Discrete and Continuous Dynamical Systems

Attila Magyar

University if Pannonia
Faculty of Information Technology
Department of Electrical Engineering and Information Systems

Overview

(1) Basic notions
(2) Realizations in special form

- Controllable canonical forrn
- Observable canonical form
- Diagonal form
(3) Joint controllability and observability

4 General decomposition theorem

Transformation of states

Two different state space models with the same input-output behavior

$$
\begin{array}{lll}
\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t) & , & \dot{\overline{\boldsymbol{x}}}(t)=\overline{\boldsymbol{A}} \overline{\boldsymbol{x}}(t)+\overline{\boldsymbol{B}} \boldsymbol{u}(t) \\
\boldsymbol{y}(t)=\boldsymbol{C} \boldsymbol{x}(t)+\boldsymbol{D} \boldsymbol{u}(t) & , & \boldsymbol{y}(t)=\overline{\boldsymbol{C}} \overline{\boldsymbol{x}}(t)+\overline{\boldsymbol{D}} \boldsymbol{u}(t)
\end{array}
$$

which are related by the transformation

$$
\begin{gathered}
\boldsymbol{T} \in \mathbb{R}^{n \times n}, \operatorname{det} \boldsymbol{T} \neq 0 \quad, \quad \overline{\boldsymbol{x}}=\boldsymbol{T} \boldsymbol{x} \quad \Rightarrow \quad \boldsymbol{x}=\boldsymbol{T}^{-1} \overline{\boldsymbol{x}} \\
\operatorname{dim} \mathcal{X}=\operatorname{dim} \overline{\mathcal{X}}=n \\
\boldsymbol{T}^{-1} \dot{\overline{\boldsymbol{x}}}=\boldsymbol{A} \boldsymbol{T}^{-1} \overline{\boldsymbol{x}}+\boldsymbol{B} \boldsymbol{u} \\
\dot{\overline{\boldsymbol{x}}}=\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1} \overline{\boldsymbol{x}}+\boldsymbol{T} \boldsymbol{B} \boldsymbol{u} \quad, \quad \boldsymbol{y}=\boldsymbol{C} \boldsymbol{T}^{-1} \overline{\boldsymbol{x}}+\boldsymbol{D} \boldsymbol{u} \\
\overline{\boldsymbol{A}}=\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1} \quad, \quad \overline{\boldsymbol{B}}=\boldsymbol{T} \boldsymbol{B} \quad, \quad \overline{\boldsymbol{C}}=\boldsymbol{C} \boldsymbol{T}^{-1} \quad, \quad \overline{\boldsymbol{D}}=\boldsymbol{D}
\end{gathered}
$$

Overview

(1) Basic notions
(2) Realizations in special form

- Controllable canonical form
- Observable canonical form
- Diagonal form
(3) Joint controllability and observability

44 General decomposition theorem

Controllable canonical form (controller form)

- $H(s)=\frac{b(s)}{a(s)}$
- Controllability canonical form of the state space model

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=\left[\begin{array}{cccc}
-a_{1} & \ldots & -a_{n-1} & -a_{n} \\
1 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 1 & 0
\end{array}\right] \boldsymbol{x}(t)+\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right] \boldsymbol{x}(t)
\end{aligned}
$$

- The change of the i-th state variable depends on the $i-1$-th one, $i>1$
- The change of x_{1} depends on all states and the input
- Always controllable

Observable canonical form

- $H(s)=\frac{b(s)}{a(s)}$
- Observability canonical form of the state space model

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=\left[\begin{array}{cccc}
-a_{1} & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-a_{n-1} & 0 & \ldots & 1 \\
-a_{n} & 0 & \ldots & 0
\end{array}\right] \boldsymbol{x}(t)+\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right] \boldsymbol{x}(t)
\end{aligned}
$$

- Each state variable is fed back to the previous one and the output of the system is x_{1}.
- Always observable

