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Previous notions

Systems

System (S): acts on signals

y = S[u]

inputs (u) and outputs (y)
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Previous notions

CT-LTI I/O system models

Time domain:Impulse response function
is the response of a SISO LTI system to a Dirac-delta input function
with zero initial condition.
The output of S can be written as

y(t) =

∫ ∞
−∞

h(t − τ)u(τ)dτ =

∫ ∞
−∞

h(τ)u(t − τ)dτ
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Previous notions CT-LTI state space models

CT-LTI state-space models

General form - revisited

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x(0)
y(t) = Cx(t)

with
signals: x(t) ∈ Rn , y(t) ∈ Rp , u(t) ∈ Rr

system parameters: A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n (D = 0 by
using centering the inputs and outputs)

Dynamic system properties:
observability
controllability
stability
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Previous notions DT-LTI state space models

DT-LTI state space models

State space model

x(k + 1) = Φx(k) + Γu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

with given initial condition x(0) and

x(k) ∈ Rn , y(k) ∈ Rp , u(k) ∈ Rr

being vectors of finite dimensional spaces and

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r

being matrices
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Previous notions Poles

Poles of CT-LTI and DT-LTI systems

continuous time system discrete time system

state eq. ẋ(t) = Ax(t) + Bu(t) x(kh + h) = Φx(kh) + Γu(kh)
Φ = eAh

output eq. y(t) = Cx(t) y(kh) = Cx(kh)

poles λi (A) λi (Φ)

λi (Φ) = eλi (A)h
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The notion of stability

Stability

Stability expresses the resistance of a system against disturbances.

System response to two kinds of disturbances
Small persistent disturbance on input(s) (d1): external or bounded
input bounded output (BIBO) stability
Impulse type effect on the state moving it out of steady state (d2):
internal or asymptotic stability

K. Hangos (University of Pannonia) PE Feb 2018 10 / 31



The notion of stability Signal norms

Scalar valued signals

vector norms: v ∈ Rn

||v ||2 =

√√√√ n∑
i=1

v2
i , ||v ||1 =

n∑
i=1

|vi | , ||v ||∞ = max|vi |

discrete time signal: f (k) ∈ R, ∀k ≥ 0

norm: ||f ||q =

( ∞∑
0

|f (k)|qν

) 1
q

continuous time signal f (t) ∈ R, ∀t ≥ 0

norm: ||f ||q =

(∫ ∞
0
|f (t)|qν

) 1
q
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The notion of stability Signal norms

Vector valued signals

continuous time signal: f (t) ∈ Rn, ∀t ≥ 0
|| · ||n is a norm in Rn (e.g. Euclidean)

Lq(ν) =

{
f : R+

0 7→ Rn | f is measurable and
∫ ∞

0
||f (t)||qν <∞

}

norm: ||f ||q =

(∫ ∞
0
||f (t)||qν

) 1
q

Remark: The case L2 is special, because the norm comes from an
inner product (L2 is a Hilbert-space)
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Bounded input-bounded output (BIBO) stability - continuous
time systems

BIBO stability – general

Definition (BIBO stability)

A system is externally or BIBO stable if for any bounded input it responds
with a bounded output

||u|| ≤ M1 <∞⇒ ||y || ≤ M2 <∞

where ||.|| is a signal norm.

This applies to any type of systems.
Stability is a system property, i.e. it is realization-independent.
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Bounded input-bounded output (BIBO) stability - continuous
time systems BIBO stability for SISO CT-LTI systems

BIBO stability – 1

Bounded input-bounded output (BIBO) stability for SISO systems

|u(t)| ≤ M1 <∞, ∀t ∈ [0,∞[ ⇒ |y(t)| ≤ M2 <∞, ∀t ∈ [0,∞[

Theorem (BIBO stability)

A SISO LTI system is BIBO stable if and only if∫ ∞
0
|h(t)|dt ≤ M <∞

where M ∈ R+ and h is the impulse response function.
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Bounded input-bounded output (BIBO) stability - continuous
time systems BIBO stability for SISO CT-LTI systems

BIBO stability – 2

Proof:
⇐ Assume

∫∞
0 |h(t)|dt ≤ M <∞ and u is bounded, i.e.

|u(t)| ≤ M1 <∞, ∀t ∈ R+
0 . Then

|y(t)| ≤ |
∫ ∞

0
h(τ)u(t − τ)dτ | ≤ M1

∫ ∞
0
|h(τ)|dτ ≤ M1 ·M = M2

⇒ (indirect) Assume
∫∞
0 |h(τ)|dτ =∞, but the system is BIBO stable.

Consider the bounded input:

u(t − τ) = sign h(τ) =


1 if h(τ) > 0
0 if h(τ) = 0
−1 if h(τ) < 0
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Asymptotic stability - continuous time systems The notion of asymptotic stability

Asymptotic stability – general

Definition ((local) asymptotic stability)

An equilibrium/steady-state point x∗ of truncated/autonomous system
with state equation

ẋ(t) = F (x(t)) , x(0) = x0 ( 6= x∗) , F (x∗) = 0

is internally or asymptotically stable if for any initial state x0 6= x∗ (from a
neighbourhood of Gx∗ of x∗)

lim
t→∞

x(t) = x∗

This applies to any type of continuous time systems.
For discrete time systems a similar definition is applicable with
x(k + 1) = F (x(k).
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Asymptotic stability - continuous time systems Motivating example

