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Fault Tolerant Control - Basic No-
tions



Fault Tolerant Control

Fault-tolerant control deals with the control of systems subject to faults.
It explicitly takes into consideration the effects of faults on the behavior
of the controlled system during control design.
The main goal of fault-tolerant control is to prevent a fault (an
unintended change in the behavior of the controlled system) from
becoming a failure (the inability of the system to perform its mission).
It relies on the results of fault diagnosis.
A systematic, unified theoretical basis for fault tolerant control is not
yet available. Moreover, the theory of the different fault tolerant
control design appoaches are not always clearly connected to the theory
of fault diagnosis. It is because of the large number of possible
fault-induced effects.

2 83



The standard control problem

A control problem is defined by the triple: < O, Σ, C >

O - Control Objectives: What the controlled system is expected to
achieve when the control is active.
Σ - Constraints on the controlled system: Functional relations that the
behavior of the controlled system must satisfy over time. They are
generally expressed by ordinary differential equations and algebraic
equations or inequalities.
C - Set of admissible control laws:
- Open loop control - mapping from the time domain to the control
space.
- Closed loop control - mapping from the system output space ×
reference signal space to the control space.
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The control problem in the case of faulty
systems

Faulty systems:
The constraint equations depend on a set of parameters Σ = Σ(θ).
In the case of the fault- free system θ = θn (nominal parameters)
In the case of the faulty system θ = θf (faulty parameters)
The constraint equations could also change in the presence of faults:
Σ → Σf.

Available knowledge:
The fault diagnosis is able to provide an estimate of the fault impact Σ̂f

The fault diagnosis is able to provide constraint set Sf which contains
the faulty systems constraints Σf ∈ Sf.
The diagnosis detects and isolates the fault but it cannot provide any
estimate of the fault impact.

4 83



The control problem in the case of faulty
systems

Admissible control laws: The occurrence of the faults may also change
the set of admissible control laws. The new set of control laws are
denoted by Cf.
As a result of the fault the the control problem is transformed from
< O, Σ, C > into < O, Σf, Cf >.
Suppose that no solution was found for the problem < O, Σf, Cf >. In
this case the objective set has to be weakened. Let the new set of
objectives be Of. In this case the control problem is < Of, Σf, Cf >.
Obtaining the new set of objectives is a decision problem in which
human operators are generally involved.
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Passive vs. active fault tolerant control

Passive fault tolerant control: The nominal control algorithm C is
designed such that the system is able to achieve its given objectives in
fault-free as well as in faulty cases, without any change in the control
algorithm. In this case there is a common solution for the problems
< O, Σ, C > and < O, Σf, Cf > for each f which is solvable using
Cf = C.
Active fault tolerant control: The control law is changed when the fault
occurs, so the ability of the system to achieve O is preserved, using a
control law that is adapted to each faulty situation. In this case
< O, Σf, Cf > has different solutions for different faults.
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Passive fault tolerant control

The fault is treated as disturbance or modeling uncertainty.

Robust control techniques are generally applied.
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Active fault tolerant control

Fault Accommodation:
Fault Accommodation: solve the control problem < O, Σ̂f,Cf >

An estimate of the faulty system or system class, which contains the
faulty system, is necessary.
It involves control design at the moment when the fault is estimated.
Robust control techniques are generally applied.

8 83



Active fault tolerant control

System reconfiguration:
It is assumed that only isolation information is available from the fault
diagnosis procedure.
In this case the faulty system model is partially unknown.
A fault problem can only be set if a faulty components are switched off
and try to achieve the objective by using the healthy part of the
controlled system.
Let the faulty system constraints be: Σf = Σ′ ∪Σ′

f . Σ′
f is unknown.

System reconfiguration: solve the control problem < O,Σ′,Cf >

The Input-Output relations between the controller and system are
changed.
In many cases reconfiguration can only be solved if there is redundancy
in the control system (e.g. multiple sensors with the same purpose)
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Control Design in State Space



Controllable Systems

Let the state space realization of an LTI process system:

ẋ = Ax + Bu, x(t0) = x0
y = Cx + Du

A state x0 is controllable at time t0 if there exists an input u(t) that
transfers the state (x) from x0 to the origin x(tf) = 0 in a finite time tf.
The system is called controllable at time t0 if every state x0 in the
state-space is controllable.
The LTI system is controllable if the controllability matrix

Mc = [B AB . . . An−1B]

satisfies rank(Mc) = n, where n = dim(x).
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Controlability

Let the state dynamics of an LTI process system:

ẋ = Ax + Bu, x(t0) = 0

In the complex domain

sx(s) = Ax(s) + Bu(s)

x(s) = (sI − A)−1Bu(s) =

 ζ1(s)
. . .
ζn(s)

 u1(s)
. . .

um(s)


The system is uncontrollable if any row of [(sI − A)−1B] is 0.
The system is uncontrollable if there exists a linear dependence between
the columns of [(sI − A)−1B] (e.g. ζT

1 = αζT
2 ). This condition implies

that the responses to u of some states are linearly dependent, they
cannot be independently manipulated by the input u.
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State feedback

Let the state dynamics of a controllable process system:

