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Previous notions Discrete event systems

Discrete event systems

Characteristic properties:

the range space of the signals (input, output, state) is discrete:
x(t) ∈ X = {x0, x1, ..., xn}
event: the occurrence of change in a discrete value

time is also discrete: T = {t0, t1, ..., tn} = {0, 1, ..., n}
Only the order of the events is considered

description of sequential and parallel events

application area: scheduling, operational procedures, resource
management
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Discrete event systems (DES) are special kinds of dynamical systems. The
three main characteristic properties are the

• discrete range space of the signals, i.e. the input, output and
state variables can get their values from a set of discrete values.
Example: a two state switch has the range space {'o�','on'}.

• events occurs when a variable changes its discrete value from one
to an other. Example: the switch goes from 'on' to 'o�' and
remains in that state.

• discrete time means that the time is also measured at discrete
points. Important: The subsequent time instances are not
necessarily equidistant. The time is usually measured when an event
occurs in the system, and not between them. For example, the
system starts working at t=0 and an event occurs at t=5. Then
only t=0 and t=5 are recorded, and t=1,2,3,4 are not.

An important feature of DES is that the only the order of events are

considered. We are not interested in the exact occurrence time of the

event, but its relative occurrence to an other event. For example, the

actual event occurred before or after another event. With the help of DES

we can describe parallel and sequential events.



Previous notions Discrete event systems

Discrete time linear state space models

x(k + 1) = Φx(k) + Γu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

given initial condition x(0);
vector valued signals

x(k) ∈ Rn , y(k) ∈ Rp , u(k) ∈ Rr

system parameters:

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r

(Not necessarily) equidistant (tk − tk−1 = ∆h)

x(k) = x(tk) , u(k) = u(tk) , y(k) = y(tk)
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It is important to not confuse the discrete time systems and DES. In the

previous lectures we used Discrete Time Linear State Space models which

can be described by a set of linear di�erence equations. The usual matrix

representation can be seen here.



Previous notions Discrete event systems

Discrete event systems � discrete time state space models

Generalization of discrete time linear state space models

x(k + 1) = Ψ(x(k), u(k)) (state equation)
y(k) = h(x(k), u(k)) (output equation)

with given initial condition x(0) and nonlinear state Ψ and output function

h.

Discrete event system:

1 discrete time with non-equidistant sampling

2 the range space of the signals is discrete

3 event: change in the discrete value of a signal
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The discrete time (DT) state space models can be generalized to get a
discrete event system. Creating a nonlinear state function Ψ which depends
on the actual state x(k) and the actual input u(k), we can describe the state
transition operations. The Ψ(x(k), u(k)) function de�nes the next state for
each state-input pair. Similarly a nonlinear output function h(x(k), u(k))
can be de�ned which gives the current output for the current state-input
pair. This can be a starting point of a DES.
The main di�erence that in DES the range spaces of the signals are re-
stricted to discrete values. In a discrete time system the variables may
have any value from a speci�ed interval. For example:

• DT: x ∈ [0, 10]

• DES: x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The second di�erence is the handling of time. In a discrete time system we

usually have a clock, and we update the system variables at every tick, even

if there is no change in the input/output/state variables. In discrete event

systems, the time is only recorded when an event (=change in the discrete

values of the variables) occurs. We are not interested in the elapsed time

between two events, only the order of them is important.



Previous notions Automata models

Automaton - abstract model: A = (Q,Σ, δ; ΣO , ϕ)

Set of states: Q

�nite alphabet of the input tape: Σ = {#; a, b, ...}
State transition function: δ : Q × Σ→ Q

Set of initial and �nal states: QI , QF ⊆ Q

�nite alphabet of the output tape: ΣO = {#;α, β, ...}
Output function: ϕ : Q → ΣO

Graphical description: weighted directed graph

Vertices: states (Q)

Edges: state transitions (δ)

Edge weights: input symbols (Σ)
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Automata models are one of the possible representations of DES. An au-
tomaton is de�ned with the following notions:

