INTELLIGENT CONTROL SYSTEMS

Qualitative modelling

Katalin Hangos

Department of Electrical Engineering and Information Systems

Oct 2020

Lecture overview

- Sign and interval calculus
 - Sign addition and multiplication
 - Interval operations
- 2 The notion of qualitative models
- 3 Signed Directed Graph (SDG) models
 - Structure graph
 - Diagnostic reasoning
- 4 Confluences
 - Derivation and solution of confluences
 - Rule generation from confluences
- 5 Qualitative difference equations
 - The derivation and solution of QDEs
 - Rule generation from QDEs

Sign and interval calculus

- Sign and interval calculus
 - Sign addition and multiplication
 - Interval operations
- 2 The notion of qualitative models
- Signed Directed Graph (SDG) models
- 4 Confluences
- 5 Qualitative difference equations

Discrete range spaces

Universe: the range space of variables = a set of intervals

• General qualitative: real intervals with fixed or free endpoints

$$U_{\mathcal{I}} = \{[a_{\ell}, a_{u}] \mid a_{\ell}, a_{u} \in \mathcal{R}, a_{\ell} \leq a_{u}\}$$

with the landmark set

$$L_{\mathcal{I}} = \{a_i \mid a_i \leq a_{i+1} , i \in I \subseteq \mathcal{N}\}$$

sign-valued case

$$U_{\mathcal{S}} = \{ +, -, 0; ? \}, ? = + \cup 0 \cup - L_{\mathcal{S}} = \{ a_1 = -\infty, a_2 = 0, a_3 = \infty \}$$

logical (extended)

$$U_{\mathcal{L}} = \{ \text{ true }, \text{ false }; \text{ unknown } \}$$

Katalin Hangos Department of Electrical INTELLIGENT CONTROL SYSTEMS

Sign algebra

Algebra over the sign universe

Operations: with usual algebraic properties (commutativity, associativity, distributivity)

- sign addition (\oplus_S) and substraction (\ominus_S)
- sign multiplication (\otimes_S) and division
- composite operations and functions

Specification (definition) of a sign operation is done by using **operation** tables.

Recall - Logical operations

Operation table of the **implication** (\rightarrow) operation:

• used for describing rules

a o b		
$a\downarrow b \rightarrow$	false	true
false	true	true
true	false	true

Sign addition

Operation table

a ⊕5 b	+	0	_	?
+	+	+	?	?
0	+	0	_	?
_	?	_	_	?
?	?	?	?	?

Properties:

- Growing uncertainty
- commutative

NOTES

Properties of sign addition: "inherited" from the properties of the "usual" addition

- commutativity: implies the symmetry of the operation table (around the main diagonal)
- null element (0): $a \oplus_S 0 = 0 \oplus_S a = a$
- operand monotonicity : if $a_1 \le a_2$ then $(a_1 \oplus_S b) \le (a_2 \oplus_S b)$, holds for both operands

Sign multiplication

Operation table

a⊗s b	+	0	_	?
+	+	0	_	?
0	0	0	0	0
_	_	0	+	?
?	?	0	?	?

Properties:

- correcting by zero values
- commutative

NOTES

Properties of sign multiplication: "inherited" from the properties of the "usual" multiplication

- commutativity: implies the symmetry of the operation table (around the main diagonal)
- null element (0): $a \otimes_S 0 = 0 \otimes_S a = 0$
- operand monotonicity : if $a_1 \le a_2$ then $(a_1 \otimes_S b) \le (a_2 \otimes_S b)$, holds for both operands
- unit element (+): $a \otimes_S + = + \otimes_S a = a$

Interval operations – 1

Operation on intervals with *fixed* endpoints

• Set-type definition: the sum (or product) of two intervals $\mathcal{I}_1 = [a_{1\ell}, a_{1\mu}]$ and $\mathcal{I}_2 = [a_{2\ell}, a_{2\mu}]$ from $U_{\mathcal{I}}$ is the smallest interval from U_T which covers the interval

$$\mathcal{I}^* = \{ \ b = a_1 \ \textbf{op} \ a_2 \mid a_1 \in \mathcal{I}_1 \ , \ a_2 \in \mathcal{I}_2 \}$$

