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Statistical properties of the dynamic LS estimate

Recall Dynamic LS estimate

Dynamic predictive model: y(k) = p>0 · ϕ(k) + ν0(k)

Important (LS estimate)

p̂LS =

[
1

N

N∑
k=1

ϕ(k) · ϕ>(k)

]−1

· 1

N

N∑
k=1

ϕ(k) · y(k)

Important (Estimation error)

p̂LS(N) = p0 + [R(N)]−1 1

N

N∑
k=1

ϕ(k) · ν0(k)

The estimation error is the second term in the above equation.

(Asymptotic unbiasedness)

is the property of the estimate when the sample size is growing.
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Recall, that a dynamic predictive model can be expressed with the nominal
model (with nominal parameter vector pT0 and the regressor ϕ(k)), and a
noise term ν0(k). The noise can be measurement or modelling noise.
y(k) = p>0 · ϕ(k) + ν0(k)

� The LS estimate of p can be written as before:

p̂LS =
[

1
N

∑N
k=1 ϕ(k) · ϕ>(k)

]−1

· 1
N

∑N
k=1 ϕ(k) · y(k)

� We can denote the term 1
N

∑N
k=1 ϕ(k) · ϕ>(k) by R(N) .

� Substituting R(N) and y(k) to the equation of the LS estimate, it
can be be written as
p̂LS(N) = [R(N)]−1 1

N

∑N
k=1 ϕ(k)

[
ϕ(k)> · p0 + ν0(k)

]
� Resolving the braces, the first term on the right side is

[R(N)]−1 1
N

∑N
k=1 ϕ(k) · ϕ(k)> · p0 = [R(N)]−1 R(N) · p0 = p0

� The second term is [R(N)]−1 1
N

∑N
k)=1 ϕ(k) · ν0(k)

� Therefore the LS estimate can be written in the following form
p̂LS(N) = p0 + [R(N)]−1 1

N

∑N
k=1 ϕ(k) · ν0(k). It can be seen that

it is composed of the true value of p (p0) and the estimation error .

In case of dynamic models, the unbiasedness of the estimate can be ex-

amined from an asymptotic point of view.



Statistical properties of the dynamic LS estimate

Recall Stochastic properties

y(k) = p>0 · ϕ(k) + ν0(k)

When the ν0(k) error is small compared to the regressor ϕ(k) containing
measured values, then the estimation error

[R(N)]−1 1

N

N∑
k=1

ϕ(k) · ν0(k)

will also be small.

Important

If both the input (u(k) k = 1, 2, . . .) and the error (ν0(k) k = 1, 2, . . .)
are stationary stochastic processes in an AR(MA)X model, then the
output (y(k) k = 1, 2, . . .) will also be a stationary process.
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We want that the estimated model be close to the real model. Looking
at equation of the estimated model y(k) = p>0 · ϕ(k) + ν0(k) we can see
that it is close to the real model if the error ν0(k) is as small as possible.
Similarly the estimated parameter p̂LS is close to the real parameter p0 if
the estimation error is small. The estimation error can be expressed as
[R(N)]−1 1

N

∑N
k=1 ϕ(k) · ν0(k). We want to make this expression as small

as possible. The estimation error [R(N)]−1 contains the product of the
regressor ϕ(k) and the error ν0(k). When the ν0(k) error is small compared
to the regressor ϕ(k) containing measured values, then the estimation error
will also be small.

stationary process: the statistical characteristics (mean, covariance,...) of

the process do not change in the course of time t. The statistical char-

acteristics at time t are the same as at time t + τ (similar to the time

invariance of dynamic systems).



Statistical properties of the dynamic LS estimate

Conditions for the analysis of asymptotic behavior

(Assumptions for the analysis)

For the analysis of the asymptotic behaviour of the estimation error, let us
assume that:

the error {ν0(k)}Nk=1 is the realization of a stationary discrete time
stochastic process

the system itself can be described by an ARX model ,

the input {u(k)}Nk=1 is implemented as a stationary discrete time
stochastic process .
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To be able to analyse the asymptotic behaviour of the estimation error, we
need some assumptions:

� the error {ν0(k)}Nk=1 is the realization of a stationary discrete
time stochastic process

� the system itself can be described by an ARX model ,

� the input {u(k)}Nk=1 is implemented as a stationary discrete time
stochastic process .

From the first and third assumption it follows that the output is also a

stationary discrete time stochastic process.



