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Previous notions
Systems

@ System (S): acts on signals

y = S[u]

@ inputs (u) and outputs (y)

u(t)

inputs

System S
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CT-LTI I/O system models

@ Time domain:Impulse response function

is the response of a SISO LTI system to a Dirac-delta input function
with zero initial condition.

@ The output of S can be written as

y(t) = /OO h(t — 7)u(r)dr = /oo h(r)ult — 7)dr

—00 —0o0

a(t) h(t)
t t
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Previous notions CT-LTI state space models

CT-LTI state-space models

@ General form - revisited

x(t) = Ax(t) + Bu(t) , x(to) = x(0)
y(t) = Cx(t)

with
o signals: x(t) e R", y(t) e R? | u(t) e R"
e system parameters: A€ R"™" B eR"™  CeRP*" (D=0by
using centering the inputs and outputs)
@ Dynamic system properties:

e observability
e controllability
o stability
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Previous notions DT-LTI state space models

DT-LTI state space models

@ State space model

x(k +1) = dx(k) + Tu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

e with given initial condition x(0) and
x(k) e R" | y(k) e RP | u(k) e R
being vectors of finite dimensional spaces and
SGecR™" TeR™ CeRPY" DecRP

being matrices
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Previous notions Poles

Poles of CT-LTIl and DT-LTI systems

H continuous time system ‘ discrete time system ‘
state eq. x(t) = Ax(t) + Bu(t) | x(kh+ h) = ®x(kh) + [u(kh)
O = eth
output eq. y(t) = Cx(t) y(kh) = Cx(kh)
poles Ai(A) \i(®)
Ai(®) = eMi(Ah
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The notion of stability

Overview

© The notion of stability
@ Signal norms
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The notion of stability
Stability

Stability expresses the resistance of a system against disturbances.

d,(0) (1)

System S

System response to two kinds of disturbances

e Small persistent disturbance on input(s) (d1): external or bounded
input bounded output (BIBO) stability

@ Impulse type effect on the state moving it out of steady state (d>):
internal or asymptotic stability
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The notion of stability = Signal norms

Scalar valued signals

@ vector norms: v € R”

n

n
DoV vili=) il [IVllec = max]y]
i=1

i=1

Ivll2 =

o discrete time signal: f(k) € R, Vk >0

Q-

norm: ||f||q = (Z \f(k)lﬁ>
0

@ continuous time signal f(t) € R, Vt >0

norm: [[fllq = (/Ooovu)\zf
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The notion of stability = Signal norms

Vector valued signals

@ continuous time signal: f(t) € R", Vt >0

@ || -||nis @a norm in R" (e.g. Euclidean)

Lo(v) = {f : Ry — R" | f is measurable and /0 F(8)]|F < oo}

norm: [[fl]q = (/Ooouf(r)\m)‘l’

@ Remark: The case L, is special, because the norm comes from an
inner product (L is a Hilbert-space)
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time systems

Overview

© Bounded input-bounded output (BIBO) stability - continuous time
systems
@ BIBO stability for SISO CT-LTI systems
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time systems

BIBO stability — general

Definition (BIBO stability)
A system is externally or BIBO stable if for any bounded input it responds

with a bounded output

lul] < My < oo = |[ly]| < Mz < oo

where ||.|| is a signal norm.
v

@ This applies to any type of systems.
@ Stability is a system property, i.e. it is realization-independent.
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) tme ystes BIBO stability for SISO CT-LTI systems

BIBO stability — 1

@ Bounded input-bounded output (BIBO) stability for SISO systems

lu(t)] < My < oo, Vt€[0,00] = |y(t)| < My < oo, Vt e [0,00]

Theorem (BIBO stability)
A SISO LTI system is BIBO stable if and only if

(e.e]
/ |h(t)|dt < M < 00
0

where M € R™ and h is the impulse response function.
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) tme ystes BIBO stability for SISO CT-LTI systems

BIBO stability — 2

Proof:
< Assume [ |h(t)|dt < M < oo and u is bounded, i.e.
lu(t)] < My < oo, YVt € R{. Then
ly(t)] < |/ h(T)u(t — 7)d7| < I\/ll/ |h(T)|dT < My - M = M,
0 0

= (indirect) Assume [ |h(7)|dT = oo, but the system is BIBO stable.
Consider the bounded input:

1 if h(r)>0
u(t—71)=sign h(r)=<¢ 0 if h(r)=0
-1 if h(r)<0
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Asymptotic stability - continuous time systems
Overview

@ Asymptotic stability - continuous time systems
@ The notion of asymptotic stability
@ Motivating example
@ Asymptotic stability of CT-LTI systems
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Asymptotic stability - continuous time systems = The notion of asymptotic stability

Asymptotic stability — general

Definition ((local) asymptotic stability)

An equilibrium /steady-state point x* of truncated/autonomous system
with state equation

x(t) = F(x(8)) , x(0)=x (#x7) , F(x*)=0

is internally or asymptotically stable if for any initial state xg # x* (from a
neighbourhood of Gy~ of x*)

o ¥
o135 X8 =

@ This applies to any type of continuous time systems.

