Intelligent Control Systems Introduction Real-time Expert Systems

Katalin Hangos

Department of Electrical Engineering and Information Systems

September 2016

Contents

- Basic notions on systems and artificial intelligence
 - signals, systems
 - control and diagnosis
 - intelligent software systems
 - knowledge-based systems
 - expert systems
- Real-time expert systems
 - architecture of real-time expert systems
 - synchronization and communication between the real-time and intelligent subsystems

Signals and systems

System (S): acts on signals

$$y = S[u]$$

- inputs (u) and outputs (y)
- states (x): internal, not unique

Control - general problem statement

Given

- a system model
- control goal

Compute

an input record to fulfil the control goal

Control goals:

- stabilization
- disturbance rejection
- optimal control

Diagnosis - general problem statement

Given

- a set of *possible faults*
- a system model for each fault
- measured data from the system to be diagnosed

Compute/determine

the fault that *best explains* (measure of fit is needed!) the measured data

Diagnosis approaches:

- prediction-based
 - identification (parameter estimation) based
 - observes-based (state estimation or filtering)

Computer controlled systems

Computer controlled system - real-time software system

Main functions

- data collection (measurement), data processing
- control and regulation
- system analysis
- control
- diagnosis

Software elements

- data files: raw measured data, measured data, events, etc.
- tasks: primary processing, event handling, control diagnosis

Intelligent systems

Intelligent human

- solves non-trivial, complex, complicated problem
- in case of difficult, non-trivial, new circumstances
- main characteristics: heuristic problem solving driven by experience, intuition

Intelligent system

- problem solving: human-like way
- learning: systematization of collected knowledge
- heuristic: key characteristic of intelligent methods

Characteristics of intelligent problems

- complicated (even for human!)
- there is no predefined algorithm for solution
- solution can be defined with a sequence of elementary actions
 - not fixed in advance
 - can be chosen among several possible sequences
- solution: search
 - enumeration the set of potential solutions
 - choosing next action (step): with systematic trying
- problem space (search space): can be huge
 - trying all the possibilities in systematic way is not possible: combinatorial explosion
 - directed search is needed
- human skill/intuition/practical experience is needed: heuristic knowledge
- "good enough" solution is sufficient

Intelligent software systems

Software systems are based on Neumann's principle

- data (passive)
- program (active): executable part (stored in the form of data)

Knowledge-based systems are intelligent software systems based on Neumann's principle

- knowledge: data-like part, not necessary passive
- inference engine: processing part, active

The architecture of knowledge-based systems

Expert systems

- Expert systems (ESs) are special knowledge-based systems
 - employ experts' knowledge
 - applied in a narrow specific field
 - solve difficult problems (that demands special knowledge)
 - specialized human experts are needed
 - experts must agree on the fundamental questions of their professional field
 - learning examples and raw data are needed
- Expectations from an ES (like a human expert):
 - to make intelligent decisions: to offer intelligent advice and explanations
 - question/answer mode of operation ("treated as an equal conversation partner")
 - to be able to explain results and answers
 - to give acceptable advice even in case of uncertain situation

The architecture of expert systems

The operation of the coffee machine

Engineering model equations

$$\frac{dh}{dt} = \frac{v}{A}\eta_I - \frac{v}{A}\eta_O \qquad \text{(mass balance)}
\frac{dT}{dt} = \frac{v}{Ah}(T_I - T)\eta_I + \frac{H}{c_D\rho h}\kappa \qquad \text{(energy balance)}$$
(1)

The architecture of real-time expert systems

The real-time subsystem

Required key properties

- time-dependent reactions
- finite prescribed response time
- time-out
- no loss of raw data
- priority handling
- "nice degradation"

Key elements to be interfaced with the intelligent subsystem:

- primary processing
- event handling
- controllers in wide sense

The intelligent subsystem

Key properties of the elements for interfacing

- a. The knowledge (data) elements in a knowledge base are strongly related.

 =>
 The whole knowledge base should be locked for the inference engine when it
 - The whole knowledge base should be locked for the inference engine when it performs a reasoning task.
- b. Reasoning is computationally hard. => No definite upper limit for the time needed to perform a reasoning task, therefore a "loose" communication is to be implemented between the real-time and the intelligent subsystems.

Course contents

Most common techniques applied in intelligent control systems

- time-dependent rule sets: notion and verification
- qualitative models: signed directed graphs, confluences, qualitative difference equations
- Petri nets: ordinary and coloured
- fuzzy rules

Knowledge representation forms and reasoning methods applied for control and diagnosis

Requirements

For each participant an **individual small system and control task** is given

- Individual project: to be carried out with consultation
 - for each technique perform the tasks specified in the homework section using your own individual system
 - to be send in electronically on Monday of the last week of the teaching period