ẋ = Ax + Bu, x(t0) = x0

Assume that x is measurable. Formulate the control input as

u = −Kx

The state dynamics of the controlled system

ẋ = (A − BK)x, x(t0) = x0

The state feedback control design problem: find K such that the
controlled system satisfies prescribed objectives. E.g. find K such that
(A − BK) has prescribed eigenvalues.
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Linear quadratic (LQ) control

Let the state dynamics of the process system:

ẋ = Ax + Bu, x(0) = x0

Let the functional, called cost,

J =
1

2

∫ ∞

0

(
xTQx + uTRu

)
dt

where Q, R are symmetric and positive definite.
Objective: transfer the system state from x(0) = x0 to x(∞) = 0 while
solving the optimization problem

minuJ
such that ẋ = Ax + Bu, x(t0) = x0

13 83



Linear quadratic (LQ) control

Introduce the notation

L(x, u) = 1

2

(
x(t)TQx(t) + u(t)TRu(t)

)
Augment the functional with a costate

Jλ =

∫ ∞

0

(L(x, u) + λ(t)(Ax(t) + Bu(t)− ẋ)) dt

The costate λ(t) ∈ Rn can be any vector, since it multiplies
Ax(t) + Bu(t)− ẋ = 0.
Along the optimal trajectories (in the minimum) the variations in J
(and Jλ) should vanish.
The variation of Jλ:

δJλ =

∫ ∞

0

(
∂L(x, u)

∂x δx + ∂L(x, u)
∂u δu + λ(t)T(Aδx(t) + Bδu(t)− δẋ)

)
dt
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Linear quadratic (LQ) control

Let’s calculate the terms of δJλ

δJλ =

∫ ∞

0

(
∂L(x, u)

∂x δx + ∂L(x, u)
∂u δu + λ(t)T(Aδx(t) + Bδu(t)− δẋ)

)
dt

It directly yields that:

∂L(x, u)
∂x =

∂ 1
2

(
x(t)TQx(t) + u(t)TRu(t)

)
∂x = xTQ

∂L(x, u)
∂u = uTR

By using integration by parts:

−
∫ ∞

0

λ(t)Tδẋdt = λ(0)Tδẋ(0)− λ(∞)Tδẋ(∞) +

∫ ∞

0

λ̇(t)Tδxdt

δx(0) = 0 since we cannot vary the constant initial condition of the
state x0 by changing something later in time.
λ(t) is chosen such that λ(∞) = 0.
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Linear quadratic (LQ) control

The variation of Jλ yields in the form:

δJλ =

∫ ∞

0

(
(λTA + xTQ − λ̇T)δx + (λTB + uTR)δu

)
dt

To vanish the variations of Jλ to following equations should hold:

λTB + uTR = 0

λ̇T = λTA + xTQ, λ(∞) = 0

such that ẋ = Ax + Bu, x(0) = x0

The state x propagates forward in time, while the costate λ propagates
backward, from ∞ to 0.
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Linear quadratic (LQ) control

Since the system is linear we could try to find the costate in the form:

λ = Px

It yields:

(Px)TB + uTR = 0

˙(Px)
T
= (Px)TA + xTQ, x(∞) = 0

ẋ = Ax + Bu, x(0) = x0

We obtain:

u = −R−1BTPx
PAx + ATPx − PBR−1BTPx + Qx + Ṗ = 0

The Riccati equation above has to hold ∀x. The steady state solution
(Ṗ = 0) is called the matrix Riccati equation:

PA + ATP − PBR−1BTP + Q = 0
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Linear quadratic (LQ) control

Summary of the control design:
Let state- and input matrices of the state space model be A and B.
The design parameters Q > 0, R > 0 are given.
Solve the matrix Riccati equation:

PA + ATP − PBR−1BTP + Q = 0

Compute the feedback gain:

K = R−1BTP

Implement the control:

u = −Kx
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LQ Control Design Example

Let a Single Input - Single State system: ẋ = ax + bu. The system is
controllable for b ̸= 0.
The quadratic cost functional has the form: J =

∫∞
0

(qx2 + ru2)dt,
q, r > 0.
The Riccati equation:

pa + ap − pb1r bp + q = 0

−b
r p2 + 2ap + q = 0

The positive solution of the Riccati equation: p =
a+
√

a2+b2 q
r

b2
r

The feedback gain: k = 1
r bp =

a+
√

a2+b2 q
r

b .
The closed loop system with state feedback (u = −kx):

ẋ = −
√

a2 + b2
q
r x

The pole of the closed loop system: λ = −
√

a2 + b2 q
r
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Observer design problem revisited

Let an observable LTI system:

ẋ = Ax + Bu, x(0) = x0
y = Cx + Du

State observer of an LTI system:

˙̂x = Ax̂ + Bu + G(y − C x̂ − Du)

Observation error (e = x − x̂) dynamics:

ė = (A − GC)e

The solution of the LQ problem can be applied to design a proper G.
The design has to be performed for AT and CT.
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Linear quadratic (LQ) observer

Summary of the observer design:
Let state- and output matrices of the state space model be A and C.
The design parameters Q > 0, R > 0 are given.
Solve the matrix Riccati equation:

PAT + AP − PCTR−1CP + Q = 0

Compute the feedback gain:

G = PCTR−1

Implement the observer:

˙̂x = Ax̂ + Bu + G(y − C x̂ − Du)
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Control with output feedback

Let an observable and controllable LTI system:

ẋ = Ax + Bu, x(0) = x0
y = Cx

Consider the dynamic controller

˙̂x = Ax̂ + Bu + G(y − C x̂ − Du)
u = −K x̂

The closed loop dynamics (e = x − x̂):(
ẋ
ė

)
=

[
A − BK BK

0 A − GC

](
x
e

)
Separation principle: Since this state matrix is a triangular hypermatrix,
the observer and feedback gains (G, K) can be independently designed.
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Introduction to System Reconfig-
uration



Control System Model
for Reconfiguration

Let the model of the fault-free process system:
ẋ = Ax + Bu, x(0) = x0
y = Cx

Consider the dynamic controller in a general form which is able to
satsfy the prescribed control objectives for the fault free case:

yC = y
ẋC = ACxC + BC(w − yC), xC(0) = xC0

uC = CCxC + DC(w − yC)

u = uC

Here w is the reference input (setpoint).
Example: proportional control

u = KP(w − y)
i.e. AC = 0, BC = 0, CC = 0, DC = KP = diag(kPi)) > 0.

23 83



Faulty system

Let the faulty system model:

ẋf = Afxf + Bfu, xf(0) = xf0

yf = Cfxf

Actuator fault:

Af = A, Bf ̸= B, Cf = C

Sensor fault:

Af = A, Bf = B, Cf ̸= C

Internal fault:

Af ̸= A, Bf = B, Cf = C
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Reconfiguration block

It is placed between the faulty plan and the nominal controller.
It generally can be modelled as:

ẋR = ARxR + BRuuC + BRyyf, xR(0) = xR0

yC = CRyxR + DuyuC + Dyyyf

uf = CRuxR + DuuuC + Duyyf

Special case: Input-Output separated, static reconfiguration block:

yc = Dyyyf

uf = DuuuC
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Reconfiguration goals

Stabilization goal: restore the stability of the control loop. The
reconfigured control system is stable iff ∀ ε > 0 ∃ δ > 0 such that if
∥w∥∞ < δ then ∥xf∥∞, ∥uf∥∞ < ε.

Weak reconfiguration goal: restore the steady state of the control loop.
The reconfigured control loop satisfies the weak reconfiguration goal iff
limt→∞(y − yf) = 0 ∀ w and xf0.

Strong reconfiguration goal: restore the dynamic behavior of the
control loop. The reconfigured control loop satisfies the strong
reconfiguration goal iff y(t) = yf(t) ∀ w and xf0.
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Reconfiguration goals

Direct reconfiguration goal: restore the states of the plant. The
reconfigured control loop satisfies the direct reconfiguration goal iff
x(t) = xf(t) ∀ w and xf0.

Fault hiding goal: hide the fault from the controller view. The
reconfigured control loop satisfies the fault hiding goal iff yC(t) = y(t)
∀ w and xf0
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Static Reconfiguration - Actuator Fault

Recall the model of the fault-free process system:

ẋ = Ax + Bu, x(0) = x0
y = Cx

Let the model of the faulty system model with actuator fault:

ẋf = Axf + Bfuf, xf(0) = xf0

yf = Cxf

Direct reconfiguration goal: x(t) = xf(t) or ẋ(t) = ẋf(t)
To solve the direct reconfiguration goal it is necessary that Bfuf = Bu
∀ u.
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Static Reconfiguration - Actuator Fault

The linear solution

uf = Duuu

Hence we have to solve the matrix equation

BfDuu = B

The equation is solvable if rank(Bf) = rank(Bf B).
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Static Reconfiguration - Sensor Fault

Recall the model of the fault-free process system:

ẋ = Ax + Bu, x(0) = x0
y = Cx
yC = y

Let the model of the faulty system model with sensor fault:

ẋ = Ax + Bu, xf(0) = xf0

yf = Cfx

Fault hiding goal: yC(t) = y(t) in the presence of fault.
The linear solution: yC = Dyyyf
The relation DyyCfx = Cx should hold, ∀ x.
The equation DyyCf = C is solvable if

rank(Cf) = rank
(

Cf
C

)
.
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Pseudo-Inverse Method

The pseudo inverse is a generalization of the inverse matrix.
Definition: A+ is the pseudo-inverse of A if

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

A+ always exists and it is unique.
Theorem: A+ = limδ→0(ATA + δ2I)−1AT = limδ→0AT(AAT + δ2I)−1

If A has full column rank, then A+ = (ATA)−1AT (A is right invertible).
If A has full row rank, then A+ = AT(AAT)−1 (A is left invertible).

31 83



Pseudo-Inverse Method

Let the matrix linear equation AX = B which is solvable if
rank(A) = rank(A B).
Theorem: rank(A) = rank(A B) iff AA+B = B.
Theorem: If AX = B is solvable then the solution is
X = A+B + (I − A+A)Y, where Y is arbitrary.

Let the matrix linear equation XA = B which is solvable if
rank(A) = rank

(
A
B

)
Theorem: rank(A) = rank

(
A
B

)
iff BA+A = B.

