Computer Controlled Systems II – Diagnosis Model analysis and diagnosis Dynamic analysis of Petri nets

Katalin Hangos

University of Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

hangos.katalin@virt.uni-pannon.hu

Apr 2018

Lecture overview

Supporting methods for the diagnosis

- Diagnosis: the problem statement
- Dynamic analysis
- Observer design for state estimation

Dynamic analysis of Petri nets

- Solution of Petri net models
- The reachability graph
- Reachability analysis

3 Solution and analysis of CPN models

- Qualitative models and CPNs
- CPNs: solution traces

Supporting methods for the diagnosis

Supporting methods for the diagnosis

- Diagnosis: the problem statement
- Dynamic analysis
- Observer design for state estimation

Dynamic analysis of Petri nets

3 Solution and analysis of CPN models

Prediction-based diagnosis

General problem statement

Given:

- The number of faulty modes N_F (0=normal)
- Predictive dynamic model for each faulty mode

$$y^{(Fi)}(k+1) = \mathcal{M}^{(Fi)}(\mathcal{D}[1,k]; p^{(Fi)}) , k = 1, 2, \dots$$

- Measured data record: $D[0,k] = \{ (u(\tau), y(\tau) \mid \tau = 0, \cdots, k \}$
- Loss function $J^{(Fi)}$, $i = 0, \cdots, N_F$

$$J^{(Fi)}(y-y^{(Fi)},u) = \sum_{\tau=1}^{k} [r^{(i)T}(\tau)Qr^{(i)}(\tau)], r^{(i)}(\tau) = y(\tau)-y^{(Fi)}(\tau), \tau = 1$$

Compute: The actual faulty mode of the system, i.e. the fault index i that minimizes the loss function.

Fault isolation

K. Hangos (University of Pannonia)

Identification-based diagnosis

General problem statement

Given:

- The number of faulty modes N_F (0=normal)
- Predictive parametric dynamic model for each faulty mode

$$y^{(Fi)}(k+1) = \mathcal{M}^{(Fi)}(\mathcal{D}[1,k]; p^{(Fi)}) , k = 1, 2, \dots$$

- Measured data record: $D[0,k] = \{ (u(\tau), y(\tau) \mid \tau = 0, \cdots, k \}$
- Loss function depending on the parameters $J^{(Fi)},\ i=0,\cdots,N_F$

$$J^{(Fi)}(p^{(estFi)} - p^{(Fi)}) = \rho^{(i)T}Q\rho^{(i)} , \ \rho^{(i)} = p^{(estFi)} - p^{(Fi)}$$

Compute: The actual faulty mode of the system, i.e. the fault index i that minimizes the loss function.

Fault isolation

CT-LTI state-space models

• General form - revisited

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \quad , \quad \boldsymbol{x}(t_0) = \boldsymbol{x_0} \\ \boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t)$$

with

- signals: $\mathbf{x}(t) \in \mathbb{R}^n$, $\mathbf{y}(t) \in \mathbb{R}^p$, $\mathbf{u}(t) \in \mathbb{R}^r$
- system parameters: $\pmb{A} \in \mathbb{R}^{n \times n}$, $\pmb{B} \in \mathbb{R}^{n \times r}$, $\pmb{C} \in \mathbb{R}^{p \times n}$ (D = 0)

Controllability of CT-LTI systems

Problem statement

- Given:
 - a state-space model with parameters (A, B, C)
 - an initial state $x(t_1)$ and a final state $x(t_2) \neq x(t_1)$

• Compute:

an input signal $\boldsymbol{u}(t)$ which moves the system from $\boldsymbol{x}(t_1)$ to $\boldsymbol{x}(t_2)$ in finite time

Controllability of CT-LTI systems

Theorem (Controllability)

Given $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ for

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

This SSR with state space \mathcal{X} is state controllable iff the controllability matrix C_n is of full rank

$$\mathcal{C}_n = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} & \dots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$$

Kalman rank condition: If dim $\mathcal{X} = n$ then rank $\mathcal{C}_n = n$.

