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What does ”parameter estimation” mean? Model, variables and parameters

Model, variables and parameters

Relationships between data are described by a so called model

y =M(x , p)

where

the vector x is the measurable independent variable that we can
manipulate/set in an error-free way

the vector y is the measurable dependent variable (subject to
measurement errors)

the vector p of constant parameters

Important

The aim of parameter estimation is to estimate the unknown parameters p
from measured sets of dependent and independent variable values
(yi , xi ), i = 1, ..., n and given model form M.
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NOTES

Variable: a quantity that can vary or we can change it over time or from
one measurement setting to another.
Variables can be set (and then their values are known) or measured.

Parameter: an unknown quantity that is normally constant over time or
from one measurement setting to another.

We aim at determining the value of the parameter from measurements of

the variables.



What does ”parameter estimation” mean? Model, variables and parameters

Model types

y =M(x , p)

linear in parameters

M(x , p) = pTF(x)

where F(x) is a possibly nonlinear function of the independent
variable vector x

dynamic
discrete time index k = 0, 1, ...,K , ... such that

y(k) =M(x(k), x(k − 1), ..., x(k − K ); p) , k = K ,K + 1, ..., n
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NOTES
Examples:

• Static, linear in parameters and variables

y = ax1 + bx2 + c

where y , x1 and x2 are scalar valued variables, and a, b and c are scalar
parameters.

• Static nonlinear in parameters

y = aebx+c

where y and x are scalar valued variables, and a, b and c are scalar
parameters.

• Dynamic linear in parameters

y(k) = a1x
2(k) + a2x(k − 1)

where y and x are scalar valued time-dependent variables, and a1 and a2 are
scalar parameters.



What does ”parameter estimation” mean? Why estimation?

Errors and estimates

The measurable dependent variable vector y is subject to measurement
errors, and the model is also often not precise (modelling errors are also
present):

y =M(x , p) + ε
(
y (M) =M(x , p)

)
where ε, and thus also y are (vector valued) random variables.

Important

The result of a parameter estimation procedure can only be an ”estimate”
of the true model parameter vector p (denoted by p̂), such that p̂ is a
vector valued random variable in itself.
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What does ”parameter estimation” mean? Course content and requirements

Course structure

The course is given weakly in the form of a

Lecture and tutorial, or a

Laboratory with the use of MATLAB

Important (Course web page)

https://virt.uni-pannon.hu/index.php/en/education/courses/

160-parameterbecsles-vemivim133p
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What does ”parameter estimation” mean? Course content and requirements

Contents
(Lectures and tutorials)

Basic notions, Elements of random variables and mathematical
statistics

The properties of the estimates, Linear regression

Stochastic processes, Discrete time stochastic dynamic models

Least squares (LS) estimation by minimizing the prediction error, The
properties of the LS estimation

Special methods for LS estimation of dynamic model parameters:
Instrumental variable (IV) method, Parameter estimation of dynamic
nonlinear models

Practical implementation of parameter estimation: Data checking and
preparation, Evaluation of the results of parameter estimation
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What does ”parameter estimation” mean? Course content and requirements

Evaluation

The pre-requisite of the course signature is

to submit in the given deadline at least 90% of the homework
specified on the lectures-tutorials-laboratories,

to submit the project results and documentation to the given
deadline, and

to achieve at least 50% on the closed-book exam (the results of the
homework are added to the points of the exam).

Important

The evaluation is based upon a mid-semester closed-book exam and on a
parameter estimation project work to be implemented in MATLAB.
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Random variables Scalar-valued random variables

Scalar-valued random variables

A scalar-valued random variable ξ is characterized by its probability density
function (p.d.f.) fξ : R 7→ R≥0.

Properties
The mean value and variance of the random variable ξ with its p.d.f. fξ are

E{ξ} =

∫
xfξ(x)dx , σ2{ξ} =

∫
(x − E{ξ})2fξ(x)dx
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Random variables Scalar-valued random variables

Normally distributed
scalar-valued random variables

The random variable ξ has a normal or Gaussian distribution, in notation

ξ ∼ N(m, σ2) (1)

where m is its mean value and σ2 is its variance, when

fξ(x) =
1√
2πσ

e
− 1

2

(
(x−m)2

σ2

)
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Random variables Scalar-valued random variables

Independence of two scalar-valued random variables

The joint distribution of two scalar-valued random variables ξ and θ is
characterized by their joint p.d.f fξ,θ(x , y) : R× R 7→ R≥0.

