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Discrete time LTI stochastic input-output models DT-LTI SISO I/O system models

Recall – Systems

System (S): acts on signals
y = S[u]

inputs (u) and outputs (y)
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System: an object in which variables interact and produce observable sig-
nals. The system acts on signals. The system is affected by external
stimuli.
Outputs = observable signals that are interest of us
Inputs = external signals that can be manipulated by the observer



Discrete time LTI stochastic input-output models DT-LTI SISO I/O system models

Recall – System properties

Linearity
S[c1u1 + c2u2] = c1y1 + c2y2

with c1, c2 ∈ R, u1, u2 ∈ U , y1, y2 ∈ Y and S[u1] = y1, S[u2] = y2

Linearity check: use the definition

Time-invariance
Tτ ◦ S = S ◦ Tτ

where Tτ is the time-shift operator: Tτ (u(t)) = u(t + τ), ∀t
Time invariance check: constant parameters
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The most important system properties in this course are:

� Linearity: S is a linear operator. The system is said to be linear if its
output response to a linear combination of inputs is the same linear
combination of the output responses of the individual inputs.

� Time invariance: the output does not depend on the particular time
the input applied. If the input is applied now or τ seconds later,
then the output will be identical, except for the time delay. The
parameters are independent of time, constant parameters.

� Causality: the system is causal if the output at a certain time
depends on the input up to that time only



Discrete time LTI stochastic input-output models DT-LTI SISO I/O system models

Recall – Discrete time LTI SISO I/O system models

Discrete difference equation models: for SISO (single-input single-output)
systems

Backward difference form

y(k)+a1y(k−1)+ ...+any(k−n) = b0u(k−d)+ ...+bmu(k−d−m)

where d = n −m > 0 is the pole excess (time delay).

Compact form

A∗(q−1)y(k) = B∗(q−1)u(k − d)

where A∗(q−1) = 1 + a1q
−1 + ...+ anq

−n and
B∗(q−1) = b0 + b1q

−1 + ...+ bmq
−m are polynomials of the time

delay operator q−1.
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The systems can be represented in different forms.
The Discrete Time Linear Time Invariant Single Input Single Output (DT
LTI SISO) systems can be written in a discrete difference equation form.
discrete time: observations of inputs and outputs at discrete time instances
(e.g. 0,T , ..., kT , where k is the sampling instant, and T is the sampling
interval)
In this course the backward difference form is used. Practical causes: in
the backward difference form, we look at the system from the current time
instance(k), from where we can look back to the past values (k-1, k-2,...).
We know the past input/output values, because they have been measured
already. (causality)
The time delay of the output is n.
The time delay d between the output and the input (i.e. the pole excess
time delay) has to be greater than 0, because of the causality. It means
that output can be affected by the present and past values of the inputs,
but not the future inputs.
In the forward difference form, we need to consider future values, which is
not applicable in practice, and violates causality.
The time delay operator q−1 is often used to make a compact representa-
tion of the input-output model.



Discrete time LTI stochastic input-output models DT-LTI SISO I/O system models

Recall – Discrete time LTI stochastic SISO I/O model

Important (discrete time stochastic LTI input-output model)

The general form of the input-output model of discrete time stochastic
LTI SISO systems is the following canonical ARMAX process:

A∗(q−1)y(k) = B∗(q−1)u(k) + C ∗(q−1)e(k)

with the polynomials

A∗(q−1) = 1 + a1q
−1 + ...+ anq

−n, C ∗(q−1) = c0 + c1q
−1 + ...+ cnq

−n

B∗(q−1) = b0 + b1q
−1 + ...+ bmq

−m

where C ∗(q−1) is assumed to be a stable polynomial.
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� Deterministic model: the outputs are uniquely determined by a
mathematical expression.

� Stochastic model: the output values cannot be uniquely
determined, because uncontrollable input effects (e.g. noise,
disturbance, inputs that we cannot control). Such signals are
modelled as random processes.