Necessary and sufficient condition

Observability of CT-LTI systems

- Problem statement
 - Given:
 - a state-space model with parameters (A, B, C)
 - a measurement record of u(t) and y(t) as over a finite time interval
 - Compute:
 - The state signal x(t) over the finite time interval
 - It is enough to compute $x(t_0) = x_0$

9 / 44

Observability of CT-LTI systems

Theorem (Observability)

Given $(\mathbf{A}, \mathbf{B}, \mathbf{C})$. This SSR with state space \mathcal{X} is state observable iff the observability matrix \mathcal{O}_n is of full rank

$$\mathcal{D}_n = \left[egin{array}{c} egin{array} egin{array}{c} egin{array}{c} egin{array}{c} eg$$

Kalman rank condition: If $\dim \mathcal{X} = n$ then rank $\mathcal{O}_n = n$.

• A necessary and sufficient condition

Observer desing for CT-LTI systems

Problem statement Given:

- a SISO state-space model with parameters (A, B, C)
- a finite measurement record of u and y as signals
- an initial value \hat{x}_0

Compute:

An estimate of the state signal x over the finite time interval such that $x(t) \rightarrow \hat{x}(t)$ as $t \rightarrow \infty$

Observer equation

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $y(t) = Cx(t)$

consider the **observer**

$$\frac{\hat{x}(t)}{dt} = A\hat{x}(t) + Bu(t) + L(y - C\hat{x}(t))$$

Introduce the **estimation error** signal: $\dot{x} = x - \hat{x}$

$$\frac{\check{x}(t)}{dt} = (A - LC)\check{x}(t)$$

If the matrix $\check{A} = A - LC$ is a stability matrix then $\check{x} \to 0$ when $t \to \infty$ (asymptotic stability). **Task:** find *L* such that $\check{A} = A - LC$ is a stability matrix

Dynamic analysis of Petri net models

Supporting methods for the diagnosis

2 Dynamic analysis of Petri nets

- Solution of Petri net models
- The reachability graph
- Reachability analysis

3 Solution and analysis of CPN models

Dynamics of Petri nets

Marking function: marking points (tokens)

$$\mu : \mathbf{P} \to \mathcal{N} \quad , \quad \mu(\mathbf{p}_i) = \mu_i \ge 0$$

 $\underline{\mu}^T = [\mu_1, \mu_2, \dots, \mu_n] \quad , \quad n = |\mathbf{P}|$

Transition **fires** (operates): when its pre-conditions are "true" (there is a **token** on its input places)

$$\underline{\mu}^{(i)}[t_j > \underline{\mu}^{(i+1)}]$$
 after firing the consequences become "true"

Firing (operation) sequence

$$\underline{\mu}^{(0)}[t_{j0} > \underline{\mu}^{(1)}[t_{j1} > ...[t_{jk} > \underline{\mu}^{(k+1)}]$$

Parallel events

More than one enabled (fireable) transition: concurrency (independent conditions), conflict, confusion

Conflict resolution

Using inhibitor edges: priority given by the user test edges Other solutions:

capacity of the places

Petri net model of a runway -1

Petri net model of a runway – 2

Conflict resolution: landing aircraft has priority

The solution problem

Abstract problem statement Given:

- a formal description of a discrete event system model
- initial state(s)
- external events: system inputs

Compute:

• the sequence of internal (state and output) events

The solution is algorithmic! The problem is NP-hard!

Petri net models – reachability graph

Solution: marking (systems state) sequences reachability graph (tree) (weighted directed graph)

- vertices: markings
- edges: if exists transition the firing of which connects them
- edge weights: the transition and the external events

Construction:

- start: at the given initial state (marking)
- adding a new vertex: by firing an enabled transition (with the effect of inputs!)

May be NP-hard (in conflict situation or non-finite operation)

The state space of Petri net models

State vector: marking in *internal* places in- and out-degree is at least 1

$$x(k) \sim \underline{\mu}_{x}^{(k)}$$

Inputs: marking in *input* places in-degree is zero

$$u(k) \sim \underline{\mu}_u^{(k)}$$

Example: garage gate

Petri net model

$$\underline{\mu}_{\mathsf{x}}^{\mathsf{T}} = [\mu_{\mathsf{autovar}}, \mu_{\mathsf{gombvar}}, \mu_{\mathsf{elveszvar}}, \mu_{\mathsf{beenged}}]$$

$$\underline{\mu}_{\mathsf{u}}^{\mathsf{T}} = [\mu_{\mathsf{autobe}}, \mu_{\mathsf{gombbe}}, \mu_{\mathsf{jegyelevesz}}, \mu_{\mathsf{autogarazsba}}]$$

