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Linear and nonlinear state space models Signals and systems

System

System (S): acts on signals
y = S[u]

inputs (u ∈ U) and outputs (y ∈ Y)
abstract operator (S : U → Y)
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Linear and nonlinear state space models Input-output mapping

Input-output modeling

Measurable variables
Data: measuring it for [t0, tf ]
Input variables can be manipulated

{u1(t), u2(t), . . . , up(t)} t0 ≥ t ≥ tf

Output variables can be directly measured

{y1(t), y2(t), . . . , ym(t)} t0 ≥ t ≥ tf

Notation:

u(t) = [u1(t), u2(t), . . . , up(t)]T

y(t) = [y1(t), y2(t), . . . , ym(t)]T

Mathematical relationship

y1(t) = g1(u1(t), . . . , up(t))
...

ym(t) = gm(u1(t), . . . , up(t))

 y = g(u)
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Linear and nonlinear state space models Input-output mapping

State Space

Definition (State equations)

The set of equations required to specify the state x(t) for all t ≥ t0 given
x(t0)and the function u(t), t ≥ t0, are called state equations.

Definition (State space)

The state space of a system, denoted by X , is the set of all possible values
that the state may take.

ẋ(t) = f (x(t),u(t), t), x(t0) = x0 (state equation)
y(t) = g(x(t),u(t), t) (output equation)
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Linear and nonlinear state space models Continuous and discrete time state space models

Linear and Nonlinear Systems

Definition (Linear mapping)

The function g is said to be linear if and only if

g(α1u1 + α2u2) = α1g(u1) + α2g(u2)

Linear state space model

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C (t)x(t) + D(t)u(t)

Linear time-invariant state space model

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

K. Hangos (University of Pannonia) PE Apr 2018 6 / 33



Linear and nonlinear state space models Continuous and discrete time state space models

Discrete-Time Systems

Why?
Digital computers operate in a discrete-time fashion, it has an internal
discrete-time clock.
Many differential equations of continuous-time models can only be
solved numerically using a computer.
Some systems are inherently discrete-time, e.g. economic models
based on quarterly recorded data, etc.

Important: Discretization of time does not imply the discretization of the
state space!
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Linear and nonlinear state space models Continuous and discrete time state space models

Discrete-time state space models

Nonlinear

x(k + 1) = f (x(k), u(k), k), x(0) = x0

y(k) = g(x(k), u(k), k)

Linear

x(k + 1) = A(k)x(k) + B(k)u(k), x(0) = x0

y(k) = C (k)x(k) + D(k)u(k)

Linear time-invariant

x(k + 1) = Ax(k) + Bu(k), x(0) = x0

y(k) = Cx(k) + Du(k)
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Linear and nonlinear state space models Continuous and discrete time state space models

Discrete time linear state space models

x(k + 1) = Φx(k) + Γu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

given initial condition x(0);
vector valued signals

x(k) ∈ Rn , y(k) ∈ Rp , u(k) ∈ Rr

system parameters:

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r

(Not necessarily) equidistant (tk − tk−1 = ∆h)

x(k) = x(tk) , u(k) = u(tk) , y(k) = y(tk)
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Linear and nonlinear state space models Discrete event systems

Continuous-State and Discrete-State Systems

Continuous The state space X is a continuum
Discrete The state space X is a discrete set
Hybrid Some variables are discrete, some are continuous
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Linear and nonlinear state space models Discrete event systems

Discrete event systems

Characteristic properties:
the range space of the signals (input, output, state) is discrete:
x(t) ∈ X = {x0, x1, ..., xn}
event: the occurrence of change in a discrete value
time is also discrete: T = {t0, t1, ..., tn} = {0, 1, ..., n}

Only the order of the events is considered
description of sequential and parallel events
application area: scheduling, operational procedures, resource
management
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Linear and nonlinear state space models Discrete event systems

Discrete event systems – discrete time state space models

Generalization of discrete time linear state space models

x(k + 1) = Ψ(x(k), u(k)) (state equation)
y(k) = h(x(k), u(k)) (output equation)

with given initial condition x(0) and nonlinear state Ψ and output function
h.

Discrete event system:
1 discrete time with non-equidistant sampling
2 the range space of the signals is discrete
3 event: change in the discrete value of a signal

K. Hangos (University of Pannonia) PE Apr 2018 12 / 33



Modelling for diagnosis

System and its signals – revisited

System (S): acts on signals

y = S[u, d]

inputs (u ∈ U), disturbances (d ∈ D) and outputs (y ∈ Y)
abstract operator (S : U → Y)
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Modelling for diagnosis

Fault modelling

A fault/failure changes the dynamic behaviour of the nominal (fault-free)
system that are described by

an external non-measurable (directly observable) signal - a
disturbance
modifying the model structure or parameters

Fault indicator: a (static) non-measurable (directly observable) variable
χFi

that is
0 when there is no fault Fi
6= 0 in the presence of Fi

Example: sensor with additive fault
Algebraic model equation: vm = v + χ · E
v ,E ∈ Q, vm ∈ Qe , χ ∈ B−1 = {−1, 0, 1}
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Automata models

Automaton - abstract model: A = (Q,Σ, δ; ΣO , ϕ)

Set of states: Q
finite alphabet of the input tape: Σ = {#; a, b, ...}
State transition function: δ : Q × Σ→ Q

Set of initial and final states: QI , QF ⊆ Q

finite alphabet of the output tape: ΣO = {#;α, β, ...}
Output function: ϕ : Q → ΣO

