Computer Controlled Systems II – Diagnosis Linear and nonlinear state space models Automata and Petri net models

Katalin Hangos

University of Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

hangos.katalin@virt.uni-pannon.hu

Apr 2018

Lecture overview

Linear and nonlinear state space models

- Signals and systems
- Input-output mapping
- Continuous and discrete time state space models
- Discrete event systems
- 2 Modelling for diagnosis
 - Automata models
- 4 Petri net models
 - Description forms
 - Operation (dynamics) of Petri nets
 - Parallel and conflicting execution steps
 - Solution of Petri net models reachability graph
 - Coloured Petri Net models

System (S): acts on signals

$$y = \mathbf{S}[u]$$

• inputs $(u \in \mathcal{U})$ and outputs $(y \in \mathcal{Y})$

• abstract operator ($\boldsymbol{\mathsf{S}}: \mathcal{U} \to \mathcal{Y})$

Input-output modeling

- Measurable variables
 - Data: measuring it for $[t_0, t_f]$
 - Input variables can be manipulated

 $\{u_1(t), u_2(t), \ldots, u_p(t)\} \quad t_0 \ge t \ge t_f$

• Output variables can be directly measured

 $\{y_1(t), y_2(t), \ldots, y_m(t)\} \quad t_0 \ge t \ge t_f$

• Notation:

 $u(t) = [u_1(t), u_2(t), \dots, u_p(t)]^T$ $y(t) = [y_1(t), y_2(t), \dots, y_m(t)]^T$

• Mathematical relationship

4 / 33

State Space

Definition (State equations)

The set of equations required to specify the state $\mathbf{x}(t)$ for all $t \ge t_0$ given $\mathbf{x}(t_0)$ and the function $\mathbf{u}(t)$, $t \ge t_0$, are called state equations.

Definition (State space)

The state space of a system, denoted by \mathcal{X} , is the set of all possible values that the state may take.

$$\begin{split} \dot{\boldsymbol{x}}(t) &= \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t), \quad \boldsymbol{x}(t_0) = \boldsymbol{x_0} \qquad \text{(state equation)} \\ \boldsymbol{y}(t) &= \boldsymbol{g}(\boldsymbol{x}(t), \boldsymbol{u}(t), t) \qquad \text{(output equation)} \end{split}$$

$$\mathbf{u}(t) \xrightarrow{} \mathbf{\dot{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t) \xrightarrow{} \mathbf{y} = \mathbf{g}(\mathbf{x}, \mathbf{u}, t)$$

Linear and Nonlinear Systems

Definition (Linear mapping)

The function g is said to be linear if and only if

$$\boldsymbol{g}(\alpha_1\boldsymbol{u}_1 + \alpha_2\boldsymbol{u}_2) = \alpha_1\boldsymbol{g}(\boldsymbol{u}_1) + \alpha_2\boldsymbol{g}(\boldsymbol{u}_2)$$

Linear state space model

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t)$$

Linear time-invariant state space model

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

Discrete-Time Systems

Why?

- Digital computers operate in a discrete-time fashion, it has an internal discrete-time clock.
- Many differential equations of continuous-time models can only be solved numerically using a computer.
- Some systems are inherently discrete-time, e.g. economic models based on quarterly recorded data, etc.

Important: Discretization of time does not imply the discretization of the state space!

K. Hangos (University of Pannonia)

Discrete-time state space models

Nonlinear

$$x(k+1) = f(x(k), u(k), k), \qquad x(0) = x_0 y(k) = g(x(k), u(k), k)$$

Linear

$$\begin{aligned} x(k+1) &= A(k)x(k) + B(k)u(k), & x(0) = x_0 \\ y(k) &= C(k)x(k) + D(k)u(k) \end{aligned}$$

Linear time-invariant

$$x(k+1) = Ax(k) + Bu(k), \qquad x(0) = x_0$$

$$y(k) = Cx(k) + Du(k)$$

Discrete time linear state space models

$$egin{aligned} x(k+1) &= \Phi x(k) + \Gamma u(k) & (state equation) \ y(k) &= C x(k) + D u(k) & (output equation) \end{aligned}$$

given initial condition x(0); vector valued signals

$$x(k) \in \mathcal{R}^n , \ y(k) \in \mathcal{R}^p , \ u(k) \in \mathcal{R}^r$$

system parameters:

$$\Phi \in \mathcal{R}^{n \times n} , \ \Gamma \in \mathcal{R}^{n \times r} , \ C \in \mathcal{R}^{p \times n} , \ D \in \mathcal{R}^{p \times r}$$