Diagonal form (or modal form) realization

- State space model in diagonal form

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=\boldsymbol{A}_{D} \boldsymbol{x}(t)+\boldsymbol{B}_{D} u(t) \\
& y(t)=\boldsymbol{C}_{D} \boldsymbol{x}(t)
\end{aligned}
$$

with

$$
\begin{aligned}
& \dot{\boldsymbol{x}}=\left[\begin{array}{ccccc}
\lambda_{1} & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & \lambda_{n}
\end{array}\right] \boldsymbol{x}+\left[\begin{array}{c}
b_{1} \\
\cdot \\
\cdot \\
\cdot \\
b_{n}
\end{array}\right] u \\
& y=\left[\begin{array}{llll}
c_{1} & \cdot & \cdot & \cdot
\end{array} c_{n}\right] \boldsymbol{x}
\end{aligned}
$$

Controllability in diagonal form realization

- Controllability matrix

$$
\begin{aligned}
& \mathcal{C}_{n}=\left[\begin{array}{llll}
\boldsymbol{B} & \boldsymbol{A B} & \cdot & \boldsymbol{A}^{n-1} \boldsymbol{B}
\end{array}\right]=\left[\begin{array}{cccc}
b_{1} & \lambda_{1} b_{1} & \lambda_{1}^{2} b_{1} & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot \\
b_{n} & \lambda_{n} b_{n} & \lambda_{n}^{2} b_{n} & \cdot \\
\cdot & \cdot
\end{array}\right]= \\
&=\left[\begin{array}{ccccc}
b_{1} & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & b_{n}
\end{array}\right]\left[\begin{array}{cccc}
1 & \lambda_{1} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
1 & \lambda_{n} & \cdot & \cdot \\
\lambda_{n}^{n-1}
\end{array}\right]
\end{aligned}
$$

- The last matrix is a Vandermonde matrix V with determinant

$$
\operatorname{det} \boldsymbol{V}=\prod_{1 \leq i<j \leq n}\left(\lambda_{j}-\lambda_{i}\right)
$$

- Full rank of the controllability matrix

$$
\operatorname{rank} \mathcal{C}_{n}=n \quad \Leftrightarrow \quad \operatorname{det} \mathcal{C}_{n}=\prod_{i} b_{i} \prod_{j<i}\left(\lambda_{i}-\lambda_{j}\right) \neq 0
$$

Controllability and observability in diagonal form realization

Theorem (Controllability)
 DSSR is controllable iff $\lambda_{i} \neq \lambda_{j},(i \neq j)$ and $b_{i} \neq 0, \forall i$

Theorem (Observability)

DSSR is observable iff $\lambda_{i} \neq \lambda_{j},(i \neq j)$ and $c_{i} \neq 0, \forall i$

The transfer function of diagonal form realization

- Transfer function

$$
H(s)=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}=\sum_{i=1}^{n} \frac{c_{i} b_{i}}{s-\lambda_{i}}=\frac{b(s)}{a(s)}
$$

where \boldsymbol{I} is a unit matrix.

- If either $c_{j}=0$ or $b_{k}=0$ then the transfer function can be described by smaller number of partial fractions than the original:

$$
H(s)=\sum_{i=1}^{\bar{n}} \frac{c_{i} b_{i}}{s-\lambda_{i}}=\frac{b(s)}{a(s)} \quad, \quad \bar{n}<n
$$

Overview

(1) Basic notions

(2) Realizations in special form

- Controllable canonical forrn
- Observable canonical form
- Diagonal form
(3) Joint controllability and observability

4 General decomposition theorem

Equivalent SSR properties

Overview

Consider SISO CT-LTI systems with realization $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$

- Joint controllability and observability is a system property
- Equivalent necessary and sufficient conditions
- Minimality of SSRs
- Irreducibility of the transfer function

Hankel matrices

- Definition A Hankel matrix is a block matrix of the following form

$$
\boldsymbol{H}[1, n-1]=\left[\begin{array}{cccccc}
\boldsymbol{C B} & \boldsymbol{C A B} & . & . & . & \boldsymbol{C} \boldsymbol{A}^{n-1} \boldsymbol{B} \\
\boldsymbol{C A B} & \boldsymbol{C} \boldsymbol{A}^{2} \boldsymbol{B} & . & . & . & \boldsymbol{C A}^{n} \boldsymbol{B} \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
\boldsymbol{C A}^{n-1} \boldsymbol{B} & \boldsymbol{C A}^{n} \boldsymbol{B} & . & . & . & \boldsymbol{C A}^{2 n-2} \boldsymbol{B}
\end{array}\right]
$$

- It contains Markov parameters $\boldsymbol{C} \boldsymbol{A}^{i} \boldsymbol{B}$ that are invariant under state transformations.