Statistical properties of the dynamic LS estimate

Entries of the R(N) matrix

R(N) =
1

N

N∑
k=1

ϕ(k)ϕ>(k)

where
ϕ(k) = [y(k − 1) y(k − 2) . . . y(k − n) u(k) u(k − 1) . . . u(k −m)]>

(The elements of the R(N) matrix)

R(N) =
1

N

N∑
k=1



y(k − 1)y(k − 1) ... y(k − 1)y(k − n)
y(k − 2)y(k − 1) ... y(k − 2)y(k − n)

... ... ...
y(k − n)y(k − 1) ... y(k − n)y(k − n)
−−− − −−−

u(k)y(k − 1) ... u(k)y(k − n)
u(k − 1)y(k − 1) ... u(k − 1)y(k − n)

... ... ...
u(k − m)y(k − 1) ... u(k − m)y(k − n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y(k − 1)u(k) ... y(k − 1)u(k − m)
y(k − 2)u(k) ... y(k − 2)u(k − m)

... ... ...
y(k − n)u(k) ... y(k − n)u(k − m)
−−− − −−−
u(k)u(k) ... u(k)u(k − m)

u(k − 1)u(k) ... u(k − 1)u(k − m)
... ... ...

u(k − m)u(k) ... u(k − m)u(k − m)
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The elements of the R(N) matrix can be seen here. From the product of
ϕ(k) and ϕT (k) we get three different types of products:

� output x output e.g. y(k − 1)y(k − 1)

� input x output or output x input e.g. y(k − 1)u(k)

� input x input u(k)u(k)



Statistical properties of the dynamic LS estimate

Asymptotic behaviour of the entries of R(N) – 1

The regressor ϕ(·) contains only earlier discrete time inputs and outputs in
the AR(MA)X case, therefore the entries of [R(N)]ij can be divided into
three classes

input autocovariance: autocovariance function ruu(τ) of the
{u(k)}Nk=1 stochastic process

R̂N
u (τ) =

1

N

N∑
k=1

u(k) · u(k − τ) → Ru(τ) = ruu(τ)

output autocovariance: autocovariance function of the ryy (τ) of the
{y(k)}Nk=1 stochastic process

R̂N
y (τ) =

1

N

N∑
k=1

y(k) · y(k − τ) → Ry (τ) = ryy (τ)

input-output covariance: ryu(τ) cross-covariance function of the two
previous stochastic processes

R̂N
yu(τ) =

1

N

N∑
k=1

y(k) · u(k − τ) → Ryu(τ) = ryu(τ)
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At time τ the elements of the R(N) matrix go to a specific value when the

number of samples goes to infinity. This follows from the assumption that

the error, the input and the output are all stationary processes. Therefore

their auto- and cross-covariances depend on the time difference (τ) only.



Statistical properties of the dynamic LS estimate

Asymptotic behavior of the entries of R(N) – 2

Important

Consequently, the matrix R(N) converges to a constant matrix R∗ in the
case of large sample size (N → ∞).

(The error term)

The error process {ν0(k)}Nk=1 is stationary, therefore

1

N

N∑
k=1

ϕ(k) · ν0(k) → h∗

where h∗ is a constant vector containing the elements of the
cross-covariance functions of {u(k)}Nk=1 and {ν0(k)}Nk=1,
or {y(k)}Nk=1 and {ν0(k)}Nk=1
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Because all elements of R(N) converges to a constant autocovariance or
cross-covariance value, the matrix R(N) converges to a constant matrix
R∗ in the case of large sample size (N → ∞).

Because ν0(k) is also a stationary process, therefore the 1
N

∑N
k=1 ϕ(k) ·

ν0(k) term also converges to a constant h∗ vector, which contains the

cross-covariances of u(k) and ν0(k), y(k) and ν0(k).