(Not necessarily) equidistant $(t_k - t_{k-1} = \Delta h)$

$$x(k) = x(t_k)$$
, $u(k) = u(t_k)$, $y(k) = y(t_k)$

Continuous-State and Discrete-State Systems

Continuous The state space \mathcal{X} is a continuum Discrete The state space \mathcal{X} is a discrete set Hybrid Some variables are discrete, some are continuous

Discrete event systems

Characteristic properties:

- the range space of the signals (input, output, state) is discrete: $x(t) \in \mathbf{X} = \{x_0, x_1, ..., x_n\}$
- event: the occurrence of change in a discrete value
- time is also **discrete**: $T = \{t_0, t_1, ..., t_n\} = \{0, 1, ..., n\}$

Only the order of the events is considered

- description of sequential and parallel events
- application area: scheduling, operational procedures, resource management

Discrete event systems – discrete time state space models

Generalization of discrete time linear state space models

$$egin{aligned} & x(k+1) = \Psi(x(k), u(k)) & (state equation) \ & y(k) = h(x(k), u(k)) & (output equation) \end{aligned}$$

with given initial condition x(0) and nonlinear state Ψ and output function *h*.

Discrete event system:

- discrete time with non-equidistant sampling
- 2 the range space of the signals is discrete
- event: change in the discrete value of a signal

Modelling for diagnosis

System and its signals - revisited

System (S): acts on signals

$$y = \mathbf{S}[u, \mathbf{d}]$$

• inputs $(u \in U)$, *disturbances* $(d \in D)$ and outputs $(y \in Y)$

• abstract operator (S : $\mathcal{U} \rightarrow \mathcal{Y})$

Fault modelling

A fault/failure changes the dynamic behaviour of the **nominal (fault-free)** system that are described by

- an external non-measurable (directly observable) signal a disturbance
- modifying the model structure or parameters

Fault indicator: a (static) non-measurable (directly observable) variable χ_{F_i} that is

- 0 when there is no fault F_i
- \neq 0 in the presence of F_i

Example: sensor with additive fault Algebraic model equation: $v^m = v + \chi \cdot E$ $v, E \in Q, v^m \in Q_e, \chi \in B_{-1} = \{-1, 0, 1\}$

Automaton - abstract model: $\mathbf{A} = (Q, \Sigma, \delta; \Sigma_O, \varphi)$

- Set of states: Q
- finite alphabet of the input tape: $\Sigma = \{\#; a, b, ...\}$
- State transition function: $\delta: Q \times \Sigma \rightarrow Q$
- Set of initial and final states: $Q_I, \ Q_F \ \subseteq \ Q$
- finite alphabet of the output tape: $\Sigma_O = \{\#; \alpha, \beta, ...\}$
- Output function: $\varphi: Q \to \Sigma_O$

Graphical description: weighted directed graph

- Vertices: states (Q)
- Edges: state transitions (δ)
- Edge weights: input symbols (Σ)

Operation of automata

Given

- Initial state: $q_0 \in Q_I \subseteq Q$
- The content of the input tape: $S = [\sigma_1, \sigma_2, ..., \sigma_n]$, $\sigma_i \in \Sigma$

Compute

- Final state: if $q_f \in Q_F \subseteq Q$, then the automaton **accepts** the input
- The content of the output state: $S_O = [\zeta_1, \zeta_2, ..., \zeta_n]$, $\zeta_i \in \Sigma_O$

Automata - discrete event systems

	Automaton	Discrete event state
	model	space model
State space	Q	$\mathcal{X} \in \mathbb{Z}^n$
Input <i>u</i>	string from	discrete time
	Σ	discrete valued signal
Output y	string from	discrete time
	Σ_O	discrete valued signal
State	$q(k+1) = \delta(q(k), u(k))$	$x(k+1) = \Psi(x(k), u(k))$
equation		
Output	$y(k) = \varphi(x(k))$	y(k) = h(x(k), u(k))
equation		

Overview - Petri nets: modelling and dynamics

- Linear and nonlinear state space models
- 2 Modelling for diagnosis

3 Automata models

Petri net models

- Description forms
- Operation (dynamics) of Petri nets
- Parallel and conflicting execution steps
- Solution of Petri net models reachability graph
- Coloured Petri Net models

Description forms

Petri net - abstract description: $\mathbf{PN} = (P, T, I, O)$

Static description (structure)

- set of places (conditions): P
- set of transitions (events): T
- Input (pre-condition) function: $I: T \to P^{\infty}$
- Output (consequence) function: $O: T \to P^{\infty}$

Graphical description: bipartite directed graph

- Vertices: places (P) and transitions (T) (partitions)
- Edges: input and output functions (1, 0)

