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Introduction to Fault Diagnosis



The control loop

P - Controlled Plant
A - Actuator
S - Sensor
C - Controller
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The fault

A fault is a phenomena that changes the behavior of the technological
process system such that it no longer satisfies its original purpose.
Fault vs. disturbances: The disturbances also change the the system’s
behavior, like the faults. The distinction can be made from the control
point of view. The disturbances can be handled by the original control
strategy applied to the nominal system. The faults are more severe
changes, the control strategy has to be changed to deal with it.
Fault vs. failure: The fault causes an undesired change in the system
behavior such that the system performance changes in an undesired
way. However, by control engineering methods the system is remediable
such that it still remains functional. Failure is the inability of the
system to accomplish its function. The system has to be shut down,
the failure is an irrecoverable event.
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Types of faults

Process Faults: Such faults that change the dynamical behavior of the
controlled system.
Sensor Faults: The sensor measurements suffer substantial errors.
Actuator faults: The influence of the controller on the plant is modified
or interrupted.
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Types of faults

Faults can be also differentiated on the basis of their behaviour over time.

Intermittent faults: have short duration malfunctions, which can still
induce long-lasting effects.
Persistent faults: have a long-range time evolution

Incipient faults: slowly evolving faults effects.
Abrupt faults: abrupt change with permanent character
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Fault Diagnosis

Fault Diagnosis a subfield of control engineering which deals with
monitoring of a process system to identify whether the fault has
occurred, and to determine the location and type of fault.
Why it is necessary? Monitoring highly automated technological
processes (lights out manufacturing)
Why it is necessary? Based on the obtained fault information, adapt
the control strategy to the faulty situation.
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Fault Diagnosis

The essential tasks of the fault diagnosis:
Fault detection: Detection of the presence of faults in the process
system
Fault isolation: Localization of different faults
Fault identification: Fully characterize the type, size and nature of the
faults

Instead of identification we often do fault estimation: approximate
reconstruction of fault signals from the available measurements.
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Model of the fault-free system

Let a Linear Time-Invariant (LTI) process described by the input-output
model:

y(s) = Gu(s)u(s), y ∈ Rp, u ∈ Rm.

Gu(s) is the rational transfer function matrix (transfer matrix) of the
process model.
Let a minimal state-space realization of the process system model:

ẋ = Ax + Bu, x(0) = x0
y = Cx + Du

x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
The relation between a state-space and the input-output model
(x0 = 0) by applying the inverse Laplace transform:

y(s) = (C(sI − A)−1B + D)u(s)
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Equations of transfer matrices

The columns Gi(s) of a transfer matrix G(s) = [G1(s) . . . Gn(s)] ,
i = 1 . . . n are linearly dependent if there exists n transfer functions
hi(s) ̸= 0 such that

∑n
i=1 hi(s)Gi(s) = 0. If this equation is true only for

hi(s) = 0, i = 1 . . . n then the column of G(s) are linearly independent.
Normal rank (rank) of a transfer matrix: the maximal number of
independent columns of G(s). It can be shown that the rank is the
largest possible rank of the complex matrix G(λ) for all values of λ ∈ C
if G(s) has finite norm.
Equation with transfer matrices with Gx(s) unknown, GA(s), GB(s)
known.

GA(s)GX(s) = GB(s) (1)
GX(s)GA(s) = GB(s) (2)

Lemma 1: Equation (1) is solvable if rank[GA] = rank [GA GB]

Lemma 2: Equation (2) is solvable if rank[GA] = rank
[

GA
GB

]
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Model of the faulty system

The fault in a dynamical system is modeled as an input signal (f ∈ Rmf)
which deviates the transient and steady state behavior of the system
states or outputs from the nominal situation. f is a deterministic time
function. In the fault-free case f = 0.
The model of the LTI system with additive fault

y(s) = Gu(s)u(s) + Gf(s)f(s).

In the state-space representation:

ẋ = Ax + Bu + Eff, x(0) = x0
y = Cx + Du + Fff

Then it yields:
Gf(s) = C(sI − A)−1Ef + Ff
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Model of the faulty system

Actuator faults (fA):

ẋ = Ax + B(u + fA)
y = Cx + D(u + fA)

Process faults (fP):

ẋ = Ax + Bu + EPfP
y = Cx + Du + FPfP

Sensor faults (fS):

ẋ = Ax + Bu
y = Cx + Du + fS
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Model of the faulty system

System model with sensor-, actuator- and process faults:

ẋ = Ax + Bu + Eff
y = Cx + Du + Fff

The fault vector:

f =

 fA
fP
fS


Ef = [B EP 0] and Ef = [D FP I ]
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Model with fault and disturbance

The disturbance (d) is also modeled as a deterministic, unknown input
signal. The model of the LTI system with additive fault and
disturbance:

Σ : y(s) = Gu(s)u(s) + Gf(s)f(s) + Gd(s)d(s).