Important

Two scalar-valued random variables ξ and θ are called independent, if
fξ,θ(x , y) = fξ(x) · fθ(y).
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Random variables Scalar-valued random variables

Covariance and correlation of random variables

The covariance of two scalar-valued random variables ξ and θ is

COV {ξ, θ} = E{(ξ − E{ξ})(θ − E{θ})}

where ξ = (ξ − E{ξ}) is a centered random variable.

Correlation (normed covariance): ρ{ξ, θ} = E{(ξ−E{ξ})(θ−E{θ})}
σ{ξ}σ{θ}

Important

Independence implies ρ{ξ, θ} = 0, but ρ{ξ, θ} = 0 implies independence
only in case of Gaussian joint distribution.

Important

The covariance of a scalar-valued random variables ξ with itself is its
variance , i.e. COV {ξ, ξ} = σ2{ξ}
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Random variables Vector-valued random variables

Vector valued random variables – 1

Given a vector valued random variable ξ

ξ : ξ(ω), ω ∈ Ω, ξ(ω) ∈ Rµ

Scalar valued entries of vector valued random variables

ξ =

 ξ1
...
ξµ


where each entry ξi is a scalar valued random variable
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Random variables Vector-valued random variables

Vector valued random variables – 2

Given a vector valued random variable ξ ∈ Rµ

Its mean value m ∈ Rµ is a real vector.

Its variance COV {ξ} is a square real matrix, the covariance matrix:

COV {ξ} = E{(ξ − E{ξ})(ξ − E{ξ})T}

Important

Covariance matrices are positive definite symmetric matrices:

zTCOV {ξ}z ≥ 0 , ∀z ∈ Rµ
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Random variables Vector-valued random variables

Covariance matrix and covariances

Consider a two dimensional vector valued random variable

ξ =

[
ξ1
ξ2

]
with E{ξi} = mi , and its centered version ξi = ξi −mi

Covariance matrix: COV {ξ} = E{(ξ − E{ξ})(ξ − E{ξ})T}

E{ξξT} = E

{[
ξ
2

1 ξ1ξ2
ξ1ξ2 ξ

2

2

]}
=

[
σ2{ξ1} COV {ξ1, ξ2}

COV {ξ1, ξ2} σ2{ξ1}

]
diagonal: variances, off-diagonal: covariances
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Random variables Vector-valued random variables

Two dimensional Gaussian distribution

Probability density function:

f (x1, x2) =
1

2πσ1σ2
√

1− r2
e
− 1

2(1−r2)

(
(x1−m1)

2

σ2
1
−2r (x1−m1)(x2−m2)

σ1σ2
+

(x2−m2)
2

σ2
2

)
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Random variables Vector-valued random variables

Two dimensional Gaussian distribution - 1

Probability density function:

f (x1, x2) =
1

2πσ1σ2
√

1− r2
e
− 1

2(1−r2)

(
(x1−m1)

2

σ2
1
−2r (x1−m1)(x2−m2)

σ1σ2
+

(x2−m2)
2

σ2
2

)

Assume non-correlated elements ξ1 and ξ2 with r = 0. Then

f (x1, x2) =
1

2πσ1σ2
e
− 1

2

(
(x1−m1)

2

σ2
1

+
(x2−m2)

2

σ2
2

)
= f1(x1) · f2(x2)

with fi (xi ) = 1√
2πσi

e
− 1

2

(
(xi−mi )

2

σ2
i

)

Therefore ξ1 and ξ2 are independent.
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Random variables Vector-valued random variables

Linearly transformed random variables

Let us transform the vector-valued random variable ξ(ω) ∈ Rn using the
non-singular square transformation matrix T ∈ Rn×n:

η = T ξ

The properties of the vector-valued random variable η:

E{η} = TE{ξ} , COV {η} = TCOV {ξ}TT

Important (Gaussian case)

If the random variable ξ has a Gaussian distribution N(mξ,∆ξ) with mean
value mξ and covariance matrix ∆ξ, then the transformed random variable
η will also be Gaussian N(mη,∆η), where

mη = Tmξ , ∆η = T∆ξT
T
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Elements of mathematical statistics

Overview
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Elements of mathematical statistics Sample and statistics

Sample, statistics

Consider a (scalar valued) random variable ξ with probability density
function fξ(x).

