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Previous notions Discrete event systems

Discrete event systems Discrete event systems (DES) are special kinds of dynamical systems. The
three main characteristic properties are the

e discrete range space of the signals, i.e. the input, output and
state variables can get their values from a set of discrete values.

Characteristic properties: Example: a two state switch has the range space {'off",’on’}.
o the range space of the signals (input, output, state) is discrete: e events occurs when a variable changes its discrete value from one
x(t) € X = {x0, X1, -, Xn} to an other. Example: the switch goes from 'on’ to 'off' and

) ) remains in that state.
@ event: the occurrence of change in a discrete value

e discrete time means that the time is also measured at discrete
points. Important: The subsequent time instances are not

Only the order of the events is considered necessarily equidistant. The time is usually measured when an event
o description of sequential and parallel events occurs in the system, and not between them. For example, the

system starts working at t=0 and an event occurs at t=5. Then

only t=0 and t=5 are recorded, and t=1,2,3,4 are not.

e time is also discrete: T = {ty, t1,...,t,} = {0,1,...,n}

o application area: scheduling, operational procedures, resource

management
An important feature of DES is that the only the order of events are

considered. We are not interested in the exact occurrence time of the
event, but its relative occurrence to an other event. For example, the
actual event occurred before or after another event. With the help of DES
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Previous notions Discrete event systems

Discrete time linear state space models It is important to not confuse the discrete time systems and DES. In the
previous lectures we used Discrete Time Linear State Space models which
can be described by a set of linear difference equations. The usual matrix

x(k 4+ 1) = dx(k) + Tu(k) (state equation)

; representation can be seen here.
y(k) = Cx(k) + Du(k) (output equation)

given initial condition x(0);
vector valued signals

x(k) e R", y(k) e RP, u(k) e R"
system parameters:
SGeR™" TeR™ , CeRP, DecRP
(Not necessarily) equidistant (tx — tx_1 = Ah)

x(k) = x(t) , u(k) = u(te) , y(k)=y(t)
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Previous notions

Discrete event systems — discrete time state space models

Generalization of discrete time linear state space models

x(k+1) =V(x(k),u
y(k) = h(x(k), u(k))

with given initial condition x(0) and nonlinear state W and output function
h.

(k)) (state equation)
(output equation)

Discrete event system:
© discrete time with non-equidistant sampling
@ the range space of the signals is discrete

© event: change in the discrete value of a signal
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Discrete event systems

The discrete time (DT) state space models can be generalized to get a
discrete event system. Creating a nonlinear state function W which depends
on the actual state x(k) and the actual input u(k), we can describe the state
transition operations. The W(x(k), u(k)) function defines the next state for
each state-input pair. Similarly a nonlinear output function h(x(k), u(k))
can be defined which gives the current output for the current state-input
pair. This can be a starting point of a DES.

The main difference that in DES the range spaces of the signals are re-
stricted to discrete values. In a discrete time system the variables may
have any value from a specified interval. For example:

e DT: x €[0,10]
o DES: x € {0,1,2,3,4,5,6,7,8,9, 10}

The second difference is the handling of time. In a discrete time system we
usually have a clock, and we update the system variables at every tick, even
if there is no change in the input/output/state variables. In discrete event
systems, the time is only recorded when an event (=change in the discrete
values of the variables) occurs. We are not interested in the elapsed time
between two events, only the order of them is important.




Previous notions Automata models

Automaton - abstract model: A = (Q, Z, 0; Zo, 99) Automata models are one of the possible representations of DES. An au-
tomaton is defined with the following notions:

.
o Set of states: Q

o finite alphabet of the input tape: ¥ = {#;a,b,...} °
e State transition function: § : Q X ¥ — Q .
o Set of initial and final states: Q;, Qr C Q

o finite alphabet of the output tape: ¥p = {#;, 3, ...} *
]

Output function: ¢ : Q = X

Graphical description: weighted directed graph
e Vertices: states (Q)
e Edges: state transitions ()
e Edge weights: input symbols (¥)

set of states Q: it contains all of the possible states of the
automaton

input alphabet ¥: contains the possible input values

state transition function d: defines the next state for each
state-input pair

set of initial and final states Q;, Qf
output alphabet ¥ o: contains the possible output values

output function ¢ assigns an output value to each state
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Previous notions Automata models

Operation of automata The automata operates as follows. Initially the automaton is in its initial
state. Then it reads the first symbol from the input tape. The automaton
steps into the next state according to the state transition function consid-
ering the actual state-input pair. The automaton writes an output symbol
to the output tape according to the output function. After the whole input

Given tape is processed the automaton is either in a final state or not. In the

.. former case the automaton accepts the input which means it is a valid
o Initial state: gp € Q) C @

. operation.
@ The content of the input tape: S = [01,02,...,04] , 0/ € X
Compute
o Final state: if gr € Qr C Q, then the automaton accepts the input

@ The content of the output state: Sp = [(1,(2,---,Cn] » (G € Lo
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Previous notions Automata models

Automata - discrete event systems Here you can see a side-by-side comparison of automata and discrete event
state space models.

