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Discrete time stochastic processes Stochastic processes

Stochastic processes – 1

Stochastic processes are used for describing random disturbances in
systems and control theory.

Important

Stochastic process
family (indexed sequence) of random variables x(., .) where

x : T × Ω→ Rp

The set T is called time.

continuous time process: T ⊆ R
discrete time process: T ⊆ N
discrete time variable k ∼ tk
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Discrete time stochastic processes Stochastic processes

Stochastic processes – 2

Given a discrete time stochastic process

x : T × Ω→ Rp

Realization
the (deterministic) function x(., ω0) with ω0 being fixed

Fixed-time value
x(k0, .) with k0 is being fixed is a random variable

Notation
x(k , .) = x(k) for the random variable generated from the stochastic
process x by fixing the time at k

K. Hangos PE Oct 2020 6 / 25



Discrete time stochastic processes Stochastic processes

Distribution functions of a stochastic process

A stochastic process can be specified by describing all of its finite
dimensional distribution functions

Definition

A finite dimensional distribution function of a stochastic process is defined
by the formulae

F (ζ1, ..., ζn; k1, ..., kn) = P{x(k1) ≤ ζ1, ..., x(kn) ≤ ζn}

Gaussian or normal process: all finite dimensional distribution functions of
the process are Gaussian.
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NOTES
Recall: probability distribution function of vector-valued random
variables

Two dimensional Gaussian distribution
Probability density function:
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Discrete time stochastic processes Mean value and covariance

Recall: Mean value, covariance

The mean value and variance of the random variable ξ with its p.d.f. fξ are

E{ξ} =

∫
xfξ(x)dx , σ2{ξ} =

∫
(x − E{ξ})2fξ(x)dx

The covariance of two scalar-valued random variables ξ and θ is

COV {ξ, θ} = E{(ξ − E{ξ})(θ − E{θ})}

Important

The covariance of a scalar-valued random variables ξ with itself is its
variance, i.e. COV {ξ, ξ} = σ2{ξ}
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Discrete time stochastic processes Mean value and covariance

Mean value function, (auto)covariance function

Definition (mean value function)

The mean-value function of the stochastic process {x(k)}∞k=0 is as follows

mx(k) = Ex(k) =

∫ ∞
−∞

ζdF (ζ, k) , k = 0, ...,K , ...

Important

Note that mx(k) is an ordinary (deterministic) function of time k .

Definition ((auto)covariance function)

The (auto)covariance function of the stochastic process {x(k)}∞k=0 is
defined as

rxx(`, k) = cov [x(`), x(k)] = E{ [x(`)−m(`)][x(k)−m(k)]T }

The covariance function is a deterministic two-variate function.
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Discrete time stochastic processes Mean value and covariance

Cross-covariance function

Cross-covariance characterizes the inter-dependence of two discrete time
stochastic processes.

Definition (cross-covariance function)

The cross-covariance function of the stochastic processes {x(k)}∞k=0

{x(k)}∞k=0 and {y(k)}∞k=0 is defined as

rxy (`, k) = cov [x(`), y(k)] = E{ [x(`)−mx(`)][y(k)−my (k)]T }

The cross-covariance function is a deterministic two-variate function.
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Discrete time stochastic processes White noise processes

White noise processes

Definition (discrete time white noise, e)

A stochastic process e = {e(k)}∞k=−∞ is a discrete time white noise
process if it is a sequence of identically distributed, independent random
variables.

Important

Properties

stationary process (usually m(k) = 0 is assumed)

the covariance function in real-valued case is

ree(`) = cov [e(k), e(k − `)] =

{
σ2 ` = 0
0 ` = ±1,±2, ...

A white noise process is not necessarily a Gaussian process.
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Discrete time stochastic processes White noise processes

MA processes

Important (unit time delay operator)

Given a signal (time-dependent sequence) {x(k), k = ...,−1, 0, 1, ...}.
The time delay operator q−1 acts as q−1x(k) = x(k − 1).

