Számítógéppel irányított rendszerek elmélete Joint Controllability and Observability

Hangos Katalin

Villamosmérnöki és Információs Rendszerek Tanszék

Folyamatirányítási Kutató Csoport
MTA Számítástechnikai és Automatizálási Kutató Intézete
Budapest
e-mail: hangos@scl.sztaki.hu

BASIC NOTIONS
 (from previous lectures)

CT-LTI state-space models

General form - revisited

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \quad, \quad x\left(t_{0}\right)=x(0) \\
& y(t)=C x(t)
\end{aligned}
$$

with

- signals: $x(t) \in \mathcal{R}^{n}, y(t) \in \mathcal{R}^{p}, u(t) \in \mathcal{R}^{r}$
- system parameters: $A \in \mathcal{R}^{n \times n}, B \in \mathcal{R}^{n \times r}, C \in \mathcal{R}^{p \times n}$ ($D=0$ by using centering the inputs and outputs)
Dynamic system properties:
- observability
- controllability

Observability of CT-LTI systems - 2

A necessary and sufficient condition.
Theorem 1 (O) Given (A, B, C). This SSR with state space \mathcal{X} is state observable iff the observability matrix \mathcal{O}_{n} is of full rank

$$
\mathcal{O}_{n}=\left[\begin{array}{c}
C \\
C A \\
\cdot \\
\cdot \\
\cdot \\
C A^{n-1}
\end{array}\right]
$$

Kalman rank condition: If $\operatorname{dim} \mathcal{X}=n$ then $\operatorname{rank} \mathcal{O}_{n}=n$.

Controllability of CT-LTI systems - 2

A necessary and sufficient condition.
Theorem 2 (C) Given (A, B, C) for

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

This SSR with state space \mathcal{X} is state controllable iff the controllability matrix \mathcal{C}_{n} is of full rank

$$
\mathcal{C}_{n}=\left[\begin{array}{llllll}
B & A B & A^{2} B & . & . & A^{n-1} B
\end{array}\right]
$$

Kalman rank condition: If $\operatorname{dim} \mathcal{X}=n$ then $\operatorname{rank} \mathcal{O}_{n}=n$.

CT-LTI I/O system models - 3

Operator domain I/O model for SISO systems

Transfer function

$$
Y(s)=H(s) U(s)
$$

assuming zero initial conditions with
$Y(s)$
$U(s)$
$H(s)=\frac{b(s)}{a(s)}$

Laplace-transform of the output signal
Laplace-transform of the input signal
transfer function of the system
where $a(s)$ and $b(s)$ are polynomials and
degree $b(s)=m$
degree $a(s)=n$

$$
H(s)=C(s I-A)^{-1} B+D
$$

Markov parameters

$$
\begin{aligned}
& x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

Thus the impulse response function (with $D=0$ and $u(t)=\delta(t)$)

$$
h(t)=C e^{A t} B=C B+C A B t+C A^{2} B \frac{t^{2}}{2!}+\ldots
$$

Markov parameters

$$
C A^{i} B, \quad i=0,1,2, \ldots
$$

are invariant under state transformation.

PRELIMINARIES

Overview - 1

equivalent SSR properties

Overview - 2

Consider SISO ct-LTI systems with realization (A, B, C)

- Joint controllability and observability is a system property
- Equivalent necessary and sufficient conditions
- Minimality of SSRs
- Irreducibility of the transfer function

Hankel matrices

Definition

A Hankel matrix is a block matrix of the following form

$$
H[1, n-1]=\left[\begin{array}{cccccc}
C B & C A B & . & . & . & C A^{n-1} B \\
C A B & C A^{2} B & \cdot & \cdot & . & C A^{n} B \\
\cdot & \cdot & \cdot & \cdot & . & \cdot \\
\cdot & \cdot & . & \cdot & . & \cdot \\
\cdot & \cdot & \cdot & \cdot & . & \cdot \\
C A^{n-1} B & C A^{n} B & . & . & . & C A^{2 n-2} B
\end{array}\right]
$$

It contains Markov parameters $C A^{i} B$ that are invariant under state transformations.

Lemma 1

Lemma 1: If we have a system with transfer function $H(s)=\frac{b(s)}{a(s)}$ and there is an n-th order realization (A, B, C), which is controllable and observable then all other n-th order realizations are controllable and observable.