Sample
is a collection (set) of n independent random variables

S(ξ) = {ξ1, ξ2, ..., ξn}

where every ξi has the same distribution as ξ.

the sample corresponds to a set of measurements about ξ

Statistics
is a (deterministic) function of the sample elements (a random
variable itself)

s(S) = F (ξ1, ξ2, ..., ξn)

a statistics is used to construct an estimate
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Elements of mathematical statistics Constructing an estimate from a measured data set

Measured data set

Consider a (scalar valued) random variable ξ with a sample
S(ξ) = {ξ1, ξ2, ..., ξn}.

Measured data set
is a collection (set) of n measurements of the sample elements
{ξ1, ξ2, ..., ξn}

D(ξ, n) = {x1, x2, ..., xn}

D is a realization of S .

the measured data set contains an actual set of measurements about
ξ that are not random variables but deterministic values (a
realization).
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Elements of mathematical statistics Constructing an estimate from a measured data set

Estimates

Consider a (scalar valued) random variable ξ with a sample
S(ξ) = {ξ1, ξ2, ..., ξn}, and with a measured data set

D(ξ, n) = {x1, x2, ..., xn}

Estimate
is a realization of a statistics s(S) = F (ξ1, ξ2, ..., ξn)

ŝ(D) = F (x1, x2, ..., xn)

An estimate is computed from the actual measurement values in the data
set D

Important

Unbiased estimate
if the mean value of the statistics is the real value of the parameter to be
estimated
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Elements of mathematical statistics Estimation of the mean value and the covariances

Estimation of the mean value – 1

Assume that the underlying scalar-valued random variable ξ has a mean
value m and the variance σ2

Statistics for the mean value: sample mean

µ(S) =
1

n
(ξ1 + ξ2 + ...+ ξn)

Property: E [µ] = m ===> unbiased

Estimate of the mean value

m̂(D) =
1

n
(x1 + x2 + ...+ xn)
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Elements of mathematical statistics Estimation of the mean value and the covariances

Estimation of the variance

Assume that the underlying scalar valued random variable ξ has a mean
value m and the variance σ2

Statistics for the variance: corrected empirical variance

θ(S) =
1

n − 1

(
(ξ1 − µ)2 + (ξ2 − µ)2 + ...+ (ξn − µ)2

)
with µ(S) = 1

n (ξ1 + ξ2 + ...+ ξn)
Property: E [θ] = σ2 ===> unbiased

Estimate of the variance

σ̂2(D) =
1

n − 1

(
(x1 − m̂(D))2 + ...+ (xn − m̂(D))2

)
with m̂(D) = 1

n (x1 + x2 + ...+ xn)
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Elements of mathematical statistics Estimation of the mean value and the covariances

Estimation of the mean value – 2

Assume that the underlying µ-dimensional vector valued random variable ξ
has a mean value m ∈ Rµ. The sample is a collection of independent
vector valued random variables

S(ξ) = {ξ1, ..., ξn}

where ξi = [ξi ,1, ..., ξi ,ν ]T and the independence is considered entry-wise.

Statistics for the mean value: sample mean

µ(S) =
1

n
(ξ1 + ξ2 + ...+ ξn)

Property: E [µ] = m ===> unbiased

Estimate of the mean value

m̂(D) =
1

n
(x1 + x2 + ...+ xn)

is computed entry-wise.
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Elements of mathematical statistics Estimation of the mean value and the covariances

Estimation of the covariances

Assume that the underlying µ-dimensional vector valued random variable ξ
has a mean value m ∈ Rµ. The sample is S(ξ) = {ξ1, ..., ξn} and
ξi = ξi −mi is the centered version of the sample element ξi .

Statistics for the covariances of the entries (i , j)

ρij(S) =
1

n − 1

n∑
k=1

(ξk,i · ξk,j)

Estimate of the covariance rij = COV {ξ·,i , ξ·,j}

r̂ij(D) =
1

n − 1

n∑
k=1

(xk,i − m̂i ) · (xk,j − m̂j)

with m̂i = 1
n−1

∑n
k=1 xk,i
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Elements of mathematical statistics Estimation of the mean value and the covariances

Estimation of the auto-covariances – 1

Consider (scalar valued) random variables ξi from the same distribution
but not independent.
They form a ”generalized” sample: S(ξ) = {ξ1, ξ2, ..., ξn}.