Statistical properties of the dynamic LS estimate Conditions for asymptotic unbiasedness

Conditions for asymptotic unbiasedness

Assume that the conditions for studying the asymptotic behavior are
fulfilled. Then, the estimate is asymptotically unbiased, if:

matrix R∗ is non-singular ( sufficient excitation)
It is fulfilled if the processes {u(k)}Nk=1 and {ν0(k)}Nk=1 are
independent and the Rij composed of the Ru(i − j) auto-correlations
is non-singular (sufficiently exciting inputs).

h∗ = 0 It is true if one of the below conditions are fulfilled:

The {ν0(k)}Nk=1 error process is a white noise process with zero mean:
there is no modelling error, and the measurement error is white. Then
the ν0(k) error is independent of the past. Therefore, all the terms in
E{ϕ(k) · ν0(k)} are zero.
The input {u(k)}Nk=1 is a white noise process, and the order of the
system n = 0: the actual output does not depend on past outputs.
The regressor ϕ(k) contains only the values of the past inputs, thus
E{ϕ(k) · ν0(k)} = 0.
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If the previous assumptions for the analysis of the asymptotic behaviour
are fulfilled, then the estimate can be asymptotically unbiased in two cases.
The estimation error converges to [R∗]−1h∗, therefore

� R∗ is non singular (otherwise the inverse does not exist). It is
fulfilled if the processes {u(k)}Nk=1 and {ν0(k)}Nk=1 are independent
and the Rij composed of the Ru(i − j) auto-correlations is
non-singular (sufficiently exciting inputs)

� h∗ = 0 It is true if one of the below conditions are fulfilled:

– The {ν0(k)}Nk=1 error process is a white noise process with
zero mean: there is no modelling error, and the measurement
error is white (no dynamics of the measurement system). Then
the ν0(k) error is independent of the past. =¿the noise is not
correlated with ϕ(k). Therefore, all the terms in E{ϕ(k)ν0(k)}
are zero (E (XY ) = E (X )E (Y ) if X and Y are independent).

– The input {u(k)}Nk=1 is a white noise process, and the order of
the system n = 0: the actual output does not depend on past
outputs. The regressor ϕ(k) contains only the values of the
past inputs: (ϕ(k) = [u(k), u(k − 1), . . . , u(k − d −m)]), thus
E{ϕ(k) · ν0(k)} = 0 (u(k) and ν0(k) are independent). If the
order of the model is not zero, then the regressor contains past
output data (e.g. y(k-1)), which contains ν0(k − 1) that is
correlated with ν0(k).



Statistical properties of the dynamic LS estimate Conditions for asymptotic unbiasedness

Properties of LS estimates of predictive models

Important (Asymptotic distribution of the estimate)

If the Conditions for asymptotic unbiasedness are fulfilled, then the
distribution of the random variable

√
N · (p̂LS(N)− p0)

will be a multi-dimensional Gaussian distribution with 0 mean.

(Covariance matrix of the estimate)

The covariance matrix in the SISO case is λ0[R∗]−1, where λ0 is the
variance of the {ν0(k)}Nk=1 error.
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Statistical properties of the dynamic LS estimate Conditions for asymptotic unbiasedness

SUMMARY: LS estimate of ARX model parameters

Important (Steps of the estimation)

1 Collect the data DN = {(y(k), u(k)), k = 1, ..,N} using a white noise input sequence
and form the regressor vectors for k = 1, ...,N

ϕ(k) = [y(k − 1) y(k − 2) . . . y(k − n) u(k) u(k − 1) . . . u(k −m)]>

2 LS estimate of the parameters p = [−a1 − a2 . . . − an b0 b1 . . . bm]>:

p̂LS =

[
1

N

N∑
k=1

ϕ(k) · ϕ>(k)

]−1
1

N

N∑
k=1

ϕ(k) · y(k)

3 From the prediction error sequence ε(k) = y(k)− ŷ(k|p) = y(k)− p̂>LSϕ(k) calculate its
estimated variance λ0

4 Covariance matrix of the estimated parameters p̂LS

ˆCOV {p̂LS} = λ0 ·
[

1

N

N∑
k=1

ϕ(k) · ϕ>(k)

]−1
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The steps of the estimation of a dynamic ARX model parameters are here:

1. The white noise input is required for the sufficient excitation.
Without sufficient excitation the asymptotic unbiasedness of the
estimate is not guaranteed.

2. The parameters can be estimated with the LS method.

3. To evaluate the quality of the estimate, compute the prediction error
sequence (residuals), which is the difference between the measured
output (y(k)) and the estimated model output (p̂>LSϕ(k)). We can
also calculate the variance of the prediction error sequence, which
will be used to compute the covariance matrix of the estimated
parameters. The prediction error sequence should be a white noise.

4. The covariance matrix of the estimate can be computed using the
variance of the prediction error sequence and the regressor. The
non-diagonal elements of the covariance matrix indicate the
dependency the parameters. They should be as small as possible.