� The general form of the input-output model of discrete time
stochastic LTI SISO systems is the canonical ARMAX process.
ARMAX= AutoRegressive Moving Average with eXogenous inputs
Autoregressive (AR) process: A∗(q−1)y(k) = e(k)
Moving Average (MA) process: y(k) = C∗(q−1)e(k)
exogenous inputs: B∗(q−1)u(k)

� y(k) output, u(k) input, e(k) disturbance/noise

� Stable polynomial (discrete time): all of its roots are inside the unit
circle.



Discrete time LTI stochastic input-output models DT-LTI SISO I/O system models

Recall – ARX models

Important (simplest discrete time stochastic LTI input-output model)

Assume only independent measurement noise, the model is an ARX model
in the form

A∗(q−1)y(k) = B∗(q−1)u(k) + e(k) (1)

where {e(k)}∞k=−∞ is a white noise process.

Important

The predictive form of the ARX model (with d = n −m > 0) is

y(k) = −a1y(k − 1)− ..− any(k − n) + b0u(k) + ..+ bmu(k −m) +

+e(k)

= pTϕ(k − 1) + e(k)

This model is linear in parameters p = [−a1 ... − an b0 ...bm]T if one
measures the data ϕ(k − 1) = [y(k − 1) ... y(k − n) u(k) ... u(k −m)]T .
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� If we assume only independent measurement noise, we get an ARX
process (AutoRegressive with eXogenous inputs). Independent
measurement noise → C∗(q−1) = 1

� This is the simplest discrete time stochastic LTI input-output model.

� The ARX model can be written in a predictive form: we move all
past output values to the right side of the equation. Now it can be
written as the product of the parameter vector p and the predictor
ϕ.

� The parameter vector includes all coefficients of A∗(q−1) and
B∗(q−1).

� The predictor contains the past values of the outputs and the
current and past input values.

� The current value of the output can be predicted based on the past
measured data.



Minimizing the prediction error

Overview

1 Discrete time LTI stochastic input-output models

2 Minimizing the prediction error
Predictive input-output models
Minimizing the prediction errors

3 The least squares estimate

4 Properties of the dynamic least squares estimate

5 Tutorial
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Minimizing the prediction error Predictive input-output models

Predictive input-output models, SISO case

SISO LTI stochastic input-output models - general form

F (q−1)y(k) = G (q−1)u(k) + ∆(q−1)e(k)

where F , G and ∆ are linear functions of the time shift operator q−1 and
{e(k)}∞0 is a white noise process.

The predictive form is without the stochastic term

ŷ(k |p) = Wy (q−1, p) · y(k) + Wu(q−1, p) · u(k)

The coefficients Wy (q−1, p) and Wu(q−1, p) are so-called linear filters ,
where p is the vector of constant, unknown parameters to be estimated
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The general form of a SISO LTI stochastic input-output model is
F (q−1)y(k) = G (q−1)u(k) + ∆(q−1)e(k).

� F , G and ∆ are linear functions of the time shift operator q−1 (in
case of ARMAX models, they are polynomials).

� {e(k)}∞0 is a white noise process (sequence of identically
distributed, independent random variables).

� To be able to perform the parameter estimation, the model should
be written in a predictive form. In the predictive form, the
estimated output ŷ(k |p) at the current time k assuming the
parameter vector p can be expressed as the function of the past
inputs and outputs, WITHOUT the noise.

� Wy (q−1, p) is a function (a linear filter) of the time shift operator
that depends on the parameter vector. It gives the relationship
between the past outputs and the current output.

� Wu(q−1, p) is a function (a linear filter) of the time shift operator
that depends on the parameter vector. It gives the relationship
between the past inputs and the current output.