Theorem: If XA = B is solvable then the solution is
X = BA+ + Y(I − AA+), where Y is arbitrary.
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Pseudo-Inverse Method

The pseudo inverse can be computed using Singular Value
Decomposition (SVD) even in rank deficient case.
Singular Value Decomposition: Each matrix can be written in the form
A = UTΣV, where UTU = I, i.e. U is unitary matrix, VTV = I and
Σ = diag(σ1 σ2 . . . σr), σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0.
Dimensions: A ∈ Rm×n, U ∈ Rm×r, Σ ∈ Rr×r , V ∈ Rr×n,
r = min(m, n).
Pseudo inverse computation in the general case:
A+ = VΣ+UT, where
Σ+ = diag(σ+

1 σ+
2 . . . σ+

r ), where
σ+

i = 1/σi if σi ̸= 0 and
σ+

i = 0 if σi = 0.
The number of non-zero singular values is equal to the rank of A.
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State Feedback Redesign

Recall the model of the fault-free process system with state feedback:

ẋ = Ax + Bu, x(0) = x0
u = −Kx

Let the model of the controlled faulty system:

ẋf = Afxf + Bfu, xf(0) = xf0

uf = −Kfxf

Direct closed-loop reconfiguration problem: design Kf such that
xf(t) = x(t).
Solve the equation

Af − BfKf = A − BK
i.e. BfKf = A − BK − Af︸ ︷︷ ︸

Bof

The equation is solvable if rank(Bf) = rank(Bf Bof).
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Pseudo-Inverse Method

Pseudo-inverse method: If the problem dose not have a precise
solution, design Kf such to maintain as much similarity as possible
between the reconfigured control loop and the fault free control loop.
It can be formulated as an optimization problem:

minKf∥(A − BK)− (Af − BfKf)∥F

Here ∥ · ∥F is the Frombenius norm, i.e. ∥A∥F =
√∑n

i=1

∑n
j=1 A2

ij.
The solution of the optimization problem also leads back to
Kf = B+

f Bof,
where B+

f is the pseudo-inverse of Bf.
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Pseudo-Inverse Method

The approximate pseudo-inverse method does not necessarily lead to a
stable solution.

Example: Let A =

[
1 0
0 −1

]
, B =

[
1
5

]
, C = I.

With the feedback gain K = [−1 0] the eigenvalues of the closed loop
system A − BK are λ1 = −1, λ2 = −2 (stable control loop).

Let Af = A, Bf =

[
−1
1

]
, Cf = C.

With the feedback gain Kf = B+
f (A − Af − BK) = [−2 0] the

eigenvalues of the closed loops system Af − BfKf are λ1 = −1, λ2 = 1
(unstable reconfigured control loop).
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Pseudo-Inverse Method

It is well known that high feedback gains lead to instability in the
control loop.
Modified pseudo-inverse method: Solve the optimization problem:

minKf∥(A − BK)− (Af − BfKf)∥F

subject to |Kf(i, j)| ≤ δ ∀i, j

Theorem: For single input systems (u ∈ R) the solution of the
optimization problem above is:

Kf(i, j) =
{

K̂f(i, j) if |Kf(i, j)| ≤ δ

sign(K̂f(i, j))δ otherwise

where K̂f = B+
f (A − BK − Af).
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Fault Hiding - Virtual Sensors and
Virtual Actuators



Reconfiguration Using a Virtual Sensor

The concept of the virtual sensor: when a sensor is at fault, an observer
is used to calculate a replacement value.
Let the model of the fault-free system:

ẋ = Ax + Bu, x(0) = x0
y = Cx

Let the model of the faulty system with sensor fault (uf = uC):

ẋ = Ax + BuC, x(0) = x0
yf = Cfx

Since yf cannot be used with the existing controller, a reconfiguration
block is to be found that generates a suitable signal yC from yf and uf.
Fault hiding goal: It is required that the output of the reconfigured
plant be identical to the output of the nominal plant.
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Virtual Sensor Design

Design a state observer for the faulty system:

ẋR = AxR + BuC + GR(yf − CfxR)

Solvability condition: (A,Cf) observable.
The generated output for the controller:

yC = CxR

Analysis: Let e = xR − xf. The dynamics of the faulty system together
with the reconfiguration block:(

ẋf
ė

)
=

[
A 0
0 A − GRCf

](
xf
e

)
+

(
B
0

)
uC

yC = C(xf + e)

Note that the dynamics of e is not coupled to the dynamics of the
faulty system.
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Detailed analysis of Virtual Sensor

Consider that the faulty system is also affected by the disturbance:

ẋf = Axf + Buf + Bdd

Consider a dynamic linear controller:

yC = C(xf + e)
ẋC = ACxC + BC(w − yC), xC(0) = xC0

u = CCxC + DC(w − yC)

Here w is the reference input.
The dynamics of the reconfigured control loop: ẋf

ẋC
ė

 =

 A − BDCC BCC 0
BCC AC BCC
0 0 A − GRCf

 xf
xC
e

+

 Bd
0

Bd

 d +

 BDC
BC
0

w

The estimation error e is affected by affected by the disturbance d!