• Endpoint-type definition: for monotonic operations we can compute the above as

$$E_{op} = \{ e_{\ell\ell} = a_{1\ell} \text{ op } a_{2\ell} , e_{\ell u} = a_{1\ell} \text{ op } a_{2u} ,$$
 $e_{u\ell} = a_{1u} \text{ op } a_{2\ell} , e_{uu} = a_{1u} \text{ op } a_{2u} \}$
with $\mathcal{I}^* = [\min E_{op}, \max E_{op}]$

where E_{op} is formed from the endpoints

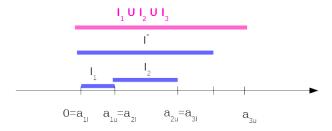
Interval operations – 2

Unusual properties caused by the fact that \mathcal{I}^* should be covered by an interval from U_T

- growing uncertainty with every operation
- lack of distributivity: the result may depend on the algebraic form minimum number of addition is the best

NOTES

The growing uncertainty is illustrated with the figure below.



Order of magnitude intervals

Universe

landmark set:

$$L_{\mathcal{OM}} = \{ a_1 = -\infty , a_2 = -A , a_3 = 0 , a_3 = A , a_4 = \infty \}$$

atomic intervals:

$$LN = [-\infty, -A), SN = [-A, 0), 0 = [0, 0], SP = (0, A], LP = (A, \infty]$$

$$U_{\mathcal{OM}} = \{ LN, SN, 0, SP, LP \}$$

Non-atomic intervals and operations

- pseudo-intervals: $[SP, LP] = (0, \infty]$ or $[LN, LP] = [-\infty, \infty]$
- operations: $LP \oplus_{OM} LN = [LN, LP]$

Order of magnitude addition

Operation table of the order of magnitude interval addition

$a \oplus_{OM} b$	LN	SN	0	SP	LP
LN	LN	LN	LN	[LN, SN]	[LN, LP]
SN	LN	[LN, SN]	SN	[SN, SP]	[SP, LP]
0	LN	SN	0	SP	LP
SP	[LN, SN]	[SN, SP]	SP	[SP, LP]	LP
LP	[LN, LP]	[SP, LP]	LP	LP	LP

NOTES

Properties of order of magnitude addition: "inherited" from the properties of the "usual" addition (see the *properties of sign addition*!)

- commutativity: implies the symmetry of the operation table (around the main diagonal)
- null element (0): $a \oplus_{OM} 0 = 0 \oplus_{OM} a = a$
- operand monotonicity : if $a_1 \le a_2$ then $(a_1 \oplus_{OM} b) \le (a_2 \oplus_{OM} b)$, holds for both operands

Important

The growing uncertainty is seen from the non-atomic entries in the table

Normalized intervals

Qualitative range space: for variables with "normal" N value

$$\mathcal{Q} = \{H, N, L, 0\}, \ \mathcal{B} = \{0, 1\}, \ \mathcal{Q}_E = \{H, N, L, 0, e+, e-\}$$

Intervals with non-fixed endpoints to avoid growing uncertainty Operation table for interval addition

0	L	Ν	Η
0	L	Ν	Н
L	Ν	Η	e+
N	Η	e+	e+
Н	e+	e+	e+
			0 L N L N H N H e+

This is only a possible definition!

NOTES

Required properties of normalized interval addition:

- commutativity : implies the symmetry of the operation table (around the main diagonal)
- null element (0): $a \oplus_N 0 = 0 \oplus_N a = a$
- operand monotonicity : if $a_1 \le a_2$ then $(a_1 \oplus_N b) \le (a_2 \oplus_S b)$, holds for both operands

This allows some flexibility in the definition. *Another possible definition*

[a] ⊕ _N [b]	0	L	Ν	Н	
0	0	L	Ν	Н	
L	L	L	Ν	Η	
Ν	N	Ν		Η	
Н	Н	Η	Η	Η	

The notion of qualitative models

- Sign and interval calculus
- 2 The notion of qualitative models
- 3 Signed Directed Graph (SDG) models
- 4 Confluences
- Qualitative difference equations

The notion of qualitative models

The range space of the variables and parameters is interval-valued

- sign-valued
 - Signed Directed Graph (SDG) models
 - Confluences (sign qualitative differential equations)
- interval-valued
 - Qualitative Differential Equations (QDEs): constraint type, algebraic type

From Al viewpoint: qualitative models are **special knowledge representation forms** with special reasoning.