� p is the vector of unknown parameters to be estimated



Minimizing the prediction error Predictive input-output models

Predictive form of ARMAX models

General I/O model of discrete time linear time invariant stochastic SISO
systems

A∗(q−1) · y(k) = B∗(q−1) · u(k) + C ∗(q−1) · e(k)

Important

Predictive form:

ŷ(k |p) = y(k)− e(k) = (1− H−1(q−1, p)) · y(k) + H−1(q−1, p)G (q−1, p) · u(k)

where

H−1(q−1, p) =
A∗(q−1)

C ∗(q−1)
, G (q−1, p) =

B∗(q−1)

A∗(q−1)

It contains only the past measured data (!!) without the noise term.
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In case of ARMAX models, the predictive from is ŷ(k |p) = y(k)− e(k) =
(1− H−1(q−1, p)) · y(k) + H−1(q−1, p)G (q−1, p) · u(k)

� dividing both sides of the ARMAX equation by C∗(q−1), we can
express e(k):

e(k) = A∗(q−1)
C∗(q−1) · y(k)− B∗(q−1)

C∗(q−1) · u(k)

� substituting this into the equation of ŷ(k |p), we get

y(k)− e(k) = y(k)− A∗(q−1)
C∗(q−1) · y(k) + B∗(q−1)

C∗(q−1) · u(k) =

= (1− A∗(q−1)
C∗(q−1) ) · y(k) + B∗(q−1)

C∗(q−1) · u(k)

� H−1(q−1, p) = A∗(q−1)
C∗(q−1)

� G (q−1, p) = B∗(q−1)
A∗(q−1)

It contains only the measured data (u(k) and y(k)), without the mea-

surement noise. This form can be used to estimate the parameters of the

ARMAX model.



Minimizing the prediction error Predictive input-output models

Predictive form of ARX models

Consider the simplest case:

A∗(q−1) · y(k) = B∗(q−1) · u(k) + C ∗(q−1) · e(k)

when the output noise is white . In this case C ∗(q−1) = 1.

Important

Predictive form

ŷ(k|p) = y(k)− e(k) = (1− A∗(q−1)) · y(k) + B∗(q−1) · u(k)

The elements of the estimator:

p = [−a1 − a2 . . . − an b0 b1 . . . bm]> N > n + m

ŷ(k|p) = −a1 · y(k − 1)− . . .− an · y(k − n) + b0 · u(k) + . . .+

+ . . .+ bm · u(k −m)
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The simplest stochastic model is the ARX model where the output noise
is white, i.e. C∗(q−1) = 1

� H−1(q−1, p) becomes A∗(q−1), H−1(q−1, p) = A∗(q−1)
C∗(q−1) = A∗(q−1)

� H−1(q−1, p)G (q−1, p) becomes B∗(q−1)

H−1(q−1, p)G (q−1, p) = A∗(q−1)
C∗(q−1) ·

B∗(q−1)
A∗(q−1) = B∗(q−1)

which result in the predictive form of ARX models: ŷ(k |p) = y(k)−e(k) =
(1− A∗(q−1)) · y(k) + B∗(q−1) · u(k)

� the parameter vector contains the coefficients of A∗(q−1) and
B∗(q−1)

� the regressor is ϕ = [y(k − 1) . . . y(k − n), u(k) . . . u(k −m)]T

� ŷ(k |p) = pT · ϕ



Minimizing the prediction error Predictive input-output models

Nonlinear time-invariant single output systems

The general predictive form:

ŷ(k |p) = g(k ,D[1, k − 1]; p)

with time series of measured data:

D[1,N] = DN = {(y(k), u(k)) | k = 1, . . .N}

Important (Linear-in-parameter case)

Systems that are linear-in-parameters :

ŷ(k|p) = p> · g∗(k,D[1, k − 1])

A. I. Pózna (University of Pannonia) Parameter estimation October 21, 2020 14 / 33



In case of nonlinear time invariant SISO systems the general predictive form
is a nonlinear function of the measured data and the parameter vector

� g(k,D[1, k − 1]; p) is a nonlinear function, that depends on the past
k-1 measured data and the parameter vector

� D[1,N] = DN = {(y(k), u(k)) | k = 1, . . .N} is the time series of
the measured input (u) and output (y) data.

In many cases the nonlinear model is linear in parameters, which means it
can be written as the product of the parameter vector and the measured
variables: ŷ(k|p) = p> · g∗(k ,D[1, k − 1])

These kinds of models can be estimated by linear methods, using auxiliary

variables.



