Discrete and continuous dynamic systems

Discrete time linear time-invariant systems: input-output and state space representations
Sampling

Katalin Hangos

University of Pannonia
Faculty of Information Technology
Department of Electrical Engineering and Information Systems hangos.katalin@virt.uni-pannon.hu

Feb 2018

Lecture overview

(1) Previous notions

- CT-LTI system models
(2) Sampling
- System elements for sampling
- Sampled state-space model
(3) DT-LTI system models
- State-space models
- Pulse response function
- Discrete difference equation models
- Pulse transfer operator

4 Poles of DT-LTI Systems

Overview

(1) Previous notions

- CT-LTI system models
(2) Sampling
(3) DT-LTI system models

4 Poles of DT-LTI Systems

Systems

System (S): acts on signals

$$
y=\mathbf{S}[u]
$$

- inputs (u) and outputs (y)

CT-LTI system models

Input-output (I/O) models for SISO systems

- time domain
- operator domain

State-space models

CT-LTI I/O system models (SISO)

Transfer function - Linear diff. equation model

$$
\begin{gathered}
\mathcal{L}\left\{a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\ldots+a_{1} \frac{d y}{d t}+a_{0} y\right\}= \\
=\mathcal{L}\left\{b_{0} u+b_{1} \frac{d u}{d t}+\ldots+b_{m} \frac{d^{m} u}{d t^{m}}\right\} \\
H(s)=\frac{Y(s)}{U(s)}=\frac{b(s)}{a(s)}
\end{gathered}
$$

Transfer function - Impulse response function

$$
H(s)=\mathcal{L}\{h(t)\}
$$

CT-LTI state-space models

General form

$$
\begin{array}{ll}
\dot{x}(t)=A x(t)+B u(t) & \text { (state equation) } \\
y(t)=C x(t)+D u(t) & \text { (output equation) }
\end{array}
$$

with

- given initial condition $x\left(t_{0}\right)=x(0)$ and $x(t) \in \mathcal{R}^{n}$,
- $y(t) \in \mathcal{R}^{p}, u(t) \in \mathcal{R}^{r}$
- system parameters

$$
A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times r}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times r}
$$

Overview

(1) Previous notions
(2) Sampling

- System elements for sampling
- Sampled state-space model
(3) DT-LTI system models

4 Poles of DT-LTI Systems

Sampling

System elements for sampling

Zero order hold sampling

Operation of the \mathbf{D} / \mathbf{A} converter

Sampling of CT-LTI systems

Given:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

Zero order hold sampling of u

$$
u(\tau)=u\left(t_{k}\right)=u(k) \quad, \quad t_{k} \leq \tau<t_{k+1}
$$

Equidistant (periodic) sampling: $t_{k+1}-t_{k}=h=$ const
Compute:
the state-space model of the sampled (discrete time) system

Sampled state equations - 1

Use the solution of the continuous time state equation

$$
\begin{equation*}
x(t)=e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} B u(\tau) d \tau \tag{*}
\end{equation*}
$$

Substitute $t=t_{k+1}$ and $t_{0}=t_{k}$ with periodic sampling $\left(h=\left(t_{k+1}-t_{k}\right)\right)$ and $\theta=\tau-t_{k}$.
With $x(k)=x\left(t_{k}\right)$ and $x(k+1)=x\left(t_{k+1}\right)$ we obtain from $(*)$

$$
x(k+1)=e^{A h} x(k)+e^{A h} \int_{0}^{h} e^{-A \theta} d \theta B u(k)
$$

Discrete time state equation

$$
x(k+1)=e^{A h} x(k)+A^{-1}\left(e^{A h}-I\right) B u(k)
$$

Matrix functions

Given a univariate real function $\varphi: \mathbb{R} \mapsto \mathbb{R}$ with a square matrix $A \in \mathbb{R}^{n \times n}$. Then $\varphi(A)$ is a square matrix $\varphi(A) \in \mathbb{R}^{n \times n}$.
Matrix exponential function
Given $A \in \mathbb{R}^{n \times n}$ and the real-valued exponential function $e: \mathbb{R} \mapsto \mathbb{R}$
Take the Taylor-series expansion of e around $t=0$

$$
e^{t}=1+t+\frac{1}{2} t^{2}+\ldots+\frac{1}{j!} t^{j}+\ldots
$$

Substitute $t=A$ and $1=I$

$$
e^{A}=I+A+\frac{1}{2} A^{2}+\ldots+\frac{1}{j!} A^{j}+\ldots \quad \in \mathbb{R}^{n \times n}
$$

