CCS tutorial Sampling, DT-LTI models

1 Matrix functions

Given the following real square matrices:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1}\\
0 & -2 & 0 \\
0 & 0 & 3
\end{array}\right] \quad, \quad Q=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]
$$

1. Compute the following quantities:

$$
Q^{-1} \quad, A^{-1}
$$

2. Compute (t is a constant parameter)

$$
e^{Q}, e^{2 Q}, e^{Q t}, e^{A}, e^{A t}
$$

2 Sampling

1. Given the following CT-LTI system

$$
\begin{aligned}
& \dot{x}=-3.2 x+2.5 u \\
& y=0.2 x
\end{aligned}
$$

- How many inputs, states and outputs does the system have?
- Discretize the system if the sampling time is 2 sec , i.e. $h=2 s$!

2. Given the following CT-LTI system

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{cc}
-1 & 0 \\
0 & -4
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
-1 & 1
\end{array}\right] x
\end{aligned}
$$

- How many inputs, states and outputs does the system have?
- Discretize the system if the sampling time is 1 sec , i.e. $h=1 \mathrm{~s}$!

3 DT-LTI state space and input-output models

1. A DT-LTI system is given by following SISO input-output model:

$$
\begin{equation*}
2 y(k+3)+6 y(k+2)-2 y(k)=u(k+1)+3 u(k) \tag{2}
\end{equation*}
$$

- Compute its pulse transfer operator!
- Give a possible state space model of this DT-LTI system!
- Is this state space model unique? Why?
- Give the pulse response function of the system!

2. Show that the Markov parameters $\mathcal{M}_{i}=C \Phi^{i} \Gamma$ are independent from the representation of the state space model, i.e. it is invariant with respect to coordinate transformation of the state space model!
3. Given the following DT-LTI system with its state space model

$$
\begin{align*}
x(k+1) & =\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right] x(k)+\left[\begin{array}{l}
1 \\
4
\end{array}\right] u(k) \tag{3}\\
y(k) & =\left[\begin{array}{ll}
1 & 2.5
\end{array}\right] x(k)
\end{align*}
$$

with the initial condition

$$
x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- How many inputs, states and outputs does the system have?
- Assuming $u(k)=0, k=0,1,2$, compute the state vector at $k=1,2$.
- Compute the pulse transfer operator of the system!
- Give the input-output model in difference equation form!
- Give an equivalent state space representation with the transformation matrix

$$
T=\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]
$$

- Give the Markov parameters of the original and the transformed system!
- Give the pulse response function of the system!