The state space representation

ẋ = Ax + Bu + Eff + Edd
y = Cx + Du + Fff + Fdd
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Residual Generators



Residual generator for fault diagnosis

The residual signal (r) provides information about the presence or
location and properties of the fault.
The residual generator is a procedure which computes the residual
signal based on the available information about the process (model,
measurements).
Recall the faulty system model:

y(s) = Gu(s)u(s) + Gf(s)f(s) + Gd(s)d(s).
The general form of a linear residual generator (RG):

RG : r(s) = Q(s)
[

y(s)
u(s)

]
= Qy(s)y(s) + Qu(s)u(s)

where Q(s) is a proper and stable transfer matrix.
The internal form of the residual generator

r(s) = Ru(s)u(s) + Rf(s)f(s) + Rd(s)d(s).
where

[Ru(s) Rf(s) Rd(s)] = Q(s)
[

Gu(s) Gf(s) Gd(s)
I 0 0

]
.
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Fault Detectability

The jth component of f is detectable, if the occurrence (deviation from
zero) of a fault entry fj produces an interpretable change in r regardless
to u and d.
The desired residual:

r(s) = 0u(s) + Rfj(s)fj(s) + 0d(s), where Rfj ̸= 0

Definition (Fault Detectability): The j component of f in Σ is
detectable with RG if ∃ Q(s) such that Rfj ̸= 0, Ru = 0, Rd = 0.
Theorem: fj in Σ is detectable iff rank[Gd Gfj] > rank[Gd].
Proof (sufficiency):
The general transfer matrix equation:

Q(s)
[

Gu(s) Gfj(s) Gd(s)
I 0 0

]
= [0 Rfj(s) 0].
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Fault Detectability

Proof (ctd.):
The rank condition:

rank
[

Gu(s) Gfj(s) Gd(s)
I 0 0

]
= rank

 Gu(s) Gfj(s) Gd(s)
I 0 0
0 Rfj(s) 0

 .

Since rank [Rfj] = 1

rank [Gu] + rank [Gfj Gd] = rank [Gu] + 1 + rank [Gd]

Corollary: If d = 0, the fault fj is detectable whether rank [Gfi(s)] > 0,
i.e. Gfi(s) ̸= 0

Definition: The system Σ is completely fault detectable with RG if all
the components of f are detectable.
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Fault Isolability

To isolate the fault, we need to deal with the interactions among the
entries of f.
Let a bank of residual generators

r(j)(s) = Q(j)(s)
[

y(s)
u(s)

]
, i = 1 . . .mf

r(j)(s) = Ru(s)u(s) + R(j)
fj (s)fj(s) +

∑
k ̸=j

R(j)
fk (s)fk(s) + Rdd(s)

Definition (Strong Fault Isolability): The jth component of f in Σ is
strong isolable with RG if ∃ Q(j)(s) such that R(j)

fj ̸= 0, Ru = 0, Rd = 0,
R(j)

fk = 0, ∀k ̸= j.
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Fault Isolability - Structure Matrix

Consider all the fault gain terms in the bank of residual generators. Let

Rf =

 R(1)
f1 . . . R(1)

fm
. . . . . . . . .

R(m)
f1 . . . R(m)

fm


Define the structure matrix

Sf(i, j) = 1 if R(i)
fj ̸= 0

Sf(i, j) = 0 if R(i)
fj = 0
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Fault Isolability - Structure Matrix

Prescribed structure matrices:
Strong isolability

SP =

 1 0 0
0 1 0
0 0 1


Strong block isolability

SP =

 1 0 0 0
0 1 1 0
0 0 0 1


Weak isolability (cannot isolate simultaneous faults)

SP =

 0 1 1
1 0 1
1 1 0


Complete fault detection

SP =
[
1 1 1

]
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Fault Isolability - Structure Matrix

Let

Q =

 Q(1)

. . .
Q(m)


Definition: For a prescribed structure matrix the system Σ is S-fault
isolable if ∃Q such that S = SP, where S is the structure matrix of Rf,
Ru = 0, Rd = 0.
Theorem: The system Σ is S-fault isolable for SP with RG iff ∀i, j
rank[Gd Ĝ(i)

f Gfj] > rank[Gd Ĝ(i)
f ] ∀ SP(i, j) = 1. Here Ĝ(i)

f is formed
from those the columns of Gf for which SP(i, j) = 0.
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Strong fault identifiability

Definition (Complete strong fault identifiability): The system Σ is
called strongly fault identifiable with RG if ∃Q such that r = f.
The equation to be solved:

Q(s)
[

Gu(s) Gf(s) Gd(s)
I 0 0

]
= [0 I 0].

