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Fuzzy Logic Toolbox Product Description
Design and simulate fuzzy logic systems

Fuzzy Logic Toolbox provides MATLAB® functions, apps, and a Simulink® block for
analyzing, designing, and simulating systems based on fuzzy logic. The product guides
you through the steps of designing fuzzy inference systems. Functions are provided for
many common methods, including fuzzy clustering and adaptive neurofuzzy learning.

The toolbox lets you model complex system behaviors using simple logic rules, and then
implement these rules in a fuzzy inference system. You can use it as a stand-alone fuzzy
inference engine. Alternatively, you can use fuzzy inference blocks in Simulink and
simulate the fuzzy systems within a comprehensive model of the entire dynamic system.

Key Features
• Fuzzy Logic Design app for building fuzzy inference systems and viewing and

analyzing results
• Membership functions for creating fuzzy inference systems
• Support for AND, OR, and NOT logic in user-defined rules
• Standard Mamdani and Sugeno-type fuzzy inference systems
• Automated membership function shaping through neuroadaptive and fuzzy clustering

learning techniques
• Ability to embed a fuzzy inference system in a Simulink model
• Ability to generate embeddable C code or stand-alone executable fuzzy inference

engines

1 Getting Started
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What Is Fuzzy Logic?
Description of Fuzzy Logic
In recent years, the number and variety of applications of fuzzy logic have increased
significantly. The applications range from consumer products such as cameras,
camcorders, washing machines, and microwave ovens to industrial process control,
medical instrumentation, decision-support systems, and portfolio selection.

To understand why use of fuzzy logic has grown, you must first understand what is meant
by fuzzy logic.

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical system,
which is an extension of multivalued logic. However, in a wider sense fuzzy logic (FL) is
almost synonymous with the theory of fuzzy sets, a theory which relates to classes of
objects with unsharp boundaries in which membership is a matter of degree. In this
perspective, fuzzy logic in its narrow sense is a branch of FL. Even in its more narrow
definition, fuzzy logic differs both in concept and substance from traditional multivalued
logical systems.

In Fuzzy Logic Toolbox software, fuzzy logic should be interpreted as FL, that is, fuzzy
logic in its wide sense. The basic ideas underlying FL are explained in “Foundations of
Fuzzy Logic” on page 1-10. What might be added is that the basic concept underlying FL
is that of a linguistic variable, that is, a variable whose values are words rather than
numbers. In effect, much of FL may be viewed as a methodology for computing with
words rather than numbers. Although words are inherently less precise than numbers,
their use is closer to human intuition. Furthermore, computing with words exploits the
tolerance for imprecision and thereby lowers the cost of solution.

Another basic concept in FL, which plays a central role in most of its applications, is that
of a fuzzy if-then rule or, simply, fuzzy rule. Although rule-based systems have a long
history of use in Artificial Intelligence (AI), what is missing in such systems is a
mechanism for dealing with fuzzy consequents and fuzzy antecedents. In fuzzy logic, this
mechanism is provided by the calculus of fuzzy rules. The calculus of fuzzy rules serves as
a basis for what might be called the Fuzzy Dependency and Command Language (FDCL).
Although FDCL is not used explicitly in the toolbox, it is effectively one of its principal
constituents. In most of the applications of fuzzy logic, a fuzzy logic solution is, in reality,
a translation of a human solution into FDCL.

A trend that is growing in visibility relates to the use of fuzzy logic in combination with
neurocomputing and genetic algorithms. More generally, fuzzy logic, neurocomputing,

 What Is Fuzzy Logic?
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and genetic algorithms may be viewed as the principal constituents of what might be
called soft computing. Unlike the traditional, hard computing, soft computing
accommodates the imprecision of the real world. The guiding principle of soft computing
is: Exploit the tolerance for imprecision, uncertainty, and partial truth to achieve
tractability, robustness, and low solution cost. In the future, soft computing could play an
increasingly important role in the conception and design of systems whose MIQ (Machine
IQ) is much higher than that of systems designed by conventional methods.

Among various combinations of methodologies in soft computing, the one that has highest
visibility at this juncture is that of fuzzy logic and neurocomputing, leading to neuro-fuzzy
systems. Within fuzzy logic, such systems play a particularly important role in the
induction of rules from observations. An effective method developed by Dr. Roger Jang for
this purpose is called ANFIS (Adaptive Neuro-Fuzzy Inference System). This method is an
important component of the toolbox.

Fuzzy logic is all about the relative importance of precision: How important is it to be
exactly right when a rough answer will do?

You can use Fuzzy Logic Toolbox software with MATLAB technical computing software as
a tool for solving problems with fuzzy logic. Fuzzy logic is a fascinating area of research
because it does a good job of trading off between significance and precision — something
that humans have been managing for a very long time.

In this sense, fuzzy logic is both old and new because, although the modern and
methodical science of fuzzy logic is still young, the concepts of fuzzy logic relies on age-
old skills of human reasoning.

1 Getting Started
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A 1500 kg mass

is approaching

your head at

45.3 m/s

LOOK
OUT!!

Precision Significance

Precision and Significance in the Real World

Fuzzy logic is a convenient way to map an input space to an output space. Mapping input
to output is the starting point for everything. Consider the following examples:

• With information about how good your service was at a restaurant, a fuzzy logic
system can tell you what the tip should be.

• With your specification of how hot you want the water, a fuzzy logic system can adjust
the faucet valve to the right setting.

• With information about how far away the subject of your photograph is, a fuzzy logic
system can focus the lens for you.

• With information about how fast the car is going and how hard the motor is working, a
fuzzy logic system can shift gears for you.

A graphical example of an input-output map is shown in the following figure.
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Input Space
(all possible service

quality ratings)

Output Space
(all possible tips)

tonight's service
quality

An input-output map for the tipping problem:

�Given the quality of service, how much should I tip?�

Black

Box the "right" tip
for tonight

Determining the appropriate amount of tip requires mapping inputs to the appropriate
outputs. Between the input and the output, the preceding figure shows a black box that
can contain any number of things: fuzzy systems, linear systems, expert systems, neural
networks, differential equations, interpolated multidimensional lookup tables, or even a
spiritual advisor, just to name a few of the possible options. Clearly the list could go on
and on.

Of the dozens of ways to make the black box work, it turns out that fuzzy is often the very
best way. Why should that be? As Lotfi Zadeh, who is considered to be the father of fuzzy
logic, once remarked: "In almost every case you can build the same product without fuzzy
logic, but fuzzy is faster and cheaper."

Why Use Fuzzy Logic?
Here is a list of general observations about fuzzy logic:

• Fuzzy logic is conceptually easy to understand.

The mathematical concepts behind fuzzy reasoning are very simple. Fuzzy logic is a
more intuitive approach without the far-reaching complexity.

• Fuzzy logic is flexible.

With any given system, it is easy to layer on more functionality without starting again
from scratch.

• Fuzzy logic is tolerant of imprecise data.

1 Getting Started
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Everything is imprecise if you look closely enough, but more than that, most things are
imprecise even on careful inspection. Fuzzy reasoning builds this understanding into
the process rather than tacking it onto the end.

• Fuzzy logic can model nonlinear functions of arbitrary complexity.

You can create a fuzzy system to match any set of input-output data. This process is
made particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), which are available in Fuzzy Logic Toolbox software.

• Fuzzy logic can be built on top of the experience of experts.

In direct contrast to neural networks, which take training data and generate opaque,
impenetrable models, fuzzy logic lets you rely on the experience of people who already
understand your system.

• Fuzzy logic can be blended with conventional control techniques.

Fuzzy systems don't necessarily replace conventional control methods. In many cases
fuzzy systems augment them and simplify their implementation.

• Fuzzy logic is based on natural language.

The basis for fuzzy logic is the basis for human communication. This observation
underpins many of the other statements about fuzzy logic. Because fuzzy logic is built
on the structures of qualitative description used in everyday language, fuzzy logic is
easy to use.

The last statement is perhaps the most important one and deserves more discussion.
Natural language, which is used by ordinary people on a daily basis, has been shaped by
thousands of years of human history to be convenient and efficient. Sentences written in
ordinary language represent a triumph of efficient communication.