Estimation of the mean value m using the sample mean as statistics

Estimate

m̂(D) =
1

n
(x1 + ...+ xn)

This is an unbiased estimate
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Elements of mathematical statistics Estimation of the mean value and the covariances

Estimation of the auto-covariances – 2

Consider (scalar valued) random variables ξi from the same distribution
and with a pairwise constant covariance r = COV {ξi , ξi+1} and with a
”generalized” sample S(ξ) = {ξ1, ξ2, ..., ξn}.

The estimate of the mean value m is

m̂(D) =
1

n
(x1 + ...+ xn)

The estimate of the autocovariance r is

r̂(D) =
1

n − 1

n−1∑
i=1

((xi − m̂)(xi+1 − m̂))

It may be a biased estimate
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Elements of mathematical statistics Estimating the probability density function - histogram

Histogram construction

Consider a (scalar valued) random variable ξ with the probability density
function fξ(z) and a sample S(ξ) = {ξ1, ξ2, ..., ξn}.

Histogram construction

Let xM the maximal and xm the minimal element of the data set D
with n elements.

Divide the interval [xm, xM ] into ` sub-intervals (δ = xM−xm
` ) such

that zi = xm + (i − 1)δ

Denote by ni the number of data set elements in the interval [zi , zi+1]

Estimate of fξ(z):

the piece-wise constant function f̂ξ(D)(z) such that

f̂ξ(D)(z) =
ni
n

for z ∈ [zi , zi+1] , i = 1, ..., `

K. Hangos PE Sept 2020 30 / 37



Elements of mathematical statistics Estimating the probability density function - histogram

A simple histogram
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Tutorial

Tutorial problems

A. Vector valued random variables

B. Mean value and covariance estimation
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Tutorial

Tutorial problems – A

Example (Vector valued random variables – 1)

Given two scalar-valued Gaussian random variables η1 ∼ N(1, 4), and
η2 ∼ N(2, 16).

Plot the probability density functions fη1 and fη2 of random variables
η1 and η2 in the same coordinate system!
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Tutorial

Tutorial problems – A

Example (Vector valued random variables – 2)

Given two scalar-valued Gaussian random variables η1 ∼ N(1, 4), and
η2 ∼ N(2, 16).
Assume that the random variables η1 and η2 are independent and form a
vector valued random variable η = [η1, η2]T from them.

Which type of distribution does the vector valued random variable η
have?
vector valued Gaussian (2 dimensional)

Compute the mean value and the variance (covariance matrix) of the
vector valued random variable η.

mη =

[
1
2

]
, COV {η} =

[
4 0
0 16

]
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Tutorial

Tutorial problems – A

Example (Vector valued random variables – 3)

Given two scalar-valued Gaussian random variables η1 ∼ N(1, 4), and
η2 ∼ N(2, 16).
Assume that the random variables η1 and η2 have a covariance
COV (η1, η2) = 2.3 and form a vector valued random variable η = [η1, η2]T

from them.

Which type of distribution does the vector valued random variable η
have?
vector valued Gaussian (2 dimensional)

Compute the mean value and the variance of η.

mη =

[
1
2

]
, COV {η} =

[
4 2.3

2.3 16

]

K. Hangos PE Sept 2020 35 / 37



Tutorial

Tutorial problems – B

Example (Mean value and covariance estimation – 1)

Consider a scalar valued random variable ξ with a measured data set

D(5) = {0.5, −0.6, 0.3, −0.2, 0.0}

Compute an estimate of the mean value of ξ.
statistics: sample mean
m̂ = 0.5−0.6+0.3−0.2+0.0

5 = 0

Compute an estimate of the variance of ξ.
statistics: corrected empirical variance
σ̂2 = 0.52−0.62+0.32−0.22+0.02

4

Could the measured data be independent? Compute an estimate of
r = COV {ξi , ξi+1}. r̂ = −0.5·0.6−0.6·0.3−0.2·0.3−o.2·0.0

4 << 0
==> NOT independent
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Tutorial

HOMEWORK

Consider a scalar valued random variable ξ and with a measured data set

D(5) = {0.1, 0.2, 0.3, 0.4, 0.5}

Compute an estimate of the mean value of ξ.

Compute an estimate of the variance of ξ.

Could the measured data be independent? Compute an estimate of
r = COV {ξi , ξi+1}.
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