The origin of qualitative models

Nonlinear dynamical models in **state-space form**:

$$\frac{dx}{dt} = f(x, u)$$
 (state eq.)
 $y = h(x, u)$ (output eq.)

Qualitative models can be derived systematically from engineering models by using

- interval-values variables and parameters
- simplified equations

SDG models

- Sign and interval calculus
- 2 The notion of qualitative models
- 3 Signed Directed Graph (SDG) models
 - Structure graph
 - Diagnostic reasoning
- Confluences
- 5 Qualitative difference equations

The structure of a state-space model

Linearized state-space models near a steady-state point

$$\frac{dx}{dt} = Ax + Bu$$
 (state eq.)
 $y = Cx + Du$ (output eq.)

Signed structure matrices: [A]

$$[A]_{ij} = \begin{cases} + & \text{if} \quad a_{ij} > 0 \\ 0 & \text{if} \quad a_{ij} = 0 \\ - & \text{if} \quad a_{ij} < 0 \end{cases}$$

A signed directed graph $S = (V, \mathcal{E}; w)$

vertex set for the state, input and output variables

$$V = X \cup U \cup Y$$
$$X \cap U = X \cap Y = U \cap Y = \emptyset$$

- edges for the direct effects between variables
- edge weights for the sign of the effect

Construction of the structure graph

Given a nonlinear state space model

$$\frac{dx}{dt} = f(x, u)$$
 (state eq.)
 $y = h(x, u)$ (output eq.)

The structure graph $S = (V, \mathcal{E}; w)$ is constructed in three steps

• vertex set for the state, input and output variables

$$V = X \cup U \cup Y$$
$$X \cap U = X \cap Y = U \cap Y = \emptyset$$

- **2** edges for the *direct* effects between variables
 - either from the linearized model equations
 - or by direct inspection of the model equations
- **3** edge **weights** for the *sign* of the effect

NOTES

Construction of the edges and edge weights by direct inspection of the model equations

- input \rightarrow state edges : a directed edge $u_i \rightarrow x_j$ exists, if u_i is present in the right-hand side $f_i(x, u)$ of the jth state equation
- state \rightarrow state edges : a directed edge $x_i \rightarrow x_j$ exists, if x_i is present in the right-hand side $f_j(x, u)$ of the jth state equation
- input \rightarrow output edges : a directed edge $u_i \rightarrow y_j$ exists, if u_i is present in the right-hand side $h_j(x, u)$ of the jth output equation
- state \rightarrow output edges : a directed edge $x_i \rightarrow y_j$ exists, if x_i is present in the right-hand side $h_i(x, u)$ of the jth output equation

Important

There are no edges directed to the input vertices. There are no edges directed from the output vertices

Paths in the structure graph

A directed path $P = (v_1, v_2, ..., v_n)$, $v_i \in V$, $e_{i,i+1} = (v_i, v_{i+1}) \in \mathcal{E}$

- describe an indirect effect from variable v_1 to v_n
- value of the path

$$W(P) = \prod_{i=1}^{n-1} w(e_{i,i+1})$$

• significance of shortest path(s) and directed circles

Important

In the structure graph edges describe direct effects between variables, and directed paths correspond to indirect effects between them.

Katalin Hangos Department of Electrical INTELLIGENT CONTROL SYSTEMS

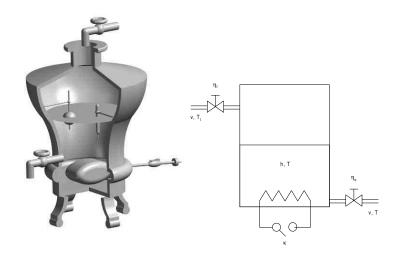
Diagnostic reasoning using SDGs

Sign-valued variables: sign of the deviation from their steady-state value

The effect of a variable v_i to another variable v_i

- initial deviation is determined by the sign-value of the shortest path(s)
 - sign-sum is needed if not unique ⇒ ambiguity
- steady-state effect is the sign-sum of the sign-value of all paths
 - \Longrightarrow ambiguity (often)
 - directed circles: solution of sign-linear equations