Lemma 1

Lemma (1)

If we have a system with transfer function $H(s)=\frac{b(s)}{a(s)}$ and there is an n-th order realization $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$, which is controllable and observable then all other n-th order realizations are controllable and observable.

Proof

$\mathcal{O}(\boldsymbol{C}, \boldsymbol{A})=\left[\begin{array}{c}\boldsymbol{C} \\ \boldsymbol{C A} \\ \cdot \\ \cdot \\ \cdot \\ \boldsymbol{C} \boldsymbol{A}^{n-1}\end{array}\right] \quad, \mathcal{C}(\boldsymbol{A}, \boldsymbol{B})=\left[\begin{array}{lllll}\boldsymbol{B} & \boldsymbol{A} \boldsymbol{B} & \boldsymbol{A}^{2} \boldsymbol{B} & . & .\end{array} \boldsymbol{A}^{n-1}\right]$

$$
\boldsymbol{H}[1, n-1]=\mathcal{O}(\boldsymbol{C}, \boldsymbol{A}) \mathcal{C}(\boldsymbol{A}, \boldsymbol{B})
$$

Definitions

Definition (Relative prime polynomials)

Two polynomials $a(s)$ and $b(s)$ are coprime (or relative primes) iff $a(s)=\prod\left(s-\alpha_{i}\right) ; b(s)=\Pi\left(s-\beta_{j}\right)$ and $\alpha_{i} \neq \beta_{j}$ for all i, j. In other words: the polynomials have no common factors.

Definition (Irreducible transfer function)

A transfer function $H(s)=\frac{b(s)}{a(s)}$ is called to be irreducible if the polynomials $a(s)$ and $b(s)$ are relative primes.

Lemma 2

Lemma (2)

If we have a controller form realization which is jointly controllable and observable then $a(s)$ and $b(s)$ are relative primes $(H(s)$ is irreducible).

Proof

- A controller form realization is controllable and

$$
\mathcal{O}_{c}=\tilde{\boldsymbol{I}}_{n} b\left(\boldsymbol{A}_{\boldsymbol{c}}\right)
$$

$$
\tilde{\boldsymbol{I}}_{n}=\left[\begin{array}{cccc}
0 & . & . & 1 \\
0 & \cdot & 1 & 0 \\
. & . & . & . \\
1 & 0 & . & 0
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

- Non-singularity of $b\left(\boldsymbol{A}_{c}\right)$

Proof of Lemma 2

$$
\tilde{\boldsymbol{I}}_{n}=\left[\begin{array}{llll}
\boldsymbol{e}_{n} & \boldsymbol{e}_{n-1} & \cdot & \boldsymbol{e}_{1}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{e}_{n}^{T} \\
\boldsymbol{e}_{n-1}^{T} \\
\cdot \\
\cdot \\
\cdot \\
\boldsymbol{e}_{1}^{T}
\end{array}\right] \quad, \quad \boldsymbol{e}_{i}=\left[\begin{array}{c}
0 \\
\cdot \\
\cdot \\
0 \\
1 \\
0 \\
\cdot \\
\cdot
\end{array}\right] \leftarrow i
$$

$$
\boldsymbol{A}_{c}=\left[\begin{array}{cccccc}
-a_{1} & -a_{2} & \cdot & \cdot & . & -a_{n} \\
1 & 0 & \cdot & \cdot & . & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & . & \cdot \\
\cdot & \cdot & \cdot & \cdot & . & \cdot \\
0 & 0 & . & . & 1 & 0
\end{array}\right] \quad, \boldsymbol{e}_{i}^{T} \boldsymbol{A}_{c}=\left\{\begin{array}{ccc}
-a_{1} & -a_{2} & \ldots
\end{array}-a_{n}\right]
$$