Minimizing the prediction error Predictive input-output models

Example: ARX model

ARX model is a model that is linear in parameters.
Model elements:

predictive model form

ŷ(k |p) = −a1 · y(k − 1)− . . .− an · y(k − n)+

+ b0 · u(k) + . . .+ bm · u(k −m)

parameters

p = [−a1 . . . − an b0 . . . bm]>

regressor (ϕ(k))

g∗(k ,D[1, k − 1]) = ϕ(k)

ϕ(k) = [y(k − 1) . . . − y(k − n) u(k) . . . u(k −m)]>
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Minimizing the prediction error Minimizing the prediction errors

The prediction error

The prediction error series can be computed from the measured variables
and the model output:

ε(k , p) = y(k)− ŷ(k |p) k = 1, . . . ,N

Important

Principle of parameter estimation: A parameter estimation method
generates an estimated parameter from the measured data :

DN → p̂N

The model is “good”, i.e. the estimated parameters are “good” if the
prediction errors are “small”.

Magnitude of the prediction error
The “size” of the prediction error series ε(k , p) is measured using an
appropriate signal norm .
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The prediction error is the difference between the real value y(k) and the
model predicted value ŷ(k |p). The principle of the parameter estimation
is to generate the value of the estimated parameter from the measured
data such that the prediction error is as small as possible. The model and
the estimated parameters are good if the prediction error is small. If the
estimation is good, then the estimated parameters are close to the real
parameters. For a good estimation we need a good assumption about the
model structure, too (number of inputs and outputs, linear or nonlinear,
etc).

What does it mean that the prediction error is small? It can be measured

using an appropriate signal norm. The signal norm is a function from a vec-

tor space to the nonnegative real numbers that satisfies certain properties

(scalability, triangle inequality, zero condition), e.g. absolute value.



Minimizing the prediction error Minimizing the prediction errors

Minimizing the prediction error

Parameter estimation method is a mapping: DN → p̂N
Important (The general parameter estimation problem)

Given:

measured data: D[1,N] = DN = {(y(k), u(k)) | k = 1, . . .N}
predictive parametrized model ŷ(k |p) = g(k ,D[1, k − 1]; p)
generating the prediction error series (discrete time signal):
ε(k , p) = y(k)− ŷ(k|p) k = 1, . . . ,N

norm of the prediction error ( objective/loss function):

VN(p,DN) = 1
N

N∑
k=1

`(ε(k, p)) where `(·) is a positive scalar-valued

function; most frequently: `(ε) = 1
2ε

2

From the known DN measurements and the p parameter vector we can
compute the value of the VN(p,DN) objective/loss function, that is
minimized by the estimated p̂N parameter vector.
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The parameter estimation is a mapping from the sequence of measured
data to the parameter vector.
The general parameter estimation problem is the following:
The known input of the problem are

� the sequence of measured input-output data
D[1,N] = DN = {(y(k), u(k)) | k = 1, . . .N}

� the predictive parametrized system model
ŷ(k |p) = g(k ,D[1, k − 1]; p)
predictive: it contains only the input and output variables of the
model
parametrized: it depends on the parameters to be estimated. The
parameters are not known. The model structure defines the set of
possible models which differs in the parameters only.

� From the measured i-o data and the predictive parametrized model
we can generate the prediction error series:
ε(k, p) = y(k)− ŷ(k |p) k = 1, . . . ,N
It is the difference between the real measured output and the model
predicted output.