Example - Coffee machine

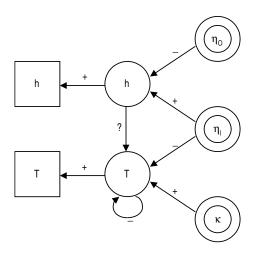


State-space model of the coffee machine

$$\begin{array}{lcl} \frac{dh}{dt} & = & \frac{v}{A}\eta_I - \frac{v}{A}\eta_O & \text{(mass)} \\ \frac{dT}{dt} & = & \frac{v}{Ah}(T_I - T)\eta_I + \frac{H}{c_\rho\rho h}\kappa & \text{(energy)} \end{array}$$

```
time [s]
      level in the tank [m]
      volumetric flowrate [m^3/s]
      specific heat [Joule/kgK]
      density [kg/m^3]
ρ
Τ
      temperature in the tank |K|
T_{I}
      inlet temperature [K]
Н
      heat provided by the heater [Joule/sec]
Α
      cross section of the tank [m^2]
      binary input valve [1/0]
\eta_I
      binary output valve [1/0]
\eta_{O}
      binary switch [1/0]
\kappa
```

SDG of the coffee machine



Confluences

- Confluences
 - Derivation and solution of confluences
 - Rule generation from confluences

Origin of confluences

"Qualitative Physics" by de Kleer and Brown

Sign version of lumped nonlinear state equations (dynamic models with perfectly stirred balance volumes)

- can be formally derived therefrom
- sign-valued variables and operations are used

Important

A complete and contradiction-free rule-set can be derived from confluences

Derivation of confluences

1 define qualitative variables [q] and δq to each of the model variables q(t) as follows:

$$q \sim [q] = sign(q)$$
 , $dq/dt \sim \delta q = sign(dq/dt)$

operations are replaced by sign operations, i.e.

$$+ \sim \oplus_S$$
 , $* \sim \otimes_S$ etc.

3 parameters are replaced by + or - or 0 forming sign constants in the confluence equations, i.e. they virtually disappear from the equations.

Solution of a confluence

In the form of an extended truth table (sign-operation table)

- collect all of the *right-hand side variables* (time-dependent values!)
- enumerate all of their sign-values
- systematically enumerate all of the possible combinations
 exponentially growing size with the number of variables

Rule generation from confluences

The rows of the truth table of a confluence can be interpreted as a rule if one reads them from right to left.

For example

$$\delta h = [\eta_I] \ominus_{\mathcal{S}} [\eta_O]$$

with the combination $\eta_I=0$, $\eta_I=+$ gives $\delta h=-$

if
$$(\eta_I = \text{closed})$$
 and $(\eta_O = \text{open})$ then $(h = \text{decreasing})$

Important

Rule sets can be generated from the truth table of a confluence. The generated rules are datalog rules.

The generated rule set is contradiction-free by construction, but it may not be complete.

NOTES

Important

The **lack of completeness** of a generated rule set is the consequence of the fact, that one does not generate a rule of the consequence has the value? (i.e., **unknown sign**).

A simple example - 1

Model equation: mass balance of the coffee machine

$$\frac{dh}{dt} = \frac{v}{A}\eta_I - \frac{v}{A}\eta_O$$

- **1** qualitative variables: $[\eta_I] \in \{0, +\}$, $[\eta_O] \in \{0, +\}$
- 2 all sign constants are "+"
- confluence

$$\delta h = [\eta_I] \ominus_{\mathcal{S}} [\eta_O]$$

A simple example – 2

Truth table of the confluence

$$\delta h = [\eta_I] \ominus_{\mathcal{S}} [\eta_O]$$

δh	$[\eta_I]$	$[\eta_O]$
0	0	0
_	0	+
+	+	0
?	+	+

Qualitative difference equations

- Qualitative difference equations
 - The derivation and solution of QDEs
 - Rule generation from QDEs

The derivation of discrete time qualitative DAEs

Dynamic models derived from first engineering principles: continuous time differential-algebraic equation models

- differential equations originate from conservation balances: to be transformed to difference equations (time discretization)
- selection of the *qualitative range spaces* of variables and parameters
- deriving the qualitative form

Qualitative signals - 1

Qualitative range spaces

$$Q = \{H, N, L, 0\}, \quad \mathcal{B} = \{0, 1\}, \quad \mathcal{Q}_{\mathcal{E}} = \{H, N, L, 0, e+, e-\}$$

with High, Low, Normal, error.