Automaton Discrete event state
model space model
State space Q xXez"
Input u string from discrete time
PN discrete valued signal
Output y string from discrete time
Yo discrete valued signal
State q(k +1) =9d(q(k), u(k)) | x(k+1)=W(x(k),u(k))
equation
Output y(k) = p(x(K)) y(k) = h(x(k), u(K))
equation
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Previous notions Simple examples

Introductory example: Garage gate
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Previous notions Simple examples

Simple example: Runw
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Petri net models
Overview - Petri nets: modelling and dynamics

@ Petri net models
@ Description forms
@ Operation (dynamics) of Petri nets
@ Parallel and conflicting execution steps
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Petri net models Description forms

Petri net - abstract description: PN = (P, T, /7 O) Petri nets are also popular tools to represent DES. The explanation of the
formal definition is given here.

e set of places (conditions): P - places refer to preconditions or
consequences of events. Represented by circles. Example: garage
gate is waiting for a car.

Static description (structure)
e set of places (conditions): P e set of transitions (events): T transitions refer to events that may
occur in the system Represented by black rectangles. Example: the

driver press the button.

o set of transitions (events): T

o Input (pre-condition) function: /: T — P> . o .
e Input function: assigns input places (preconditions) to the

e Output (consequence) function: O : T — P> transitions (events)

e Output function: assigns output places (consequences) to the

Graphical description: bipartite directed graph
transitions (events)

e Vertices: places (P) and transitions (T) (partitions)
Graphically Petri nets are represented by bipartite directed graphs.

Places - circles, transitions - rectangles.

Edges: input and output functions. Edge direction: from a place to a
transition if the place is a precondition of the event (the place is in the
input function of the transition). From a transition to a place if the place

e Edges: input and output functions (/, O)

K. Hangos, A. |. Pézna (University of Pannonia)



Petri net models Description forms

Example: garage gate — 1 Here is a simple example, which models the operation of the garage gate.

Remark: the P|3C€5 Pautobe s Pgombbe s Pjegyelevesz y Pautogarazsba Ar€ the Opéra-
tions of the car driver, who can be modeled by a different Petri net.

Petri net model - graphical description

Pautove

Pewveszvar Pheenged

t

‘sorfel

P gombyar

-

sorle

Pautovar

P gombbe Piegyetvesz Pautogarazsba




Petri net models Description forms

Example: garage gate — 2

Petri net model - formal description

Places (states; inputs):

P = {pautovara Pgombvar ;s Pelveszvar s Pbeenged 1 Pautobe, Pgombbe; Pjegyelevesz pautogarazsba}

Transitions:
T = {tgomb7 tjegykia tsorfel s tsorle}

Input function:

I(tgomb) = {pautobew pautovar} s /(tjegyki) = {pgombbea Pgombvar}
/ ( tsorfe/) = {pjegye/vesza Pelveszvar} ’ / ( tsor/e) = {Pbeenged 5 pautogarazsba}
Output function:

O(tgomb) = {Pgombvar} 5 O(tjegyki) = {pelveszvar}
O(tsorfel) = {pbeenged} ) O(tsorle) = {pautovar}
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Operation (dynamics) of Petri nets

Petri net models

DynamiCS of Petri nets The firing sequence is denoted by H(O)[t:,‘o > H(l)[tjl > [t > H("H).
Here H(O) denotes the initial state of the Petr net, and H(k) is the state
after the kth step. tj is the label of the transition. ;(V[tjo > () means

Marking function: marking points (tokens) that transition tjo has fired and changed the marking from p(® to u().

p:P =N ulp)=p >0
HT:[:U’L/QV“?/MI] ’ n:|P|

Transition fires (operates): when its pre-conditions are "true" (there is a
token on its input places)

pOt; > )
after firing the consequences become "true"