By detailing the equation (recall that Q(s) = [Qy(s) Qu(s)])

Qy(s)Gu(s) = −Qu(s)
Qy(s)Gf(s) = I

‘ Qy(s)Gd(s) = 0

In order to solve the problem, Gf(s) has to be invertible.
The problem is NOT solvable for d ̸= 0 (except if the process model
satisfies Gf(s)−1Gd(s) = 0).
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Fault estimation

Definition (Complete weak fault identifiability): The system Σ is called
weekly identifiable with RG if ∃Q such that r(s) = RfP(s)f(s), where
RfP(s) is proper, stable and RfP(0) is invertible.
If the system Σ weakly identifiable,
then f = RfP(0)−1limt→∞r if f constant.
The system of equation to be solved

Qy(s)Gu(s) = −Qu(s)
Qy(s)Gf(s) = RfP(s)
Qy(s)Gd(s) = 0
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Solving the Fault Diagnosis problem

The equation to be solved in a general case:

[Qy(s) Qu(s)]
[

Gu(s) Gf(s) Gd(s)
I 0 0

]
= [0 Rf(s) 0].

Check the rank condition of the targeted fault diagnosis problem.
Depending on the problem to be solved, Rf(s) can be prescribed,
partially prescribed or it can also be designed. In all cases it is desirable
to be proper and stable.
If the problem is solvable, compute Qy(s) based on the equation

Qy(s)
[

Gf(s) Gd(s)
0 0

]
= [Rf(s) 0].

Choose

Qu(s) = −Qy(s)Gu(s)
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Analytical Redundancy

Reconstruction of the nominal system output based on the system
model and the known input.
The fault induces a deviation form the nominal input, which can be
determined based on the difference between the measured output and
reconstructed nominal output.
The solution of the fault diagnosis problem implicitly applies the
analytical redundancy:

r(s) = Qy(s) (y(s)− Gu(s)u(s))

Qy(s) is the postfilter. It ensures the compensation of the disturbances,
the proper and prescribed response of the residual generator.
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SISO Example

Let a faulty SISO system without disturbances given by:

y(s) = Ku
Tus + 1

u(s) + Kf
Tfs + 1

f(s).

Design: [Qy(s) Qu(s)]
[ Ku

Tus+1
Kf

Tfs+1

I 0

]
= [0 Rf(s)].

Let Qy(s) = Rf(s)Tfs+1
Kf

Rf(s) has to have a relative degree at least 1. Let Rf(s) = 1
Trs+1 (fault

estimation).
The obtained residual generator: r(s) = 1

Trs+1
Tfs+1

Kf

(
y(s)− Ku

Tus+1u(s)
)

Remark: The fault estimation problem in the SISO case cannot be
solved in the presence of disturbances (i.e. Gd ̸= 0), since
rank[Gf Gd] = rankGd = 1.
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Another Example

Let a faulty, two output system with disturbance:

y1(s) =
Ku1

Tu1s + 1
u(s) + Kf

Tfs + 1
f(s) + Kd1

Td1s + 1
d(s).

y2(s) =
Ku2

Tu2s + 1
u(s) + Kd2

Td2s + 1
d(s).

Design:

[Qy1(s) Qy2(s) Qu(s)]

 Ku1
Tu1s+1

Kf
Tfs+1

Kd1
Td1s+1

Ku2
Tu2s+1 0 Kd2

Td2s+1

I 0 0

 = [0 Rf(s) 0].