• set of states Q: it contains all of the possible states of the
automaton

• input alphabet Σ: contains the possible input values

• state transition function δ: de�nes the next state for each
state-input pair

• set of initial and �nal states QI , QF

• output alphabet ΣO : contains the possible output values

• output function ϕ assigns an output value to each state



Previous notions Automata models

Operation of automata

Given

Initial state: q0 ∈ QI ⊆ Q

The content of the input tape: S = [σ1, σ2, ..., σn] , σi ∈ Σ

Compute

Final state: if qf ∈ QF ⊆ Q, then the automaton accepts the input

The content of the output state: SO = [ζ1, ζ2, ..., ζn] , ζi ∈ ΣO
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The automata operates as follows. Initially the automaton is in its initial

state. Then it reads the �rst symbol from the input tape. The automaton

steps into the next state according to the state transition function consid-

ering the actual state-input pair. The automaton writes an output symbol

to the output tape according to the output function. After the whole input

tape is processed the automaton is either in a �nal state or not. In the

former case the automaton accepts the input which means it is a valid

operation.



Previous notions Automata models

Automata - discrete event systems

Automaton Discrete event state

model space model

State space Q X ∈ Zn

Input u string from discrete time

Σ discrete valued signal

Output y string from discrete time

ΣO discrete valued signal

State q(k + 1) = δ(q(k), u(k)) x(k + 1) = Ψ(x(k), u(k))
equation

Output y(k) = ϕ(x(k)) y(k) = h(x(k), u(k))
equation
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Here you can see a side-by-side comparison of automata and discrete event

state space models.



Previous notions Simple examples

Introductory example: Garage gate
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Previous notions Simple examples

Simple example: Runway

RWY
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Petri net models

Overview - Petri nets: modelling and dynamics

1 Previous notions

2 Petri net models

Description forms

Operation (dynamics) of Petri nets

Parallel and con�icting execution steps

3 Solution of Petri net models
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Petri net models Description forms

Petri net - abstract description: PN = (P ,T , I ,O)

Static description (structure)

set of places (conditions): P

set of transitions (events): T

Input (pre-condition) function: I : T → P∞

Output (consequence) function: O : T → P∞

Graphical description: bipartite directed graph

Vertices: places (P) and transitions (T ) (partitions)

Edges: input and output functions (I ,O)
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Petri nets are also popular tools to represent DES. The explanation of the
formal de�nition is given here.

• set of places (conditions): P - places refer to preconditions or
consequences of events. Represented by circles. Example: garage
gate is waiting for a car.

• set of transitions (events): T transitions refer to events that may
occur in the system Represented by black rectangles. Example: the
driver press the button.

• Input function: assigns input places (preconditions) to the
transitions (events)

• Output function: assigns output places (consequences) to the
transitions (events)

Graphically Petri nets are represented by bipartite directed graphs.
Places - circles, transitions - rectangles.

Edges: input and output functions. Edge direction: from a place to a

transition if the place is a precondition of the event (the place is in the

input function of the transition). From a transition to a place if the place

is the consequence of the event.



Petri net models Description forms

Example: garage gate � 1

Petri net model - graphical description
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Here is a simple example, which models the operation of the garage gate.

Remark: the places pautobe , pgombbe , pjegyelevesz , pautogarazsba are the opera-

tions of the car driver, who can be modeled by a di�erent Petri net.



Petri net models Description forms

Example: garage gate � 2

Petri net model - formal description

Places (states; inputs):

P = {pautovar , pgombvar , pelveszvar , pbeenged ; pautobe , pgombbe , pjegyelevesz , pautogarazsba}

Transitions:
T = {tgomb, tjegyki , tsorfel , tsorle}

Input function:

I (tgomb) = {pautobe , pautovar} , I (tjegyki ) = {pgombbe , pgombvar}
I (tsorfel) = {pjegyelvesz , pelveszvar} , I (tsorle) = {pbeenged , pautogarazsba}

Output function:

O(tgomb) = {pgombvar} , O(tjegyki ) = {pelveszvar}
O(tsorfel) = {pbeenged} , O(tsorle) = {pautovar}
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Petri net models Operation (dynamics) of Petri nets

Dynamics of Petri nets

Marking function: marking points (tokens)

µ : P→ N , µ(pi ) = µi ≥ 0

µT = [µ1, µ2, . . . , µn] , n = |P|

Transition �res (operates): when its pre-conditions are "true" (there is a

token on its input places)

µ(i)[tj > µ(i+1)

after �ring the consequences become "true"

Firing (operation) sequence

µ(0)[tj0 > µ(1)[tj1 > ...[tjk > µ(k+1)
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The �ring sequence is denoted by µ(0)[tj0 > µ(1)[tj1 > ...[tjk > µ(k+1).