Firing (operation) sequence

H(O)[fjo > H(l)[tﬂ > [th > H(k_'_l)
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Petri net models

Example: garage gate — 3

One operation steps

Patobe

Povoszvar Posenged

t

‘sorfel

Pautovar

Pgombbe Piegyeivesz Pautogarazsba

Pautobe p D
elveszvar boenged

t

‘sorfel

Pgombrar

t

Tegyki

Pautovar

Pgombpe Pjegyetvesz Pautogarazsba

Operation (dynamics) of Petri nets

The operation of the garage gate is demonstrated here. It can be seen
that only transition tgomp is enabled because there is one token on its
input places pautobe aNd Paytovar- After the firing of tgomp the tokens are
removed from the input places and one token appeared on the output place
of the transition pgompvar. In this situation there is no enabled transition.
tiegyki 1S Not enabled because there is no token on place pgombbe




Petri net models Operation (dynamics) of Petri nets

Example: garage gate — 4 The marking vector contains the token quantities of the places in the given
order. ) =1, 0, 0, 0; 1, 0, 0, 0]" means that there is 1 token on
place pautovar and pautope, and 0 token on the other places. The places

Formal description of an operation step referring to the garage and the car driver are separated by ; .

Marking vector

T .
122 = [Nautovaru Mgombvar, Melveszvary Hbeenged

Hautobe s Hgombbe Hjegyeleveszs Nautogarazsba]
Operation (firing) of transition tzoms
1 2
1V tgomp >

pM =1[1,000; 1,0, 0 0"
p® =10, 1,0 0;0, 0 0 0
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Petri net models Parallel and conflicting execution steps

Parallel events If more than one transition is enabled at the same time, then the firing of
one may affect the firing of the other. The following cases may occur:

) . e concurrency: the firing of a transition does not affect the enabling
More than one enabled (fireable) transition: of the other transition. The two transitions have independent
concurrency (independent conditions), conflict, confusion preconditions, i.e. they have no common input places. Example: t;

and t3 in Figure a.
Py

e conflict: the firing of one transition cancels the enabling of the
other transition. The transitions have at least one common input
place with less tokens than it is required for the firing of both
transitions. Example: t; and t; in Figure a. The common place is
p> with one token. If t; fires first, then it removes one token from
p1 and po therefore t, is no more enabled. However if there are 2
tokens on p, then after the firing of t; one token still remains on p»,
hence t, can fire too. The same situation applies to t» and t3.

Ps

[ e confusion: sometimes the situation is not clear, as two transitions
may be in concurrent or conflict according to the firing order.
Example: in Figure b, there are 3 transitions. It can be seen, that t;
and t, are concurrent, because they do not affect the firing of each
other. If t; fires first, then t3 will never be enabled. However if t,
fires first, then t; and t3 both become enabled in a conflicted situation.
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Petri net models

Parallel and conflicting execution steps

Conflict resolution Conflict situation are usually not preferred in a system, because it makes

the operation non deterministic. Possible resolutions of conflicts are:

USIng.(;rTIbI.tZr ebdg:hse: e e inhibitor edges: an inhibitor edge is the opposite of the usual edge.
priority given by user

A transition whose input place is connected with an inhibitor edge is
enabled if there is no token on that place. Example: in Figure a and
b you can see the Petri net model of the filling of a tank. piank is
connected to tg.i, with an inhibitor edge. This means that t;,.« is
enabled if there is one token on preagy AND ppymp AND prank is
empty. In Figure b, you can see the marking after the firing of ta..

test edges
Other solutions:
capacity of the places
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Parallel and conflicting execution steps

Petri net models

Conflict resolution

The firing sequence can be defined with inhibitor edges. Initially only t,
is enabled, because there is one token on p, and p3. t; is not enabled,
because there is one token on p, that is connected to t; with an inhibitor
Inhibitor edges - Example edge (Figure a). After t, fired t; becomes enabled, because the token from

p> is removed by t» (Figure b). Now t; can fire and the final marking of

the Petri net can be seen on Figure c.

ty is enabled ty fires, t; becomes enabled t; fires

@\tl @\tl C)\tl
1 I Q 1 I Cp) b1 I @
D4 4 4

to to to
oY R
5 5 5

p3 p3 p3
a, b, c,
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Petri net models

Conflict resolution

Capacity of places - Example

t; and tp are enabled 1t fires, only t, is enabled tr fires
t ©) t 1) t (1)
B B B
ty 1) ty 1 by 1
P1 I—»(p; 1 I—’Q b1 I—’C[;)
a, b, c,
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Parallel and conflicting execution steps

The capacity of the places can be seen between round brackets. In this
example p, and ps has a capacity of 1, which means only one token can
be there at the same time. p; has unlimited capacity.