Preparing and checking measurement data

Overview

1 Statistical properties of the dynamic LS estimate

2 Preparing and checking measurement data

3 Experiment design

4 Evaluating the quality of the estimate
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Preparing and checking measurement data

Overview of data

With a careful overview of data, we can recognize the following
phenomena:

trends

outliers

apparent errors

(Visual overview)

For the visual overview, we should plot the data:

as a function of time (as data sequences)

as a function of each other
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The quality of the data affects the quality of the estimation. Using ’bad’
data, it may occur that the estimation cannot be carried out, or the result
will be not good (e.g. biased estimate). Therefore it is important to
examine the data before starting the estimation process. The aim of the
overview of the data is to determine whether it is suitable for parameter
estimation or not. It is recommended to discard the data, which is not
suitable and repeat the measurement under better conditions. Trying to
correct the bad data is usually time-consuming and it is not sure that we
correct the data well.The following phenomena should be recognized:

� trends: slow, long term variance in the data. different types of
trends: linear, polynomial, exponential, etc.

� outliers: measured data is significantly larger or smaller than it
expected

� apparent error: e.g. missing data, sensor error, abrupt changes

The method of data overview should be as simple as possible. Usually the

visual overview of the data is enough to decide its quality. The measured

data is often plotted in graphs as a function of time or as a function of

each other.



Preparing and checking measurement data

Visual overview - Serious error

Measurement with serious error:
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In this figure an example of serious error is shown. The measurement was

interrupted around 30 minutes, because of the instrument/sensor break.

There is no measurement data at this time interval.



Preparing and checking measurement data

Visual overview - Outliers and gross error

Measurement with outliers and error:
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In this figure examples of outliers and a gross error can be seen. The

outlier data are much greater than the other measured data. From time

70, a change in the mean of the measured data can be observed, which

was caused by the recalibration of the sensor.



Preparing and checking measurement data

Possible causes of trends

Important (Monitoring of trends and steady states)

Most frequent causes of trends in measured data:

fault of sensors that might be indicated by a slow drift-like change

slow, unmodeled process (ageing, equipment deterioration, equipment
becomes dirty) indicated by a drift-like change, too

slow, usually periodic disturbance: seasonal, weekly or daily variation
(e.g. temperature), effects of change of shifts, weekend, different
operation of night-shifts etc.
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The simplest trend detection method is fitting a line to the data. If the

slope of the line is not zero, then there is a trend in the data, which can

be easily removed. Non-linear trends can be removed, too.



Preparing and checking measurement data

Outliers

Important

Data generated by Gaussian random variables may (theoretically) contain
arbitrarily large or small values with nonzero (but very small) probability.

(Notion of outliers)

In practice, a measured data point can be considered an outlier if its
relative magnitude, i.e. ||d(i)− d || is significantly larger than the
deviation of the measurement errors, where d is the mean and ||.|| is a
suitable vector norm.

How to determine:
– by simple visual overview of the data
– check normality of data using e.g. χ2 test
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What is an outlier? Theoretically data generated by Gaussian random
variables may contain arbitrarily large or small data, with very small prob-
ability. Therefore a very large or very small data may be the result of the
normal operation. In practice we consider a measured data point an out-
lier, if its deviation from the sample mean is much greater than the sample
deviation. The deviation from the sample mean is measured by a suitable
norm.
The outliers can be usually determined by simple visual overview.

More difficult mathematical methods are also exist (χ2 test, assuming

normally distributed noise).



Experiment design

Overview

1 Statistical properties of the dynamic LS estimate

2 Preparing and checking measurement data

3 Experiment design
Sufficient exitation
PRBS test signal

4 Evaluating the quality of the estimate
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Experiment design

Experiment design

Aim: to determine the optimal input for parameter estimation
– asymptotic unbiasedness
– minimal variance, uncorrelated elements

Important (Experiment parameters to be chosen)

sampling time

number of samples

test signals for sufficient excitation
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The measured data can be obtained from ’passive’ measurements, when
we cannot intervene to the process (e.g. an atomic reactor). However, in
most cases we can create special, artificial input sequences and collect the
measured outputs of the system. The aim of the experiment design is to
determine the optimal input for the parameter estimation such that the
estimated parameters have the best statistical properties.
The estimated parameter(s) should be asymptotically unbiased, it has min-
imal variance, and the parameters are uncorrelated.

Experiment design usually covers the selection of the input signal (to pro-

vide sufficient excitation), the sampling time and number of samples (-¿

how long the measurement lasts).



