. R M.. "Ihe CRAY-I C h n p u 1 ~ System," Communcmona of t k ACM.
Vol. 21. No. 1. Janwy 1978, pp. 63-72.

my1~82] Rymnrnyk, 1.. "Coding Guidelines for Pipelined Raxsson," Proceedings of
the ACM Symposium on Architectural Support for Programnung Languages and
Oprraring System. New Y& ACM, 1982, pp. 12-19.

[SiBe821 Siewimk D. P., C. G. BcIL and A. Newell, Computer Smcctures: Principles and
EuMples. New YorL: McGraw-Hill Book Company. 1982

[Site781 Sites, R L., "An Analysis of the CRAY-l Computcx." Proceedings of the 5th Sym-
p i u m on Computer Architecture. New Yak: IEEE Capurn Society Resl1978,
pp. 101-106.

1-1 S t a r , H. S.. Hlgh-P- CmpMer Architecm. Rcding MA: Addison-
W~~ Pubbhb Canpny. 1981.

Chap. 8: Pipellned Systems: Low Level Parallelism 447

-1 Thantan, I. H. ''Rnlkl Opuation in the Conml DUO 6600," Proceedings of
the Fall Joint Compvrer Conference. APIPS. MontvIlc. NI:= k. Vol. 24.
1964, pp. 33-40.

-61 Thurkr, K. J.. Lmgc kale CompWer Architecture. Pamlkl and Associative Pro-
c u ~ n . Rochelle ppir. NJ: Hayden Book Canpmy. Iac.. 1976.

from671 Tamasdo, R M, -An Efficient Algorithm f a Exploiting Multiple Arithmetic
Units," IBM JovrncllM Research and Drwlopmnt. VoL 11. No. 1. January 1967,
pp. 25-33.

lTChES1 Troirni. M.. S. S. Ching. N. N. Quaynor, et al.. "nK VAX 8600 I Box. A Pip
lined hplrmenlacion of the VAX Pllchirccaue," Digital Technical J o u r ~ I . Hudson,
MA: Digiul Equipnen Corp., 1985. pp. 24-42.

[Web841 Wedig, R. 0.. and A. Rwe. 'The Reduction of Branch Insauction Execution
Ovemead Using Smrnued Conml Flow." Eleventh Annual Internatio~l Confer-
ence on Computer Architecrure. Silver Springs, MD: IEEE Computer Society Ress,
June 1984. pp. 119-125.

[WcSm841 Weiss. S.. and J. E. Smith, "Instruction issue Logic for Pipelined Supcrcomput-
em." Transac~ions on Computers. Vol. C-33. No. 11, November 1984, pp.
1013-1022.

Chap. 8: Plpelned Systemr Low Level Parallelism