Proof

$$
\left.\begin{array}{rl}
\mathcal{O}(C, A)= & {\left[\begin{array}{c}
C \\
C A \\
\cdot \\
\cdot \\
\cdot \\
C A^{n-1}
\end{array}\right]}
\end{array} \quad, \mathcal{C}(A, B)=\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdot & \cdot
\end{array} A^{n-1} B\right]\right] ~\left[\begin{array}{ll}
&
\end{array}\right.
$$

REALIZATIONS IN SPECIAL FORM: Controller form realization

Controller form realization

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

with

$$
\begin{gathered}
A_{c}=\left[\begin{array}{cccccc}
-a_{1} & -a_{2} & \cdot & \cdot & \cdot & -a_{n} \\
1 & 0 & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \cdot & 1 & 0
\end{array}\right], B_{c}=\left[\begin{array}{c}
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right] \\
C_{c}=\left[\begin{array}{lllll}
b_{1} & b_{2} & \cdot & \cdot & b_{n}
\end{array}\right]
\end{gathered}
$$

with the coefficients of the polynomials $a(s)=s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}$ and $b(s)=b_{1} s^{n-1}+\ldots+b_{n-1} s+b_{n}$ that appear in the transfer function $H(s)=\frac{b(s)}{a(s)}$

Definitions

Definition: relative prime polynomials
Two polynomials $a(s)$ and $b(s)$ are coprime (or relative primes) iff $a(s)=\Pi\left(s-\alpha_{i}\right) ; b(s)=\Pi\left(s-\beta_{j}\right)$ and $\alpha_{i} \neq \beta_{j}$ for all i, j.
In other words: the polynomials have no common factors.
Definition: irreducible transfer function
A transfer function $H(s)=\frac{b(s)}{a(s)}$ is called to be irreducible if the polynomials $a(s)$ and $b(s)$ are relative primes.

Lemma 2

Lemma 2: If there exists a controller form realization which is jointly controllable and observable then $a(s)$ and $b(s)$ are relative primes ($H(s)$ is irreducible).

Proof

1. A controller form realization is controllable and

$$
\begin{gathered}
\mathcal{O}_{c}=\tilde{I}_{n} b\left(A_{c}\right) \\
\tilde{I}_{n}=\left[\begin{array}{cccc}
0 & \cdot & \cdot & 1 \\
0 & \cdot & 1 & 0 \\
\cdot & \cdot & \cdot & \cdot \\
1 & 0 & \cdot & 0
\end{array}\right] \in \mathcal{R}^{n \times n}
\end{gathered}
$$

2. Non-singularity of $b\left(A_{c}\right)$

Proof of Lemma 2 - 1

$$
\left.\begin{array}{c}
\tilde{I}_{n}=\left[\begin{array}{llll}
e_{n} & e_{n-1} & \cdot & \cdot
\end{array} e_{1}\right.
\end{array}\right]=\left[\begin{array}{c}
e_{n}^{T} \\
e_{n-1}^{T} \\
\cdot \\
\cdot \\
\cdot \\
e_{1}^{T}
\end{array}\right], e_{i}=\left[\begin{array}{c}
0 \\
\cdot \\
\cdot \\
0 \\
1 \\
0 \\
\cdot \\
\cdot
\end{array}\right] \leftarrow i . \begin{aligned}
& \\
& A_{c}=\left[\begin{array}{cccccc}
-a_{1} & -a_{2} & \cdot & \cdot & \cdot & -a_{n} \\
1 & 0 & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right], e_{i}^{T} A_{c}=\left\{\begin{array}{ccc}
{\left[\begin{array}{lll}
-a_{1} & -a_{2} & \ldots
\end{array}\right.} & -a_{n}
\end{array}\right] \\
& e_{i-1}^{T}
\end{aligned}
$$

Proof of Lemma 2 - 2

Computation of the observability matrix $\mathcal{O}_{c}=\tilde{I}_{n} b\left(A_{c}\right) \in \mathcal{R}^{n \times n}$ 1st row:

$$
e_{n}^{T} b\left(A_{c}\right)=e_{n}^{T} b_{1} A_{c}^{n-1}+\ldots+e_{n}^{T} b_{n-1} A_{c}+e_{n}^{T} b_{n} I_{n}
$$

n-th term: $\quad\left[\begin{array}{llll}0 & \ldots & 0 & b_{n}\end{array}\right]$
($n-1$)-th term: $b_{n-1} e_{n}^{T} A_{c}=b_{n-1} e_{n-1}^{T}=\left[\begin{array}{llll}0 & \ldots & b_{n-1} & 0\end{array}\right]$

$$
e_{n}^{T} b\left(A_{c}\right)=\left[\begin{array}{llll}
b_{1} & \ldots & b_{n-1} & b_{n}
\end{array}\right]=C_{c}
$$

2nd row:

$$
e_{n-1}^{T} b\left(A_{c}\right)=e_{n}^{T} A_{c} b\left(A_{c}\right)=e_{n}^{T} b\left(A_{c}\right) A_{c} \Rightarrow e_{n-1}^{T} b\left(A_{c}\right)=C_{c} A_{c}
$$

and so on ...