The fault diagnosis problem is solvable as rank[Gf Gd] = 2, rankGd = 1.
The system of equations

Qy1(s)
Ku1

Tu1s + 1
+ Qy2(s)

Ku2
Tu2s + 1

= −Qu(s)

Qy1(s)
Kf

Tfs + 1
= Rf(s)

Qy1(s)
Kd1

Td1s + 1
+ Qy2(s)

Kd2
Td2s + 1

= 0
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Another Example

The solution of the fault estimation problem:

Rf(s) =
1

Trs + 1

Qy1(s) =
1

Trs + 1

Tfs + 1

Kf

Qy2(s) = − 1

Trs + 1

Tfs + 1

Kf

Kd1
Td1s + 1

Td2s + 1

Kd2

Qu(s) =
1

Trs + 1

Tfs + 1

Kf

(
Kd1

Td1s + 1

Td2s + 1

Kd2

Ku2
Tu2s + 1

− Ku1
Tu1s + 1

)
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Another Example

The engineer’s solution:
Recall the system model

y1(s) =
Ku1

Tu1s + 1
u(s) + Kf

Tfs + 1
f(s) + Kd1

Td1s + 1
d(s).

y2(s) =
Ku2

Tu2s + 1
u(s) + Kd2

Td2s + 1
d(s).

Step 1: Estimate the disturbance based on the second output

d̂(s) = 1

Tr2s + 1

Td2s + 1

Kd2

(
y2(s)−

Ku2
Tu2s + 1

u(s)
)

Step 2: Estimate the fault based on the first output and estimated
disturbance

r(s) = f̂(s) = 1

Trs + 1

Tfs + 1

Kf

(
y1(s)−

Ku1
Tu1s + 1

u(s)− Kd1
Td1s + 1

d̂(s)
)

28 67



Residual generation
in the presence of noise

Assume the faulty system model in the form
y(s) = Gu(s)u(s) + Gf(s)f(s) + Gd(s)d(s) + Gw(s)w(s).

The noise signal w is considered unmeasurable. However, we could have
information about some (frequency domain) properties of the noise
signal.
In the residual generator replace y(s) with y(s)− Gw(s)w(s) to obtain
the noise-affected residual signal

rw(s) = Qy(s)(y(s)− Gu(s)u(s)− Gw(s)w(s)).
If we have information about the frequency domain behavior of the
noise signal, we could apply extend Qy(s) with a properly design filter
Qw(s) attenuate the effect of noise in the frequency domain affected by
noise.

r(s) = Qw(s)Qy(s)(y(s)− Gu(s)u(s)).
Warning: The influence of the fault signal in the corresponding
frequency domain on the residual signal will also be attenuated!
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Threshold computation

The influence of the noise on residual signal:

rw(s) = r(s)− Qy(s)Gw(s)w(s).

Let w∞ = ∥w(t)∥∞
Compute Q(w)

∞ = ∥Qy(s)Gw(s)∥∞
It yields the threshold of the residual generation: th = Q(w)

∞ w∞.
It satisfies: ∥rw(t)− r(t)∥∞ ≤ th.
The decision signal:

δ =

{
1, if |rw(t)| > th
0, otherwise.

Warning: Fault signals with smaller magnitude than the threshold
cannot be detected!
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Observer-based Fault Diagnosis



Observability

Let a minimal state-space realization of an LTI process system:
ẋ = Ax + Bu, x(t0) = x0
y = Cx + Du

x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
Definition (Observability): The ability to determine the initial state (x0)
of the system based on the observation of the output in a finite time
domain (t0, tf).
Definition (Observability Matrix):

MO =


C

CA
. . .

CAn−1


Theorem (Observability): The LTI process system is observable if
rank(MO) = dim(x).
Note: Because the effect of the known input may be subtracted out
during the observation process, it is sufficient to consider the
homogeneous response to determine observability.
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Observability

The response of the system from initial condition x0 is:

y(t) = CeAtx0 = [ξ1(t) . . . ξn(t)]

 x01
. . .
x0n


In the complex domain:

y(s) = C(sI − A)−1x(s) = [ζ1(s) . . . ζn(s)]

 x1(s)
. . .

xn(s)


The system is unobservable if any column of [C(sI − A)−1] is 0.
The system is unobservable if there exists a linear dependence between
the columns of [C(sI − A)−1] (e.g. ζ1 = αζ2).
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Observability - Example

Let an mechanical system described by the equation mp̈ = u, where p is
the position, m - mass parameter, u - control input. The velocity of the
system is v = ṗ.
The state space model x = (p v)T:(

ṗ
v̇

)
=

[
0 1
0 0

](
p
v

)
+

[
0

1/m

]
u

Case 1: Let the measured output y = p, i.e. C = (1 0).
The observability matrix:

MO =

[
C

CA

]
=

[
1 0
0 1

]
, rank(MO) = 2

The system is observable.
Case 2: Let the measured output y = ṗ = v, i.e. C = (0 1).
The observability matrix:

MO =

[
C

CA

]
=

[
0 1
0 0

]
, rank(MO) = 1.