Here µ(0) denotes the initial state of the Petr net, and µ(k) is the state

after the kth step. tjk is the label of the transition. µ(0)[tj0 > µ(1) means

that transition tj0 has �red and changed the marking from µ(0) to µ(1).



Petri net models Operation (dynamics) of Petri nets

Example: garage gate � 3

One operation steps
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The operation of the garage gate is demonstrated here. It can be seen

that only transition tgomb is enabled because there is one token on its

input places pautobe and pautovar . After the �ring of tgomb the tokens are

removed from the input places and one token appeared on the output place

of the transition pgombvar . In this situation there is no enabled transition.

tjegyki is not enabled because there is no token on place pgombbe



Petri net models Operation (dynamics) of Petri nets

Example: garage gate � 4

Formal description of an operation step

Marking vector

µT = [µautovar , µgombvar , µelveszvar , µbeenged ;

µautobe , µgombbe , µjegyelevesz , µautogarazsba]

Operation (�ring) of transition tgomb

µ(1)[tgomb > µ(2)

µ(1) = [1, 0, 0, 0 ; 1, 0, 0, 0]T

µ(2) = [0, 1, 0, 0 ; 0, 0, 0, 0]T
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The marking vector contains the token quantities of the places in the given

order. µ(1) = [1, 0, 0, 0 ; 1, 0, 0, 0]T means that there is 1 token on

place pautovar and pautobe , and 0 token on the other places. The places

referring to the garage and the car driver are separated by ; .



Petri net models Parallel and con�icting execution steps

Parallel events

More than one enabled (�reable) transition:
concurrency (independent conditions), con�ict, confusion
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If more than one transition is enabled at the same time, then the �ring of
one may a�ect the �ring of the other. The following cases may occur:

• concurrency: the �ring of a transition does not a�ect the enabling
of the other transition. The two transitions have independent
preconditions, i.e. they have no common input places. Example: t1
and t3 in Figure a.

• con�ict: the �ring of one transition cancels the enabling of the
other transition. The transitions have at least one common input
place with less tokens than it is required for the �ring of both
transitions. Example: t1 and t2 in Figure a. The common place is
p2 with one token. If t1 �res �rst, then it removes one token from
p1 and p2 therefore t2 is no more enabled. However if there are 2
tokens on p2 then after the �ring of t1 one token still remains on p2,
hence t2 can �re too. The same situation applies to t2 and t3.

• confusion: sometimes the situation is not clear, as two transitions
may be in concurrent or con�ict according to the �ring order.
Example: in Figure b, there are 3 transitions. It can be seen, that t1
and t2 are concurrent, because they do not a�ect the �ring of each
other. If t1 �res �rst, then t3 will never be enabled. However if t2
�res �rst, then t1 and t3 both become enabled in a con�icted situation.



Petri net models Parallel and con�icting execution steps

Con�ict resolution

Using inhibitor edges:
priority given by the user

test edges

Other solutions:
capacity of the places

p
ready

t
drain

p
pump

p
tank

p
ready

t
drain

p
pump

p
tank

a, b,

K. Hangos, A. I. Pózna (University of Pannonia) PE Apr 2018 19 / 28

Con�ict situation are usually not preferred in a system, because it makes
the operation non deterministic. Possible resolutions of con�icts are:

• inhibitor edges: an inhibitor edge is the opposite of the usual edge.
A transition whose input place is connected with an inhibitor edge is
enabled if there is no token on that place. Example: in Figure a and
b you can see the Petri net model of the �lling of a tank. ptank is
connected to tdrain with an inhibitor edge. This means that ttank is
enabled if there is one token on pready AND ppump AND ptank is
empty. In Figure b, you can see the marking after the �ring of ttank .



Petri net models Parallel and con�icting execution steps

Con�ict resolution

Inhibitor edges - Example

t2 is enabled t2 �res, t1 becomes enabled t1 �res
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The �ring sequence can be de�ned with inhibitor edges. Initially only t2
is enabled, because there is one token on p2 and p3. t1 is not enabled,

because there is one token on p2 that is connected to t1 with an inhibitor

edge (Figure a). After t2 �red t1 becomes enabled, because the token from

p2 is removed by t2 (Figure b). Now t1 can �re and the �nal marking of

the Petri net can be seen on Figure c.



