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Previous notions

Recall: The 7 steps modeling procedure
Problem definition

Identification of the 
mechanisms

Data collection and 
evaluation

Model construction

Model solution 

Model verification

Model calibration 
and validation
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Previous notions

Recall: The 7 steps modeling procedure

Steps to be discussed

6 Model veri�cation

verifying qualitative model behavior against engineering intuition
checking dynamic properties (e.g. stability) on the model

7 Model calibration and validation

model calibration
estimating unknown/uncertain model parameters
using measured data
model validation
comparing the model and the real system
(measured data) using statistical methods
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Model solution and veri�cation

Solution of dynamic models

Assume: concentrated parameter model

Given:

the model equations: systems of ordinary di�erential and algebraic
equations (DAEs)
initial values
parameter values

Contstruct: the solution of the model (time dependent values of the
variables) system

Numerical solution methods: �nite di�erence approximations, e.g.
Runge-Kutta methods

Properties

numerical stability (explicit vs. implicit methods)

accuracy (the order of the method)

automatic selection of the integration steps, sti� models
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Model solution and veri�cation

Model veri�cation

Aim: verifying qualitative properties of the solution against engineering
intuition

Model and/or solution properties

steady states

existence, multiplicity

structural dynamic properties

controllability and observability
(stability)

qualitative properties of the step response

sign of initial deviation
steady state deviation
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The structure of state space models, structural analysis

Model structure
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The structure of state space models, structural analysis Sign arithmetics

The range set of signs

Universe: the range set of variables and constants

General qualitative: real intervals with �xed or free end points

UI = {[a`, au] | a`, au ∈ R, a` ≤ au}

with the landmark set

LI = {ai | ai ≤ ai+1 , i ∈ I ⊆ N}

Sign

US = { + , − , 0 ; ? } , ? = + ∪ 0 ∪ −
LS = { a1 = −∞ , a2 = 0 , a3 =∞}

Logical (extended)

UL = { true , false ; unknown }
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The structure of state space models, structural analysis Sign arithmetics

Sign algebra

Algebra over the sign universe

Operations: with the usual algebraic properties
(commutativity, associativity, distributivity)

sign addition (⊕S) and substraction (�S)

sign multiplication (⊗S) and division

composite operations and functions

The speci�cation (de�nition) of sign operations is done by using operation
tables.
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The structure of state space models, structural analysis Sign arithmetics

Sign addition

Operation table

a⊕S b + 0 − ?

+ + + ? ?

0 + 0 − ?

− ? − − ?

? ? ? ? ?

Properties:

growing uncertainty

commutative (symmetric over the main diagonal)
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The structure of state space models, structural analysis Sign arithmetics

Sign multiplication

Operation table

a⊗S b + 0 − ?

+ + 0 − ?

0 0 0 0 0

− − 0 + ?

? ? 0 ? ?

Properties:

correction at zero operands

commutative (symmetric over the main diagonal)
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The structure of state space models, structural analysis Model linearization

Models in nonlinear state space model form

Model originating from �rst engineering principles can be written in state
space model form:

dx
dt = F (x , u) (state eq.)
y = h(x , u) (output eq.)

where F and h are nonlinear functions.

Models from dynamic balance equations:

state equations originate from the dynamic balance equations

inputs and outputs depend also on measurement and actuating devices
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The structure of state space models, structural analysis Model linearization

Steady states

Steady state: x0 is a given constant with identically constant (steady
state) input u0

For input-a�ne systems: we need to solve the equation below with a given
to determine x0

0 = f (x0) + g(x0)u0 = F (x0, u0) (∗)

y0 = h(x0)

(∗) may have more than one solution or no solution at all.

Centered variables: x̃ = x − x0, ũ = u − u0
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The structure of state space models, structural analysis Model linearization

Linearization

Linearizing multivariate functions: y = h(x1, . . . , xn) , h : Rn 7→ Rm

ỹ = J(h,x)
∣∣∣
x0
· x̃

J
(h,x)
ji =

∂hj
∂xi

where J(h,x) is the Jacobian matrix of h and y0 = h(x0)
Linearizing nonlinear state space models: one should linearize the nonlinear
functions in the equations

ẋ = f (x) + g(x)u = F (x , u)

y = h(x)

around the steady state point (x0, u0).
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The structure of state space models, structural analysis Model linearization

Linearized state space models

Input-a�ne case: linearize the functions η = F (x , u) = f (x) + g(x)u
and y = h(x) around the steady stat point (x0, u0)

ỹ = J(F ,x)
∣∣∣
x0,u0
· x̃ + J(F ,u)

∣∣∣
x0,u0
· ũ

ỹ =
(
J(f ,x)

∣∣∣
0

+ J(g ,x)
∣∣∣
0
u0)
)
· x̃ + g(x0) · ũ

LTI state space model form:

˙̃x = Ãx̃ + B̃ũ

ỹ = C̃ x̃ + D̃ũ

Ã = J(f ,x)
∣∣∣
0

+ J(g ,x)
∣∣∣
0
u0, B̃ = g(x0), C̃ = J(h,x)

∣∣∣
0
, D̃ = 0
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The structure of state space models, structural analysis The structure of state space models

The structure of state space models

Linearized state space models around a steady state point

dx
dt = Ax + Bu (state eq.)
y = Cx + Du (output eq.)

for a nonlinear input-a�ne state space model

dx
dt = f (x) + g(x)u (state eq.)
y = h(x) (output eq.)