Minimizing the prediction error Minimizing the prediction errors

Minimizing the prediction error

Parameter estimation method is a mapping: DN → p̂N
Important (The general parameter estimation problem)

Given:

measured data: D[1,N] = DN = {(y(k), u(k)) | k = 1, . . .N}
predictive parametrized model ŷ(k |p) = g(k ,D[1, k − 1]; p)
generating the prediction error series (discrete time signal):
ε(k , p) = y(k)− ŷ(k|p) k = 1, . . . ,N

norm of the prediction error ( objective/loss function):

VN(p,DN) = 1
N

N∑
k=1

`(ε(k, p)) where `(·) is a positive scalar-valued

function; most frequently: `(ε) = 1
2ε

2

From the known DN measurements and the p parameter vector we can
compute the value of the VN(p,DN) objective/loss function, that is
minimized by the estimated p̂N parameter vector.
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� a suitable norm of the prediction error

VN(p,DN) = 1
N

N∑
k=1

`(ε(k , p)), where `(·) is a positive scalar-valued

function; most frequently: `(ε) = 1
2ε

2.
The function VN(p,DN) for a given DN is a well defined scalar
valued function of the model parameter p. The choice of the
quadratic norm for ` is a standard choice which is convenient for
computation and analysis.

From the known DN measurements and the p parameter vector we can

compute the value of the VN(p,DN) objective/loss function. Then we

need to find that parameter p̂N that minimize this loss function. The

estimate is the parameter, that minimizes the loss function.



Minimizing the prediction error Minimizing the prediction errors

Example: SISO ARX models

ARX model is the basic case: the output noise is white

A∗(q−1) · y(k) = B∗(q−1) · u(k) + e(k)

Predictive form of the model:

ŷ(k |p) = −a1 · y(k − 1) . . .− an · y(k − n) + b0 · u(k) + . . .+ bm · u(k −m)

Parameter vector:

p = [−a1 − a2 . . . − an b0 b1 . . . bm]>

Prediction error ( white noise!):

ε(k) = ŷ(k|p)− y(k) = e(k)
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The least squares estimate

Overview

1 Discrete time LTI stochastic input-output models

2 Minimizing the prediction error

3 The least squares estimate
Predictive models linear in parameters
LS estimation of ARX model parameters

4 Properties of the dynamic least squares estimate

5 Tutorial

A. I. Pózna (University of Pannonia) Parameter estimation October 21, 2020 19 / 33



The least squares estimate Predictive models linear in parameters

Parameter estimation of predictive models by linear
regression

In the case of models linear-in-parameters :

ŷ(k |p) = p>ϕ(k) = ϕ(k)>p

where ϕ(·) is the so-called regressor , containing the measured data; p is
the vector of model parameters to be estimated.

Prediction error:
ε(k , p) = y(k)− p>ϕ(k)

Objective/loss function to be minimized: sum of squares
( Least Squares)

VN(p,DN) =
1

N

N∑
k=1

1

2

[
y(k)− p>ϕ(k)

]2
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Now we know the predictive form of the models, let’s see how can we
estimate the parameters. We will consider the special case, when the model
is linear in parameters. It is one of the simplest model structures. The
linear in parameter model can be written in ŷ(k |p) = p>ϕ(k) = ϕ(k)>p,
which is a so called linear regression structure. ŷ(k |p) is the predictor
(= it predicts the next output value based on the parameters and the
regressor). ϕ(k) is the so-called regressor which contains the measured
data, are used to predict the target, outcome, dependent variable,p> is the
parameter vector. In the linear regression model structure the predictor is
the product of the parameter vector and the regressor.
The prediction error in this case is ε(k , p) = y(k) − ŷ(k|p) = y(k) −
p>ϕ(k).

The loss function to be minimized is a quadratic function, which con-

tains the sum of squares of the prediction error sequence: VN(p,DN) =
1
N

∑N
k=1

1
2

[
y(k)− p>ϕ(k)

]2
. Note that it is similar to the loss function

used at the least squares estimation of static models.



The least squares estimate Predictive models linear in parameters

LS estimate for models linear-in-parameters

Taking the partial derivatives w.r.t. the elements of the parameter vector:

1

N

N∑
k=1

ϕ(k)
[
y(k)− ϕ>(k) · p

]
= 0

We solve the above equation for p

1

N

N∑
k=1

ϕ(k) · y(k) =
1

N

N∑
k=1

ϕ(k) · ϕ>(k) · p

Important ( LS estimate )

p̂LS =

[
1

N

N∑
k=1

ϕ(k) · ϕ>(k)

]−1
1

N

N∑
k=1

ϕ(k) · y(k)
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The task is to minimize the quadratic loss function.

