CCS tutorial
 Mathematical statistics, Parameter estimation

1 Vector valued random variables

Let us given two scalar-valued Gaussian random variables $\eta_{1} \sim \mathbb{N}(1,4)$, and $\eta_{2} \sim \mathbb{N}(2,16)$.

1. Plot the probability density functions $f_{\eta_{1}}$ and $f_{\eta_{2}}$ of random variables η_{1} and η_{2} in the same coordinate system!
2. Let us assume that the random variables η_{1} and η_{2} are independent and form a vector valued random variable $\eta=\left[\eta_{1}, \eta_{2}\right]^{T}$ from them.

- Which type of distribution does the vector valued random variable η have?
- Compute the mean value and the variance of the vector valued random variable η.

3. (HOMEWORK)

Let us assume that the random variables η_{1} and η_{2} have a covariance $\operatorname{COV}\left(\eta_{1}, \eta_{2}\right)=2.3$ and form a vector valued random variable $\eta=$ $\left[\eta_{1}, \eta_{2}\right]^{T}$ from them.

- Which type of distribution does the vector valued random variable η have?
- Compute the mean value and the variance of the vector valued random variable η.

2 Parameter estimation

1. Consider a scalar valued random variable ξ and let us have a measured data set about it

$$
D(5)=\{0.5,-0.6,0.3,-0.2,0.0\}
$$

- Compute an estimate of the mean value of ξ.
- Compute an estimate of the variance of ξ.
- Could the measured data be independent? Compute an estimate of $r_{\xi \xi}(1)$.

2. Consider the following model that is linear in parameters:

$$
y^{(M)}=p x
$$

- How many parameters does this model have?
- Consider a measured data set consisting of $\left(y_{i}, x_{i}\right)$ pairs

$$
D_{1}(5)=\{(0.5,1.0),(0.6,1.0),(0.3,1.0),(-0.2,1.0),(0.5,1.0)\}
$$

Compute an estimate of p if possible with its mean value and variance.
3. Consider the following model that is linear in parameters:

$$
y^{(M)}=\sum_{j+1}^{2} p_{j} x_{j}
$$

- Consider a measured data set consisting of $\left(y_{i}, x_{i 1}, x_{i 2}\right)$ values $D_{2}(4)=\{(0.5,1.0,1.0),(0.6,1.0,1.0),(0.3,1.0,1.0),(-0.2,1.0,1.0)\}$

Compute an estimate of p if possible with its mean value and covariance matrix.

- How could you improve the situation? Design a new measurement that makes the estimation possible.
- How many measured data set is needed in the minimal case? Which measurements could you leave out from the data set to still have an estimate.

4. Homework

Consider a scalar valued random variable ξ and let us have a measured data set about it

$$
D(5)=\left\{\begin{array}{lll}
0.1, & 0.2, & 0.3, \\
0.4, & 0.5\}
\end{array}\right.
$$

- Compute an estimate of the mean value of ξ.
- Compute an estimate of the variance of ξ.
- Could the measured data be independent? Compute an estimate of $r_{\xi \xi}(1)$.

