Computer Controlled Systems II. Case study: Diagnosis with colored Petri nets

Anna I. Pózna

University of Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

pozna.anna@virt.uni-pannon.hu

January 28, 2020

Overview

Problem statement

Diagnosis with colored Petri nets

- Motivation
- Basic concepts
- Colored Petri Net model
- Diagnosis based on the occurrence graph

B Case study I.

- CPN model
- Diagnosis

Diagnosis with structural decomposition

- System model
- Diagnosis

5 Case study II.

Technological systems

- continuous time, continuous variables
- discretization: time sampling, quantization
- $\bullet \ \rightarrow \ {\sf discrete \ event \ system}$

Fault diagnosis of discrete event systems

- fault detection: Has any fault occurred?
- fault isolation: Which fault has occurred? What is the location of the fault?
- fault identification: characterising the fault (size, criticality, importance)

Problems

- available information
- fault modeling

Problem statement

- Diagnosis with colored Petri nets
 - Motivation
 - Basic concepts
 - Colored Petri Net model
 - Diagnosis based on the occurrence graph
- 3 Case study I.
 - CPN model
 - Diagnosis

Diagnosis with structural decomposition

- System model
- Diagnosis

Case study II.

- Compact representation of complex systems
- Reduced size of the model
- More modeling potential
 - colors
 - arc functions
 - stochastically firing transitions

Qualitative range spaces

• $Q_s = \{e^-, 0, L, N, H, e^+\}$

Events: $event_{\tau} = (\tau, input values, output values)$

Traces: $trace = event_1, event_2, \ldots, event_{\tau}$

- on nominal: normal operation
- faulty: faulty operation
- characteristic: real trace from the process

Deviations from the nominal trace:

- never happened (NH)
- later (LAT) or earlier (EAR)
- greater (GRE) or smaller (SML) var_out_i

Colored Petri Net model

Places

- input and output variables
- operational mode
- deviations

Colors

- qualitative values of variables
- type of fault
- type of deviation

Transitions

- timing
- fault generation

Arc functions

- change of colors
- generating deviations

CCS II. PhD Course

Diagnosis based on the occurrence graph

Nodes

- reachable states
- deviation lists
- fault type

Diagnosis

- given characteristic trace
- compute the deviations between the characteristic and the nominal trace
- search nodes with the same deviation list
- identify the fault mode from the token color

Problem statement

- Diagnosis with colored Petri nets
 - Motivation
 - Basic concepts
 - Colored Petri Net model
 - Diagnosis based on the occurrence graph
- 3 Case study I.
 - CPN model
 - Diagnosis

Diagnosis with structural decomposition

- System model
- Diagnosis

Case study II.

Tank with two valves and a level sensor

- Inputs
 - valve VA
- Outputs
 - valve VB
 - level sensor L
- Normal operation
 - open VA
 - If fill the tank
 - open VB
 - valves are time controlled!
- Faults
 - leak
 - sensor with +bias
 - sensor with -bias

Qualitative range spaces:

Traces:

- (日)

э

CPN model of the tank

э

- nominal trace: (1,op,cl,0),(2,op,cl,L),(3,op,op,N)
- characteristic trace: (1,op,cl,0),(2,op,cl,0),(3,op,op,0)
- deviations: LAT(1,op,cl,0), SML(2,op,cl,L), SML(3,op,op,N), NH(2,op,cl,L), NH(3,op,op,N)

< □ > < □ > < □ > < □ > < □ > < □ >

Problem statement

2 Diagnosis with colored Petri nets

- Motivation
- Basic concepts
- Colored Petri Net model
- Diagnosis based on the occurrence graph

3 Case study I.

- CPN model
- Diagnosis

Diagnosis with structural decomposition

- System model
- Diagnosis

Composite systems

- composed of more than one units
- connection between the units are known

Faults

- may occur in each unit
- may affect other units

Diagnosis

- localization AND
- identification of faults

Disadvantages of occurrence graph based methods:

- increasing size of the model
- increasing size of the graph
- computational effort

Structural decomposition of complex systems

- decomposition by technological units
- diagnosis by components

- The system is decomposed and the units are modelled separately
- Each CPN describes the operation of the corresponding unit
- Faults in previous units
 - the color set of faults is extended with the location of the fault
 - the faults in previous units: initial tokens on place fault
- The traces describing the possible fault combinations need to be known