40 83



Reconfiguration Using a Virtual Actuator

The idea of a virtual actuator is to use the input signal meant for the
nominal process and to transform it into a signal useful for the
remaining actuators of the faulty plant.
Let the model of the fault-free system:

ẋ = Ax + Bu, x(0) = x0
y = Cx

Let the model of the faulty system model with sensor fault (uf = uC):
ẋf = Axf + Bfuf, x(0) = x0
yf = Cxf

Bf modifies the control input. A novel reconfiguration block is to be
found that generates a suitable control signal uf based on the yC = y
and uC.
Fault hiding goal: It is required that the reconfigured process (faulty
process + the reconfiguration clock) has the same input/output
behavior as the nominal plant, and therefore the nominal controller is
not affected by the fault.
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Virtual Actuator Design

Implement the model of the fault free system in the reconfiguration
block and let the nominal controller to compute uC based of the output
of this model:

ẋ = Ax + BuC, x(0) = x0
y = Cx

The control is computed such to ensure that x − xf converges to zero.
It has the form:

uf = KR(x − xf)

Problem: The states of the faulty system (xf) are not measurable.
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Virtual Actuator Design

Let xR = x − xf.
The dynamics of xR:

ẋ = Ax + BuC

ẋf = AxF + Buf

i.e.
ẋR = AxR + BuC − Bfuf

The plant output to be presented for the controller

yC = Cx = C(xf + xR)

i.e.
yC = yf + CxR

The control for the faulty system:

uf = KRxR
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Virtual Actuator Design

The dynamics of the virtual actuator:

ẋR = (A − BfKR)xR + BuC

The state matrix (A − BfKR) has to be stable, i.e. the solvability
condition of the virtual actuator design is: (A,Bf) has to be
controllable.
Analysis: The dynamics of the the reconfiguration block:(

ẋ
ẋR

)
=

[
A 0
0 A − BfKR

](
x
xR

)
+

(
B
B

)
uC

yC = CxR

Note that the dynamics of xR is uncoupled form the dynamics of the
system modell (which is controlled).
Problem: even in the case of stable dynamics xR tends to zero only if
uC tends to zero.
It is satisfied in the case of stabilizing controllers that have the form
uC = −Kx, but generally uC ̸= 0.
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Detailed analysis of Virtual Actuator

Consider that the faulty system is also affected by the disturbance:

ẋf = Axf + Bfuf + Bdd

Recall x = xf + xR. Consider a dynamic linear controller:

yC = Cx
ẋC = ACxC + BC(w − yC), xC(0) = xC0

u = CCxC + DC(w − yC)

Here w is the reference input.
The dynamics of the reconfigured control loop: ẋR

ẋ
ẋC

 =

 A − BfKR −BDCC 0
0 A − BDCC BCC
0 −BCC AC

 xR
x
xC

+

 0
Bd
0

 d +

 BDC
BDC
BC

w

The state deviation xR is NOT affected directly by the disturbance d!
However, it is affected by the reference signal w!
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Setpoint tracking

The original form of the virtual actuator cannot assure setpoint
tracking, as limt→∞xR ̸= 0 if w ̸= 0.
Problem (weak reconfiguration): ensure that xR = limt→∞xR = 0 for w
constant.
Solution: Extend the reconfigured control signal with a feed-forward
term:

uf = KRxR + FRuC

FR has to be designed such that uf solves the proposed weak
reconfiguration problem.
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Setpoint tracking design

The state dynamics of the reconfiguration block:

ẋR = (A − BfKR)xR + BuC − BfFRuC

The steady state equation

0 = (A − BfKR)xR + BuC − BfFRuC

i.e. xR = (A − BfKR)
−1(BfFR − B)uC

To ensure that xR = 0 ∀uC, FR has to be computed such that

(A − BfKR)
−1(BfFR − B) = 0

i.e. (A − BfKR)
−1Bf︸ ︷︷ ︸

MR

FR = (A − BfKR)
−1B︸ ︷︷ ︸

NR

The problem is solvable if A − BfKR is invertible, which is true since it
is Huwritz, and rank(MR) = rank(MR NR). The solution is:

FR = M+
R NR
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Disturbance compensation in virtual
sensors

The principle of direct compensation can be applied to deal with
disturbances in the virtual sensors.
Recall the form of the virtual sensor (e = xR − xf) :

ẋR = AxR + BuC + GR(yf − CfxR)

yC = CxR

i.e.
ė = (A − GRCf)e
yC = yf + Ce

Consider that the faulty system is affected by disturbance:
ẋf = Axf + Buf + Bdd

As it was discussed, the disturbance directly influences the dynamics of
the virtual estimator:

ė = (A − GRCf)e + Bdd
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Disturbance compensation in virtual
sensors

Extend the output of the disturbance affected virtual sensor with an
extra term as (e = xR − xf)

ė = (A − GRCf)e + Bdd
yC = CxR + FR(yf − CfxR)

Problem: ensure that ey = limt→∞(yC − Cxf) = 0.
Computations again... :

0 = (A − GRCf)e + Bdd
ey = Ce − FRCfe
ey = (C − FRCf)(A − GRCf)

−1Bdd
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Disturbance compensation in virtual
sensors

To ensure that ey = 0 ∀d, FR has to be computed such that

(C − FRCf)(A − GRCf)
−1 = 0

i.e. FR Cf(A − GRCf)
−1︸ ︷︷ ︸

MR

= C(A − GRCf)
−1︸ ︷︷ ︸

NR

The problem is solvable if A − GRCf is invertible, which is true since it
is Huwritz, and rank(MR) = rank

(
MR
NR

)
. The solution is:

FR = NRM+
R
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Networked Fault-Tolerant Control
of Large-Scale Control Systems



Control Using Networks
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Model of Large-Scale Control System

The interaction-oriented model of a large-scale linear control system
consisting of N stable subsystems (Σk, k = 1 . . .N)

Σk :

 ẋk = Akxk + Bkwk + Ek
∑N

i=1 si,
yk = Ckxk,
zk = Ckzxk

The coupling between the subsystems is defined by the interconnection
matrix s = Lz.