Reachability graphs

Finite case

Non-finite case

Apr 2018

23 / 44

Non-finite reachability graph

Reduction: using the ω symbol

Analysis of Petri net models

Dynamic properties

- behavioural (initial state dependent)
- *structural* (only depends on the structure graph)

Behavioural properties

- reachabiliy (coverability, controllability)
- deadlocks, liveness
- boundedness, safeness
- (token) conservation

Structural properties

• state and transition invariant: cyclic behaviour

Reachability of Petri net models

The notion of reachability: whether there exists

- to a given [initial state $(\mu^{(I)})$, final state $(\mu^{(F)})$] pair
- a firing sequence, such that

$$\underline{\mu}^{(I)}[t_{j0} > \underline{\mu}^{(1)}[t_{j1} > \dots [t_{jk} > \underline{\mu}^{(F)}]$$

The notion of **coverability**:

$$\underline{\mu}'' \geq \underline{\mu}' \quad \Leftrightarrow \quad \forall i: \ \mu_i'' \geq \mu_i'$$

The same as the usual controllability

Boundedness of Petri nets

Related properties to boundedness

- *finiteness (boundedness)*: Is the number of tokens finite for every initial state?
- Safeness: the bound is 1 for each place

Can be defined (examined) for the whole net or only for a given set of places

Conservative Petri net: the number of tokens is constant (resource-conservation)

Liveness of Petri nets

The notion of liveness: from a given initial state

- for a *transition*: is there a firing sequence when the transition is active?
- for a set of transition, for the whole net

Deadlock: a non-final state from where there is no enabled (fireable) transition

Simple Petri net examples

Deadlock: the marking (0,1)

Non-bounded place: *p*₃

Dynamic analysis methods of Petri net models - 1

Analysis of behavioural properties

- by constructing the *reachability graph*
- and *searching* on the vertices of the graph
- may be NP-hard

Problems:

- cyclic behaviour
- non-bounded places

Solution and analysis of CPN models

- Supporting methods for the diagnosis
- 2 Dynamic analysis of Petri nets
- Solution and analysis of CPN models
 - Qualitative models and CPNs
 - CPNs: solution traces

The origin of qualitative models

Engineering dynamical models in state-space form:

Qualitative models can be derived *systematically* from engineering models by using

- interval-valued variables and parameters
- simplified equations

The derivation of discrete time qualitative DAEs

Dynamic models derived from first engineering principles: continuous time differential-algebraic equation models

- differential equations originate from conservation balances: to be transformed to difference equations (time discretization)
- selection of the *qualitative range spaces* of variables and parameters
- deriving the qualitative form

Qualitative signals

Qualitative range spaces

 $Q = \{H, N, L, 0\}, \ B = \{0, 1\}, \ Q_{\mathcal{E}} = \{H, N, L, 0, e+, e-\}$

with High, Low, Normal, error.

A qualitative signal is a signal (input, output, state and *disturbance* (*fault indicator*)) that takes its values from a finite qualitative range set An event is generated when a qualitative signal changes its value. An event e_X is formally described by a pair $e_X(t, q_X) = (t, [x](t) = q_X)$ where t is the occurrence time when the qualitative signal [x] takes the value q_X .

Normalized intervals

Qualitative range space: for variables with "normal" N value

$$Q = \{H, N, L, 0\}, \ B = \{0, 1\}, \ Q_E = \{H, N, L, 0, e+, e-\}$$

Intervals with non-fixed endpoints

Operation table for interval addition

[a] + [b]	0	L	Ν	Н
0	0	L	Ν	Н
L	L	Ν	Н	e+
Ν	Ν	Н	e+	e+
Н	Н	e+	e+	e+

This is only a possible definition!

lels Qualitative models and CPNs

Solution of a qualitative DAE

In the form of a **solution table** (interval operation table)

- collect all of the *right-hand side variables* (time-dependent values!)
- enumerate all of their signal traces
- systematically enumerate all of the possible combinations
 ⇒ exponentially growing size with the number of variables

A static example: sensor with additive type fault

Algebraic model equation: $v^m = v + \chi \cdot E$ $[v] \in Q$, $[v]^m \in Q_e$, $\chi \in B_{-1} = \{-1, 0, 1\}$

$[v^m]$	$[\chi]$	[v]	mode
N	0	N	normal
Н	0	Н	normal
L	0	L	normal
0	0	0	normal
e+	1	Н	faulty
Н	1	N	faulty
N	1	L	faulty
L	1	0	faulty
N	-1	Н	faulty
L	-1	N	faulty
0	-1	Ĺ	faulty
e-	-1	0	faulty