Proof of Lemma 2 - 3

\mathcal{O}_{c} is nonsingular

- iff $b\left(A_{c}\right)$ is nonsingular because matrix \tilde{I}_{n} is always nonsingular
- $b\left(A_{c}\right)$ is nonsingular iff $\operatorname{det}\left(b\left(A_{c}\right)\right) \neq 0$ which depends on the eigenvalues of $b\left(A_{c}\right)$ matrix
- the eigenvalues of the matrix $b\left(A_{c}\right)$ are $b\left(\lambda_{i}\right), \quad i=1,2, \ldots, n$ λ_{i} is an eigenvalue of A_{c}, i.e a root of $a(s)=\operatorname{det}(s I-A)$

$$
\operatorname{det}\left(b\left(A_{c}\right)\right)=\prod_{i=1}^{n} b\left(\lambda_{i}\right) \neq 0
$$

1
$a(s)$ and $b(s)$ have no common roots, i.e. they are relative primes

Minimal realization conditions - 1

Theorem 1: $H(s)=\frac{b(s)}{a(s)}$ is irreducible iff all n-th order realizations are jointly controllable and observable.
Proof: combine Lemma 1. and 2. •
Definition: minimal realization
A realization (A, B, C) of dimension n is minimal if one cannot find another realization of dimension less than n.

Theorem 2: $H(s)=\frac{b(s)}{a(s)}$ is irreducible iff any of its realization (A, B, C) is minimal where $H(s)=C(s I-A)^{-1} B$
Proof: by contradiction

Minimal realization conditions - 2

Theorem 3.: A realization (A, B, C) is minimal iff the system is jointly controllable and observable.

Proof: Combine Theorem 1 and Theorem 2 .

Lemma 3.: Any two minimal realizations can be connected by a unique similarity transformation (which is invertible).
Proof: (Just the idea of it)

$$
T=\mathcal{O}^{-1}\left(C_{1}, A_{1}\right) \mathcal{O}\left(C_{2}, A_{2}\right)=\mathcal{C}\left(A_{1}, B_{1}\right) \mathcal{C}^{-1}\left(A_{2}, B_{2}\right)
$$

exists and it is invertible: this is used as a transformation matrix.

General decomposition theorem - 1

(A, B, C) then we can always transform it to another realization ($\bar{A}, \bar{B}, \bar{C}$) with partitioned state vector and matrices

$$
\begin{gathered}
\bar{x}=\left[\begin{array}{llll}
\bar{x}_{c o} & \bar{x}_{c \bar{o}} & \bar{x}_{\overline{c o}} & \bar{x}_{\overline{c o}}
\end{array}\right]^{T} \\
\bar{A}=\left[\begin{array}{cccc}
\bar{A}_{c o} & 0 & \bar{A}_{13} & 0 \\
\bar{A}_{21} & \bar{A}_{c \bar{o}} & \bar{A}_{23} & \bar{A}_{24} \\
0 & 0 & \bar{A}_{\bar{c} o} & 0 \\
0 & 0 & \bar{A}_{43} & \bar{A}_{\overline{c o}}
\end{array}\right] \quad \bar{B}=\left[\begin{array}{c}
\bar{B}_{c o} \\
\bar{B}_{c \bar{o}} \\
0 \\
0
\end{array}\right] \\
\bar{C}=\left[\begin{array}{cccc}
\bar{C}_{c o} & 0 & \bar{C}_{\bar{c} o} & 0
\end{array}\right]
\end{gathered}
$$

General decomposition theorem - 2

The partitioning defines subsystems

- Controllable and observable subsystem: $\left(\bar{A}_{c o}, \bar{B}_{c o}, \bar{C}_{c o}\right)$ is minimal, i.e. $\bar{n} \leq n$ and

$$
H(s)=\bar{C}_{c o}\left(s \bar{I}-\bar{A}_{c o}\right)^{-1} \bar{B}_{c o}=C(s I-A)^{-1} B
$$

