
2016.10.15. 1

Low level Petri nets

Miklós Gerzson

Low_level_Petri_nets/2

Introduction

• Petri nets: graphical and mathematical modelling

tool for the description of dynamic systems

• system types: concurrent, asynchronous,

distributed, parallel, nondeterministic, stochastic

• graphical representation: structural description and

dynamic characterization

• mathematical description: state equations,

algebraic equations

• analysis tool: behavioral and structural features of

systems

History

• Carl Adam Petri: Kommunikation mit Automaten,

PhD Dissertation, 1962,

• very popular modelling tool

• conference series: International Conferences on

Application and Theory of petri Nets and

Concurrency, e.g.

• papers: Petri Net Newsletter, e.g.

• software: CPN Tools, e.g.

Low_level_Petri_nets/3

Basic definitions

• Petri nets are the abstract models of information

flow in the form of directed graph

• two types of elements:

• transitions – occurring events

• places – pre- and postconditions

• graphical representation

• transitions: bars or boxes

• places: circles

• logical connections: arcs

Low_level_Petri_nets/4

Examples

Input places Transitions Output places

Preconditions Events Postconditions

input data computation step output data

input signals signal processor output signals

resources

needed
task or job

resources

released

conditions clause in logic conclusion(s)

buffers processor buffers

Low_level_Petri_nets/5

Dynamic behavior

• tokens on places: description of the state of a place

• availability of a given resource

• number of data

• number of resources

• representation of tokens: black dots

• marking vector: defines the number of tokens on

places

• weight function: assigns weight (positive integers)

to the arcs

Low_level_Petri_nets/6

Formal definition

• Petri net is a 5-tuple,

PN = (P, T, F, W, M0)

where

P = {p1, p2, …, pm} – set of places;

T = {t1, t2, …, tn} – set of transitions;

F (P T) (T P) – set of arcs;

W : F {0, 1, 2, 3, …} – weight function;

M0 : P {0, 1, 2, 3, …} – initial marking.

P T = and P T

Low_level_Petri_nets/7

Example

• Processing a

workpiece

Low_level_Petri_nets/8

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Formal description of the example

PN = (P, T, F, W, M0)

P = {p1, p2, p3, p4}

T = {t1, t2, t2, t3}

F = {(t1, p1), (p1, t2), (p2, t2),
(t2, p3), (p3, t3), (t3, p2),
(t3, p4), (p4, t4)}

W : w(t1, p1) = 1, w(p1, t2)= 1,

w(p2, t2) = 1, …
w(p4, t4) = 1.

M0 : P {0, 1, 0, 0} Low_level_Petri_nets/9

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot
 is idle

t1 Þ

p1 Þ

t2 Þ

t3 Þ

t4 Þ

p3 Þ

p4 Þ

p2 Þ

2

Firing of transitions

• Behavior of systems: state of their elements and

changes in the system

• Simulation of changes: firing rules

1. A transition t is enabled if each of its input place is

marked with at least w(p, t) tokens (w(p, t) is the

weight of the arc from the place p to the transition t).

2. An enabled transition may or may not fire.

3. A firing of an enabled transition t removes w(p, t)

tokens from each of its input place and adds w(t, p)

tokens to its output places (w(t, p) is the weight of

the arc from the transition t to the place p.
Low_level_Petri_nets/10

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a

workpiece

Low_level_Petri_nets/11

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a

workpiece

Low_level_Petri_nets /12

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a

workpiece

Low_level_Petri_nets/13

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a

workpiece

Low_level_Petri_nets/14

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Example

• Processing a

workpiece

Low_level_Petri_nets/15

Formal description

• source transition has no input place t1

• sink transition has no output place t4

• source transitions: unconditionally enabled

• sink transitions: consumes tokens

• Petri net is ordinary: all arc weights are 1’s

• self-loop: p is input and output place of t

• Petri net is pure: no self-loop in it

Low_level_Petri_nets/16

Formal description

• Capacity of places: the maximum number of tokens

that they can hold any time

• infinite capacity – no limit to number of tokens

• finite capacity – the maximum token number is

defined: K(p)

• transition can fire depending on the capacity of their

output places!