Experiment design

Choosing the sampling time

(Aims)

We should aim at

provide sufficiently high frequency sampling for sufficiently long time,

the sample should contain enough information for each important and
modelled time constant (pole) of the system

sampling time should be about 1/4 of (or smaller than) the fastest
(smallest) time constant

measurement time should be at least 4 times larger than the slowest
time constant
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Most dynamic systems are continuous time systems, but the parameter
estimation is executed using discrete time systems. Therefore the contin-
uous system need to be sampled with a specific sample time and duration.
When choosing the sampling time we need to take care of the following:

� frequency of the sampling: fast changes in the signals can be caught
with high frequency sampling. However high frequency sampling of
a slowly changing process generates unnecessarily much data (large
size of the measurement file). The duration of the measurement
should be long enough to record all important changes in the signals

� All types of dynamics of the system is need to be caught. The
measured data should contain enough information about the
smallest and the largest time constants too.



Experiment design

Choosing the the number of samples

The number of measurements needed for parameter estimation depends:

on the number of measurements in one record

on the number of repetitions (records)

Important

The overall number of samples should be significantly larger than the order
of the system and also much larger than the number of estimated
parameters.
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If we repeat the measurements with the same input signal, then we will

get more information about the measurement noise, which is important for

the quality evaluation of estimates.



Experiment design Sufficient exitation

Sufficient excitation

Test signals for sufficient excitation

Main considerations:

Appropriate signal to noise ratio
For this, a suitably chosen test-signal is often added to the normal
input of the system to ensure sufficient excitation

Asymptotic unbiasedness
The inputs should be independent from the other noises and
disturbances. Moreover, it is advantageous if the input is
(approximately) white noise.
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The system dynamics should be ’sufficiently’ excited, Noises/disturbances
are usually present in all systems, but they are too small to affect the
system behaviour. To ensure the sufficient excitation of the system, we
use special test signals.

At the conditions of asymptotic unbiasedness, it was required that the

input be independent from the other noises and disturbances, and be a

white noise signal in the dynamic case. In practice it is enough if the

input is approximately white noise.



Experiment design PRBS test signal

The PRBS test signal

It has only two values, and jumps randomly between them
( takes the value +1 with the probability p )

white noise process with binomial distribution

Important (Sampling time and number of samples)

sampling time should be 1/4 - 1/5 of the smallest time constant
number of samples should be 4-5 times the largest time constant
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x(t) =

{
xmin, ifµ < 0.5

xmax , ifµ ≥ 0.5

where µ is a uniformly distributed random variable on the interval (0,1).
The Pseudo Random Binary Sequence is a commonly used test signal,
that has two values and changes arbitrarily between them. It provides
sufficient excitation, but requires relatively long measurement time (lots of
measurement points) and it does not disturb the normal system operation
a lot. The design parameters of the PRBS are the

� the two values, which the signal can have

� the sampling time (i.e.clock period/frequency of the signal)

� the number of samples, i.e. the length of the PRBS signal



Evaluating the quality of the estimate

Overview

1 Statistical properties of the dynamic LS estimate

2 Preparing and checking measurement data

3 Experiment design

4 Evaluating the quality of the estimate
Analyzing the residuals/prediction errors
Analysing the covariances of the estimates
Nonlinear case - an example
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Evaluating the quality of the estimate Analyzing the residuals/prediction errors

Quality of the estimate – 1

Analysis of the residuals

Residual : realization of the prediction error series

ε(k , θ) = y(k)− ŷ(k |θ) , k = 1, . . . ,N

Important

For an unbiased estimation, the residuals are uncorrelated and have 0
mean.

A. I. Pózna (University of Pannonia) Parameter estimation November 16, 2020 27 / 37



the prediction error sequence (residuals) gives information about how well
the estimated model fits the measured data. If the residual sequence is
uncorrelated and has 0 mean then the difference between the measured
and the estimated data is caused by only the measurement noise.
If the mean is not zero, but the prediction error is white noise, then a
constant term is probably missing from the model.

If the prediction error sequence is not white, then the goodness of the model

depends on the time, meaning that the measurements and the noise are

possbly correlated.



Evaluating the quality of the estimate Analyzing the residuals/prediction errors

Residuals

Possible residuals
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The residuals in the top figure are good.
The bottom left residuals have a linear trend.
The bottom middle residuals have nonlinear trend.