- Controllable subsystem

$$
\left(\left[\begin{array}{cc}
\bar{A}_{c o} & 0 \\
\bar{A}_{21} & \bar{A}_{c \bar{o}}
\end{array}\right],\left[\begin{array}{c}
\bar{B}_{c o} \\
\bar{B}_{c \bar{o}}
\end{array}\right],\left[\begin{array}{cc}
\bar{C}_{c o} & 0
\end{array}\right]\right)
$$

- Observable subsystem

$$
\left(\left[\begin{array}{cc}
\bar{A}_{c o} & \bar{A}_{13} \\
0 & \bar{A}_{\bar{c} o}
\end{array}\right],\left[\begin{array}{c}
\bar{B}_{c o} \\
0
\end{array}\right],\left[\begin{array}{ll}
\bar{C}_{c o} & \bar{C}_{\bar{c} o}
\end{array}\right]\right)
$$

- Uncontrollable and unobservable subsystem

OUTLOOK: CONTROLLABILITY OF NONLINEAR SYSTEMS
 Fed-batch bioreactor (fermenter)

Controllability of CT-LTI systems

Applying the "brute-force" Dirac-delta input we get

$$
x\left(0_{+}\right)=x\left(0_{-}\right)+\left[\begin{array}{cccccc}
B & A B & A^{2} B & . & \cdot & A^{n-1} B
\end{array}\right]\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\cdot \\
\cdot \\
\cdot \\
g_{n}
\end{array}\right]
$$

If $\operatorname{rank} \mathcal{C}_{n-1}(A, B)=r$ is not full then we can only move inside a linear sub-space of \mathbb{R}^{n} of dimension r.

Fed-batch case: state equations

Nonlinear input-affine state-space model

$$
\dot{x}=f(x)+g(x) u
$$

where

$$
\begin{gathered}
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
X \\
S \\
V
\end{array}\right], u=F \\
f(x)=\left[\begin{array}{c}
\mu\left(x_{2}\right) x_{1} \\
-\frac{1}{Y} \mu\left(x_{2}\right) x_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{\mu_{\max } x_{2} x_{1}}{k_{1}+x_{2}+k_{2} x_{2}^{2}} \\
-\frac{\mu_{\max } x_{2} x_{1}}{\left(k_{1}+x_{2}+k_{2} x_{2}^{2}\right) Y} \\
0
\end{array}\right], g(x)=\left[\begin{array}{c}
-\frac{x_{1}}{x_{3}} \\
\frac{S_{f}-x_{2}}{x_{3}} \\
1
\end{array}\right]
\end{gathered}
$$

and

$$
\mu\left(x_{2}\right)=\frac{\mu_{\max } x_{2}}{k_{1}+x_{2}+k_{2} x_{2}^{2}}
$$

Controllability analysis

$$
\operatorname{rank} \Delta_{c}=2<\operatorname{dim} x=3
$$

The reachability hyper-surface of the fed-batch fermenter for initial conditions $x_{1}(0)=2 \frac{g}{l}, x_{2}(0)=0.5 \frac{g}{l}, x_{3}(0)=0.5 \frac{g}{l}$

Co-ordinate transformation

"Hidden conserved quantity" generating the transformation

$$
\lambda\left(x_{1}, x_{2}, x_{3}\right)=V\left(S_{f}-S\right)+\frac{1}{Y} V\left(X_{f}-X\right)
$$

Transformed "minimal" model $\left(z_{1}=x_{1}, z_{2}=x_{2}, z_{3}=\lambda\left(x_{1}, x_{2}, x_{3}\right)\right)$

$$
\dot{z}=\bar{f}(z)+\bar{g}(z) u
$$

where

$$
\bar{f}(z)=\left[\begin{array}{c}
\frac{\mu_{\max } z_{2} z_{1}}{K_{1}+z_{2}+K_{2} z_{2}^{2}} \\
-\frac{\mu_{\max } z_{2} z_{1}}{\left(K_{1}+z_{2}+K_{2} z_{2}^{2}\right) Y}
\end{array}\right], \quad \bar{g}(z)=\left[\begin{array}{c}
-\frac{z_{1}}{z_{3}}\left(-\frac{1}{Y} z_{1}-z_{2}+S_{f}\right) \\
0
\end{array}\right]
$$

Structural properties

- depends on the selection of the input
- does not depend on the source function μ

