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Previous notions CT-LTI system models

Systems

System (S): acts on signals

y = S[u]

inputs (u) and outputs (y)
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Previous notions CT-LTI system models

CT-LTI system models

Input-output (I/O) models for SISO systems

time domain

operator domain

State-space models
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Previous notions CT-LTI system models

CT-LTI I/O system models (SISO)

Transfer function � Linear di�. equation model

L{an
dny

dtn
+ an−1

dn−1y

dtn−1
+ ...+ a1

dy

dt
+ a0y} =

= L{b0u + b1
du

dt
+ ...+ bm

dmu

dtm
}

H(s) =
Y (s)

U(s)
=

b(s)

a(s)

Transfer function � Impulse response function

H(s) = L{h(t)}
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Previous notions CT-LTI system models

CT-LTI state-space models

General form

ẋ(t) = Ax(t) + Bu(t) (state equation)
y(t) = Cx(t) + Du(t) (output equation)

with

given initial condition x(t0) = x(0) and x(t) ∈ Rn ,

y(t) ∈ Rp , u(t) ∈ Rr

system parameters

A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r
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Sampling System elements for sampling

Sampling

System elements for sampling
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Sampling System elements for sampling

Zero order hold sampling

Operation of the D/A converter
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Sampling System elements for sampling

Sampling of CT-LTI systems

Given:
ẋ = Ax + Bu
y = Cx + Du

Zero order hold sampling of u

u(τ) = u(tk) = u(k) , tk ≤ τ < tk+1

Equidistant (periodic) sampling: tk+1 − tk = h = const

Compute:
the state-space model of the sampled (discrete time) system
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Sampling Sampled state-space model

Sampled state equations - 1

Use the solution of the continuous time state equation

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (∗)

Substitute t = tk+1 and t0 = tk with periodic sampling (h = (tk+1 − tk))
and θ = τ − tk .
With x(k) = x(tk) and x(k + 1) = x(tk+1) we obtain from (∗)

x(k + 1) = eAhx(k) + eAh
∫ h

0

e−AθdθBu(k)

Discrete time state equation

x(k + 1) = eAhx(k) + A−1(eAh − I )Bu(k)
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Sampling Sampled state-space model

Matrix functions

Given a univariate real function ϕ : R 7→ R with a square matrix

A ∈ Rn×n. Then ϕ(A) is a square matrix ϕ(A) ∈ Rn×n.

Matrix exponential function
Given A ∈ Rn×n and the real-valued exponential function e : R 7→ R
Take the Taylor-series expansion of e around t = 0

et = 1 + t +
1

2
t2 + ...+

1

j!
t j + ...

Substitute t = A and 1 = I

eA = I + A +
1

2
A2 + ...+

1

j!
Aj + ... ∈ Rn×n

For any diagonal matrix Λ the matrix function ϕ(Λ) is easy to compute

Λ =


λ1 0 ... 0

0 λ2 ... 0

0 ... ... 0

0 ... ... λn

 , ϕ(Λ) =


ϕ(λ1) 0 ... 0

0 ϕ(λ2) ... 0

0 ... ... 0

0 ... ... ϕ(λn)
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Sampling Sampled state-space model

Sampled state equations - 2

Discrete time state equation

x(k + 1) = eAhx(k) + A−1(eAh − I )Bu(k)

DT-LTI state equation for sampled systems

x(k + 1) = Φx(k) + Γu(k)

with

Φ = eAh = I + Ah + ... , Γ = A−1(eAh − I )B = (Ih +
Ah2

2!
+ ...)B
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DT-LTI system models State-space models

DT-LTI state-space models

x(k + 1) = Φx(k) + Γu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

with given initial condition x(0) and

x(k) ∈ Rn , y(k) ∈ Rp , u(k) ∈ Rr

being vectors of �nite dimensional spaces and

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r

being matrices
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DT-LTI system models State-space models

Solution of the DT-LTI state equation

x(1) = Φx(0) + Γu(0)
x(2) = Φx(1) + Γu(1) = Φ2x(0) + ΦΓu(0) + Γu(1)
x(3) = Φx(2) + Γu(2) = Φ3x(0) + Φ2Γu(0) + ΦΓu(1) + Γu(2)
..
..

x(k) = Φx(k − 1) + Γu(k − 1) = Φkx(0) +
∑k−1

j=0 Φk−j−1Γu(j)
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DT-LTI system models Pulse response function