The system is NOT observable.
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Observer design

Definition: A state observer is a system that provides an estimate of
the internal state of a given real system, from measurements of the
system input and output.
The common form of a state observer for an LTI system:

˙̂x = Ax̂ + Bu + K(y − C x̂ − Du), x̂(t0) = x̂0

where K ∈ Rn×p is the observer gain matrix.
Observation error: e = x − x̂. It is desirable that limt→∞e(t) = 0.
Observation error dynamics:

ė = (A − KC)e, e(t0) = x0 − x̂0

Theorem: If the LTI system is observable, then ∃ K such that A−KC is
Hurwitz.
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State observers in the presence of faults

Let an observable LTI system with faults and without disturbances

ẋ = Ax + Bu + Eff
y = Cx + Du + Fff

Let the same state observer:

˙̂x = Ax̂ + Bu + K(y − C x̂ − Du)

such that A − KC Hurwitz.
The observer error dynamics:

ė = (A − KC)e + Eff − KFff
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State observers for residual generation

Define the residual signal

r = y − C x̂

The residual generator:

ė = (A − KC)e + (Ef − KFf)f
r = Ce + Fff

In the complex domain:

r(s) = Rf(s)f(s) = ( C︸︷︷︸
CR

(sI − (A − KC︸ ︷︷ ︸
AR

))−1(Ef − KFf︸ ︷︷ ︸
BR

) + Ff︸︷︷︸
DR

)f(s)
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State observers for residual generation

The residual generator:

r(s) = Rf(s)f(s) = (CR(sI − AR)
−1BR + DR)f(s)

The jth component of the fault is detectable if the jth column of Rf ̸= 0.
To improve the performance of the residual generator, it can be
extended with a postfilter, i.e. r(s) = Qf(s)Rf(s)f(s).
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Unknown Input Observers

Let an LTI System with disturbances

ẋ = Ax + Bu + Edd
yd = Cdx + Du + Fdd

Ed has full column rank. Otherwise, rewrite Edd = EE(2)d, where E has
full column rank and E(2)d is the new disturbance input.
Output transformation: Let the new output y = Td(yd − Du), where
TdFd = 0. It yields that

y = Cx

where C = TdCd.
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Unknown Input Observers

Definition: An observer is defined as an unknown input observer for the
system

ẋ = Ax + Bu + Ed
y = Cx,

if its output (x̂) approaches asymptotically to the system’s state
regardless of the presence of the unknown input (disturbance) in the
system.
The structure of the full order unknown input observer

ż = AOz + TBu + Ky
x̂ = z + Hy,

The matrices AO, T, K, H has to be chosen such that
limt→∞(x − x̂) = 0.
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Unknown Input Observers

The estimation error (e = x − x̂) is governed by the following dynamics

ė = (A−HCA−K1C)e + [K2−(A−HCA−K1C)H]y
+ [AO−(A−HCA−K1C)]z + [T−(I−HC)]Bu + (HC−I)Ed

where K = K1 + K2.
If one can make the following relations hold true

(HC−I)E = 0

T = I−HC
AO = A−HCA−K1C
K2 = AOH

the state estimation error will then be

ė = AOe

40 67



Unknown Input Observers

Lemma: The matrix equation XA = B has a solution if
rank[A] = rank

[
A
B

]
. A solution is X = BA+ where A+ is the

pseudo-inverse (generalized inverse) of A.
If A has full column rank then X = B(ATA)−1AT.
Theorem: The system

ż = AOz + TBu + Ky
x̂ = z + Hy,

is an unknown input observer for

ẋ = Ax + Bu + Ed
y = Cx,

if (A−HCA,C) observable and rank[CE] = rank
[

CE
E

]
where

H = E(CE)+ and K1 is chosen such that A−HCA−K1C is Hurwitz.
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Unknown Input Observers
for Fault Diagnosis

Let an LTI system with sensor- and actuator faults and disturbances:

ẋ = Ax + B(u + fA) + Ed
y = Cx + fS,

Define the residual signal

r = y − C x̂ = (I − CH)y − Cz

The residual generator:

ė = AOe + TBfA + K1fS − H ḟS
r = Ce + fS (3)
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Unknown Input Observers
for Sensor Fault Isolation