L =

 L11 . . . L1N
. . . . . . . . .

LN1 . . . LNN

 .

Generally it is considered that Lii = O.
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Control Goal for the Fault-Free Large-
Scale Control System

The outputs of the subsystems are coupled through a weight matrix C and
produce the performance output (yΣ) of the large-scale system:

yΣ =

N∑
k=1

CΣ
k yk,

or equivalently yΣ = Cy where C = [CΣ
1 . . . CΣ

N ].
The control goal for the fault-free control System: yΣ

∞ = yΣ
d∞ (in steady

state).
Assume that the fault-free system satisfies the control goal.
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Illustrative Example

q
11 22

q
21
q

12
q

O
q

The control goal: c1(q11 + q12) + c2(q21 + q22) = cdqO and/or
q11 + q11 + q21 + q21 = Kh.
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Input-Output Model of Large-Scale Con-
trol System

In s-domain the model of a subsystem has the form:

Σk :

{
yk(s) = Gk(s)wk(s) + Gks(s)sk(s),
zk(s) = Gkz(s)wk(s) + Gkzs(s)sk(s)

where sk(s) =
∑N

i=1 si(s) =
∑N

i=1 Lkizi(s),
Gk(s) = Ck(sI − Ak)−1Bk, Gks(s) = Ck(sI − Ak)−1Ek,
Gkz(s) = Ckz(sI − Ak)−1Bk, Gkzs(s) = Ckz(sI − Ak)−1Ek.
Assumptions:

Gk(s), Gks(s), Gkz(s), Gkzs(s) are finite gain stable ∀k
Gk(0), Gks(0), Gkz(0), Gkzs(0) are known ∀k.
rank(Gk(0)) = dim(yk) ≤ dim(wk) ∀k.
∃ Ckyz such that Ckz = CkzyCk ∀k
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Unstructured Control System Model

The output of the unstructured model of the large-scale system in s-domain
has the form

y(s) = G(s)w(s) + σ(s),
where σ(s) = Gs(s)s(s)

and G(s) = diag(Gk(s)), Gs(s) = diag(Gks(s)) and σ(s) is the bias induced
by the phyisical couplings.
In general σ(s) is considered unknown but its steady state value can be
computed in fault-free case as

σ∞ = y∞ − G(0)w.
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Fault Modeling

A fault in the kth subsystem is modeled as a change in the parameter
matrices Bk or Ck of the subsystem’s model. In the input-output model of
the subsystem the fault is described using multiplicative uncertainties:

Σkf :

{
ykf(s) = Gf(s)wk(s) + Gfs(s)skf(s),
zkf(s) = Gfz(s)wk(s) + Gfzs(s)skf(s)

where Gf(s) = Gk(s)(I +∆Gf(s)), Gfs(s) = Gks(s)(I +∆Gfs(s)),
Gfz(s) = Gkz(s)(I +∆Gfz(s)), Gfzs(s) = Gkzs(s)(I +∆Gfzs(s)). The faulty
interconnection input skf(s) in considered in the form:

skf(s) = sk(s) + δsk(s).
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Model for Fault-Tolerant Control

It is assumed that the fault does not destabilize the large-scale system.
To facilitate the fault estimation, the first equation in the faulty large-scale
system model is rewritten in the form:

ykf(s) = Gk(s)wk(s) + Gks(s)sk(s) + ∆kf(s)fk(s)
where ∆kf(s)fk(s) = Gk(s)∆Gk(s)wk(s) + Gks(s)(I +∆Gfs(s))δsk(s)
+Gks(s)∆Gfs(s)skf(s).

Here ∆kf(s) is a stable unknown diagonal transfer matrix with the property
∆kf(0) = I, fk(s) is a bounded, unknown fault input vector with step
signal-like elements.
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Faulty Large-Scale System

The entire fault-free (healthy) part of the large-scale control system is
considered to be described by the model:

Σh :

{
yh(s) = Gh(s)wh(s) + Ghs(s)sh(s),
zh(s) = Ghz(s)wh(s) + Ghzs(s)sh(s).

The interconnection input sh(s) also contains a fault induced drift δs(s)
term.
The interconnection between the faulty and healthy system can be obtained
from the corresponding parts of the matrix L:(

sf(s)
sh(s)

)
=

[
O Lfh

Lhf O

](
zf(s)
zh(s)

)
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Fault-Tolerant Control Goal

In the presence of faults the performance output of the system is yΣ
f . The

reconfiguration problem can be formulated as: find the command inputs
(wh) of the non-faulty subsystems such that in steady state

yΣ
∞ = yΣ

f∞.