When Not to Use Fuzzy Logic
Fuzzy logic is not a cure-all. When should you not use fuzzy logic? The safest statement is
the first one made in this introduction: fuzzy logic is a convenient way to map an input
space to an output space. If you find it's not convenient, try something else. If a simpler
solution already exists, use it. Fuzzy logic is the codification of common sense — use
common sense when you implement it and you will probably make the right decision.
Many controllers, for example, do a fine job without using fuzzy logic. However, if you
take the time to become familiar with fuzzy logic, you'll see it can be a very powerful tool
for dealing quickly and efficiently with imprecision and nonlinearity.
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What Can Fuzzy Logic Toolbox Software Do?
You can create and edit fuzzy inference systems with Fuzzy Logic Toolbox software. You
can create these systems using graphical tools or command-line functions, or you can
generate them automatically using either clustering or adaptive neuro-fuzzy techniques.

If you have access to Simulink software, you can easily test your fuzzy system in a block
diagram simulation environment.

The toolbox also lets you run your own stand-alone C programs directly. This is made
possible by a stand-alone Fuzzy Inference Engine that reads the fuzzy systems saved from
a MATLAB session. You can customize the stand-alone engine to build fuzzy inference into
your own code. All provided code is ANSI® compliant.

Fuzzy
Inference
System

 Stand-alone
Fuzzy Engine

MATLAB

Fuzzy
Logic

Toolbox

User-written
M-files

Other toolboxes

Simulink

Because of the integrated nature of the MATLAB environment, you can create your own
tools to customize the toolbox or harness it with another toolbox, such as the Control
System Toolbox™, Deep Learning Toolbox™, or Optimization Toolbox™ software.
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More About
• “Foundations of Fuzzy Logic” on page 1-10
• “Fuzzy vs. Nonfuzzy Logic” on page 1-47

 See Also

1-9



Foundations of Fuzzy Logic

Overview
The point of fuzzy logic is to map an input space to an output space, and the primary
mechanism for doing this is a list of if-then statements called rules. All rules are evaluated
in parallel, and the order of the rules is unimportant. The rules themselves are useful
because they refer to variables and the adjectives that describe those variables. Before
you can build a system that interprets rules, you must define all the terms you plan on
using and the adjectives that describe them. To say that the water is hot, you need to
define the range that the water's temperature can be expected to vary as well as what we
mean by the word hot. The following diagram provides a roadmap for the fuzzy inference
process. It shows the general description of a fuzzy system on the left and a specific fuzzy
system on the right.

Input

The General Case A Specific Example

Rules

Input
terms
(interpret)

Output
terms
(assign)

Output service

if service is poor then tip is cheap

if service is good then tip is average

if service is excellent then tip is generous

{poor,

good,

excellent}

{cheap,

average,

generous}

service
is interpreted as

tip
is assigned to be

tip

To summarize the concept of fuzzy inference depicted in this figure, fuzzy inference is a
method that interprets the values in the input vector and, based on some set of rules,
assigns values to the output vector.

This topic guides you through the fuzzy logic process step by step by providing an
introduction to the theory and practice of fuzzy logic.
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Fuzzy Sets
Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a crisp,
clearly defined boundary. It can contain elements with only a partial degree of
membership.

To understand what a fuzzy set is, first consider the definition of a classical set. A
classical set is a container that wholly includes or wholly excludes any given element. For
example, the set of days of the week unquestionably includes Monday, Thursday, and
Saturday. It just as unquestionably excludes butter, liberty, and dorsal fins, and so on.

Monday

Thursday

Liberty
Shoe

Polish

Dorsal

FinsButter
Saturday

Days of the week

This type of set is called a classical set because it has been around for a long time. It was
Aristotle who first formulated the Law of the Excluded Middle, which says X must either
be in set A or in set not-A. Another version of this law is:

Of any subject, one thing must be either asserted or denied.

To restate this law with annotations: "Of any subject (say Monday), one thing (a day of the
week) must be either asserted or denied (I assert that Monday is a day of the week)." This
law demands that opposites, the two categories A and not-A, should between them
contain the entire universe. Everything falls into either one group or the other. There is
no thing that is both a day of the week and not a day of the week.

Now, consider the set of days comprising a weekend. The following diagram attempts to
classify the weekend days.
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Monday
Thursday

LibertyShoe

Polish

Dorsal

FinsButter

Saturday

Sunday

Days of the weekend

Friday

Most would agree that Saturday and Sunday belong, but what about Friday? It feels like a
part of the weekend, but somehow it seems like it should be technically excluded. Thus, in
the preceding diagram, Friday tries its best to "straddle on the fence." Classical or normal
sets would not tolerate this kind of classification. Either something is in or it is out.
Human experience suggests something different, however, straddling the fence is part of
life.

Of course individual perceptions and cultural background must be taken into account
when you define what constitutes the weekend. Even the dictionary is imprecise, defining
the weekend as the period from Friday night or Saturday to Monday morning. You are
entering the realm where sharp-edged, yes-no logic stops being helpful. Fuzzy reasoning
becomes valuable exactly when you work with how people really perceive the concept
weekend as opposed to a simple-minded classification useful for accounting purposes
only. More than anything else, the following statement lays the foundations for fuzzy
logic.

In fuzzy logic, the truth of any statement becomes a matter of degree.

Any statement can be fuzzy. The major advantage that fuzzy reasoning offers is the ability
to reply to a yes-no question with a not-quite-yes-or-no answer. Humans do this kind of
thing all the time (think how rarely you get a straight answer to a seemingly simple
question), but it is a rather new trick for computers.

How does it work? Reasoning in fuzzy logic is just a matter of generalizing the familiar
yes-no (Boolean) logic. If you give true the numerical value of 1 and false the numerical
value of 0, this value indicates that fuzzy logic also permits in-between values like 0.2 and
0.7453. For instance:

Q: Is Saturday a weekend day?
A: 1 (yes, or true)
Q: Is Tuesday a weekend day?
A: 0 (no, or false)
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Q: Is Friday a weekend day?
A: 0.8 (for the most part yes, but not completely)
Q: Is Sunday a weekend day?
A: 0.95 (yes, but not quite as much as Saturday).

The following plot on the left shows the truth values for weekend-ness if you are forced to
respond with an absolute yes or no response. On the right, is a plot that shows the truth
value for weekend-ness if you are allowed to respond with fuzzy in-between values.

Technically, the representation on the right is from the domain of multivalued logic (or
multivalent logic). If you ask the question "Is X a member of set A?" the answer might be
yes, no, or any one of a thousand intermediate values in between. Thus, X might have
partial membership in A. Multivalued logic stands in direct contrast to the more familiar
concept of two-valued (or bivalent yes-no) logic.

To return to the example, now consider a continuous scale time plot of weekend-ness
shown in the following plots.

Days of the weekend multivalued membership

w
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d
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e
s
s

Friday Saturday Sunday MondayThursday

1.0

0.0

Days of the weekend two-valued membership

Friday Saturday Sunday MondayThursday

1.0

0.0

By making the plot continuous, you are defining the degree to which any given instant
belongs in the weekend rather than an entire day. In the plot on the left, notice that at
midnight on Friday, just as the second hand sweeps past 12, the weekend-ness truth value
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jumps discontinuously from 0 to 1. This is one way to define the weekend, and while it
may be useful to an accountant, it may not really connect with your own real-world
experience of weekend-ness.

The plot on the right shows a smoothly varying curve that accounts for the fact that all of
Friday, and, to a small degree, parts of Thursday, partake of the quality of weekend-ness
and thus deserve partial membership in the fuzzy set of weekend moments. The curve
that defines the weekend-ness of any instant in time is a function that maps the input
space (time of the week) to the output space (weekend-ness). Specifically it is known as a
membership function. See “Membership Functions” on page 1-14 for a more detailed
discussion.

As another example of fuzzy sets, consider the question of seasons. What season is it right
now? In the northern hemisphere, summer officially begins at the exact moment in the
earth's orbit when the North Pole is pointed most directly toward the sun. It occurs
exactly once a year, in late June. Using the astronomical definitions for the season, you
get sharp boundaries as shown on the left in the figure that follows. But what you
experience as the seasons vary more or less continuously as shown on the right in the
following figure (in temperate northern hemisphere climates).

Time of the

year

March March

sprin

g

summer fall winter

June September December

1.0

0.0

degree

of

member-

ship

degree

of

member-

ship

Time of the

year

March March

sprin

g

summer fall winter

June September December

1.0

0.0

Membership Functions
A membership function (MF) is a curve that defines how each point in the input space is
mapped to a membership value (or degree of membership) between 0 and 1. The input
space is sometimes referred to as the universe of discourse, a fancy name for a simple
concept.