� The loss function has a minima where its derivative is 0. Because
the loss function is a quadratic function in the parameter vector p,
it can be minimized analytically. (f ◦ g)′ = (f ′ ◦ g)× g ′, f = ()2,
g =

[
y(k)− ϕ>(k) · p

]
� Taking the partial derivatives w.r.t. the elements of the parameter

vector we get:
d
dp

1
N

∑N
k=1

1
2

[
y(k)− p>ϕ(k)

]2
=

2 · 1
N

∑N
k=1

1
2

[
y(k)− p>ϕ(k)

]
· (−ϕ(k)) = 0

which is the same as 1
N

∑N
k=1 ϕ(k)

[
y(k)− ϕ>(k) · p

]
= 0 (dividing

by -1)

� We need to solve the above equation for p. Resolving the braces, we
get 1

N

∑N
k=1 ϕ(k)y(k)− ϕ(k)ϕ>(k) · p = 0

Moving the second term to the right side:
1
N

∑N
k=1 ϕ(k) · y(k) = 1

N

∑N
k=1 ϕ(k) · ϕ>(k) · p

� Then multiply both sides by the inverse of 1
N

∑N
k=1 ϕ(k) · ϕ>(k)

We get the LS estimate of p:

p̂LS =
[

1
N

∑N
k=1 ϕ(k) · ϕ>(k)

]−1
1
N

∑N
k=1 ϕ(k) · y(k)



The least squares estimate LS estimation of ARX model parameters

Example: LS estimate of ARX model parameters

ARX model is the basic case: the output noise is white

A∗(q−1) · y(k) = B∗(q−1) · u(k) + e(k)

Predictive form of the model:

ŷ(k |p) = −a1 · y(k − 1) . . .− an · y(k − n) + b0 · u(k) + . . .+ bm · u(k −m)

Parameter vector:

p = [−a1 − a2 . . . − an b0 b1 . . . bm]>

The regressor:

ϕ(k) = [y(k − 1) y(k − 2) . . . y(k − n) u(k) u(k − 1) . . . u(k −m)]>
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Properties of the dynamic least squares estimate

Overview

1 Discrete time LTI stochastic input-output models

2 Minimizing the prediction error

3 The least squares estimate

4 Properties of the dynamic least squares estimate
Asymptotic behaviour of the LS estimate

5 Tutorial

A. I. Pózna (University of Pannonia) Parameter estimation October 21, 2020 23 / 33



Properties of the dynamic least squares estimate Asymptotic behaviour of the LS estimate

Dynamic LS estimate: Asymptotic properties – 1

Difference from standard linear regression: the measured outputs appear in
the regression vector ϕ(k) =⇒ the measured values y(k) may contain not
only independent white noise errors compared to the deterministic case
even for ARX models.

Important (Asymptotic properties)

Asymptotic properties of the estimate hold in the limit when the time k
goes to infinity.

Model for analysing the asymptotic behaviour of the estimate
The system can be described as

y(k) = p>0 · ϕ(k) + ν0(k)

with {ν0(k)} error series, p0 is the so-called nominal value or “true” value
of the parameter.
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The LS estimate of dynamic models is a bit different from the standard
linear regression, because the measured outputs appear in the regressor. It
means that the measured values of y(k) may contain not only indepen-
dent white noise errors. Therefore the estimate can be biased.
The behaviour of the estimate when the number of samples goes to infinity
is called asymptotic behaviour. For example we can talk about asymptotic
unbiasedness, which means that the estimated parameter will be closer to
its true value, if we increase the number of samples.
We can analyse the asymptotic properties of the least squares estimate
using the following model:
y(k) = p>0 · ϕ(k) + ν0(k) where ν0(k) is the error series and p0 is the
”true” value of the parameter.