It is considered that the faulty subsystems cannot be reconfigured locally.
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Steps of the Fault-Tolerant Control
Design

Estimate the magnitude of the fault in the faulty subsystem.
Compute a compensator term for each fault-free system in function of
the estimated fault by neglecting the physical interconnections.
Reformulate the input healthy subsystems with an integrator term to
suppress the fault propagation through the physical interconnections.
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Fault Estimation

Formulate the fault estimation law as:

f̂k(s) = Kfdiag(1/s)
(

ykf(s)− Gk(0)wk(s)− diag(σk∞)1(s)− f̂k(s)
)

wk

f

G (0)k

k∞

ykf

Gk

k

fk
^
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Fault Estimation

Lemma
Consider a faulty subsystem modeled as
ykf(s) = Gk(s)wk(s) + Gks(s)sk(s) + ∆kf(s)fk(s). The estimation law assures
that the estimation error f̃k = fk − f̂k is always bounded and f̂k∞ = fk if and
Kf is chosen as Kf = diag(ki), ki > 0.

Idea of proof: Apply the assumptions related to the finite gain stability of
the fault induced uncertainty terms and the direct computation of
lims→0diag(s)̃fk(s) which is equal to zero.
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Fault Estimation

Remark
In the case of the fault-free subsystems the estimation algorithm returns the
influence of the fault through the physical interconnections on the
corresponding subsystem. In these subsystems the result of the estimation
can be used to update the σk∞ term in the equations to deal with possible
future faults:

δσ̂k∞ = f̂k∞ if Σk fault − free,
σk∞ =: σk∞ + δσ̂k∞.
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Fault Compensation

To compensate the drifts in the performance output induced by the fault,
the command inputs of the fault-free systems are extended by adding a fault
compensator term to the original input.
In the case of the kth fault-free subsystem the augmented command has the
form:

wC
kh = wkh + δwk
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Fault Compensation

Split the transfer matrix model of the large-scale system into faulty and
fault-free (healthy) parts:

2

1

3

4

5

2

1

3

4

5

y1

y2

y3

y4

y5

w1

w2

w3

w4

w5

s1

s2

s3

s4

s5

+=

1

3

4

5

2

w1

w3

w4

w5

w2

+

1

3

4

5

s1

s3

s4

s5


y = C C C

y1

y2

y3

y4

y5

=
y = C C C +C

2

s2

+C

G Gs

Gh Gf Ghs Gfs
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Fault Compensation

The performance output of the large-scale system in the presence of fault:

yΣ
f (s) = yΣ(s) + C

(
Gh(s)δw(s) + �f(s)f(s) + Ghs(s)δs(s)

)
.

The faulty terms are formulated as e.g. f(s) = (0T . . . fk(s)T . . .0T)T.
In order to satisfy the fault tolerant control goal (yΣ

∞ = yΣ
f∞) the following

equation has to be solved:

−CGh(0)δw = Cf∞ + CGhs(0)δs∞.

The second term on the right hand side represents the effect of the fault
propagation through the physical interconnections.
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Fault Compensation

First neglect the effect of the fault propagation through the physical
interconnections. In this case δw is a solution of a system of linear equations
and the fault reconfiguration problem is solvable if

rank[CGh(0)] = rank[CGh(0) Cf∞].

If the relation above is satisfied, the fault compensator term is computable as

δw = −(CGh(0))
†Cf∞.

The compensator signal δwk for a subsystem is the part of δw corresponding
to subsystem k.
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Decentralized Integral Control

Formulate the desired output for each fault-free subsystem as:

wC
kh = wkh + δwk

yD
k = [Gh(0)wC

h + σh∞]k

where [·]k denotes the elements of the vector corresponding to the kth
subsystem. σh∞ corresponds to the interconnections before the fault event.
Note that yD

k represents the steady state output of the kth fault-free
subsystem that can compensate the deviation in the faulty subsystem
output, but it assumes that the steady state physical connections correspond
to the situation before the fault event.
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Decentralized Integral Control

If yD
k = yk for each fault-free subsystem, the fault tolerant control goal

would be satisfied. Formulate the command input of the fault-free system as:

ωkh(s) = KkIdiag(1/s)(yD
k (s)− yk(s))

where KkI is the integral gain matrix.

kI

Gk

yk

yk

Gks

sk

sk

D

kh

ykG
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Decentralized Integral Control

Lemma
Let a fault-free subsystem with the control
ωkh(s) = KkIdiag( 1s )(yD

k (s)− yk(s))
in which

KkI = Gk(0)
†diag(κi), κi > 0 ∀i

If the reconfigured large-scale system is stable, then yk∞ = yD
k for a

constant yD
k .
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Decentralized Integral Control

Sketch of the proof:
By the assumption rank(Gk(0)) = dim(yk) ≤ dim(wk) it yields
Gk(0)Gk(0)†diag(κi) = diag(κi).
Denote the output of Gk(s) by ykG(s), i.e. yk(s) = ykG(s) + σkh(s). By
applying the proposed control, its value reads as:

ykG(s) = (sI + Gk(s)KkI)
−1Gk(s)KkI(yD

k (s)− σkh(s)).