One of the most commonly used examples of a fuzzy set is the set of tall people. In this
case, the universe of discourse is all potential heights, say from three feet to nine feet,
and the word tall would correspond to a curve that defines the degree to which any
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person is tall. If the set of tall people is given the well-defined (crisp) boundary of a
classical set, you might say all people taller than six feet are officially considered tall.
However, such a distinction is clearly absurd. It may make sense to consider the set of all
real numbers greater than six because numbers belong on an abstract plane, but when
we want to talk about real people, it is unreasonable to call one person short and another
one tall when they differ in height by the width of a hair.

You must be

taller than

this line to

be

considered

TALL

excellent!

If the kind of distinction shown previously is unworkable, then what is the right way to
define the set of tall people? Much as with the plot of weekend days, the figure following
shows a smoothly varying curve that passes from not-tall to tall. The output-axis is a
number known as the membership value between 0 and 1. The curve is known as a
membership function and is often given the designation of µ. This curve defines the
transition from not tall to tall. Both people are tall to some degree, but one is significantly
less tall than the other.
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height

degree of
membership, µ

definitely a tall
person (m = 0.95)

1.0

0.0

really not very
tall at all (m = 0.30)

sharp-edged
membership

function for
TALL

height

degree of
membership, µ

tall (m = 1.0)1.0

0.0 not tall (m = 0.0)

continuous
membership

function for
TALL

Subjective interpretations and appropriate units are built right into fuzzy sets. If you say
"She's tall," the membership function tall should already take into account whether you
are referring to a six-year-old or a grown woman. Similarly, the units are included in the
curve. Certainly it makes no sense to say "Is she tall in inches or in meters?"

Membership Functions in Fuzzy Logic Toolbox Software

The only condition a membership function must really satisfy is that it must vary between
0 and 1. The function itself can be an arbitrary curve whose shape we can define as a
function that suits us from the point of view of simplicity, convenience, speed, and
efficiency.

A classical set might be expressed as

A = x x > 6

A fuzzy set is an extension of a classical set. If X is the universe of discourse and its
elements are denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs.
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A x, μA x x ∈ X

A = {x, µA(x) | x ∈ X}

µA(x) is called the membership function (or MF) of x in A. The membership function maps
each element of X to a membership value between 0 and 1.

The toolbox includes 11 built-in membership function types. These 11 functions are, in
turn, built from several basic functions:

• Piece-wise linear functions
• Gaussian distribution function
• Sigmoid curve
• Quadratic and cubic polynomial curves

For detailed information on any of the membership functions mentioned next, see the
corresponding reference page.

The simplest membership functions are formed using straight lines. Of these, the simplest
is the triangular membership function, and it has the function name trimf. This function
is nothing more than a collection of three points forming a triangle. The trapezoidal
membership function, trapmf, has a flat top and really is just a truncated triangle curve.
These straight line membership functions have the advantage of simplicity.

0 2 4 6 8 10
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0.75

1

trimf, P = [3 6 8]

trimf

0 2 4 6 8 10

0

0.25

0.5

0.75

1

trapmf, P = [1 5 7 8]

trapmf

Two membership functions are built on the Gaussian distribution curve: a simple
Gaussian curve and a two-sided composite of two different Gaussian curves. The two
functions are gaussmf and gauss2mf.

The generalized bell membership function is specified by three parameters and has the
function name gbellmf. The bell membership function has one more parameter than the
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Gaussian membership function, so it can approach a non-fuzzy set if the free parameter is
tuned. Because of their smoothness and concise notation, Gaussian and bell membership
functions are popular methods for specifying fuzzy sets. Both of these curves have the
advantage of being smooth and nonzero at all points.
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Although the Gaussian membership functions and bell membership functions achieve
smoothness, they are unable to specify asymmetric membership functions, which are
important in certain applications. Next, you define the sigmoidal membership function,
which is either open left or right. Asymmetric and closed (i.e. not open to the left or right)
membership functions can be synthesized using two sigmoidal functions, so in addition to
the basic sigmf, you also have the difference between two sigmoidal functions, dsigmf,
and the product of two sigmoidal functions psigmf.
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Polynomial based curves account for several of the membership functions in the toolbox.
Three related membership functions are the Z, S, andPi curves, all named because of
their shape. The function zmf is the asymmetrical polynomial curve open to the left, smf
is the mirror-image function that opens to the right, and pimf is zero on both extremes
with a rise in the middle.
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There is a very wide selection to choose from when you're selecting a membership
function. You can also create your own membership functions with the toolbox. However,
if a list based on expanded membership functions seems too complicated, just remember
that you could probably get along very well with just one or two types of membership
functions, for example the triangle and trapezoid functions. The selection is wide for
those who want to explore the possibilities, but expansive membership functions are not
necessary for good fuzzy inference systems. Finally, remember that more details are
available on all these functions in the reference section.

Summary of Membership Functions

• Fuzzy sets describe vague concepts (e.g., fast runner, hot weather, weekend days).
• A fuzzy set admits the possibility of partial membership in it. (e.g., Friday is sort of a

weekend day, the weather is rather hot).
• The degree an object belongs to a fuzzy set is denoted by a membership value between

0 and 1. (e.g., Friday is a weekend day to the degree 0.8).
• A membership function associated with a given fuzzy set maps an input value to its

appropriate membership value.

Logical Operations
Now that you understand the fuzzy inference, you need to see how fuzzy inference
connects with logical operations.

The most important thing to realize about fuzzy logical reasoning is the fact that it is a
superset of standard Boolean logic. In other words, if you keep the fuzzy values at their
extremes of 1 (completely true), and 0 (completely false), standard logical operations will
hold. As an example, consider the following standard truth tables.
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AND

0


0


1


1

A B A and B A B A or B A not A

0


1


0


1

0


0


0


1

OR

0


0


1


1

0


1


0


1

0


1


1


1

NOT

0


1

1


0

Now, because in fuzzy logic the truth of any statement is a matter of degree, can these
truth tables be altered? The input values can be real numbers between 0 and 1. What
function preserves the results of the AND truth table (for example) and also extend to all
real numbers between 0 and 1?

One answer is the min operation. That is, resolve the statement A AND B, where A and B
are limited to the range (0,1), by using the function min(A,B). Using the same reasoning,
you can replace the OR operation with the max function, so that A OR B becomes
equivalent to max(A,B). Finally, the operation NOT A becomes equivalent to the operation
1 − A. Notice how the previous truth table is completely unchanged by this substitution.

AND

0


0


1


1

A B min(A,B) A B max(A,B) A 1 - A

0


1


0


1

0


0


0


1

OR

0


0


1


1

0


1


0


1

0


1


1


1

NOT

0


1

1


0

Moreover, because there is a function behind the truth table rather than just the truth
table itself, you can now consider values other than 1 and 0.

The next figure uses a graph to show the same information. In this figure, the truth table
is converted to a plot of two fuzzy sets applied together to create one fuzzy set. The upper
part of the figure displays plots corresponding to the preceding two-valued truth tables,
while the lower part of the figure displays how the operations work over a continuously
varying range of truth values A and B according to the fuzzy operations you have defined.
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B

AND
min(A,B)

NOT
(1-A)

Multivalued
logic

Two-valued
logic

Given these three functions, you can resolve any construction using fuzzy sets and the
fuzzy logical operation AND, OR, and NOT.

Additional Fuzzy Operators

In this case, you defined only one particular correspondence between two-valued and
multivalued logical operations for AND, OR, and NOT. This correspondence is by no
means unique.

In more general terms, you are defining what are known as the fuzzy intersection or
conjunction (AND), fuzzy union or disjunction (OR), and fuzzy complement (NOT). The
classical operators for these functions are: AND = min, OR = max, and NOT = additive
complement. Typically, most fuzzy logic applications make use of these operations and
leave it at that. In general, however, these functions are arbitrary to a surprising degree.
Fuzzy Logic Toolbox software uses the classical operator for the fuzzy complement as
shown in the previous figure, but also enables you to customize the AND and OR
operators.

The intersection of two fuzzy sets A and B is specified in general by a binary mapping T,
which aggregates two membership functions as follows:

μA∩ B x = T μA x , μB x
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For example, the binary operator T may represent the multiplication of µA(x) and µB(x).
These fuzzy intersection operators, which are usually referred to as T-norm (Triangular
norm) operators, meet the following basic requirements:

A T-norm operator is a binary mapping T(.,.) with the following properties:

• Boundary — T 0, 0 = 0, T a, 1 = T 1, a = a
• Monotonicity — T a, b ≤ T c, d  if a ≤ c and b ≤ d
• Commutativity — T a, b = T b, a
• Associativity — T a, T b, c = T T a, b , c

The first requirement imposes the correct generalization to crisp sets. The second
requirement implies that a decrease in the membership values in A or B cannot produce
an increase in the membership value in A intersection B. The third requirement indicates
that the operator is indifferent to the order of the fuzzy sets to be combined. Finally, the
fourth requirement allows us to take the intersection of any number of sets in any order
of pair-wise groupings.