Example: asymptotic stability

RLC circuit, parameters: R = 1 Ω, L = 10−1H, C = 10−1F .
uC (0) = 1 V, i(0) = 1 A, ube(t) = 0 V
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Asymptotic stability - continuous time systems Motivating example

Non-asymptotic stability

(R)LC circuit, parameters: R = 0 Ω(!), L = 10−1H, C = 10−1F .
uC (0) = 1 V, i(0) = 1 A, ube(t) = 0 V
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Asymptotic stability - continuous time systems Motivating example

Example: instability

ẋ1 = x1 + 0.1x2
ẋ2 = −0.2x1 + 2x2

, x(0) = [1 2]T
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Asymptotic stability - continuous time systems Asymptotic stability of CT-LTI systems

Stability of CT-LTI systems

(Truncated) LTI state equation with (u ≡ 0):

ẋ = A · x , x ∈ Rn, A ∈ Rn×n, x(0) = x0

Equilibrium pont: x∗ = 0
Solution:

x(t) = eAt · x0

Recall: A diagonalizable (there exists invertible T , such that

T · A · T−1

is diagonal) if and only if, A has n linearly independent eigenvectors.
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Asymptotic stability - continuous time systems Asymptotic stability of CT-LTI systems

Asymptotic stability of LTI systems – 1

Stability types:
the real part of every eigenvalue of A is negative (A is a stability
matrix): asymptotic stability
A has eigenvalues with zero and negative real parts

the eigenvectors related to the zero real part eigenvalues are linearly
independent: (non-asymptotic) stability
the eigenvectors related to the zero real part eigenvalues are not
linearly independent: (polynomial) instability

A has (at least) an eigenvalue with positive real part: (exponential)
instability
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Asymptotic stability - continuous time systems Asymptotic stability of CT-LTI systems

Asymptotic stability of LTI systems – 2

Theorem
The eigenvalues of a square A ∈ Rnxn matrix remain unchanged after a
similarity transformation on A by a transformation matrix T :

A′ = TAT−1

Proof:
Let us start with the eigenvalue equation for matrix A

Aξ = λξ , ξ ∈ Rn , λ ∈ C

If we transform it using ξ′ = T ξ then we obtain

TAT−1T ξ = λT ξ

A′ξ′ = λξ′
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Asymptotic stability - continuous time systems Asymptotic stability of CT-LTI systems

Asymptotic stability of LTI systems – 3

Theorem
A CT-LTI system is asymptotically stable iff A is a stability matrix.

Sketch of Proof: Assume A is diagonalizable

Ā = TAT−1 =


λ1 0 . . . 0
0 λ2 . . . 0

. . . 0
0 . . . 0 λn



x̄(t) = eĀt · x̄0 , eĀt =


eλ1t 0 . . . 0
0 eλ2t . . . 0

. . . 0
0 . . . 0 eλnt
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Asymptotic stability - continuous time systems Asymptotic stability of CT-LTI systems

BIBO and asymptotic stability

Theorem
Asymptotic stability implies BIBO stability for LTI systems.

Proof:

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ, y(t) = Cx(t)

||x(t)|| ≤ ||eAtx(t0) + M
∫ t
0 eA(t−τ)Bdτ || =

= ||eAt(x(t0) + M
∫ t
0 e−AτBdτ)|| =

= ||eAt(x(t0) + M[−A−1e−AτB]t0)|| =
= ||eAt [x(t0)−MA−1e−AtB + MA−1B]||

||x(t)|| ≤ ||eAt(x(t0) + MA−1B)−MA−1B||

BIBO stability does not necessarily imply asymptotic stability.
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Discrete time stability Stability of DT systems

Stability of discrete time systems – 1

Truncated state equation

x(k + 1) = f (x(k), k)

with a ordinary solution x0(k) for x0(k0) and a perturbed solution
x(k) for x(k0).

Stability of a solution x0(k) is stable if for a given ε > 0 there exists
a δ(ε, k0) such that all solutions with ||x(k0)− x0(k0)|| < δ fulfill
||x(k)− x0(k)|| < ε for all k ≥ k0.

Asymptotic stability x0(k) is asymptotically stable if it is stable and
||x(k)− x0(k)|| → 0 when k →∞ provided that ||x(k0)− x0(k0)|| is
small enough.
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Discrete time stability Stability of DT systems

Stability of discrete time systems – 2

BIBO stability

A discrete time system is externally or BIBO stable if for any

||u|| ≤ M1 <∞⇒ ||y || ≤ M2 <∞

where ||.|| is a suitable signal norm.
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Discrete time stability Stability of DT-LTI systems

Stability of DT-LTI systems – 1

Consider a truncated state equation with u(k) = 0, k = 0, 1, 2, ...

x(k + 1) = Φx(k)

x0(k) for x0(0) = a0 as the ordinary solution and
x(k) for x(0) = a as a "perturbed solution".

The difference x = x − x0 satisfies

x(k + 1) = Φx(k) , x(0) = a− a0

⇒ Stability is a system property for LTI systems
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Discrete time stability Stability of DT-LTI systems

Stability of DT-LTI systems – 2

Solution of the truncated state equation x(k + 1) = Φx(k), x(0) = x0

x(k) = Φkx(0)

Bring the matrix Φk into diagonal form and use that its eigenvalues
λi (Φk) = λi (Φ)k thus

x(k) −→ 0 ⇐⇒ |λi (Φ)| < 1

Theorem
A DT-LTI system is asymptotically stable if and only if λi (Φ) are strictly
inside the unit disc.

Theorem
Asymptotic stability implies BIBO stability.
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