Let a system with sensor faults and disturbances:

ẋ = Ax + Bu + Ed
y(j) = Ĉ(j)x + f(j)S , (4)
yj = Cjx + fSj, j = 1 . . .m

where fSj is the jth fault, Ĉ(j) contains the columns of C except Cj

The residual generator

ż(j) = A(j)
O z(j) + T(j)Bu + K(j)y(j)

r(j) = (I − H(j)Ĉ(j))y(j) − Ĉ(j)z(j), j = 1 . . .m
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Unknown Input Observers
for Sensor Fault Isolation

The residual signal

ż(j) = A(j)
O z(j) + T(j)Bu + K(j)y(j)

r(j) = (I − Ĉ(j)H(j))y(j) − Ĉ(j)z(j), j = 1 . . .m

If one can make the following relations hold true

(H(j)Ĉ(j)−I)E = 0

T(j) = I−H(j)Ĉ(j)

A(j)
O = A−H(j)Ĉ(j)A−K(j)

1 Ĉ(j)

K(j)
2 = A(j)

O H(j)

then weak fault isolability can be achieved with the following decision
logic:
if ∥r(j)∥ < th(j) and ∥r(k)∥ > th(k) ∀k ̸= j, then there is a fault in the jth
sensor.
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Unknown Input Observers
for Actuator Fault Isolation

Let an LTI system with actuator faults and disturbances:

ẋ = Ax + B̂(j)(u(j) + f(j)A ) + Bj(uj + fAj) + Ed
= Ax + B̂(j)u(j) + B̂(j)f(j)A + E(j)d(j)

yj = Cx, j = 1 . . .m

where fAj is the jth actuator fault, B̂(j) contains the columns of B
except the jth column Bj.
The newly defined disturbance terms

E(j) = [E Bj]

d(j) = [dT uj + fAj]
T
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Unknown Input Observers
for Actuator Fault Isolation

The residual signal

ż(j) = A(j)
O z(j) + T(j)B̂(j)u(j) + K(j)y

r(j) = (I − CH(j))y(j) − Cz(j), j = 1 . . .m

If one can make the following relations hold true

(H(j)C−I)E(j) = 0

T(j) = I−H(j)C
A(j)

O = A−H(j)CA−K(j)
1 C

K(j)
2 = A(j)

O H(j)

then weak fault isolability can be achieved with the following decision
logic:
if ∥r(j)∥ < th(j) and ∥r(k)∥ > th(k), ∀k ̸= j, then there is a fault in the
jth actuator.
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Case Study - Fault Diagnosis in
Chemical Reaction Networks



Chemical Reaction Networks (CRNs)

The dynamic model of a CRN is built upon the following elements:
Species: S := {S1 . . . Sn} are constituent molecules undergoing (a
series of) chemical reactions.
Complexes: C := {C1 . . . Cm} are formally linear combinations of the
species with integer coefficients, i.e. Ck :=

∑n
i=1 αk,iSi, where αk,i are

the stoichiometric coefficients. If Si is not present in Ck, then αk,i = 0.
Reactions: R := {R1 . . .Rr} where Rk : Ci → Cj. Here Ci is the
reactant (or source) complex, and Cj is the product complex for
k = 1, . . . , r.
Reaction rate coefficients: κk > 0 that is associated to Rk for
k = 1, . . . , r.
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Example of chemical reaction

A + B κ1−⇀↽−
κ2

C

C κ3−→ D
3B κ4−→ E

Species: A, B, C, D, E
Reactant complexes: A+B, C, 3B
Product complexes: C, D, E
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The Stoichiometric Matrix

We associate vectors yk ∈ Rn to the complexes Ck composed of their
stoichiometric coefficients αki such that yk,i = αki for k = 1, . . .m.
Let us denote by ykR ∈ Rn the so-called complex vector associated to a
reactant complex, and by ykP ∈ Rn the vector associated to the
product complex of the kth reaction, i.e. Rk : CkR → CkP.
The stoichiometric matrix N ∈ Rn×r contains all the vectors ykP − ykR
of a CRN in its columns.
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Example of chemical reaction

A + B κ1−⇀↽−
κ2

C

C κ3−→ D
3B κ4−→ E


1 0 0 0
1 0 0 3
0 1 1 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

NR


0 1 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

NR


−1 1 0 0
−1 1 0 −3
1 −1 −1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

N=NP−NR
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Dynamic model of the CRN

The CRN model describes the dynamics of the species’ concentrations
c = (c1 c2 . . . cn)

T ∈ Rn
+.