Like fuzzy intersection, the fuzzy union operator is specified in general by a binary
mapping S:

μA∪ B x = S μA x , μB x

For example, the binary operator S can represent the addition of µA(x) and µB(x). These
fuzzy union operators, which are often referred to as T-conorm (or S-norm) operators,
must satisfy the following basic requirements:

A T-conorm (or S-norm) operator is a binary mapping S(.,.) with the following properties:

• Boundary — S 1, 1 = 1, S a, 0 = S 0, a = a
• Monotonicity — S a, b ≤ S c, d  if a ≤ c and b ≤ d
• Commutativity — S a, b = S b, a
• Associativity — S a, S b, c = S S a, b , c

Several parameterized T-norms and dual T-conorms have been proposed in the past, such
as those of Yager [10], Dubois and Prade [1], Schweizer and Sklar [7], and Sugeno [8].
Each of these provides a way to vary the gain on the function so that it can be very
restrictive or very permissive.
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If-Then Rules
Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These if-then rule
statements are used to formulate the conditional statements that comprise fuzzy logic.

A single fuzzy if-then rule assumes the form

If x is A, then y is B

where A and B are linguistic values defined by fuzzy sets on the ranges (universes of
discourse) X and Y, respectively. The if-part of the rule "x is A" is called the antecedent or
premise, while the then-part of the rule "y is B" is called the consequent or conclusion. An
example of such a rule might be
If service is good then tip is average

The concept good is represented as a number between 0 and 1, and so the antecedent is
an interpretation that returns a single number between 0 and 1. Conversely, average is
represented as a fuzzy set, and so the consequent is an assignment that assigns the entire
fuzzy set B to the output variable y. In the if-then rule, the word is gets used in two
entirely different ways depending on whether it appears in the antecedent or the
consequent. In MATLAB terms, this usage is the distinction between a relational test
using "==" and a variable assignment using the "=" symbol. A less confusing way of
writing the rule would be

If service == good, then tip = average

In general, the input to an if-then rule is the current value for the input variable (in this
case, service) and the output is an entire fuzzy set (in this case, average). This set will
later be defuzzified, assigning one value to the output. The concept of defuzzification is
described in the next section.

Interpreting an if-then rule involves two steps:

• Evaluation of the antecedent — Fuzzifying the inputs and applying any necessary fuzzy
operators.

• Application of the result to the consequent.

The second step is known as implication. For an if-then rule, the antecedent, p, implies
the consequent, q. In binary logic, if p is true, then q is also true (p → q). In fuzzy logic, if
p is true to some degree of membership, then q is also true to the same degree (0.5p →
0.5q). In both cases, if p is false, then the value of q is undetermined.
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The antecedent of a rule can have multiple parts.

If sky is gray and wind is strong and barometer is falling, then ...

In this case all parts of the antecedent are calculated simultaneously and resolved to a
single number using the logical operators described in the preceding section. The
consequent of a rule can also have multiple parts.

If temperature is cold, then hot water valve is open and cold water valve is shut

In this case, all consequents are affected equally by the result of the antecedent. How is
the consequent affected by the antecedent? The consequent specifies a fuzzy set be
assigned to the output. The implication function then modifies that fuzzy set to the degree
specified by the antecedent. The most common ways to modify the output fuzzy set are
truncation using the min function (where the fuzzy set is truncated as shown in the
following figure) or scaling using the prod function (where the output fuzzy set is
squashed). Both are supported by the toolbox, but you use truncation for the examples in
this section.
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Summary of If-Then Rules

Interpreting if-then rules is a three-part process. This process is explained in detail in the
next section:

1 Fuzzify inputs: Resolve all fuzzy statements in the antecedent to a degree of
membership between 0 and 1. If there is only one part to the antecedent, then this is
the degree of support for the rule.

2 Apply fuzzy operator to multiple part antecedents: If there are multiple parts to
the antecedent, apply fuzzy logic operators and resolve the antecedent to a single
number between 0 and 1. This is the degree of support for the rule.

3 Apply implication method: Use the degree of support for the entire rule to shape
the output fuzzy set. The consequent of a fuzzy rule assigns an entire fuzzy set to the

 Foundations of Fuzzy Logic

1-25



output. This fuzzy set is represented by a membership function that is chosen to
indicate the qualities of the consequent. If the antecedent is only partially true, (i.e.,
is assigned a value less than 1), then the output fuzzy set is truncated according to
the implication method.

In general, one rule alone is not effective. Two or more rules that can play off one another
are needed. The output of each rule is a fuzzy set. The output fuzzy sets for each rule are
then aggregated into a single output fuzzy set. Finally the resulting set is defuzzified, or
resolved to a single number. “Build Fuzzy Systems Using Fuzzy Logic Designer” on page
2-14 shows how the whole process works from beginning to end for a particular type of
fuzzy inference system called a Mamdani type.
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Fuzzy Inference Process
Fuzzy inference is the process of formulating the mapping from a given input to an output
using fuzzy logic. The mapping then provides a basis from which decisions can be made,
or patterns discerned. The process of fuzzy inference involves all the pieces that are
described in “Membership Functions” on page 1-14, “Logical Operations” on page 1-19,
and “If-Then Rules” on page 1-23.

This section describes the fuzzy inference process and uses the example of the two-input,
one-output, three-rule tipping problem from “The Basic Tipping Problem” on page 2-16.
The basic structure of this example is shown in the following diagram:

Input 1
Service (0-10)

Output
Tip (5-25%)

Input 2
Food (0-10)

S

Dinner for Two
a 2 input, 1 output, 3 rule system

All rules are

evaluated in parallel

using fuzzy

reasoning.

The results of the

rules are combined

and distilled

(defuzzified).

The result is  a

crisp (non-fuzzy)

number.

The inputs are crisp

(non-fuzzy)

numbers limited to a

specific range.

If service is excellent or food is

delicious, then tip is generous.
Rule 3

If service is good, then tip is average.Rule 2

If service is poor or food is rancid,

then tip is cheap.
Rule 1

Information flows from left to right, from two inputs to a single output. The parallel
nature of the rules is an important aspect of fuzzy logic systems. Instead of sharp
switching between modes based on breakpoints, logic flows smoothly from regions where
one rule or another dominates.

Fuzzy inference process comprises of five parts:

• Fuzzification of the input variables on page 1-29
• Application of the fuzzy operator (AND or OR) in the antecedent on page 1-30
• Implication from the antecedent to the consequent on page 1-31
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• Aggregation of the consequents across the rules on page 1-31
• Defuzzification on page 1-33

A fuzzy inference diagram on page 1-34 displays all parts of the fuzzy inference process
— from fuzzification through defuzzification.

Fuzzify Inputs
The first step is to take the inputs and determine the degree to which they belong to each
of the appropriate fuzzy sets via membership functions. In Fuzzy Logic Toolbox software,
the input is always a crisp numerical value limited to the universe of discourse of the
input variable (in this case, the interval from 0 through 10) . The output is a fuzzy degree
of membership in the qualifying linguistic set (always the interval from 0 through 1).
Fuzzification of the input amounts to either a table lookup or a function evaluation.

This example is built on three rules, and each of the rules depends on resolving the inputs
into several different fuzzy linguistic sets: service is poor, service is good, food is rancid,
food is delicious, and so on. Before the rules can be evaluated, the inputs must be
fuzzified according to each of these linguistic sets. For example, to what extent is the food
delicious? The following figure shows how well the food at the hypothetical restaurant
(rated on a scale from 0 through 10) qualifies as the linguistic variable delicious using a
membership function. In this case, we rate the food as an 8, which, given the graphical
definition of delicious, corresponds to µ = 0.7 for the delicious membership function.

delicious

0.7

food is delicious

food = 8

input

Result of

fuzzification

1. Fuzzify

inputs.

In this manner, each input is fuzzified over all the qualifying membership functions
required by the rules.
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Apply Fuzzy Operator
After the inputs are fuzzified, you know the degree to which each part of the antecedent
is satisfied for each rule. If the antecedent of a rule has more than one part, the fuzzy
operator is applied to obtain one number that represents the result of the rule
antecedent. This number is then applied to the output function. The input to the fuzzy
operator is two or more membership values from fuzzified input variables. The output is a
single truth value.