Description forms

Introductory example: Garage gate

Example: garage gate -1

Petri net model - graphical description

Example: garage gate – 2

Petri net model - formal description Places (states; inputs):

 $P = \{p_{autovar}, p_{gombvar}, p_{elveszvar}, p_{beenged}; p_{autobe}, p_{gombbe}, p_{jegyelevesz}, p_{autogar}, p_{auto$

Transitions:

$$T = \{t_{gomb}, t_{jegyki}, t_{sorfel}, t_{sorle}\}$$

Input function:

$$\begin{split} I(t_{gomb}) &= \{p_{autobe}, p_{autovar}\} \quad , \quad I(t_{jegyki}) &= \{p_{gombbe}, p_{gombvar}\} \\ I(t_{sorfel}) &= \{p_{jegyelvesz}, p_{elveszvar}\} \quad , \quad I(t_{sorle}) &= \{p_{beenged}, p_{autogarazsba}\} \end{split}$$

Output function:

$$egin{aligned} O(t_{gomb}) &= \{p_{gombvar}\} &, & O(t_{jegyki}) &= \{p_{elveszvar}\} \ O(t_{sorfel}) &= \{p_{beenged}\} &, & O(t_{sorle}) &= \{p_{autovar}\} \end{aligned}$$

The state of Petri nets

Marking function: marking points (tokens)

$$\mu: \mathbf{P} o \mathcal{N} \quad , \quad \mu(p_i) = \mu_i \ge 0$$

 $\underline{\mu}^T = [\mu_1, \mu_2, \dots, \mu_n] \quad , \quad n = |\mathbf{P}|$

Transition **fires** (operates): when its pre-conditions are "true" (there is a **token** on its input places)

$$\underline{\mu}^{(i)}[t_j > \underline{\mu}^{(i+1)}$$
 after firing the consequences become "true"

Firing (operation) sequence

$$\underline{\mu}^{(0)}[t_{j0} > \underline{\mu}^{(1)}[t_{j1} > ...[t_{jk} > \underline{\mu}^{(k+1)}]$$

Example: garage gate – 3

One operation step

Example: garage gate – 4

Formal description of an operation step Marking vector

$$\underline{\mu}^{T} = [\mu_{autovar}, \mu_{gombvar}, \mu_{elveszvar}, \mu_{beenged}; \\ \mu_{autobe}, \mu_{gombbe}, \mu_{jegyelevesz}, \mu_{autogarazsba}]$$

Operation (firing) of transition t_{gomb}

$$\begin{split} & \underline{\mu}^{(1)}[t_{gomb} > \underline{\mu}^{(2)} \\ & \underline{\mu}^{(1)} = [1, \ 0, \ 0, \ 0 \ ; \ 1, \ 0, \ 0, \ 0]^{T} \\ & \underline{\mu}^{(2)} = [0, \ 1, \ 0, \ 0 \ ; \ 0, \ 0, \ 0, \ 0]^{T} \end{split}$$

Parallel events

More than one enabled (fireable) transition: concurrency (independent conditions), conflict, confusion

Conflict resolution

Using inhibitor edges: priority given by the user test edges Other solutions:

capacity of the places

The solution problem

Abstract problem statement Given:

- a formal description of a discrete event system model
- initial state(s)
- external events: system inputs

Compute:

• the sequence of internal (state and output) events

The solution is algorithmic! The problem is NP-hard!

Petri net models – reachability graph

Solution: marking (systems state) sequences reachability graph (tree) (weighted directed graph)

- vertices: markings
- edges: if exists transition the firing of which connects them
- edge weights: the transition and the external events

Construction:

- start: at the given initial state (marking)
- adding a new vertex: by firing an enabled transition (with the effect of inputs!)

May be NP-hard (in conflict situation or non-finite operation)

Generalized Petri net models

• Hierarchical Petri nets

- Timed Petri nets: using inscriptions
 - clock: built in (or special "source" place)
 - firing time to transitions
 - (waiting time for places)
- Coloured Petri nets: using inscriptions
 - tokens have discrete value ("colour")
 - colour set to places
 - discrete functions to the transitions and arcs

Simple example: Runway

Petri net model of a runway – 3

Timed Peri net model

Petri net model of a runway – 4

Coloured Peri net model: "instiptions" Edge fuction: a_{felki} : if $val(p_{fp_lefogl}) = " \uparrow "$ then "true" $a_{fel} = val(p_{fp_lefogl})$, $val(p_{fel}) = a_{fel}$ Colour set: $C_{felle} = \{ \uparrow , \downarrow \}$