Discrete time signals

u = {u(k), k = 0, 1, ...}

scalar valued discrete time signal: u(k) ∈ R

Pulse signal (scalar valued): the discrete time analogue for the

Dirac-delta (unit impulse) signal

u(k) =

{
1 if k = 0

0 otherwise
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DT-LTI system models Pulse response function

DT-LTI SISO I/O system models � Pulse response function

From the solution of the state equation with D = 0 and x(0) = 0

x(k) = Φx(k − 1) + Γu(k − 1) = Φkx(0) +
∑k−1

j=0 Φk−j−1Γu(j)

y(k) = Cx(k) = CΦkx(0) +
∑k−1

j=0 CΦk−j−1Γu(j)

Pulse response function

h(k) =

{
0 k < 1

CΦk−1Γ k ≥ 1

The discrete time analogue of the impulse response function.
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DT-LTI system models Pulse response function

Transformation of the states

Consider the DT-LTI state-space model

x(k + 1) = Φx(k) + Γu(k) , y(k) = Cx(k) + Du(k)

with the state transformation x = Tx .
The parameters of the transformed model (another equivalent realization)

Φ = TΦT−1 , Γ = TΓ , C = CT−1

Discrete time Markov parameters: CΦk−1Γ

they are invariant for the state transformations
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DT-LTI system models Pulse response function

Shift operators

De�nition (forward shift operator q)

which acts on a discrete time signal as follows

qf (k) = f (k + 1) (1)

De�nition (backward shift operator (delay) q−1)

which acts on a discrete time signal as follows

q−1f (k) = f (k − 1) (2)

The induced norm of an operator q on the vector space X induced

by a norm ||.|| on the same space is de�ned as

||q|| = sup
||x ||=1

||q(x)||
||x ||
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DT-LTI system models Discrete di�erence equation models

DT-LTI SISO I/O system models � Discrete di�erence
equation models

Forward di�erence form with na ≥ nb (proper)

y(k +na)+a1y(k +na−1)+ ...+anay(k) = b0u(k +nb)+ ...+bnbu(k)

A(q)y(k) = B(q)u(k)

A(q) = qna + a1q
na−1 + ...+ ana , B(q) = b0q

nb + b1q
nb−1 + ...+ bnb

Backward di�erence form where d = na − nb > 0 is the pole excess

(time delay)

y(k)+a1y(k−1)+...+anay(k−na) = b0u(k−d)+...+bnbu(k−d−nb)

A∗(q−1)y(k) = B∗(q−1)u(k − d) ,
A∗(q−1) = qnaA(q−1), B∗(q−1) = qnbB(q−1)
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DT-LTI system models Pulse transfer operator

DT-LTI SISO I/O system models � Pulse transfer operator

Computed from the DT-LTI state-space model

x(k + 1) = Φx(k) + Γu(k) , y(k) = Cx(k) + Du(k)

x(k + 1) = qx(k) = Φx(k) + Γu(k)
x(k) = (qI − Φ)−1Γu(k)
y(k) = Cx(k) + Du(k) = [C (qI − Φ)−1Γ + D]u(k)

Pulse-transfer operator H(q) of the SSR (Φ, Γ,C ,D):

H(q) = C (qI − Φ)−1Γ + D

The discrete time analogue of the transfer function.

It is also invariant for the state transformation.
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DT-LTI system models Pulse transfer operator

DT-LTI SISO I/O system models � Pulse transfer operator

For SISO LTI systems H(q) is a rational function

H(q) = C (qI − Φ)−1Γ + D =
B(q)

A(q)
, deg B(q) < deg A(q) = n

where A(q) is the characteristic polynomial of the state matrix Φ.

Relation with the discrete di�erence equation form

y(k + na) + a1y(k + na − 1) + ...+ anay(k) =
= b0u(k + nb) + ...+ bnbu(k)

A(q)y(k) = B(q)u(k)
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Poles of DT-LTI Systems

Poles of DT-LTI systems � 1

Comparison

continuous time system discrete time system

state eq. ẋ(t) = Ax(t) + Bu(t) x(k + 1) = Φx(k) + Γu(k)
Φ = eAh

output eq. y(t) = Cx(t) y(k) = Cx(k)

poles λi (A) λi (Φ)

λi (Φ) = eλi (A)h
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Poles of DT-LTI Systems

Poles of DT-LTI systems � 2
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