As is described in “Logical Operations” on page 1-19 section, any number of well-defined
methods can fill in for the AND operation or the OR operation. In the toolbox, two built-in
AND methods are supported: min (minimum) and prod (product). Two built-in OR
methods are also supported: max (maximum), and the probabilistic OR method probor.
The probabilistic OR method (also known as the algebraic sum) is calculated according to
the equation:

probor(a,b) = a + b - ab

In addition to these built-in methods, you can create your own methods for AND and OR
by writing any function and setting that to be your method of choice.

The following figure shows the OR operator max at work, evaluating the antecedent of the
rule 3 for the tipping calculation. The two different pieces of the antecedent (service is
excellent and food is delicious) yielded the fuzzy membership values 0.0 and 0.7
respectively. The fuzzy OR operator simply selects the maximum of the two values, 0.7,
and the fuzzy operation for rule 3 is complete. The probabilistic OR method would still
result in 0.7.

delicious

excellent

0.00.0

0.7

0.7

service is excellent food is deliciousor

food = 8

input 2

result of
fuzzy operator

service = 3

input 1

2. Apply

OR operator (max).

1. Fuzzify

inputs.
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Apply Implication Method
Before applying the implication method, you must determine the rule weight. Every rule
has a weight (a number from 0 through 1), which is applied to the number given by the
antecedent. Generally, this weight is 1 (as it is for this example) and thus has no effect on
the implication process. However, you can decrease the effect of one rule relative to the
others by changing its weight value to something other than 1.

After proper weighting has been assigned to each rule, the implication method is
implemented. A consequent is a fuzzy set represented by a membership function, which
weights appropriately the linguistic characteristics that are attributed to it. The
consequent is reshaped using a function associated with the antecedent (a single
number). The input for the implication process is a single number given by the
antecedent, and the output is a fuzzy set. Implication is implemented for each rule. Two
built-in methods are supported, and they are the same functions that are used by the AND
method: min (minimum), which truncates the output fuzzy set, and prod (product), which
scales the output fuzzy set.

delicious

excellent

generous

If service is excellent food is delicious thenor tip = generous

food = 8

input 2

result of

implication

service = 3

input 1

3. Apply

Implication

operator (min).

2. Apply

OR operator (max).
1. Fuzzify

inputs.

Antecedent Consequent

Note Sugeno systems always use the product implication method.

Aggregate All Outputs
Since decisions are based on testing all the rules in a FIS, the rule outputs must be
combined in some manner. Aggregation is the process by which the fuzzy sets that
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represent the outputs of each rule are combined into a single fuzzy set. Aggregation only
occurs once for each output variable, which is before the final defuzzification step. The
input of the aggregation process is the list of truncated output functions returned by the
implication process for each rule. The output of the aggregation process is one fuzzy set
for each output variable.

As long as the aggregation method is commutative, then the order in which the rules are
executed is unimportant. Three built-in methods are supported:

• max (maximum)
• probor (probabilistic OR)
• sum (sum of the rule output sets)

In the following diagram, all three rules are displayed to show how the rule outputs are
aggregated into a single fuzzy set whose membership function assigns a weighting for
every output (tip) value.

1 Getting Started

1-32



30

30

30

30

30

30

30

Note Sugeno systems always use the sum aggregation method.

Defuzzify
The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy set)
and the output is a single number. As much as fuzziness helps the rule evaluation during
the intermediate steps, the final desired output for each variable is generally a single
number. However, the aggregate of a fuzzy set encompasses a range of output values, and
so must be defuzzified to obtain a single output value from the set.

There are five built-in defuzzification methods supported: centroid, bisector, middle of
maximum (the average of the maximum value of the output set), largest of maximum, and
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smallest of maximum. Perhaps the most popular defuzzification method is the centroid
calculation, which returns the center of area under the curve, as shown in the following:

30

While the aggregate output fuzzy set covers a range from 0% though 30%, the defuzzified
value is between 5% and 25%. These limits correspond to the centroids of the cheap and
generous membership functions, respectively.

Fuzzy Inference Diagram
The fuzzy inference diagram is the composite of all the smaller diagrams presented so far
in this section. It simultaneously displays all parts of the fuzzy inference process you have
examined. Information flows through the fuzzy inference diagram as shown in the
following figure.
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input 2input 1

1. if and then

2. if and then

output

Interpreting the
fuzzy inference
diagram

In this figure, the flow proceeds up from the inputs in the lower left, across each row, and
then down the rule outputs in the lower right. This compact flow shows everything at
once, from linguistic variable fuzzification all the way through defuzzification of the
aggregate output.

The following figure shows the actual full-size fuzzy inference diagram. Using a fuzzy
inference diagram, you can learn a lot about how the system operates. For instance, for
the particular inputs in this diagram, you can see that the implication method is
truncation with the min function. The max function is used for the fuzzy OR operation.
Rule 3 (the bottom-most row in the diagram shown previously) has the strongest influence
on the output. The Rule Viewer described in “The Rule Viewer” on page 2-33 is an
implementation of the fuzzy inference diagram.
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30

30

See Also

More About
• “Foundations of Fuzzy Logic” on page 1-10
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Membership Function Gallery
This example shows how to display 11 membership functions supported in the Fuzzy
Logic Toolbox�.

Define membership functions.

mf = [...
    fismf('trapmf',[-19 -17 -12 -7]) ...
    fismf('gbellmf',[3 4 -8]) ...
    fismf('trimf',[-9 -1 2]) ...
    fismf('gaussmf',[3 5]) ...
    fismf('gauss2mf',[3 10 5 13]) ...
    fismf('smf',[11 17]) ...
    fismf('zmf',[-18 -10]) ...
    fismf('psigmf',[2 -11 -5 -4]) ...
    fismf('dsigmf',[5 -3 1 5]) ...
    fismf('pimf',[0 7 11 15]) ...
    fismf('sigmf',[2 15]) ...
    ];

For more information on the different membership functions and their parameters, see
their respective function reference pages.

Evaluate the membership functions.

x = linspace(-20,20,201);
y = evalmf(mf,x);

Plot the evaluated membership functions with labels.

subplot(2,1,1);
plot(x,y(1:6,:)');
axis([min(x) max(x) 0 1.2]);
text((mf(1).Parameters(2)+mf(1).Parameters(3))/2,1.1,mf(1).Type,...
    'horizon','center');
text(mf(2).Parameters(3),1.1,mf(2).Type,...
    'horizon','center');
text(mf(3).Parameters(2),1.1,mf(3).Type,...
    'horizon','center');
text(mf(4).Parameters(2),1.1,mf(4).Type,...
    'horizon','center');
text((mf(5).Parameters(2)+mf(5).Parameters(4))/2,1.1,mf(5).Type,...
    'horizon','center');
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text(mf(6).Parameters(2), 1.1,mf(6).Type,...
    'horizon','center');
h_gca = gca;
h_gca.XTick = [];

subplot(2,1,2);
plot(x,y(7:11,:)');
axis([min(x) max(x) 0 1.2]);
text(mf(7).Parameters(1),1.1,mf(7).Type,...
    'horizon','center');
text((mf(8).Parameters(2)+mf(8).Parameters(4))/2,1.1,mf(8).Type,...
    'horizon','center');
text((mf(9).Parameters(2)+mf(9).Parameters(4))/2,1.1,mf(9).Type,...
    'horizon','center');
text((mf(10).Parameters(2)+mf(10).Parameters(3))/2,1.1,mf(10).Type,...
    'horizon','center');
text(mf(11).Parameters(2),1.1,mf(11).Type,...
    'horizon','center');
h_gca =  gca;
h_gca.XTick = [];
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See Also

More About
• “Foundations of Fuzzy Logic” on page 1-10
• “Fuzzy Inference Process” on page 1-28
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Defuzzification Methods
This example shows how to display five defuzzification methods supported in the Fuzzy
Logic Toolbox™.