Definition (moving average process (MA process))

Let e = { e(k) , k = ...,−1, 0, 1, 2, ...} be a white noise process with
variance σ2. Then the related process y = {y(t)}∞k=−∞ which fulfils

y(k) = e(k) + b1e(k − 1) + ...+ bne(k − n) = B∗(q−1)e(k)

is termed a MA process.

Mean value and auto-covariance function of a MA process

my (k) = 0, ryy (0) = σ2(1 + b21 + ...+ b2n),
ryy (1) = σ2(b1 + b1b2 + ...+ bn−1bn)
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Discrete time stochastic processes White noise processes

AR and ARMAX processes

Definition (autoregressive process (AR process))

With the white noise process e = {e(t)}∞k=−∞ an AR process is defined as
follows

y(k) + a1y(k − 1) + ...+ any(k − n) = A∗(q−1)y(k) = e(k)

Definition (ARMAX process)

An autoregressive-moving average process with an exogeneous signal
(ARMAX process) is a linear combination an AR and MA process
extended with an exogeneous signal u = {u(k)}∞k=−∞:

A∗(q−1)y(k) = B∗(q−1)u(k) + C ∗(q−1)e(k)

with A∗(q−1) = 1 + a1q
−1 + anq

−n, B∗(q−1) = b0 + b1q
−1 + bmq

−m,
C ∗(q−1) = 1 + c1q

−1 + cnq
−n and m < n.
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NOTES
The so-called ”General decomposition theorem” in the theory of
stochastic processes shows the importance of ARMA processes.

Important (General decomposition theorem)

Any stationary stochastic process η = {η(k)}∞k=−∞ with finite variance
enables to construct an ARMA model, i.e. there exists a (non-necessarily
Gaussian) white noise process e = {e(k)}∞k=−∞, and polynomials
A∗(q−1) and B∗(q−1) such that

A∗(q−1)η(k) = B∗(q−1)e(k)
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Dynamic models of discrete time systems DT-LTI SISO I/O system models

Systems

System (S): acts on signals
y = S[u]

inputs (u) and outputs (y)
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Dynamic models of discrete time systems DT-LTI SISO I/O system models

Basic system properties

Linearity
S[c1u1 + c2u2] = c1y1 + c2y2

with c1, c2 ∈ R, u1, u2 ∈ U , y1, y2 ∈ Y and S[u1] = y1, S[u2] = y2
Linearity check: use the definition

Time-invariance
Tτ ◦ S = S ◦ Tτ

where Tτ is the time-shift operator: Tτ (u(t)) = u(t + τ), ∀t
Time invariance check: constant parameters
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Dynamic models of discrete time systems DT-LTI SISO I/O system models

Discrete time LTI SISO I/O system models

Discrete difference equation models: for SISO (single-input single-output)
systems

Backward difference form

y(k) + a1y(k − 1) + ...+ any(k − n) = bdu(k − d) + ...+ bmu(k −m)

where d = n −m > 0 is the pole excess (time delay).

Compact form

A∗(q−1)y(k) = B∗(q−1)u(k − d)

where A∗(q−1) = 1 + a1q
−1 + ...+ anq

−n and
B∗(q−1) = b0 + b1q

−1 + ...+ bmq
−m are polynomials of the time

delay operator q−1.
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Dynamic models of discrete time systems DT-LTI stochastic SISO I/O model

Discrete time LTI stochastic SISO I/O model

Important (discrete time stochastic LTI input-output model)

The general form of the input-output model of discrete time stochastic
LTI SISO systems is the following canonical ARMAX process:

A∗(q−1)y(k) = B∗(q−1)u(k) + C ∗(q−1)e(k) (1)

with the polynomials

A∗(q−1) = 1 + a1q
−1 + ...+ anq

−n,C ∗(q−1) = c0 + c1q
−1 + ...+ cnq

−n

B∗(q−1) = b0 + b1q
−1 + ...+ bmq

−m

where C ∗(q−1) is assumed to be a stable polynomial.
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The principle of parameter estimation – dynamic case Predictive ARX models

ARX models

Important (simplest discrete time stochastic LTI input-output model)

Assuming only independent measurement noise, the model is an ARX model
in the form

A∗(q−1)y(k) = B∗(q−1)u(k) + e(k) (2)

where {e(k)}∞k=−∞ is a white noise process.