The reaction rate of the kth reaction
Rk :

∑nS
i=1 αkR,iSki →

∑nP
i=1 αkP,iPki

rk(c,k) = κk

n∏
i=1

cαkR,i
i

Vector of reaction rate coefficients k = (κ1 κ2 . . . κr)
T ∈ Rr

+.
Monomial vector pk(c) =

∏n
i=1 cαkR,i

i

Now we can form the reaction rate vector r(c,k) = (r1 . . . rr)
T in the

form
r(c,k) = diag(k)p(c) = diag(p(c))k

With these notations the model of a CRN reads as:

ċ = N r(c,k), c(0) = c◦.
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Example of chemical reaction

A + B κ1−⇀↽−
κ2

C

C κ3−→ D
3B κ4−→ E

The CRN model describes the dynamics of the species’ concentrations
c = (cA cB cC cD cE)

T

The reaction rate coefficients: k = (κ1 κ2 κ4 κ4)
T

Monomial vector: p =
(
cAcB cC cC c3B

)T

The dynamic model:
ċA
ċB
ċC
ċD
ċE

 =


−1 1 0 0
−1 1 0 −3
1 −1 −1 0
0 0 1 0
0 0 0 1




k1cAcB
k2cC
k3cC
k4c3B
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Rate change estimation as a fault diagnosis
problem

Faults are assumed to act through the change of reaction rate
coefficients. For chemical systems, this can be the result of e.g.
unexpected change of temperature or chemical composition of a
catalyst. In the case of mass convection networks which are formally
kinetic, change in the ‘rate coefficients’ can be caused by altered flow
conditions.
The effect of the fault on the reaction rate: Consider that in the case of
a fault event a number of q ≤ r elements of the reaction rate coefficient
vector k suffer changes.

kf = k + f

If the kth rate is not affected by the disturbance, fk = 0.
If fk > 0, the reaction rate increases.
If fk = −κk, the reaction vanishes.
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Rate change estimation as a fault diagnosis
problem

Consider the truncated fault vector f = (f1 . . . fq)T ∈ Rq containing only
the elements that could take piecewise constant non-zero values in the
case of a fault event. The corresponding truncated monomial vector is
denoted as pt(ct) ∈ Rq. Here ct represents the concentration vector of
such species that take part in fault-influenced reactions.
The truncated stoichiometric matrix (Nt ∈ Rn×q) contains those
columns of N that describe such reactions that could be influenced by
the faults. With the appropriately ordered Nt, pt, f, the CRN model
with faults can be written as:

ċ = Nr(c) + NtPt(ct)f

where Pt(ct) = diag(pt(ct)).
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Rate change estimation as a fault diagnosis
problem

Consider the fault-affected CRN model given by the equation
ċ = Nr(c) + NtPt(ct)f. The aim of the observer design is to compute
an estimate of f based on which the changes in the dynamics of the
CRN can be anticipated.
Let Σ∆ be a dynamic system which has the estimated fault vector
(̂f ∈ Rq) as output, and its input is cm ∈ Rm, a vector which contains
the measurable entries of the state vector c.
Σ∆ is a fault estimator for ċ = Nr(c) + NtPt(ct)f if its internal state
vector is bounded and its output satisfies f̂ → f as t → ∞ for bounded
inputs and finite initial conditions.
If no fault is present in the system (f = 0), then f̂ → 0.
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Rate change estimation
Example: Edelstein Network

S1
κ1−⇀↽−
κ2

2S1

S1 + S2
κ3−⇀↽−
κ4

S3
κ5−⇀↽−
κ6

S2

Stoichiometric matrix of the Edelstein network:

N =

 1 −1 −1 1 0 0
0 0 −1 1 1 −1
0 0 1 −1 −1 1


Reaction rate vector of the Edelstein network:

r(c) =
(
κ1c1 κ2c21 κ3c1c2 κ4c3 κ5c3 κ6c2

)T
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Example - Rate change estimation in Edel-
stein Network

S1
κ1−⇀↽−
κ2

2S1

S1 + S2
κ3−⇀↽−
κ4

S3
κ5−⇀↽−
κ6

S2

Consider that the reactions 1, 3 are affected by disturbances.
In this case:

ct = (c1 c2)T,

Pt(ct) = diag (c1 c1c2) ,

Nt =

 1 −1
0 −1
0 1

 .
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Residual generator design
LaSalle invariance principle