Problem Setup

Suppose you have the following region to be defuzzified. What are some of the methods
you might choose?

x = -10:0.1:10;

mf1 = trapmf(x,[-10 -8 -2 2]);
mf2 = trapmf(x,[-5 -3 2 4]);
mf3 = trapmf(x,[2 3 8 9]);
mf1 = max(0.5*mf2,max(0.9*mf1,0.1*mf3));

figure('Tag','defuzz');
plot(x,mf1,'LineWidth',3);
h_gca = gca;
h_gca.YTick = [0 .5 1] ;
ylim([-1 1]);
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Centroid

Centroid defuzzification returns the center of area under the curve. If you think of the
area as a plate of equal density, the centroid is the point along the x axis about which this
shape would balance.

x1 = defuzz(x,mf1,'centroid'); % #ok<*NOPTS>

h1 = line([x1 x1],[-0.2 1.2],'Color','k'); 
t1 = text(x1,-0.2,' centroid','FontWeight','bold');
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Bisector

The bisector is the vertical line that will divide the region into two sub-regions of equal
area. It is sometimes, but not always coincident with the centroid line.

x2 =  defuzz(x,mf1,'bisector');

gray = 0.7*[1 1 1];
h1.Color = gray;
t1.Color = gray;
h2 = line([x2 x2],[-0.4 1.2],'Color','k'); 
t2 = text(x2,-0.4,' bisector','FontWeight','bold');
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Middle, Smallest, and Largest of Maximum

MOM, SOM, and LOM stand for Middle, Smallest, and Largest of Maximum, respectively.
These three methods key off the maximum value assumed by the aggregate membership
function. In this example, because there is a plateau at the maximum value, they are
distinct. If the aggregate membership function has a unique maximum, then MOM, SOM,
and LOM all take on the same value.

x3 = defuzz(x,mf1,'mom')

x3 = -5

x4 = defuzz(x,mf1,'som')

x4 = -2
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x5 = defuzz(x,mf1,'lom')

x5 = -8

h2.Color = gray;
t2.Color = gray;

h3 = line([x3 x3],[-0.7 1.2],'Color','k'); 
t3 = text(x3,-0.7,' MOM','FontWeight','bold');
h4 = line([x4 x4],[-0.8 1.2],'Color','k'); 
t4 = text(x4,-0.8,' SOM','FontWeight','bold');
h5 = line([x5 x5],[-0.6 1.2],'Color','k'); 
t5 = text(x5,-0.6,' LOM','FontWeight','bold');
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Picking a Method

Which of these methods is the right one? There's no simple answer. But if you want to get
started quickly, generally the centroid method is good enough. Later you can always
change your defuzzification method to see if another method works better.

h3.Color = gray;
t3.Color = gray;
h4.Color = gray;
t4.Color = gray;
h5.Color = gray;
t5.Color = gray;
h1.Color = 'red';
t1.Color = 'red';
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See Also

More About
• “Foundations of Fuzzy Logic” on page 1-10
• “Fuzzy Inference Process” on page 1-28
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Fuzzy vs. Nonfuzzy Logic
Basic Tipping Problem

To illustrate the value of fuzzy logic, examine both linear and fuzzy approaches to the
following problem:

What is the right amount to tip your waitperson?

First, work through this problem the conventional (nonfuzzy) way, writing MATLAB®
commands that spell out linear and piecewise-linear relations. Then, look at the same
system using fuzzy logic.

Basic Tipping Problem. Given a number from 0 through 10 that represents the quality
of service at a restaurant (where 10 is excellent), what should the tip be?

This problem is based on tipping as it is typically practiced in the United States. An
average tip for a meal in the US is 15%, though the actual amount can vary depending on
the quality of the service provided.

Nonfuzzy Approach

Begin with the simplest possible relationship. Suppose that the tip always equals 15% of
the total bill.

service = 0:.5:10;
tip = 0.15*ones(size(service));
plot(service,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])
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This relationship does not account for the quality of the service, so you must add a term
to the equation. Since service is rated on a scale from 0 through 10, you the tip increase
linearly from 5% if the service is bad to 25% if the service is excellent. Now the relation
looks like the following plot:

tip = (.20/10)*service+0.05;
plot(service,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])
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The formula does what you want it to do, and is straight forward. However, you may want
the tip to reflect the quality of the food as well. This extension of the problem is defined
as follows.

Extended Tipping Problem. Given two sets of numbers from 0 through 10 (where 10 is
excellent) that respectively represent the quality of the service and the quality of the food
at a restaurant, what should the tip be?

See how the formula is affected now that you have added another variable.

food = 0:.5:10;
[F,S] = meshgrid(food,service);
tip = (0.20/20).*(S+F)+0.05;
surf(S,F,tip)
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xlabel('Service')
ylabel('Food')
zlabel('Tip')

In this case, the results look satisfactory, but when you look at them closely, they do not
seem right. Suppose that you want the service to be a more important factor than the
food quality. Specify that service accounts for 80% of the overall tipping grade and the
food makes up the other 20%.

servRatio = 0.8;
tip = servRatio*(0.20/10*S+0.05) + ...
    (1-servRatio)*(0.20/10*F+0.05);
surf(S,F,tip)
xlabel('Service')
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ylabel('Food')
zlabel('Tip')

The response is still some how too uniformly linear. Suppose that you want more of a flat
response in the middle, that is, you want to give a 15% tip in general, but want to also
specify a variation if the service is exceptionally good or bad. This factor, in turn, means
that the previous linear mappings no longer apply. You can still use the linear calculation
with a piecewise linear construction. Now, return to the one-dimensional problem of just
considering the service. You can create a simple conditional tip assignment using logical
indexing.

tip = zeros(size(service));
tip(service<3) = (0.10/3)*service(service<3)+0.05;
tip(service>=3 & service<7) = 0.15;
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tip(service>=7 & service<=10) = ...
    (0.10/3)*(service(service>=7 & service<=10)-7)+0.15;
plot(service,tip)
xlabel('Service')
ylabel('Tip')
ylim([0.05 0.25])

Suppose that you extend this approach to two dimensions, where you account for food
quality again.

servRatio = 0.8;
tip = zeros(size(S));
tip(S<3) = ((0.10/3)*S(S<3)+0.05)*servRatio + ...
    (1-servRatio)*(0.20/10*F(S<3)+0.05);
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tip(S>=3 & S<7) = (0.15)*servRatio + ...
    (1-servRatio)*(0.20/10*F(S>=3 & S<7)+0.05);
tip(S>=7 & S<=10) = ((0.10/3)*(S(S>=7 & S<=10)-7)+0.15)*servRatio + ...
    (1-servRatio)*(0.20/10*F(S>=7 & S<=10)+0.05);
surf(S,F,tip)
xlabel('Service')
ylabel('Food')
zlabel('Tip')

The plot looks good, but the function is surprisingly complicated. It is even not apparent
how the algorithm works to someone who did not see the original design process.
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Fuzzy Logic Approach

In general, you want to capture the essentials of this problem, leaving aside all the factors
that could be arbitrary. If you make a list of what really matters in this problem, you could
end up with the following rule descriptions.

Tipping Problem Rules - Service Factor

• If service is poor, then tip is cheap
• If service is good, then tip is average
• If service is excellent, then tip is generous

The order in which the rules are presented here is arbitrary. It does not matter which
rules come first. To include the effect of food quality on the tip, add the following two
rules.

Tipping Problem Rules - Food Factor

• If food is rancid, then tip is cheap
• If food is delicious, then tip is generous

You can combine the two different lists of rules into one list of three rules like so.

Tipping Problem Rules - Both Service and Food Factors

• If service is poor or the food is rancid, then tip is cheap
• If service is good, then tip is average
• If service is excellent or food is delicious, then tip is generous

These three rules are the core of your solution and they correspond to the rules for a
fuzzy logic system. When you give mathematical meaning to the linguistic variables (what
is an average tip, for example) you have a complete fuzzy inference system. The
methodology of fuzzy logic must also consider:

• How are the rules all combined?
• How do I define mathematically what an average tip is?

Problem Solution

The following plot represents the fuzzy logic system that solves the tipping problem.
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gensurf(readfis('tipper'))

This plot was generated by the three rules that accounted for both service and food
factors.

Observations Consider some observations about the example so far. You found a
piecewise linear relation that solved the problem. It worked, but it was problematic to
derive, and when you wrote it down as code, it was not easy to interpret. Conversely, the
fuzzy logic system is based on some common sense statements. Also, you were able to add
two more rules to the list that influenced the shape of the overall output without needing
to undo what had already been done.

Moreover, by using fuzzy logic rules, the maintenance of the structure of the algorithm
decouples along fairly clean lines. The notion of an average tip can change from day to
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day, city to city, country to country. However, the underlying logic is the same: if the
service is good, the tip should be average.

Recalibrating the Method You can recalibrate the method quickly by simply shifting the
fuzzy set that defines average without rewriting the fuzzy logic rules.

You can shift lists of piecewise linear functions, but there is a greater likelihood for
difficult recalibration.