Initially there are 2 tokens on p; and both t; and t, are enabled (Figure
a). Lets fire t;.

After the firing of t;, po is full, and cannot receive more tokens, because
of its capacity. Therefore only t, can fire (Figure b). After firing t, the
final marking can be seen in Figure c.

Note, that the initial conflict was not resolved, but at the second step
(Figure b) the capacity of p, prevented the firing of ;.




Petri net models

Petri net model of a runway — 1

p To_lefogl tkeszJe P v_le

P fp_szabad

Pry teiiog Tresz el Prey
P v_fel
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Petri net models Parallel and conflicting execution steps

Petri net model of a runway — 2 The conflict resolution with inhibitor is demonstrated on the runway ex-
ample. An obvious solution is that the landing aircraft has priority. If the
runway is free, the landing aircraft lands first. The aircraft waiting for take
off can use the runway only if there is no landing aircraft.

The inhibitor edge from pj to tp_fer realizes this solution.

Conflict resolution: landing aircraft has priority

ple

o _le P To_lefogl tkeszfle p v_le

p fp_szabad

t

kesz fel Prey

Py teirogi

p v_fel
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Solution of Petri net models
Overview - Solution of Petri net models

© Solution of Petri net models
@ The reachability graph
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Solution of Petri net models

The solution problem The general problem description of the solution of a discrete event system
is given here. We need to know all of the following 3 things to clearly
determine the solution.

e the formal description of the DES, e.g. an automaton or a Petri

Abstract problem statement net
Given: e the initial state of the system, to know where to start the
@ a formal description of a discrete event system model simulation
e initial state(s) e the external events which are the system inputs that operates the

. system.
@ external events: system inputs

The task is to compute the sequence of internal events, which are the

Compute: changes in the states and the outputs of the system.
o the sequence of internal (state and output) events Unlike the solution of state space models, the solution of a discrete event
system is algorithmic. It means that the solution is given by executing
The solution is algorithmic!  The problem is NP-hard! the steps of a (simulation) algorithm, instead of solving a set of differential

equations for example. The computational complexity of such problems
may be NP-hard (nondeterministic polynomial-time hard)
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Solution of Petri net models The reachability graph

Petri net models — reachability graph

e A vertex is terminal if there is no enabled transition at that state.

It can be seen that the construction may be NP hard, especially if there
Solution: marking (systems state) sequences are conflicts and infinitely firing transitions. The size of the reachability
reachability graph (tree) (weighted directed graph) graph may grow explosively!

@ vertices: markings
@ edges:. if exists transition the firing of which connects them

o edge weights: the transition and the external events

Construction:
Q start: at the given initial state (marking)

@ adding a new vertex: by firing an enabled transition (with the effect of
inputs!)

May be N P—hard (in conflict situation or non-finite operation)
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The reachability graph

Solution of Petri net models

The state space of Petri net models

From the system theory point of view it is useful to separate the in-
put/output variables from the state variables.

In a Petri net model, the state variables are the places with input AND
output edges.

The input variables are represented by places with no input edges.

State vector: marking in internal places
in- and out-degree is at least 1

x(k) ~ H(k)

Inputs: marking in input places

in-degree is zero
u(k) ~ H(k)
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Solution of Petri net models The reachability graph

Example: garage gate Here you can see the marking vector of the garage gate example.

i d M is the state vector, [autovar, Hgombvar s Helveszvar s Hbeenged are the
Petri net model markmgs of the state places.

° p, |S the mPUt vector Hautobe s /Lgombbea ,Ufjegyelevesza Mautogarazsba are
the markings on the input places

Pautobe

Poweszvar Pooenged

t

‘sorfel

Pgombvar

1/
Jegyki  sorle

Remark: the places with input ...— are part of the car driver's Petri net,
which is not presented here. From the gate’s point of view they are input
places, because they do not have input edges in the gate's Petri net!

Patovar

Pgombpe Pjegyetvesz Pautogarazsba

T
Hr, = [Hautovar; Hgombvars Helveszvar s ,ubeenged]

T
Hu = [:U’autobea Hgombbe, Hjegyelevesz ,U/autogarazsba]
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