Proof of Lemma 2

- Computation of the observability matrix $\mathcal{O}_{c}=\tilde{I}_{n} b\left(\boldsymbol{A}_{c}\right) \in \mathbb{R}^{n \times n}$
- 1st row:

$$
\boldsymbol{e}_{n}^{T} b\left(\boldsymbol{A}_{c}\right)=\boldsymbol{e}_{n}^{T} b_{1} \boldsymbol{A}_{c}^{n-1}+\ldots+\boldsymbol{e}_{n}^{T} b_{n-1} \boldsymbol{A}_{c}+\boldsymbol{e}_{n}^{T} b_{n} \boldsymbol{I}_{n}
$$

n-th term:

$$
\left[\begin{array}{llll}
0 & \ldots & 0 & b_{n}
\end{array}\right]
$$

(n-1)-th term: $b_{n-1} \boldsymbol{e}_{n}^{T} \boldsymbol{A}_{c}=b_{n-1} \boldsymbol{e}_{n-1}^{T}=\left[\begin{array}{llll}0 & \ldots & b_{n-1} & 0\end{array}\right]$

$$
\boldsymbol{e}_{n}^{T} b\left(\boldsymbol{A}_{c}\right)=\left[\begin{array}{llll}
b_{1} & \ldots & b_{n-1} & b_{n}
\end{array}\right]=C_{c}
$$

- 2nd row:

$$
\boldsymbol{e}_{n-1}^{T} b\left(\boldsymbol{A}_{c}\right)=\boldsymbol{e}_{n}^{T} \boldsymbol{A}_{c} b\left(\boldsymbol{A}_{c}\right)=\boldsymbol{e}_{n}^{T} b\left(\boldsymbol{A}_{c}\right) \boldsymbol{A}_{c} \Rightarrow \boldsymbol{e}_{n-1}^{T} b\left(\boldsymbol{A}_{c}\right)=\boldsymbol{C}_{c} \boldsymbol{A}_{c}
$$

- and so on ...

Proof of Lemma 2

\mathcal{O}_{c} is nonsingular

- iff $b\left(\boldsymbol{A}_{c}\right)$ is nonsingular because matrix $\tilde{\boldsymbol{I}}_{n}$ is always nonsingular
- $b\left(\boldsymbol{A}_{c}\right)$ is nonsingular iff $\operatorname{det}\left(b\left(\boldsymbol{A}_{c}\right)\right) \neq 0$ which depends on the eigenvalues of $b\left(\boldsymbol{A}_{c}\right)$ matrix
- the eigenvalues of the matrix $b\left(\boldsymbol{A}_{c}\right)$ are $b\left(\lambda_{i}\right), \quad i=1,2, \ldots, n$ λ_{i} is an eigenvalue of \boldsymbol{A}_{c}, i.e a root of $a(s)=\operatorname{det}(s \boldsymbol{I}-\boldsymbol{A})$

$$
\operatorname{det}\left(b\left(\boldsymbol{A}_{c}\right)\right)=\prod_{i=1}^{n} b\left(\lambda_{i}\right) \neq 0
$$

I $a(s)$ and $b(s)$ have no common roots, i.e. they are relative primes

Minimal realization conditions

Theorem (1)

$H(s)=\frac{b(s)}{a(s)}$ is irreducible iff all n-th order realizations are jointly controllable and observable.

Proof: combine Lemma 1. and 2.

Definition (Minimal realization)

A realization $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$ of dimension n is minimal if one cannot find another realization of dimension less than n.

Theorem (2)

$H(s)=\frac{b(s)}{a(s)}$ is irreducible iff any of its realization $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$ is minimal where $H(s)=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}$

Proof: by contradiction

Minimal realization conditions

Theorem (3)

A realization $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$ is minimal iff the system is jointly controllable and observable.

Proof: Combine Theorem 1 and Theorem 2.

Lemma (3)

Any two minimal realizations can be connected by a unique similarity transformation (which is invertible).

Proof: (Just the idea of it)

$$
\boldsymbol{T}=\mathcal{O}^{-1}\left(\boldsymbol{C}_{1}, \boldsymbol{A}_{1}\right) \mathcal{O}\left(\boldsymbol{C}_{2}, \boldsymbol{A}_{2}\right)=\mathcal{C}\left(\boldsymbol{A}_{1}, \boldsymbol{B}_{1}\right) \mathcal{C}^{-1}\left(\boldsymbol{A}_{2}, \boldsymbol{B}_{2}\right)
$$

exists and it is invertible: this is used as a transformation matrix.