In the following example, the piecewise linear tipping problem is rewritten to make it
more generic. It performs the same function as before, only now the constants can be
easily changed.

lowTip = 0.05;
averTip = 0.15;
highTip = 0.25;
tipRange = highTip-lowTip;
badService = 0;
okayService = 3; 
goodService = 7;
greatService = 10;
serviceRange = greatService-badService;
badFood = 0;
greatFood = 10;
foodRange = greatFood-badFood;

% If service is poor or food is rancid, tip is cheap
if service<okayService
    tip = (((averTip-lowTip)/(okayService-badService)) ...
        *service+lowTip)*servRatio + ...
        (1-servRatio)*(tipRange/foodRange*food+lowTip);

% If service is good, tip is average
elseif service<goodService
    tip = averTip*servRatio + (1-servRatio)* ...
        (tipRange/foodRange*food+lowTip);

% If service is excellent or food is delicious, tip is generous
else
    tip = (((highTip-averTip)/ ...
        (greatService-goodService))* ...
        (service-goodService)+averTip)*servRatio + ...
        (1-servRatio)*(tipRange/foodRange*food+lowTip);
end
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As with all code, the more generality that is introduced, the less precise the algorithm
becomes. You can improve clarity by adding more comments, or perhaps rewriting the
algorithm in slightly more self-evident ways. But, the piecewise linear methodology is not
the optimal way to resolve this issue.

If you remove everything from the algorithm except for three comments, what remain are
exactly the fuzzy logic rules you previously wrote down.

• If service is poor or food is rancid, tip is cheap
• If service is good, tip is average
• If service is excellent or food is delicious, tip is generous

Fuzzy logic uses language that is clear to you and that also has meaning to the computer,
which is why it is a successful technique for bridging the gap between people and
machines.

By making the equations as simple as possible (linear) you make things simpler for the
machine, but more complicated for you. However, the limitation is no longer the computer
- it is your mental model of what the computer is doing. Fuzzy logic lets the machine work
with your preferences rather than the other way around.

See Also

Related Examples
• “Build Fuzzy Systems at the Command Line” on page 2-38
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
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Fuzzy Inference System Modeling

• “Types of Fuzzy Inference Systems” on page 2-2
• “What Is Mamdani-Type Fuzzy Inference?” on page 2-4
• “What Is Sugeno-Type Fuzzy Inference?” on page 2-5
• “Comparison of Sugeno and Mamdani Systems” on page 2-12
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• “Build Fuzzy Systems at the Command Line” on page 2-38
• “Build Fuzzy Systems Using Custom Functions” on page 2-50
• “Fuzzy Trees” on page 2-65
• “Fuzzy Logic Image Processing” on page 2-75
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Types of Fuzzy Inference Systems
You can implement two types of fuzzy inference systems in the toolbox:

• Mamdani
• Sugeno

These two types of inference systems vary somewhat in the way outputs are determined.

Mamdani's fuzzy inference method is the most commonly seen fuzzy methodology.
Mamdani's method was among the first control systems built using fuzzy set theory. It was
proposed in 1975 by Ebrahim Mamdani [1] as an attempt to control a steam engine and
boiler combination by synthesizing a set of linguistic control rules obtained from
experienced human operators. Mamdani's effort was based on Lotfi Zadeh's 1973 paper
on fuzzy algorithms for complex systems and decision processes [2]. Although the
inference process described in the next few sections differs somewhat from the methods
described in the original paper, the basic idea is much the same.

Mamdani-type inference, as defined for the toolbox, expects the output membership
functions to be fuzzy sets. After the aggregation process, there is a fuzzy set for each
output variable that needs defuzzification. It is possible, and in many cases much more
efficient, to use a single spike as the output membership function rather than a
distributed fuzzy set. This type of output is sometimes known as a singleton output
membership function, and it can be thought of as a pre-defuzzified fuzzy set. It enhances
the efficiency of the defuzzification process because it greatly simplifies the computation
required by the more general Mamdani method, which finds the centroid of a two-
dimensional function. Rather than integrating across the two-dimensional function to find
the centroid, you use the weighted average of a few data points. Sugeno-type systems
support this type of model. In general, Sugeno-type systems can be used to model any
inference system in which the output membership functions are either linear or constant.

For descriptions of these two types of fuzzy inference systems, see [3], [1], and [4].

Fuzzy inference systems have been successfully applied in fields such as automatic
control, data classification, decision analysis, expert systems, and computer vision.
Because of its multidisciplinary nature, fuzzy inference systems are associated with a
number of names, such as fuzzy-rule-based systems, fuzzy expert systems, fuzzy
modeling, fuzzy associative memory, fuzzy logic controllers, and simply (and ambiguously)
fuzzy systems.
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What Is Mamdani-Type Fuzzy Inference?
Mamdani fuzzy inference is the most commonly seen fuzzy methodology and was among
the first control systems built using fuzzy set theory. It was proposed in 1975 by Ebrahim
Mamdani [1] as an attempt to control a steam engine and boiler combination by
synthesizing a set of linguistic control rules obtained from experienced human operators.
Mamdani's effort was based on Lotfi Zadeh's 1973 paper on fuzzy algorithms for complex
systems and decision processes [2]. Although the inference process described in the next
few sections differs somewhat from the methods described in the original paper, the basic
idea is much the same.

Mamdani-type inference, as defined for the toolbox, expects the output membership
functions to be fuzzy sets. After the aggregation process, there is a fuzzy set for each
output variable that needs defuzzification.
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What Is Sugeno-Type Fuzzy Inference?
This topic discusses the Sugeno, or Takagi-Sugeno-Kang, method of fuzzy inference.
Introduced in 1985 [1], this method is similar to the Mamdani method in many respects.
The first two parts of the fuzzy inference process, fuzzifying the inputs and applying the
fuzzy operator, are the same. The main difference between Mamdani and Sugeno is that
the Sugeno output membership functions are either linear or constant.

A typical rule in a Sugeno fuzzy model has the form:
If Input 1 is x and Input 2 is y, then Output is z = ax + by + c

For a zero-order Sugeno model, the output level z is a constant (a = b = 0).

Each rule weights its output level, zi, by the firing strength of the rule, wi. For example,
for an AND rule with Input 1 = x and Input 2 = y, the firing strength is

wi = AndMethod(F1(x), F2(y))

where F1,2(.) are the membership functions for Inputs 1 and 2.

The final output of the system is the weighted average of all rule outputs, computed as

Final Output = 
∑
i=1

N
wizi

∑
i = 1

N
wi

where N is the number of rules.

A Sugeno rule operates as shown in the following diagram.
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Note Sugeno systems always use product implication and sum aggregation.

The preceding figure shows the fuzzy tipping model developed in “Fuzzy Inference
Process” on page 1-28 adapted for use as a Sugeno system. Fortunately, it is frequently
the case that singleton output functions are sufficient for the needs of a given problem. As
an example, the system tippersg.fis is the Sugeno-type representation of the now-
familiar tipping model. If you load the system and plot its output surface, you see that it is
almost the same as the Mamdani system you have previously seen.

fis = readfis('tippersg');
gensurf(fis)
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The easiest way to visualize first-order Sugeno systems is to think of each rule as defining
the location of a moving singleton. That is, the singleton output spikes can move around
in a linear fashion in the output space, depending on what the input is. This also tends to
make the system notation compact and efficient. Higher-order Sugeno fuzzy models are
possible, but they introduce significant complexity with little obvious merit. Sugeno fuzzy
models whose output membership functions are greater than first order are not
supported by Fuzzy Logic Toolbox software.

Because of the linear dependence of each rule on the input variables, the Sugeno method
is ideal for acting as an interpolating supervisor of multiple linear controllers that are to
be applied, respectively, to different operating conditions of a dynamic nonlinear system.
For example, the performance of an aircraft may change dramatically with altitude and
Mach number. Linear controllers, though easy to compute and suited to any given flight
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condition, must be updated regularly and smoothly to keep up with the changing state of
the flight vehicle. A Sugeno fuzzy inference system is suited to the task of smoothly
interpolating the linear gains that would be applied across the input space; it is a natural
and efficient gain scheduler. Similarly, a Sugeno system is suited for modeling nonlinear
systems by interpolating between multiple linear models.