- The full trace contains all variables in the system
- For the diagnosis of one component not all variables are needed
- Decomposition of the traces
 - Separate the input/output variables of each unit
 - Find the time interval when the unit operates
 - Shift the time to 1 at each subtrace of a unit
- The subtraces have their own relative time
- The subtraces contain only the variables of the given unit
- Subtraces of nominal and faulty operations

Perform the diagnosis in the technological order of the units

For each unit:

- **()** initial token on place *fault*: diagnosed faults in the previous units
- 2 generate reachability graph with the given initial faults
- Oreate the deviations between the nominal and characteristic subtraces of the unit
- Ind the deviations in the reachability graph
- result: faults in the actual unit with the given faults in the previous units
- o repeat until there is no previous fault

Problem statement

2 Diagnosis with colored Petri nets

- Motivation
- Basic concepts
- Colored Petri Net model
- Diagnosis based on the occurrence graph

3 Case study I.

- CPN model
- Diagnosis

Diagnosis with structural decomposition

- System model
- Diagnosis

Serial connection of 3 tanks In each tank

- input valve
- output valve
- level sensor
- Two additional faults
 - valve half opened
 - valve closed
 - 1 normal and 5 faulty branches in the reachability graph
- Technological process
 - fill the tanks in a row

VA

Diagnosis with structural decomposition - example

Nominal trace

time	l li	nput v	ariable	Output variables			
	VA	VB	VC	VD	lev _A	lev _B	lev _C
1	ор	cl	cl	cl	0	0	0
2	ор	cl	cl	cl	L	0	0
3	ор	ор	cl	cl	Ν	0	0
4	ор	ор	cl	cl	Ν	L	0
5	ор	ор	ор	cl	Ν	Ν	0
6	ор	ор	ор	cl	Ν	Ν	L
7	ор	ор	ор	ор	Ν	Ν	Ν

Diagnosis with structural decomposition - example

Full characteristic trace

time	l li	nput v	ariable	Output variables			
	VA	VB	VC	VD	<i>lev</i> _A	lev _B	lev _C
1	ор	cl	cl	cl	L	0	0
2	ор	cl	cl	cl	Ν	0	0
3	ор	ор	cl	cl	Н	0	0
4	ор	ор	cl	cl	Н	0	0
5	ор	ор	ор	cl	Н	0	0
6	ор	ор	ор	cl	Н	0	0
7	ор	ор	ор	ор	Н	0	0

First tank

Deviation list

time	li li	nput v	ariable	Output variables			
	VA	VB	VC	VD	<i>lev</i> _A	lev _B	lev _C
1	ор	cl	cl	cl	L	0	0
2	ор	cl	cl	cl	Ν	0	0
3	ор	ор	cl	cl	Н	0	0
4	ор	ор	cl	cl	Н	0	0
5	ор	ор	ор	cl	Н	0	0
6	ор	ор	ор	cl	Н	0	0
7	ор	ор	ор	ор	Н	0	0

Diagnosis with structural decomposition - example

result: +bias

Second tank

Deviation list

time	Input variables				Output variables		
	VA	VB	VC	VD	<i>lev</i> _A	lev _B	lev _C
1	ор	cl	cl	cl	L	0	0
2	ор	cl	cl	cl	N	0	0
3	ор	ор	cl	cl	Н	0	0
4	ор	ор	cl	cl	Н	0	0
5	ор	ор	ор	cl	Н	0	0
6	ор	ор	ор	cl	Н	0	0
7	ор	ор	ор	ор	Н	0	0

Diagnosis with structural decomposition - example

result: leak

▲ □ ▶ ▲ □ ▶ ▲ □

Third tank

Deviation list

time	Input variables				Output variables		
	VA	VB	VC	VD	lev _A	lev _B	lev _C
1	ор	cl	cl	cl	L	0	0
2	ор	cl	cl	cl	Ν	0	0
3	ор	ор	cl	cl	Н	0	0
4	ор	ор	cl	cl	Н	0	0
5	ор	ор	ор	cl	Н	0	0
6	ор	ор	ор	cl	Н	0	0
7	ор	ор	ор	ор	Н	0	0

Diagnosis with structural decomposition - example

result: normal, leak, valve half opened, valve closed

- Fault in the 1st tank: +bias sensor error
- Fault in the 2nd tank: leak
- Fault in the 3rd tank: normal, leak, valve half opened, valve closed \rightarrow only the set of possible faults are diagnosed