(1) Basic notions

(2) Realizations in special form

- Controllable canonical forrn
- Observable canonical form
- Diagonal form
(3) Joint controllability and observability
(4) General decomposition theorem

General decomposition theorem

Given an $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}) \mathrm{SSR}$, it is always possible to transform it to another realization $(\overline{\boldsymbol{A}}, \overline{\boldsymbol{B}}, \overline{\boldsymbol{C}})$ with partitioned state vector and matrices

$$
\begin{gathered}
\overline{\boldsymbol{x}}=\left[\begin{array}{llll}
\overline{\boldsymbol{x}}_{c o} & \overline{\boldsymbol{x}}_{c \bar{o}} & \overline{\boldsymbol{x}}_{\bar{c} o} & \overline{\boldsymbol{x}}_{\overline{c o}}
\end{array}\right]^{T} \\
\overline{\boldsymbol{A}}=\left[\begin{array}{cccc}
\overline{\boldsymbol{A}}_{c o} & \mathbf{0} & \overline{\boldsymbol{A}}_{13} & \mathbf{0} \\
\overline{\boldsymbol{A}}_{21} & \overline{\boldsymbol{A}}_{c \bar{o}} & \overline{\boldsymbol{A}}_{23} & \overline{\boldsymbol{A}}_{24} \\
\mathbf{0} & \mathbf{0} & \overline{\boldsymbol{A}}_{\bar{c} o} & \mathbf{0} \\
\mathbf{0} & 0 & \overline{\boldsymbol{A}}_{43} & \overline{\boldsymbol{A}}_{\overline{c o}}
\end{array}\right] \quad \overline{\boldsymbol{B}}=\left[\begin{array}{c}
\overline{\boldsymbol{B}}_{c o} \\
\overline{\boldsymbol{B}}_{c \bar{c}} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] \\
\overline{\boldsymbol{C}}=\left[\begin{array}{llll}
\overline{\boldsymbol{C}}_{c o} & \mathbf{0} & \overline{\boldsymbol{C}}_{\bar{c} o} & \mathbf{0}
\end{array}\right]
\end{gathered}
$$

General decomposition theorem

The partitioning defines subsystems

- Controllable and observable subsystem: $\left(\overline{\boldsymbol{A}}_{c o}, \overline{\boldsymbol{B}}_{c o}, \overline{\boldsymbol{C}}_{c o}\right)$ is minimal, i.e. $\bar{n} \leq n$ and

$$
H(s)=\overline{\boldsymbol{C}}_{c o}\left(s \overline{\boldsymbol{I}}-\overline{\boldsymbol{A}}_{c o}\right)^{-1} \overline{\boldsymbol{B}}_{c o}=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}
$$

- Controllable subsystem

$$
\left(\left[\begin{array}{cc}
\overline{\boldsymbol{A}}_{c o} & \mathbf{0} \\
\overline{\boldsymbol{A}}_{21} & \overline{\boldsymbol{A}}_{c \bar{o}}
\end{array}\right],\left[\begin{array}{c}
\overline{\boldsymbol{B}}_{c o} \\
\overline{\boldsymbol{B}}_{c \bar{o}}
\end{array}\right],\left[\begin{array}{ll}
\overline{\boldsymbol{C}}_{c o} & \mathbf{0}
\end{array}\right]\right)
$$

- Observable subsystem

$$
\left(\left[\begin{array}{cc}
\overline{\boldsymbol{A}}_{c o} & \overline{\boldsymbol{A}}_{13} \\
\mathbf{0} & \overline{\boldsymbol{A}}_{\bar{c} o}
\end{array}\right],\left[\begin{array}{c}
\overline{\boldsymbol{B}}_{c o} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{ll}
\overline{\boldsymbol{C}}_{c o} & \overline{\boldsymbol{C}}_{\bar{c} o}
\end{array}\right]\right)
$$

- Uncontrollable and unobservable subsystem

$$
\left(\left[\overline{\boldsymbol{A}}_{\overline{c o}}\right], \quad \mathbf{0}, \mathbf{0}\right)
$$