• number of waiting pieces : K(p1) =

• one robot is in the system: K(p2) = 1

• one piece is being processed: K(p3) = 1

• number of pieces to be output K(p4) = 1(!)
Low_level_Petri_nets/17

Example

• two pieces are needed for the process: w(p1, t2) = 2

Low_level_Petri_nets/18

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

2

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

2

Þ

Example

• Self-loop: robot is idle until the piece is being

processed

Low_level_Petri_nets/19

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot is idle

Þ

Formal description

•

Low_level_Petri_nets/20

Example

•

Low_level_Petri_nets/21

A piece is put
in input queue

Piece is
waiting

Job is started

Piece is being
processed

Job is
completed

Piece is waiting
to be output

Piece is output

Robot
is idle

2

M0 t1 M1 t1 M2 t2 M3 t3 M4 t4 M5

Occurrence graph

• Occurrence graph: a graph containing

• all reachable markings from a given initial

marking and

• all possible firings at each marking

• Definition

• M0 R(P, T, F, W, M0)

• if M’ R(P, T, F, W, M0) and tj is enabled in M ’
and after its firing M ’’ is generated, then

M ’’ R(P, T, F, W, M0)

Low_level_Petri_nets/22

Example

• Occurrence graph

of the example

Low_level_Petri_nets/23

(0, 1, 0, 0)

(1, 1, 0, 0)

(2, 1, 0, 0)

(0, 0, 1, 0)

(0, 1, 0, 1)

(0, 1, 0, 0)

t1

t2

t3

t4

t1

Parallel activities

• Firing two or more transitions at the same time:

• concurrent situation: the transitions can fire

independently of each other

the places have exactly one incoming and one

outcoming arc marked graph

• conflict situation: after firing of one transition the

other will not be enabled

• confusion: if concurrent and conflict situations

present at the same time (symmetric and

asymmetric)

Low_level_Petri_nets/24

Example

• Firing of transitions:

robot serves two

manufacturing lines

• Transitions t1 and t5

can fire at the same

time

• Concurrent situation

Low_level_Petri_nets/25

t1

p1

t2

t3

t4

p3

p4

p2

p5

p0

t6

t5

p7

p6

t8

p9

p10

p8

t7

Example

• Firing of transitions:

robot serves two

manufacturing lines

• Transitions t2 and t6

can not fire

at the same time

• Conflict situation

Low_level_Petri_nets/26

t1

p1

t2

t3

t4

p3

p4

p2

p5

p0

t6

t5

p7

p6

t8

p9

p10

p8

t7

t1

p1

t2

t3

t4

p3

p4

p2

p5

p0

t6

t5

p7

p6

t8

p9

p10

p8

t7

Example

• Firing of transitions:

robot serves two

manufacturing lines

• If transition t6 fires

first, there is no conflict

• If transition t1 fires

first, there is conflict

between transitions

t2 and t6

• Confusion

Low_level_Petri_nets/27

Parallel activities

• concurrent situation: arbitrary order for the firing of

transitions

• conflict situation: the firing of transitions mutually

exclusive

• confusion: conflict depends on the order of the

firing of transitions

• branches on reachability tree: refer to either

concurrent or conflict situation

Low_level_Petri_nets/28

Parallel activities

• Solutions for conflict situation:

• inhibitor arc

transition is enabled iff the place does not

contain any token

• priority function: transition having higher priority

fires

• extended Petri net models

Low_level_Petri_nets/29

Example

• only t2 is enabled

Low_level_Petri_nets/30

t1

p1

t2

t3

t4

p3

p4

p2

p5

p0

t6

t5

p7

p6

t8

p9

p10

p8

t7

Reachability graph of extended example

• Reachability graph of two manufacturing line

system (part)

• transitions denoted by red are in conflict

Low_level_Petri_nets/31

(1,0,1,0,0,0,1,0,0,0,0)

(0,1,1,0,0,0,1,0,0,0,0) (1,0,1,0,0,0,0,1,0,0,0)

t1 t5

(0,0,0,1,0,0,1,0,0,0,0)

t2

(0,1,1,0,0,0,0,1,0,0,0)

t5

(0,1,1,0,0,0,0,1,0,0,0)

t1

(1,0,0,0,0,0,0,1,0,0,0)

t6

t3 t5
t2 t6

t2 t6
t1 t7

Occurrence graph

• properties of occurrence graph

• even if the net is simple the graph can be infinite

• solution:

• delete duplicate nodes from the graph

• introduction of symbol , where represents

arbitrarily large number, representing the

accumulation of tokens on a given place

Low_level_Petri_nets/32

Behavioral properties

• Analysis of Petri nets:

• reachability

• boundedness

• liveness

• reversibility

• coverability

• persistence

• fairness

Low_level_Petri_nets/33

Behavioral properties

•

Low_level_Petri_nets/34

Behavioral properties

•

Low_level_Petri_nets/35

Behavioral properties

• Liveness

• deadlock-free operation

• A Petri net is live if it is possible to fire any

transition by progressing through some further

firing sequence

• liveness of all net is ideal property

• too costly to verify

• liveness of a given transition

Low_level_Petri_nets/36

Behavioral properties

• Liveness (cont.)

• different level of liveness for a transition t :

• L0-live or dead – t can never be fired in any

firing sequence

• L1-live or potentially fireable – if t can be fired

at least once in some firing sequence

• L2-live – if t can be fired at least k -times in

some firing sequence

• L3-live – if t can be fired infinitely often in

some firing sequence

• L4-live – if t is L1-live for every marking
Low_level_Petri_nets/37

Behavioral properties

•

Low_level_Petri_nets/38

Behavioral properties

•

Low_level_Petri_nets/39

Behavioral properties

• Persistence

• a Petri net is persistent if, any two enabled

transitions, the firing of one transition will not

disable the other

• a transition in a persistent net stays enabled until

it fires

Low_level_Petri_nets/40

Behavioral properties

• Fairness

• different definitions in the literature

• bounded-fairness: two transitions is in bounded-

fair relation is the maximum number of times that

either can fire while the other is not firing is

bounded

• unconditionally fairness: a firing sequence is

unconditionally fair if it is finite or every transition

in the net appears infinitely often in it

Low_level_Petri_nets/41

Behavioral properties

• Analysis of behavioral properties

• constructing the occurrence graph for given initial

markings

• searching on the occurrence graph

• desired or undesired markings

• number of tokens on given place

• firing sequences based on arc labels

• checking the terminal nodes

• may be NP-hard

• cyclic behavior, symbol

Low_level_Petri_nets/42

Structural properties

• aim is to characterize the Petri net independently

from the initial marking

• matrix equations governing the dynamic behavior of

concurrent systems modeled by Petri nets

• solvability of these equations is limited

• nondeterministic nature inherent in Petri net

model

• solutions must be found as non-negative integer

• assume: Petri net is pure (no self loop in it) or can

be made pure

Low_level_Petri_nets/43

Structural properties

• incidence matrix

• let the number of transition n and the number of

places m in a Petri net

• the incidence matrix A =[aij]

aij = a+
ij - a-

ij

where a+
ij = w(i,j) is the weight of the arc from ti to

pi and a-
ij = w(j,i) is the weight of the arc from pi to

ti

Low_level_Petri_nets/44

Structural properties

• a-
ij is the number of tokens to be removed

• a+
ij is the number of tokens to be added

• aij is the number of tokens changed in a place

• transition ti is enabled iff

a-
ij < M(j), j = 1, 2, …, m

Low_level_Petri_nets/45

Structural properties

•

Low_level_Petri_nets/46

Structural properties

•

Low_level_Petri_nets/47

Structural properties

•

Low_level_Petri_nets/48

Ay = 0

Structural properties

• T -invariants:

• if x is a T -invariant then there exists a marking

M0 and firing sequence starting from M0 back to

M0, that its firing count vector is equal to x

• P -invariants:

• if y is a P -invariant then MT y = M0
Ty for any

fixed initial marking M0 and any M in R(M0)

Low_level_Petri_nets/49

Automata, formal languages and Petri nets

• Automata and Petri nets:

• both suitable for representing DES

• explicit representation of state transitions

• automata: the definition contains the possible

states and the possible transitions between them

in explicit way

• Petri nets: the state description is defined in

distributed way, it is encoded into the state of

places

Low_level_Petri_nets/50

Automata, formal languages and Petri nets

• Petri-net languages

• labelled Petri net generating the context-

sensitive language L(M0) = {anbncn | n 0}

Low_level_Petri_nets/51

e e e

a b c