Graphical description: weighted directed graph
Vertices: states (Q)
Edges: state transitions (δ)
Edge weights: input symbols (Σ)
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Automata models

Operation of automata

Given
Initial state: q0 ∈ QI ⊆ Q

The content of the input tape: S = [σ1, σ2, ..., σn] , σi ∈ Σ

Compute
Final state: if qf ∈ QF ⊆ Q, then the automaton accepts the input
The content of the output state: SO = [ζ1, ζ2, ..., ζn] , ζi ∈ ΣO

K. Hangos (University of Pannonia) PE Apr 2018 16 / 33



Automata models

Automata - discrete event systems

Automaton Discrete event state
model space model

State space Q X ∈ Zn

Input u string from discrete time
Σ discrete valued signal

Output y string from discrete time
ΣO discrete valued signal

State q(k + 1) = δ(q(k), u(k)) x(k + 1) = Ψ(x(k), u(k))
equation
Output y(k) = ϕ(x(k)) y(k) = h(x(k), u(k))
equation
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Petri net models

Overview - Petri nets: modelling and dynamics

1 Linear and nonlinear state space models

2 Modelling for diagnosis

3 Automata models

4 Petri net models
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Operation (dynamics) of Petri nets
Parallel and conflicting execution steps
Solution of Petri net models - reachability graph
Coloured Petri Net models
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Petri net models Description forms

Petri net - abstract description: PN = (P ,T , I ,O)

Static description (structure)
set of places (conditions): P
set of transitions (events): T
Input (pre-condition) function: I : T → P∞

Output (consequence) function: O : T → P∞

Graphical description: bipartite directed graph
Vertices: places (P) and transitions (T ) (partitions)
Edges: input and output functions (I ,O)
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Petri net models Description forms

Introductory example: Garage gate
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Petri net models Description forms

Example: garage gate – 1

Petri net model - graphical description
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Petri net models Description forms

Example: garage gate – 2

Petri net model - formal description
Places (states; inputs):

P = {pautovar , pgombvar , pelveszvar , pbeenged ; pautobe , pgombbe , pjegyelevesz , pautogarazsba}

Transitions:
T = {tgomb, tjegyki , tsorfel , tsorle}

Input function:

I (tgomb) = {pautobe , pautovar} , I (tjegyki ) = {pgombbe , pgombvar}
I (tsorfel) = {pjegyelvesz , pelveszvar} , I (tsorle) = {pbeenged , pautogarazsba}

Output function:

O(tgomb) = {pgombvar} , O(tjegyki ) = {pelveszvar}
O(tsorfel) = {pbeenged} , O(tsorle) = {pautovar}
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Petri net models Operation (dynamics) of Petri nets

The state of Petri nets

Marking function: marking points (tokens)

µ : P→ N , µ(pi ) = µi ≥ 0
µT = [µ1, µ2, . . . , µn] , n = |P|

Transition fires (operates): when its pre-conditions are "true" (there is a
token on its input places)

µ(i)[tj > µ(i+1)

after firing the consequences become "true"

Firing (operation) sequence

µ(0)[tj0 > µ(1)[tj1 > ...[tjk > µ(k+1)
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Petri net models Operation (dynamics) of Petri nets

Example: garage gate – 3

One operation step
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Petri net models Operation (dynamics) of Petri nets

Example: garage gate – 4

Formal description of an operation step
Marking vector

µT = [µautovar , µgombvar , µelveszvar , µbeenged ;

µautobe , µgombbe , µjegyelevesz , µautogarazsba]

Operation (firing) of transition tgomb

µ(1)[tgomb > µ(2)

µ(1) = [1, 0, 0, 0 ; 1, 0, 0, 0]T

µ(2) = [0, 1, 0, 0 ; 0, 0, 0, 0]T
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Petri net models Parallel and conflicting execution steps

Parallel events

More than one enabled (fireable) transition:
concurrency (independent conditions), conflict, confusion
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Petri net models Parallel and conflicting execution steps

Conflict resolution

Using inhibitor edges:
priority given by the user
test edges

Other solutions:
capacity of the places
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Petri net models Solution of Petri net models - reachability graph

The solution problem

Abstract problem statement
Given:

a formal description of a discrete event system model
initial state(s)
external events: system inputs

Compute:
the sequence of internal (state and output) events

The solution is algorithmic! The problem is NP-hard!
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Petri net models Solution of Petri net models - reachability graph

Petri net models – reachability graph

Solution: marking (systems state) sequences
reachability graph (tree) (weighted directed graph)
vertices: markings
edges: if exists transition the firing of which connects them
edge weights: the transition and the external events

Construction:
1 start: at the given initial state (marking)
2 adding a new vertex: by firing an enabled transition (with the effect of

inputs!)
May be NP-hard (in conflict situation or non-finite operation)
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Petri net models Coloured Petri Net models

Generalized Petri net models

Hierarchical Petri nets
Timed Petri nets: using inscriptions

clock: built in (or special "source" place)
firing time to transitions
(waiting time for places)

Coloured Petri nets: using inscriptions
tokens have discrete value ("colour")
colour set to places
discrete functions to the transitions and arcs
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Petri net models Coloured Petri Net models

Simple example: Runway

RWY
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Petri net models Coloured Petri Net models

Petri net model of a runway – 3

Timed Peri net model
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Petri net models Coloured Petri Net models

Petri net model of a runway – 4

Coloured Peri net model: "insriptions"
Edge fucntion: afelki : if val(pfp_lefogl) = ” ↑ ” then ”true”

afel = val(pfp_lefogl) , val(pfel) = afel
Colour set: Cfelle = { ↑ , ↓ }
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