LaSalle’s invariance principle is a criterion for the asymptotic stability of
an autonomous (possibly nonlinear) dynamical system.
Consider an autonomous nonlinear dynamical system
ẋ = f(x(t)) x(0) = x0. Suppose f has an equilibrium at xe so that
f(xe) = 0. The equilibrium of the above system is said to be
asymptotically stable if there exists δ > 0 such that if ∥x(0)− xe∥ < δ,
then x(t) is bounded and limt→∞ ∥x(t)− xe∥ = 0.
If a function L(x) ≥ 0 can be found such that L̇(x) ≤ 0 for all x
(negative semidefinite), then all the trajectories of the system converge
into the set {x : L̇(x) = 0}.
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Residual generator design

Theorem: If the matrix NtPt(ct) has full column rank ∀ct, then{
˙̂c = Nr(c) + NtPt(ct)̂f + Γc(c − ĉ)
˙̂f = Pt(ct)NT

t Γf(c − ĉ)

is a residual generator for the system ċ = Nr(c) + NtPt(ct)f.
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Residual generator design

Sketch of the Proof: Define the Lyapunov function candidate

L(t) = 1

2
c̃TΓfc̃ +

1

2
f̃Tf̃.

where c̃ = c − ĉ, f̃ = f − f̂.
The dynamics of the observation errors (c̃ = c − ĉ, f̃ = f − f̂) yields as(

˙̃c
˙̃f

)
=

(
−Γc NtPt(ct)

−Pt(ct)NT
t Γf 0

)(
c̃
f̃

)
.

The time-derivative of it reads as L̇(t) = −c̃TΓfΓcc̃ ≤ 0.
By LaSalle invariance principle, the estimation error trajectories
converge to the invariant set c̃ = 0. Accordingly, c̃, ˙̃c → 0 as t → ∞.
We obtain that NtPt(ct)̃f → 0 as t → ∞. The matrix NtPt(ct) admits
left inverse. Then we conclude that f̂ → f as t → ∞.
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Extended observer for input disturbance
compensation

Consider the model of an open chemical reaction, with input and
output flows

ċ = Nr(c) + i − Voc.

The vector of the rate of supply is i, Voc is the rate of removal.
Vo = diag(v v . . . v)
The rate of supply can be modelled as

i = (vI1cI1 vI2cI2 . . . vIncIn)
T

where cIi is the ith inlet concentration and vIi ≥ 0 is the ith input flow
rate.
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Extended observer for input disturbance
compensation

The input disturbance is considered as a change in the inlet
concentration and it is modeled as an additive term in the open CRN
model in the form Ed, where d ∈ Rp is the input disturbance vector
and E ∈ Rn×p is the input disturbance matrix, containing p standard
basis vectors with dimension n, indicating that which species’
concentrations are influenced by the disturbance.
The open CRN model with rate- and input disturbance has the form:

ċ = Nr(c) + NtPt(ct)f + i + Ed − Voc.
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Extended observer for input disturbance
compensation

Theorem: If NE(ct) = [NtPt(ct) E] has full column rank ∀ct, then
˙̂c = Nr(c) + NtPt(ct)̂f + i − Voc + Ed̂ + Γc(c − ĉ)
˙̂f = Pt(ct)NT

t Γf(c − ĉ)
˙̂d = ETΓf(c − ĉ).

is a disturbance observer of the open CRN. Moreover, limt→∞d̂ = d.
The Lyapunov function candidate for the convergence analysis is chosen
as

L(t) = 1

2
c̃TΓfc̃ +

1

2
f̃T
t f̃t +

1

2
d̃Td̃.

The estimation error dynamics has the form:
˙̃c
˙̃ft
˙̃d

 =

 −Γc NtPt(ct) E
−Pt(ct)NT

t Γf 0 0
−ETΓf 0 0

 c̃
f̃t
d̃

 .
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Fault Estimation

Consider the Edelstein network:

S1
κ1−⇀↽−
κ2

2S1

S1 + S2
κ3−⇀↽−
κ4

S3
κ5−⇀↽−
κ6

S2

The reaction rate coefficients were chosen κk = 1, k = 1 . . . 6.
For the first experiment in the Edelstein network the following reaction
rate changes were assumed:
κf1 = κ1 + f1, f1 = 0.1 · 1(t − 25),
κf3 = κ3 + f3, f3 = −0.2 · 1(t − 50).
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Fault Estimation
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Fault and Disturbance Estimation
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