Properties of the dynamic least squares estimate Asymptotic behaviour of the LS estimate

Dynamic LS estimate: Asymptotic properties – 2

Important (LS estimate and notation)

p̂LS =

[
1

N

N∑
k=1

ϕ(k) · ϕ>(k)

]−1

· 1

N

N∑
k=1

ϕ(k) · y(k)

R(N) =
1

N

N∑
k=1

ϕ(k) · ϕ>(k)

Important (Estimation error)

p̂LS(N) = [R(N)]−1 1

N

N∑
k=1

ϕ(k)
[
ϕ(k)> · p0 + ν0(k)

]
p̂LS(N) = p0 + [R(N)]−1 1

N

N∑
k=1

ϕ(k) · ν0(k)

The estimation error is the second term in the above equation.
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� The LS estimate of p can be written as before:

p̂LS =
[

1
N

∑N
k=1 ϕ(k) · ϕ>(k)

]−1

· 1
N

∑N
k=1 ϕ(k) · y(k)

� We can denote the term 1
N

∑N
k=1 ϕ(k) · ϕ>(k) by R(N) .

� Substituting R(N) and y(k) to the equation of the LS estimate, it
can be be written as
p̂LS(N) = [R(N)]−1 1

N

∑N
k=1 ϕ(k)

[
ϕ(k)> · p0 + ν0(k)

]
� Resolving the braces, the first term on the right side is

[R(N)]−1 1
N

∑N
k=1 ϕ(k) · ϕ(k)> · p0 = [R(N)]−1 R(N) · p0 = p0

� The second term is [R(N)]−1 1
N

∑N
k=1 ϕ(k) · ν0(k)

� Therefore the LS estimate can be written in the following form
p̂LS(N) = p0 + [R(N)]−1 1

N

∑N
k=1 ϕ(k) · ν0(k). It can be seen that

it is composed of the true value of p (p0) and the estimation error .



Properties of the dynamic least squares estimate Asymptotic behaviour of the LS estimate

Dynamic LS estimate: Asymptotic unbiasedness – 1

Estimation error

[R(N)]−1 1

N

N∑
k=1

ϕ(k) · ν0(k)

We would like:

to have this term as “small” as possible, since in that case the
estimated parameter will be close to p0,

that this term converges to 0 as the sample size is growing,
i.e. N →∞

Important (Asymptotic unbiasedness)

The behaviour of an estimate when the sample size is growing is called the
asymptotic behaviour of the estimate. We are talking e.g. about
asymptotic unbiasedness in this sense.

.
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We want that the estimation error be as small as possible, and to converge
to 0 as the sample size is growing. If these conditions are fulfilled then
the estimate will be asymptotically unbiased. If the estimation error is
small then the estimated parameter is close to the real parameter. If the
error converges to 0 as the sample size is growing then we can improve the
’accuracy’ of the estimate by increasing the sample size.



Properties of the dynamic least squares estimate Asymptotic behaviour of the LS estimate

Stochastic properties of predictive models

y(k) = p>0 · ϕ(k) + ν0(k)

When the ν0(k) error is small compared to the regressor ϕ(k) containing
measured values, then the estimation error

[R(N)]−1 1

N

N∑
k=1

ϕ(k) · ν0(k)

will also be small.

Important

If both the input (u(k) k = 1, 2, . . .) and the error (ν0(k) k = 1, 2, . . .)
are stationary stochastic processes in an AR(MA)X model, then the
output (y(k) k = 1, 2, . . .) will also be a stationary process.
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We want that the estimated model be close to the real model. Looking
at equation of the estimated model y(k) = p>0 · ϕ(k) + ν0(k) we can see
that it is close to the real model if the error ν0(k) is as small as possible.
Similarly the estimated parameter p̂LS is close to the real parameter p0 if
the estimation error is small. The estimation error can be expressed as
[R(N)]−1 1

N

∑N
k=1 ϕ(k) · ν0(k). We want to make this expression as small

as possible. The estimation error [R(N)]−1 contains the product of the
regressor ϕ(k) and the error ν0(k). When the ν0(k) error is small compared
to the regressor ϕ(k) containing measured values, then the estimation error
will also be small.

stationary process: the statistical characteristics (mean, covariance,...) of

the process do not change in the course of time t. The statistical character-

istics at time t are the same as at time t+τ (similar to the time invariance

of dynamic systems). It is important to not that if u(k) and ν0(k) are sta-

tionary processes then the output y(k) of an AR(MA)X process will be

also a stationary process.