Petri net models Parallel and con�icting execution steps

Con�ict resolution

Capacity of places - Example

t1 and t2 are enabled t1 �res, only t2 is enabled t2 �res
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The capacity of the places can be seen between round brackets. In this
example p2 and p3 has a capacity of 1, which means only one token can
be there at the same time. p1 has unlimited capacity.
Initially there are 2 tokens on p1 and both t1 and t2 are enabled (Figure
a). Lets �re t1.
After the �ring of t1, p2 is full, and cannot receive more tokens, because
of its capacity. Therefore only t2 can �re (Figure b). After �ring t2 the
�nal marking can be seen in Figure c.

Note, that the initial con�ict was not resolved, but at the second step

(Figure b) the capacity of p2 prevented the �ring of t1.



Petri net models Parallel and con�icting execution steps

Petri net model of a runway � 1
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Petri net models Parallel and con�icting execution steps

Petri net model of a runway � 2

Con�ict resolution: landing aircraft has priority
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The con�ict resolution with inhibitor is demonstrated on the runway ex-
ample. An obvious solution is that the landing aircraft has priority. If the
runway is free, the landing aircraft lands �rst. The aircraft waiting for take
o� can use the runway only if there is no landing aircraft.

The inhibitor edge from ple to tfp_fel realizes this solution.



Solution of Petri net models

Overview - Solution of Petri net models

1 Previous notions

2 Petri net models

3 Solution of Petri net models

The reachability graph
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Solution of Petri net models

The solution problem

Abstract problem statement

Given:

a formal description of a discrete event system model

initial state(s)

external events: system inputs

Compute:

the sequence of internal (state and output) events

The solution is algorithmic! The problem is NP-hard!
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The general problem description of the solution of a discrete event system
is given here. We need to know all of the following 3 things to clearly
determine the solution.

• the formal description of the DES, e.g. an automaton or a Petri
net

• the initial state of the system, to know where to start the
simulation

• the external events which are the system inputs that operates the
system.

The task is to compute the sequence of internal events, which are the
changes in the states and the outputs of the system.

Unlike the solution of state space models, the solution of a discrete event

system is algorithmic. It means that the solution is given by executing

the steps of a (simulation) algorithm, instead of solving a set of di�erential

equations for example. The computational complexity of such problems

may be NP-hard (nondeterministic polynomial-time hard)



Solution of Petri net models The reachability graph

Petri net models � reachability graph

Solution: marking (systems state) sequences

reachability graph (tree) (weighted directed graph)

vertices: markings

edges: if exists transition the �ring of which connects them

edge weights: the transition and the external events

Construction:

1 start: at the given initial state (marking)

2 adding a new vertex: by �ring an enabled transition (with the e�ect of

inputs!)

May be NP-hard (in con�ict situation or non-�nite operation)

K. Hangos, A. I. Pózna (University of Pannonia) PE Apr 2018 26 / 28

• A vertex is terminal if there is no enabled transition at that state.

It can be seen that the construction may be NP hard, especially if there

are con�icts and in�nitely �ring transitions. The size of the reachability

graph may grow explosively!



Solution of Petri net models The reachability graph

The state space of Petri net models

State vector: marking in internal places

in- and out-degree is at least 1

x(k) ∼ µ(k)
x

Inputs: marking in input places

in-degree is zero

u(k) ∼ µ(k)
u
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From the system theory point of view it is useful to separate the in-
put/output variables from the state variables.
In a Petri net model, the state variables are the places with input AND
output edges.

The input variables are represented by places with no input edges.



Solution of Petri net models The reachability graph

Example: garage gate

Petri net model
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Here you can see the marking vector of the garage gate example.

• µT
x
is the state vector, µautovar , µgombvar , µelveszvar , µbeenged are the

markings of the state places.

• µT
u
is the input vector, µautobe , µgombbe , µjegyelevesz , µautogarazsba are

the markings on the input places

Remark: the places with input ...→ are part of the car driver's Petri net,

which is not presented here. From the gate's point of view they are input

places, because they do not have input edges in the gate's Petri net!
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