Signed structure matrices: [A]

[A]ij =


+ if aij > 0
0 if aij = 0
− if aij < 0
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The structure of state space models, structural analysis The structure of state space models

Structure graph

Signed directed graph S = (V , E ;w)

vertex set corresponds to state, input and output variables

V = X ∪ U ∪ Y
X ∩ U = X ∩ Y = U ∩ Y = ∅

edges correspond to direct e�ects between variables

edge weights describe the sign of the e�ect
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The structure of state space models, structural analysis The structure of state space models

The occurrence matrix of a structure graph

An oij entry in the occurrence graph O

oij =

{
wij ha (vi , vj) ∈ E
0 egyebkent

For a linear(ized) LTI state space model with (A,B,C ,D) (order (u, x , y))

O =

 0 0 0
[B] [A] 0
[D] [C ] 0


For an input-a�ne SISO state space model

[A]ij =

[
∂fi
∂xj

+
∂gi
∂xj

u0

]
, [B]i1 = [gi ]

[C ]1j =

[
∂h

∂xj

]
, [D] = 0
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The structure of state space models, structural analysis The structure of state space models

Paths in the structure graph

A directed path P = (v1, v2, ..., vn) , vi ∈ V , ei ,i+1 = (vi , vi+1) ∈ E
corresponds to the indirect e�ect of variable v1 on variable vn

the value of the path is

W (P) =
n−1∏
i=1

w(ei ,i+1)

the signi�cance of shortest path(s) and directed circles
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The structure of state space models, structural analysis Structural properties

Structural properties

Class of systems with the same structure: they have a state space
model, the structure graph of which is the same

A system has a structural property if every element in the class of systems
with the same structure - with a possible extension of a zero-measure set -
has the property

Example: structural rank of matrices

s − rank

(
1 2
2 4

)
= s − rank

(
+ +
+ +

)
= 2
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The structure of state space models, structural analysis Structural properties

Structural controllability and observability

Structural properties: can be determined from the structure graph of a
model

given by its signed structure matrices ([A], [B], [C ])

Structural controllability conditions

s − rank [A] = n, i.e. [A] is of full structural rank

every state variable node is reachable from at least one input variable
node in the structure graph via a directed path

Structural observability conditions

s − rank [A] = n, i.e. [A] is of full structural rank

every state variable node is reachable from at least one output variable
node in the structure graph via a directed path with reversed direction
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The structure of state space models, structural analysis Structural properties

Initial deviation of the unit step response � 1

Unit step response

Rendszeru y

bemenet kimenet

1

The sign value of the initial deviation is the sign value of the
shortest path(s).
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The structure of state space models, structural analysis Structural properties

Initial deviation of the unit step response � 2

Sign-value of the shortest path(s!): more than one shortest path is
possible

. . .
u

xi

y

Deviation of the input (from its steady state value): [∆u]S = +
Sign of the derivative: [dxidt ]S = δxi = su,xi ⊗S [∆u]S = su,xi
Sign of the initial deviation of the output:

[
dy

dt
]S = δy = S∗u,y ⊗S [∆u]S = su,xi ⊗S sxi ,y
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Statistical model calibration

Model calibration � 1

Model Calibration � Conceptual Problem Statement

Given

a grey-box model

calibration data (measured data)

measure of �t (loss function)

Compute

an estimate of the parameter values and/or structural elements

Identi�cation: dynamic model structure and parameter estimation
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Statistical model calibration

Model calibration � 2

Conceptual steps of solution

Analysis of model speci�cation

Sampling of continuous time dynamic models

Data analysis and preprocessing

Model parameter and structure estimation

Evaluation of the quality of the estimate

The main tool of model calibration is model parameter estimation. We

have learned about it in a separate course "Parameter estimation" in its

part on parameter estimation of dynamic models.
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Statistical model calibration

Recall: Steps of practical implementation of parameter

estimation

Conceptual steps

Preparing and checking measurement data

(Visual) overview of data: for serious error, outliers, trends

Experiment design: choosing

proper sampling time
good number of samples
test signals for su�cient excitation

Parameter estimation

Evaluation of the quality of the estimates
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Statistical model calibration Evaluation of the quality of the estimates

Evaluation of the quality of the estimates � 1

In the space of model outputs: residuals should form white noise processes
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Statistical model calibration Evaluation of the quality of the estimates

Evaluation of the quality of the estimates � 2

In the space of parameters: independent estimates with low variance

p1

p2p2
(M)

A

B

E

p2L p2U

p1L

p1
(M)

p1U
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Statistical model validation

Statistical model validation

Conceptual problem statement

Given:

a calibrated model

validation data (measured data): independently measured from the
calibration data (!!)

measure of �t (loss function): in the space of output variables driven
by the modelling goal

Decide (Question):

Is the calibrated model "good enough" for the purpose (see modelling
goal)?
(Does it reproduce the data well?)
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