CCS tutorial-Mathematical basics

1 Vectors and matrices

Given the following real vectors and matrices:

$$
\begin{array}{r}
x=\left[\begin{array}{l}
1 \\
2
\end{array}\right], y=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \tag{2}
\end{array}
$$

1. Compute the following transposed quantities:

$$
x^{T}, y^{T}, A^{T}, B^{T}
$$

2. Compute when possible

$$
A \cdot x, B \cdot x, A \cdot y, B \cdot y
$$

3. Compute when possible

$$
x^{T} \cdot x, \quad x^{T} \cdot A \cdot x, \quad x^{T} \cdot B \cdot x, \quad y^{T} \cdot x
$$

4. Compute the eigenvalues of the matrices A and B.
5. Compute the inverse matrix of

- matrix A
- matrix B

2 Complex numbers

Complex numbers: $a \in \mathbb{C}, a=\alpha+\mathbf{j} \beta$ with $\mathbf{j}=\sqrt{-1}$

- $|a|=r=\sqrt{\alpha^{2}+\beta^{2}}$
- polar (trigonometric) form: $a=r(\cos (\Omega)+\mathbf{j} \sin (\Omega))$
- exponential form: $a=r e^{\mathbf{j} \Omega}=r(\cos (\Omega)+\mathbf{j} \sin (\Omega))$

Given the following complex numbers

$$
a=2+3 \mathbf{j} \quad, \quad b=-2 \mathbf{j}, \quad c=1, \quad d=5\left(\cos \left(\frac{\pi}{2}\right)+\mathbf{j} \sin \left(\frac{\pi}{2}\right)\right)
$$

1. Place a, b, c, d on the complex plane
2. Compute the polar and exponential form of a, b, c, d.

3 Complex eigenvalues

Compute the eigenvalue of the matrix

$$
A=\left[\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right]
$$

4 Solution of a differential equation

1. Give the solution of the following ordinary differential equation

$$
\frac{d x(t)}{d t}=-3 x(t) \quad, \quad x(0)=1
$$

What is $\lim _{t \rightarrow \infty} x(t)$?
2. Give the solution of the following ordinary differential equation

$$
\frac{d x(t)}{d t}=(-3+3 \mathbf{j}) x(t) \quad, \quad x(0)=1
$$

What is $\lim _{t \rightarrow \infty} x(t)$?