For any diagonal matrix Λ the matrix function $\varphi(\Lambda)$ is easy to compute

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
0 & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \lambda_{n}
\end{array}\right] \quad, \quad \varphi(\Lambda)=\left[\begin{array}{cccc}
\varphi\left(\lambda_{1}\right) & 0 & \ldots & 0 \\
0 & \varphi\left(\lambda_{2}\right) & \ldots & 0 \\
0 & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \varphi\left(\lambda_{n}\right)
\end{array}\right]
$$

Sampled state equations - 2

Discrete time state equation

$$
x(k+1)=e^{A h} x(k)+A^{-1}\left(e^{A h}-I\right) B u(k)
$$

DT-LTI state equation for sampled systems

$$
x(k+1)=\Phi x(k)+\Gamma u(k)
$$

with

$$
\Phi=e^{A h}=I+A h+\ldots \quad, \quad \Gamma=A^{-1}\left(e^{A h}-I\right) B=\left(I h+\frac{A h^{2}}{2!}+\ldots\right) B
$$

DT-LTI state-space models

$$
\begin{array}{lc}
x(k+1)=\Phi x(k)+\Gamma u(k) & \quad(\text { state equation }) \\
y(k)=C x(k)+D u(k) & (\text { output equation })
\end{array}
$$

with given initial condition $x(0)$ and

$$
x(k) \in \mathbb{R}^{n}, y(k) \in \mathbb{R}^{p}, u(k) \in \mathbb{R}^{r}
$$

being vectors of finite dimensional spaces and

$$
\Phi \in \mathbb{R}^{n \times n}, \Gamma \in \mathbb{R}^{n \times r}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times r}
$$

being matrices

Solution of the DT-LTI state equation

```
\(x(1)=\Phi x(0)+\Gamma u(0)\)
\(x(2)=\Phi x(1)+\Gamma u(1)=\Phi^{2} x(0)+\Phi \Gamma u(0)+\Gamma u(1)\)
\(x(3)=\Phi x(2)+\Gamma u(2)=\Phi^{3} x(0)+\Phi^{2} \Gamma u(0)+\Phi \Gamma u(1)+\Gamma u(2)\)
\(x(k)=\Phi x(k-1)+\Gamma u(k-1)=\Phi^{k} x(0)+\sum_{j=0}^{k-1} \Phi^{k-j-1} \Gamma u(j)\)
```


Discrete time signals

$$
u=\{u(k), k=0,1, \ldots\}
$$

scalar valued discrete time signal: $u(k) \in \mathbb{R}$

Pulse signal (scalar valued): the discrete time analogue for the Dirac-delta (unit impulse) signal

$$
u(k)=\left\{\begin{array}{ccc}
1 & \text { if } & k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

DT-LTI SISO I/O system models - Pulse response function

From the solution of the state equation with $D=0$ and $x(0)=0$

$$
\begin{aligned}
& x(k)=\Phi x(k-1)+\Gamma u(k-1)=\Phi^{k} x(0)+\sum_{j=0}^{k-1} \Phi^{k-j-1} \Gamma u(j) \\
& y(k)=C x(k)=C \Phi^{k} x(0)+\sum_{j=0}^{k-1} C \Phi^{k-j-1} \Gamma u(j)
\end{aligned}
$$

Pulse response function

$$
h(k)=\left\{\begin{array}{cc}
0 & k<1 \\
C \Phi^{k-1} \Gamma & k \geq 1
\end{array}\right.
$$

The discrete time analogue of the impulse response function.

Transformation of the states

Consider the DT-LTI state-space model

$$
x(k+1)=\Phi x(k)+\Gamma u(k), \quad y(k)=C x(k)+D u(k)
$$

with the state transformation $\bar{x}=T x$.
The parameters of the transformed model (another equivalent realization)

$$
\bar{\Phi}=T \Phi T^{-1} \quad, \quad \bar{\Gamma}=T \Gamma, \bar{C}=C T^{-1}
$$