@ For discrete time systems a similar definition is applicable with
x(k + 1) = F(x(k).
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Asymptotic stability -

continuous time systems Motivating example

Example: asymptotic stability

RLC circuit, parameters: R =1, L=10"'H, C = 10'F.

uc(0) =1V, i(0)=1

15

A, Ube(t) =0V

. .
o 0.5 1
ids 1]
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Asymptotic stability - continuous time systems Motivating example

Non-asymptotic stability

(R)LC circuit, parameters: R =0 Q(!), L=10"1H, C = 1071F.
uc(0) =1V, i(0) =1A, upe(t)=0V

1

N\ e — 2N

/ \ / \ / \
[ A / A
\ | \ / \
\ /1 \ / / \ \\

o \ | \ / 11
\ / /

[
/ /

K. Hangos (University of Pannonia) Feb 2018



Asymptotic stability - continuous time systems Motivating example

Example: instability

).(]_ = X1+ 0.1X2

_ T
% = —02x;+2x x(0) =101 2]
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Asymptotic stability - continuous time systems  Asymptotic stability of CT-LTI systems

Stability of CT-LTI systems

o (Truncated) LTI state equation with (v = 0):

x=A-x, xeR", Ae¢R™", x(0) = xo
@ Equilibrium pont: x* =0
@ Solution:

x(t) = et - xg

o Recall: A diagonalizable (there exists invertible T, such that
T-A T71

is diagonal) if and only if, A has n linearly independent eigenvectors.

K. Hangos (University of Pannonia) PE Feb 2018 22 /31



Asymptotic stability - continuous time systems  Asymptotic stability of CT-LTI systems

Asymptotic stability of LTI systems — 1

Stability types:
o the real part of every eigenvalue of A is negative (A is a stability
matrix): asymptotic stability
@ A has eigenvalues with zero and negative real parts

o the eigenvectors related to the zero real part eigenvalues are linearly
independent: (non-asymptotic) stability

e the eigenvectors related to the zero real part eigenvalues are not
linearly independent: (polynomial) instability

@ A has (at least) an eigenvalue with positive real part: (exponential)
instability
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Asymptotic stability - continuous time systems  Asymptotic stability of CT-LTI systems

Asymptotic stability of LTI systems — 2

The eigenvalues of a square A € R™" matrix remain unchanged after a
similarity transformation on A by a transformation matrix T :

A = TAT 1

Proof:
Let us start with the eigenvalue equation for matrix A

AE =X, EeR™, AeC
If we transform it using ¢’ = T¢ then we obtain
TAT1T¢ = \T¢
A =2
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Asymptotic stability - continuous time systems  Asymptotic stability of CT-LTI systems

Asymptotic stability of LTI systems — 3

A CT-LTI system is asymptotically stable iff A is a stability matrix. \

Sketch of Proof: Assume A is diagonalizable

A 0O ... 0
_ ) 0 X ... O
A=TAT 1 = _
0 0 A\,
eMt 0 0
- ~ 0 et 0
0 0 et
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Asymptotic stability of CT-LTI systems

Asymptotic stability - continuous time systems

BIBO and asymptotic stability

Asymptotic stability implies BIBO stability for LTI systems.

Proof:

x(t) = e*tx(0) + /Ot AT By(r)dr, y(t) = Cx(t)

Ix(2)]| < [|e*x(t0) + M fot eAt=7) Bdr|| =
= [|e*(x(to) + M [, e A"Bd7)|| =

= || (x(to) + M[-A"te AT B]b)|| =

= ||eAt[x(to) — MA~te=AtB + MA~1B]||

Ix(2)]] < [le*(x(to) + MA™1B) — MA~1B||
BIBO stability does not necessarily imply asymptotic stability.
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Discrete time stability
Overview

© Discrete time stability
@ Stability of DT systems
@ Stability of DT-LTI systems
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Discrete time stability = Stability of DT systems

Stability of discrete time systems — 1

@ Truncated state equation
x(k+1) = F(x(k), k)

with a ordinary solution x°(k) for x%(ko) and a perturbed solution
x(k) for x(ko)-

e Stability of a solution x?(k) is stable if for a given ¢ > 0 there exists
a (e, ko) such that all solutions with ||x(ko) — x%(ko)|| < & fulfill
|[x(k) — xP(k)|| < € for all k > ko.

e Asymptotic stability x%(k) is asymptotically stable if it is stable and

||x(k) — x°(k)|| — 0 when k — oo provided that ||x(ko) — x%(ko)|| is
small enough.
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Discrete time stability = Stability of DT systems

Stability of discrete time systems — 2

o BIBO stability

A discrete time system is externally or BIBO stable if for any
lull < My <00 = [ly|| < M2 < o0

where ||| is a suitable signal norm.
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Discrete time stability = Stability of DT-LTI systems

Stability of DT-LTI systems — 1

e Consider a truncated state equation with u(k) =0, k=10,1,2, ...
x(k 4+ 1) = dx(k)

o x9(k) for x°(0) = a° as the ordinary solution and
o x(k) for x(0) = a as a "perturbed solution".

@ The difference x = x — x© satisfies
X(k+1)=dx(k) , x(0)=a—a°

= Stability is a system property for LTI systems
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Discrete time stability = Stability of DT-LTI systems

Stability of DT-LTI systems — 2

@ Solution of the truncated state equation x(k 4+ 1) = ®x(k), x(0) = xo
x(k) = ®kx(0)

@ Bring the matrix ®* into diagonal form and use that its eigenvalues
)\,’(q)k) = )\,’(q))k thus

x(k) — 0 = |[\(®) <1

A DT-LTI system is asymptotically stable if and only if \j(®) are strictly
inside the unit disc.

Asymptotic stability implies BIBO stability.
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