Important (predictive form of ARX models)

The predictive form of the ARX model is

y(k) = −a1y(k − 1)− ..− any(k − n) + b0u(k) + ...+

+bmu(k −m) + e(k) = pTϕ(k) + e(k)

This model is linear in parameters p = [−a1 ... − an | b0 ...bm]T if one
measures the data

ϕ(k) = [y(k − 1) ... y(k − n) | u(k) ... u(k −m)]T

.
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Tutorial

Tutorial problems
Stochastic processes

A. Moving average processes

B. Two stochastic processes
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Tutorial

Tutorial problems – A

Example (Simple MA process – 1)

Given a scalar-valued white noise stochastic process {e(k)}∞−∞ with
variance σ2. Let us construct from it a stochastic process by the equation

y(k) = e(k) + 0.5e(k − 1) + 0.6e(k − 2)

What kind of process is the stochastic process {y(k)}∞−∞?
A moving average (MA) process

Compute the mean value function my (k) and the (auto)covariance
function ryy (k) of the stochastic process {y(k)}∞−∞.
my (k) ≡ 0 for k + 0, 1, ...
ryy (0) = σ2(1 + 0.52 + 0.62), ryy (±1) = σ2(0.5 + 0.5 · 0.6)
ryy (±2) = σ2 · 0.6, ryy (±`) = 0 , ` > 2
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Tutorial

Tutorial problems – A

Example (Simple MA process – 2)

Consider the following stochastic process:

w(k) = z(k) + 0.1z(k − 1) + 0.8z(k − 3)

where z is a sequence of independent scalar valued random variables with
the same distribution, E (z(k)) = 0, and D(z(k)) = σ, for every k .

What kind of process is the stochastic process {z(k)}∞−∞?
A white noise process

What kind of process is the stochastic process {w(k)}∞−∞?
A moving average (MA) process

Compute the (auto)covariance function rww (k) for k = 1, 3,−2.
mw (k) ≡ 0 for k + 0, 1, ...
rww (1) = σ2 · 0.1, rww (3) = σ2 · 0.8
rww (−2) = σ2 · 0.1 · 0.8
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Tutorial

Tutorial problems – B

Example (Cross-covariance)

Consider the following two moving-average (MA) processes:

z(k) = e(k) + 0.6e(k − 1) + 0.1e(k − 2)
y(k) = e(k) + 0.3e(k − 1) + 0.8e(k − 2)

where {e(k)}∞−∞ is a discrete time white noise process with variance
D2(e(k)) = σ2

Compute the cross-covariance function rzy (k) ∀k

mz(k) ≡ 0 , mz(k) ≡ 0 , rzy (k) 6= rzy (−k) !!!

rzy (0) = σ2(1 + 0.6 · 0.3 + 0.1 · 0.8)

rzy (1) = σ2(1 · 0.6 + 0.1 · 0.3) , rzy (−1) = σ2(1 · 0.3 + 0.6 · 0.8)

rzy (2) = σ2 · 1 · 0.1 , rzy (−2) = σ2 · 1 · 0.8

rzy (k) = rzy (−k) = 0 , |k | > 2
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Tutorial

HOMEWORK

Given a scalar-valued white noise stochastic process {e(k)}∞−∞ with
variance σ2. Let us construct from it a stochastic process by the equation

y(k) = e(k)− 0.2e(k − 1)

What kind of process is the stochastic process {y(k)}∞−∞?

Compute the mean value function my (k) and the (auto)covariance
function ryy (k) of the stochastic process {y(k)}∞−∞ for the values
k = 0,±1,±2,±3, ...!

Compute the cross-covariance function rye(k) for the values
k = 0,±1,±2,±3, ...!

The solution should be submitted electronically
by 12:00 on the 21th October 2020
to the e-mail address hangos.katalin@virt.uni-pannon.hu
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