A dynamic example: mass balance of the coffee machine

Differential equation in discrete form: $h^T = h + \chi_I \cdot v - \chi_O \cdot v$ $[h], [h]^T \in Q_e, \chi_I, \chi_O \in \mathcal{B} \text{ and } [v] = L$ Solution for constant inputs

$[h]^T$	[h](t ₀)	XΙ	χο
(N, N, N)	N	(1,1,1)	(1,1,1)
(L, L, L)	L	(1,1,1)	(1,1,1)
(N, N, N)	N	(0,0,0)	(0,0,0)
(e+, e+, H)	N	(1,1,1)	(0,0,0)
(e+, H, N)	L	(1,1,1)	(0,0,0)
(e-,0,L)	N	(0,0,0)	(1,1,1)
(e-, e-, 0)	L	(0,0,0)	(1,1,1)

CPN and qualitative models

Coloured Petri Net model (CPN): can be obtained from a qualitative model

- colour sets: from the qualitative range space of the variables
- spaces: associated to variables
- transitions: associated to the equations (static [output] and dynamic [state] equations)

Diagnostic applications: the **faults should be modelled**

Solution and analysis of CPN models CPNs: solution - traces

Static example: sensor with additive fault 2

CPN modell

Qualitative signals

Qualitative values for variables with "normal" N value

 $Q = \{H, N, L, 0\}, \ B = \{0, 1\}, \ Q_{\mathcal{E}} = \{H, N, L, 0, e+, e-\}$

where High, Low, Normal, error.

Qualitative signal: a signal (input, output, state or *disturbance (fault indicator!)*) with a qualitative range space

Event: occurs when a qualitative signal changes its value. Formal description of the event e_X :

$$e_X(t, q_X) = (t, [x](t) = q_X)$$

where t is the discrete time instant when the qualitative signal [x] takes the value q_X .

Signal traces – event sequences

The (signal trace) of a qualitative signal [x] is the event sequence

$$\mathcal{T}_{(x)}(t_0,t_{\mathcal{F}})=\{(t_0;[x](t_0)=q_{ imes 0}),(t_1;[x](t_1)]=q_{ imes 1}),...,(t_{\mathcal{F}};[x](t_{\mathcal{F}})=q_{ imes \mathcal{F}})\}$$

defined on the time interval (t_0, t_F) with $q_* \in \mathcal{Q}_x$

A vector-valued trace of multiple signals is defined as $\mathcal{T}_{(u,d,y)}(t_0, t_F)$ Simplified notation: by omitting the time, e.g.

$$\mathcal{T}_{(h,T)}(1,3) = \{(N,N), (L,H), (L,e+)\}$$

For diagnostic purposes we define

- nominal traces (for describing normal behaviour)
- characteristic traces (for describing faulty behaviour)

Simple dynamic example – 1

Tank with free outflow: qualitative model equations

$$[m](k + 1) = [m](k) + [v_{in}](k) - K \cdot [m](k) - \chi_{leak} \cdot B$$

"small" leakage - [B] = L+ sensor with additive fault

CPN modell:

Simple dynamic example – 2

Solution: qualitative input-output traces

	[<i>m</i>] initial mass in tank	[<i>v_{in}</i>] input flow sequence	[χ _{leak}] * tank leakage	[X _{meas}] * sensor failure	$[\nu_T^{M}]$ measured flow sequence
-	LOW	(NORMAL,NORMAL,NORMAL)	0	NEG	(LOW, LOW, LOW)
	LOW	(NORMAL, NORMAL, NORMAL)	1	POS	(LOW, LOW, LOW)
	HIGH	(LOW, LOW, LOW)	1	0	(LOW, NO, NO)
	HIGH	(LOW, LOW, LOW)	0	NEG	(LOW, NO, NO)
D	NORMAL	(NO, NO, NO)	0	0	(LOW, NO, NO)
D	NORMAL	(NO, NO, NO)	1	POS	(LOW, LOW, LOW)
	NORMAL	(NO, NO, NO)	1	NEG	(e-, e-, e-)
	NORMAL	(NO, NO, NO)	0	POS	(NORMAL, LOW, LOW)
D	NORMAL	(NO, NO, NO)	0	NEG	(NO, e-, e-)
D	NORMAL	(NO, NO, NO)	1	0	(NO, NO, NO)