In steady state
lims→∞

(
diag(s)ykG(s)

)
= ykG∞ = yD

k − σkh∞, i.e. yk∞ = yD
k .
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Reconfigured Large-Scale System - Faulty
Subsystem

During modeling the fault estimation algorithm in the reconfiguration control
can be viewed as a new interconnection signal: the estimated fault depends
on the output of the faulty subsystem and it serves as an input for the
fault-free subsystems.
The model of the augmented faulty subsystem yields in the form:

ykf(s) =
[
Gf

k(s) 0
] [ wk(s)

yf
0(s)

]
+ Gf

ks(s)skf(s),[
zkf(s)
f̂k(s)

]
=

[
Gf

k(s) 0
Gke(s)Gf

k(s) Gke(s)

] [
wkf(s)
yf
0(s)

]
+

[
Gf

kzs(s)
Gke(s)Gf

ks(s)

]
skf(s)

where Gke(s) = (sI + Kfk)
−1Kfk.
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Reconfigured Large-Scale System - Fault-
Free Part

The model of the reconfigured fault-free part:

Σr
h :

{
yh(s) = Gr

h(s)wh(s) + Gr
hf(s)̂f(s) + Gr

hs(s)sh(s),
zh(s) = Gr

hz(s)wh(s) + Gr
hzf(s)̂f(s) + Gr

hzs(s)sh(s)

where e.g.

Gr
hf(s) = (diag(s) + Gh(s)diag(KkI))

−1Gh(s)diag(KkI)(CGh(0))
†C

The interconnection matrix between the faulty subsystem and the fault-free
part modifies as: sf(s)

sh(s)
f̂(s)

 =

 O O Lfh
Lhf O O
0 [O . . . I . . .O]T O

 zf(s)
zh(s)
f̂k(s)

 .
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Reconfigured Large-Scale System -
Stability

Gkzs

ke ks

(s)

G G(s) (s)

f

f

Ghzs hzf(s) G (s)r r

skf

Lfh

Lhf

[0 I 0]

z h

z kf
fk

s h
f

The reconfigured large-scale system is stable if all the transfer matrices in
the models of the faulty system + fault estimator and reconfigured local
controllers are stable and∥∥∥∥Lfh [Gr

hzf(jω) Gr
hzs(jω)]

[
Lhf O
0 [O . . . I . . .O]T

] [
Gf

kzs(jω)
Gke(jω)Gf

ks(jω)

]∥∥∥∥ ≤ 1
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Summary of the General Case and Remarks

Fault estimation in the faulty subsystems:

f̂k(s) = Kfdiag(1/s)
(

ykf(s)− Gk(0)wk(s)− diag(σk∞)1(s)− f̂k(s)
)

Reconfiguration in the fault-free subsystems:

wC
kh = wkh − [(CGh(0))

†Cf̂k]k

yD
k = [Gh(0)wC

h + σh∞]k

ωkh(s) = KkIdiag(1/s)(yD
k (s)− yk(s))

Remarks:
The proposed control approach assumes a continuous communication
among the faulty and fault-free subsystems.
The small gain theorem based stability analysis in general is not
practical.
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Reconfiguration with Reduced Communica-
tion Costs

The case is considered when the fault-free subsystems do not receive the
estimated fault value continuously. f̂ is broadcasted only once in the time
instant tr.

Theorem
Consider a faulty large-scale system with the introduced assumptions. With
the decentralized integral control law the reconfigured large-scale system is
stable if the compensation signal δw is formulated in function of a f̂ and

Re[λi[Gh(0)diag(KkI)]] > 0 ∀i. (1)

If in the equation δw is formed by using the output of the estimation law in
the time instant tr < ∞ (̂f(tr)), then the control goal yΣ

∞ = yΣ
f∞ is satisfied

with an accuracy ∥C∥∥f − f̂(tr)∥.
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Reconfiguration with Reduced Communica-
tion Costs

Sketch of the proof:
In this case there is no continuous communication between the faulty and
fault-free subsystems, the interconnection loop does not change due to the
control.
The condition Re[λi[Gh(0)diag(KkI)]] > 0 ∀i is a stability condition for
MIMO systems with integral control.
The accuracy yields from the previously introduced lemmas and from direct
computation:

yΣ
f = yΣ − CGh(0)(CGh(0))

†Cf̂(tr))− Cf∞,

∥yΣ
f − yΣ∥ ≤ ∥C∥∥̂f(tr)− f∞∥.
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Reconfiguration with Reduced Communica-
tion Costs - Implementation
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Network

1

fk f2

FEk - fault estimation block
FCk - fault compensation block
LDk - local fault detector - Necessary, because generally the subsystems
cannot decide whether the fault emerged in the local or the effect of a
fault event, which happen in another subsystem, reached the subsystem
through the physical interconnections.
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Reconfiguration with Reduced Communica-
tion Costs - Implementation
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Procedure for fault estimation and reconfiguration:
LDk detects the actuator fault; FEk estimates the effect of the fault on
Σk.
FEk broadcasts through the network to fault-free subsystems the value
f̂k.
The fault compensator blocks of the fault-free subsystems (FCi)
compute and apply the new command.
FEi of the fault-free systems re-estimate the effect of the fault and the
compensation on Σi.

80 83



Simulation Measurements

1

2

3 4

5

Simulation conditions:
dim(yk) = 2, dim(wk) = {2, 3}, dim(zk) = 2, k = 1 . . . 5.
A typical element of the transfer matrices: gij(s) = gij(0)/(0.1s + 1)

Performance outputs: yΣ1 =
∑5

k=1

∑2
i=1 yki/10;

yΣ2 =
∑5

k=1

∑2
i=1 kyki/10.
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Simulation Measurements
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