Tutorial

Overview

1 Discrete time LTI stochastic input-output models

2 Minimizing the prediction error

3 The least squares estimate

4 Properties of the dynamic least squares estimate

5 Tutorial
Homework
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Tutorial

Tutorial problem: Dynamic LS estimation

Consider the following ARX model:

y(k) = −a1y(k − 1) + b1u(k − 1)

Consider the measured input and output data:
u(0) = 0, u(1) = 1, u(2) = 1, u(3) = 0, u(4) = 0,
y(0) = 0, y(1) = 0, y(2) = −1, y(3) = 0.5, y(4) = −0.75

Construct the parameter vector p.

Construct the regressor ϕ(k) for k = 1, 2, 3, 4

Compute the LS estimate of p
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Tutorial

Tutorial problem: Dynamic LS estimation

Consider the following ARX model:

y(k) = −a1y(k − 1) + b1u(k − 1)

Consider the measured input and output data:
u(0) = 0, u(1) = 1, u(2) = 1, u(3) = 0,
y(0) = 0, y(1) = 0, y(2) = −1, y(3) = 0.5

Construct the parameter vector p.
p = [−a1, b1]T

Construct the regressor ϕ(k) for k = 1, 2, 3
ϕ(k) = [y(k − 1), u(k − 1)]T

ϕ(1) = [y(0), u(0)]T = [0, 0]T

ϕ(2) = [y(1), u(1)]T = [0, 1]T

ϕ(3) = [y(2), u(2)]T = [−1, 1]T

Compute the LS estimate of p
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Tutorial

Tutorial problem: Dynamic LS estimation

Compute the LS estimate of p

p̂LS =
[

1
N

∑N
k=1 ϕ(k) · ϕ>(k)

]−1
1
N

∑N
k=1 ϕ(k) · y(k)

ϕ(1)ϕT (1) =

[
0 0
0 0

]
, ϕ(2)ϕT (2) =

[
0 0
0 1

]
, ϕ(3)ϕT (3) =

[
1 −1
−1 1

]
Computing the sum 1

N

∑N
k=1 ϕ(k)ϕT (k):

1

3

3∑
k=1

ϕ(k)ϕT (k) =
1

3

[
1 −1
−1 2

]
=

[
1
3 −1

3
−1

3
2
3

]
Computing the inverse:[

1
3 −1

3
−1

3
2
3

]−1

=
1

det(A)
adj(A) = 9

[
2
3

1
3

1
3

1
3

]
=

[
6 3
3 3

]

A. I. Pózna (University of Pannonia) Parameter estimation October 21, 2020 31 / 33



Tutorial

Tutorial problem: Dynamic LS estimation

ϕ(1)y(1) = [0, 0]T , ϕ(2)y(2) = [0,−1]T , ϕ(3)y(3) = [−0.5, 0.5]T

Computing the sum 1
N

∑N
k=1 ϕ(k)y(k):

1

3

3∑
k=1

ϕ(k)y(k) =
1

3

[
−0.5
−0.5

]
=

[
−1

6
−1

6

]
Computing the estimate:

p̂LS =

[
6 3
3 3

]
·
[
−1

6
−1

6

]
=

[
−1.5
−1

]
a1 = 1.5, b1 = −1
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Tutorial Homework

HOMEWORK Deadline: 28 October 2020. 10:00

Consider the following ARX model:

y(k) = −a1y(k − 1) + b0u(k)

Consider the measured input and output data:
u(1) = 1, u(2) = 0, u(3) = 1,
y(0) = 0, y(1) = 2, y(2) = −2, y(3) = 4

Construct the parameter vector p.

Construct the regressor ϕ(k) for k = 1, 2, 3

Compute the LS estimate of p

Send the solution to pozna.anna@virt.uni-pannon.hu!
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