Important

A qualitative signal is a signal (input, output, state and disturbance (fault indicator)) that takes its values from a finite qualitative range set

An event is generated when a qualitative signal changes its value. An event e_X is formally described by a pair $e_X(t, q_X) = (t, [x](t) = q_X)$ where t is the occurrence time when the qualitative signal [x] takes the value q_X .

Qualitative signals - 2

Signal trace: a sequence of events related to a qualitative signal [x] with values in $q_X \in \mathcal{Q}_{\mathcal{E}}$

$$\mathcal{T}_{(x,k_1,k_N)} = \{[x](k_1),...,[x](k_N)\} = \{q_{X1}(k_1),...,q_{XN}(k_N)\}$$

Simplified notation: time is omitted

$$\mathcal{T}_{x}=(q_{X1},...,q_{XN})$$

e.g. with normalized intervals $Q_E = \{H, N, L, 0, e+, e-\}$

$$(N, N, L, 0)$$
, (N, N, N) , etc.

Solution of a qualitative DAE

In the form of a solution table (interval operation table)

- collect all of the right-hand side variables (time-dependent values!)
- enumerate all of their signal traces
- systematically enumerate all of the possible combinations ⇒ exponentially growing size with the number of variables

A static example: sensor with additive type fault

Algebraic model equation:
$$v^m = v + \chi \cdot E$$

[v] $\in \mathcal{Q}$, [v] $^m \in \mathcal{Q}_e$, $\chi \in B_{-1} = \{-1, 0, 1\}$ and [E] = L

[v ^m]	[x]	[v]	mode
N	0	N	normal
Н	0	Н	normal
L	0	L	normal
0	0	0	normal
e+	1	Н	faulty
Н	1	N	faulty
N	1	L	faulty
L	1	0	faulty
N	-1	Н	faulty
L	-1	N	faulty
0	-1	L	faulty
e-	-1	0	faulty

The applied operation table for the normalized intervals should also be defined!

Rule generation from QDEs

The rows of the solution table of a QDE can be interpreted as a rule if one reads them from right to left.

For example

$$v^m = v + \chi \cdot E$$

with the combination [v] = N, $\chi = -1$ gives $[v]^m = L$

if
$$(\chi = \text{neg fault})$$
 and $([\nu] = \text{normal})$ then $([\nu]^m = \text{low})$

Important

Rule sets can be generated from the truth table of a static QDE in a datalog form.

The generated rules are contradiction-free and complete.

NOTES

Important

Completeness of the generated rule set follows from the operation table of normalized intervals.

Because of the non-fixed endpoints, the result of an algebraic manipulation with operand of atomic value has also an atomic value. This means that no **unknown** valued consequence exists (no growing uncertainty).

A dynamic example: mass balance of the coffee machine

Differential equation in discrete form: $h^{+1} = h + \chi_I \cdot v - \chi_O \cdot v$ $[h], [h]^{+1} \in \mathcal{Q}_e, \ \chi_I, \chi_O \in \mathcal{B} \ \text{and} \ [v] = L$ Solution with constant inputs

[h] ⁺¹	[h](t ₀)	XΙ	χo
(N, N, N)	N	(1,1,1)	(1,1,1)
(L, L, L)	L	(1,1,1)	(1,1,1)
(N, N, N)	N	(0,0,0)	(0,0,0)
(H, e+, e+)	N	(1,1,1)	(0,0,0)
(N, H, e+)	L	(1,1,1)	(0,0,0)
(L, 0, e-)	N	(0,0,0)	(1,1,1)
(0, e-, e-)	L	(0,0,0)	(1,1,1)