Discrete time Markov parameters: $C \Phi^{k-1} \Gamma$

- they are invariant for the state transformations

Shift operators

Definition (forward shift operator q)

which acts on a discrete time signal as follows

$$
\begin{equation*}
q f(k)=f(k+1) \tag{1}
\end{equation*}
$$

Definition (backward shift operator (delay) q^{-1})

which acts on a discrete time signal as follows

$$
\begin{equation*}
q^{-1} f(k)=f(k-1) \tag{2}
\end{equation*}
$$

- The induced norm of an operator q on the vector space X induced by a norm ||.|| on the same space is defined as

$$
\|q\|=\sup _{\|x\|=1} \frac{\|q(x)\|}{\|x\|}
$$

DT-LTI SISO I/O system models - Discrete difference equation models

- Forward difference form with $n_{a} \geq n_{b}$ (proper)

$$
\begin{aligned}
& y\left(k+n_{a}\right)+a_{1} y\left(k+n_{a}-1\right)+\ldots+a_{n_{a}} y(k)=b_{0} u\left(k+n_{b}\right)+\ldots+b_{n_{b}} u(k) \\
& \quad A(q) y(k)=B(q) u(k)
\end{aligned}
$$

$$
A(q)=q^{n_{a}}+a_{1} q^{n_{a}-1}+\ldots+a_{n_{a}}, B(q)=b_{0} q^{n_{b}}+b_{1} q^{n_{b}-1}+\ldots+b_{n_{b}}
$$

- Backward difference form where $d=n_{a}-n_{b}>0$ is the pole excess (time delay)

$$
\begin{gathered}
y(k)+a_{1} y(k-1)+\ldots+a_{n_{a}} y\left(k-n_{a}\right)=b_{0} u(k-d)+\ldots+b_{n_{b}} u\left(k-d-n_{b}\right) \\
A^{*}\left(q^{-1}\right) y(k)=B^{*}\left(q^{-1}\right) u(k-d), \\
A^{*}\left(q^{-1}\right)=q^{n_{a}} A\left(q^{-1}\right), B^{*}\left(q^{-1}\right)=q^{n_{b}} B\left(q^{-1}\right)
\end{gathered}
$$

DT-LTI SISO I/O system models - Pulse transfer operator

- Computed from the DT-LTI state-space model

$$
\begin{aligned}
& x(k+1)=\Phi x(k)+\Gamma u(k) \quad, \quad y(k)=C x(k)+D u(k) \\
& x(k+1)=q x(k)=\Phi x(k)+\Gamma u(k) \\
& x(k)=(q I-\Phi)^{-1} \Gamma u(k) \\
& y(k)=C x(k)+D u(k)=\left[C(q I-\Phi)^{-1} \Gamma+D\right] u(k)
\end{aligned}
$$

Pulse-transfer operator $H(q)$ of the $\operatorname{SSR}(\Phi, \Gamma, C, D)$:

$$
H(q)=C(q I-\Phi)^{-1} \Gamma+D
$$

The discrete time analogue of the transfer function.
It is also invariant for the state transformation.

DT-LTI SISO I/O system models - Pulse transfer operator

- For SISO LTI systems $H(q)$ is a rational function

$$
H(q)=C(q I-\Phi)^{-1} \Gamma+D=\frac{B(q)}{A(q)}, \quad \operatorname{deg} B(q)<\operatorname{deg} A(q)=n
$$

where $A(q)$ is the characteristic polynomial of the state matrix Φ.

- Relation with the discrete difference equation form

$$
\begin{aligned}
& y\left(k+n_{a}\right)+a_{1} y\left(k+n_{a}-1\right)+\ldots+a_{n_{a}} y(k)= \\
& \quad=b_{0} u\left(k+n_{b}\right)+\ldots+b_{n_{b}} u(k) \\
& A(q) y(k)=B(q) u(k)
\end{aligned}
$$

Poles of DT-LTI systems - 1

- Comparison
continuous time system
discrete time system

$$
\begin{aligned}
& \text { state eq. } \quad \dot{x}(t)=A x(t)+B u(t) \quad x(k+1)=\Phi x(k)+\Gamma u(k) \\
& \Phi=e^{A h}
\end{aligned}
$$

output eq.

$$
y(t)=C x(t)
$$

$$
y(k)=C x(k)
$$ poles

$\lambda_{i}(A)$

$$
\begin{gathered}
\lambda_{i}(\Phi) \\
\lambda_{i}(\Phi)=e^{\lambda_{i}(A) h}
\end{gathered}
$$

Poles of DT-LTI systems - 2