The variance of the residuals in the bottom right figure is constantly grow-

ing, i.e. the model becomes less and less reliable as the time increases.



Evaluating the quality of the estimate Analyzing the residuals/prediction errors

Testing the zero mean property

Detecting trends:

fitting a linear function to the data

standard statistical analysis for data distribution (in the case of
independent, identically distributed measurement errors)

cumulative sum (CUSUM) method (recursive mean):

s[k] =
1

k

k∑
i=1

d(i) =
1

k
((k − 1)s[k − 1] + d(k))

The computed s[k] is plotted as a function of time (k), and the trend
is monitored. The variance of s[k] decreases with the increase of
measurement data.
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The zero mean property of the residuals can be checked by

� Fitting a line to the data. If there is no trend in the data, then the
slope of the line is 0.

� CUSUM (cumulative sum) is used for detecting changes in the
mean. s[k] is the sample mean up to k. When the cumulative mean
exceeds a certain treshold (e.g. 5*standard deviation of the sample)
then a change is detected.



Evaluating the quality of the estimate Analyzing the residuals/prediction errors

Testing the zero mean property

Detecting trends

fitting a linear function cumulative sum
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Evaluating the quality of the estimate Analyzing the residuals/prediction errors

Recall Estimating the mean value and the variance

Assume that the underlying random variable ξ has a mean value m and
the variance σ2

Mean value
statistics is the sample mean

µ(S) =
1

n
(ξ1 + ξ2 + ...+ ξn) , m̂(D) =

1

n
(x1 + x2 + ...+ xn)

Property: E [µ] = m

Variance
statistics is the corrected empirical variance

θ(S) =
1

n − 1

(
(ξ1 − µ)2 + (ξ2 − µ)2 + ...+ (ξn − µ)2

)
Property: E [θ] = σ2

Unbiased estimate
if the mean value of the statistics is the real value of the parameter to
be estimated
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Evaluating the quality of the estimate Analyzing the residuals/prediction errors

Recall Estimation of the covariances

Consider (scalar valued) random variables ξi from the same distribution
but not independent. They form a ”generalized” sample
S(ξ) = {ξ1, ξ2, ..., ξn}.
Estimation of the mean value m

Estimate

m̂(D) =
1

n
(x1 + ...+ xn)

It may be a biased estimate

Estimation of the auto-covariances rξξ(s), s = 0, 1, ...

Estimate for s << n

r̂(D) =
1

n − s
((x1 − m̂)(xs+1 − m̂) + ...+ (xn−s − m̂)(xn − m̂))

It may be a biased estimate
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Evaluating the quality of the estimate Analyzing the residuals/prediction errors

Important

Variance and correlation: only for data samples without trends!

Consider scalar valued measured data D[1, k] = Dk of k measurements:
d1, ..., dk . They form a ”generalized” sample

S(ξ) = {ξ1, ξ2, ..., ξn} ∼ S(Dk) = {d1, d2, ..., dn}

Important

Variance and correlation computation: from the generalized sample S(Dk).
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Evaluating the quality of the estimate Analyzing the residuals/prediction errors

Testing the independence

Residuals vs. other variables

Plot the residuals against any time variables present or used (e.g.
regressors). A non-random pattern implies dependence.

Residuals with each other

Compute and plot the autocorrelation sequence. It shows the
dependence between the subsequent residuals. Random pattern is
expected.
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Evaluating the quality of the estimate Analysing the covariances of the estimates

Quality of the estimate in the parameter space

Analysis of the covariance matrix: estimate

ĈOV (p̂LS) =

[
1

N

N∑
k=1

ϕ(k)ϕT (k)

]−1

∆ε

For a ’good’ estimate, the parameter values are uncorrelated

Confidence intervals
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The covariance matrix of p̂LS can be determined by the properties of the
regressors (ϕ(k)) and the variance of the residuals ∆ε. When we have the
chance to manipulate ϕ(k), it is an important experiment design issue to
make the inverse small .∆ε is ususally not known therefore it is important
to estimate it from data.
The confidence intervals represents the interval where the parameter values
falls with a certain (usually 95%) probability.

In nonlinear cases the confidence intervals can be estimated by the level

sets of the loss function.



Evaluating the quality of the estimate Nonlinear case - an example

Example: quality of the estimate, prediction error

Measured and model computed (predicted) data
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Evaluating the quality of the estimate Nonlinear case - an example

Example: estimated confidence intervals

Level sets of the loss function
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