To see a specific example of a system with linear output membership functions, consider
the one-input, one-output system stored in sugeno1.fis. Load the system and view the
properties of its output variable.

fis = readfis('sugeno1');
fis.Outputs(1)

ans = 
  fisvar with properties:

                   Name: "output"
                  Range: [0 1]
    MembershipFunctions: [1x2 fismf]

The output variable has two membership functions. View the properties of the first
membership function.

fis.Outputs(1).MembershipFunctions(1)

ans = 
  fismf with properties:

          Name: "line1"
          Type: "linear"
    Parameters: [-1 -1]

View the properties of the second membership function.

fis.Outputs(1).MembershipFunctions(2)

ans = 
  fismf with properties:

          Name: "line2"
          Type: "linear"
    Parameters: [1 -1]
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Further, these membership functions are linear functions of the input variable. The
membership function line1 is defined by the equation:

output = ( − 1) × input + ( − 1)

and the membership function line2 is:

output = (1) × input + ( − 1)

The input membership functions and rules define which of these output functions are
expressed and when:

fis.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                    Description           
         _________________________________

    1    "input==low => output=line1 (1)" 
    2    "input==high => output=line2 (1)"

The function plotmf shows us that the membership function low generally refers to
input values less than zero, while high refers to values greater than zero. The function
gensurf shows how the overall fuzzy system output switches smoothly from the line
called line1 to the line called line2.

subplot(2,1,1)
plotmf(fis,'input',1)
subplot(2,1,2)
gensurf(fis)
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As this example shows, Sugeno-type system gives you the freedom to incorporate linear
systems into your fuzzy systems. By extension, you could build a fuzzy system that
switches between several optimal linear controllers as a highly nonlinear system moves
around in its operating space.
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Comparison of Sugeno and Mamdani Systems
Because it is a more compact and computationally efficient representation than a
Mamdani system, a Sugeno system lends itself to the use of adaptive techniques for
constructing fuzzy models. These adaptive techniques can be used to customize the
membership functions so that the fuzzy system best models the data.

You can convert a Mamdani system into a Sugeno system using the convertToSugeno
function. The resulting Sugeno system has constant output membership functions that
correspond to the centroids of the Mamdani output membership functions.

Advantages of the Sugeno Systems
Sugeno systems:

• Are computationally efficient.
• Work well with linear techniques, such as PID control.
• Work well with optimization and adaptive techniques.
• Guarantee continuity of the output surface.
• Well-suited to mathematical analysis.

Advantages of the Mamdani Systems
Mamdani systems:

• Are intuitive.
• Have widespread acceptance.
• Are well-suited to human input.

See Also
convertToSugeno

More About
• “What Is Mamdani-Type Fuzzy Inference?” on page 2-4
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• “What Is Sugeno-Type Fuzzy Inference?” on page 2-5
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Build Fuzzy Systems Using Fuzzy Logic Designer

Fuzzy Logic Toolbox Graphical User Interface Tools
This example shows how to build a fuzzy inference system (FIS) for the tipping example,
described in “The Basic Tipping Problem” on page 2-16, using the Fuzzy Logic Toolbox
UI tools.

You use the following tools to build, edit, and view fuzzy inference systems:

• Fuzzy Logic Designer to handle the high-level issues for the system — How many
input and output variables? What are their names?

Fuzzy Logic Toolbox software does not limit the number of inputs. However, the
number of inputs may be limited by the available memory of your machine. If the
number of inputs is too large, or the number of membership functions is too big, then
it may also be difficult to analyze the FIS using the other tools.

• Membership Function Editor on page 2-22 to define the shapes of all the
membership functions associated with each variable

• Rule Editor on page 2-30 to edit the list of rules that defines the behavior of the
system.

• Rule Viewer on page 2-33 to view the fuzzy inference diagram. Use this viewer as a
diagnostic to see, for example, which rules are active, or how individual membership
function shapes influence the results

• Surface Viewer on page 2-35 to view the dependency of one of the outputs on any
one or two of the inputs; that is, it generates and plots an output surface map for the
system.

These UIs are dynamically linked, in that changes you make to the FIS using one of them,
affect what you see on any of the other open UIs. For example, if you change the names of
the membership functions in the Membership Function Editor, the changes are reflected
in the rules shown in the Rule Editor. You can use the UIs to read and write variables both
to the MATLAB workspace and to a file (the read-only viewers can still exchange plots
with the workspace and save them to a file). You can have any or all of them open for any
given system or have multiple editors open for any number of fuzzy systems.
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In addition to these five primary UIs, the toolbox includes the graphical Neuro-Fuzzy
Designer, which you use to build and analyze Sugeno-type adaptive neuro-fuzzy
inference systems.

The Fuzzy Logic Toolbox UIs do not support building a FIS using data. If you want to use
data to build a FIS, use one of the following techniques:

• genfis to generate a Sugeno-type FIS. Then, select File > Import in the Fuzzy
Logic Designer to import the FIS and perform fuzzy inference, as described in “The
Fuzzy Logic Designer” on page 2-17.

• Neuro-adaptive learning techniques to model the FIS, as described in “Neuro-Adaptive
Learning and ANFIS” on page 3-86.

If you want to use MATLAB workspace variables, use the command-line interface instead
of the Fuzzy Logic Designer. For an example, see “Build Fuzzy Systems at the Command
Line” on page 2-38.

The Basic Tipping Problem
This example creates a Mamdani fuzzy inference system using on a two-input, one-output
tipping problem based on tipping practices in the U.S. While the example creates a
Mamdani FIS, the methods used apply to creating Sugeno systems as well.

Given a number between 0 and 10 that represents the quality of service at a restaurant
(where 10 is excellent), and another number between 0 and 10 that represents the quality
of the food at that restaurant (again, 10 is excellent), what should the tip be?

The starting point is to write down the three golden rules of tipping:

1 If the service is poor or the food is rancid, then tip is cheap.
2 If the service is good, then tip is average.
3 If the service is excellent or the food is delicious, then tip is generous.

Assume that an average tip is 15%, a generous tip is 25%, and a cheap tip is 5%.
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The numbers and the shape of the curve are subject to local traditions, cultural bias, and
so on, but the three rules are generally universal.

Now that you know the rules and have an idea of what the output should look like, use the
UI tools to construct a fuzzy inference system for this decision process.

The Fuzzy Logic Designer
The Fuzzy Logic Designer displays information about a fuzzy inference system. To open
the Fuzzy Logic Designer, type the following command at the MATLAB prompt:

fuzzyLogicDesigner

The Fuzzy Logic Designer opens and displays a diagram of the fuzzy inference system
with the names of each input variable on the left, and those of each output variable on the
right, as shown in the next figure. The sample membership functions shown in the boxes
are just icons and do not depict the actual shapes of the membership functions.
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Double-click the input variable icon to 

open the Membership Function Editor

Double-click the output variable icon to

open the Membership Function Editor

Double-click the system

diagram to open the Rule Editor

Below the diagram is the name of the system and the type of inference used.
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Name of the system.
To change it, select
File > Export > To Workspace.

Options for adjusting the fuzzy
inference functions, such
as the defuzzification method.

Status line describes
the most recent operation.

Name of the selected input
or output variables.

In this example, you use the default Mamdani-type inference. Another type of inference,
called Sugeno-type inference, is also available. See “What Is Sugeno-Type Fuzzy
Inference?” on page 2-5.

In the Fuzzy Logic Designer:

• The drop-down lists let you modify the fuzzy inference functions.
• The Current Variable area displays the name of either an input or output variable, its

type, and default range.
• A status line at the bottom displays information about the most recent operation.

To build the fuzzy inference system described in “The Basic Tipping Problem” on page 2-
16 from scratch, type the following command at the MATLAB prompt:

fuzzyLogicDesigner

The generic untitled Fuzzy Logic Designer opens, with one input input1, and one
output output1.
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Tip To open the Fuzzy Logic Designer with the prebuilt fuzzy inference system stored
in tipper.fis, enter

fuzzyLogicDesigner('tipper.fis')

However, if you load the prebuilt system, you will not build rules or construct membership
functions.

In this example, you construct a two-input, one output system. The two inputs are service
and food. The one output is tip.

To add a second input variable and change the variable names to reflect these
designations:

1 Select Edit > Add variable > Input.
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A second yellow box labeled input2 appears.
2 Click the yellow box input1. This box is highlighted with a red outline.
3 Edit the Name field from input1 to service, and press Enter.
4 Click the yellow box input2. This box is highlighted with a red outline.
5 Edit the Name field from input2 to food, and press Enter.
6 Click the blue box output1.
7 Edit the Name field from output1 to tip, and press Enter.
8 Select File > Export > To Workspace.

9 Enter the Workspace variable name tipper, and click OK.

The diagram is updated to reflect the new names of the input and output variables.
There is now a new variable in the workspace called tipper that contains all the
information about this system. By saving to the workspace with a new name, you also
rename the entire system. Your window looks something like the following diagram.
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Leave the inference options in the lower left in their default positions for now. You have
entered all the information you need for this particular UI. Next, define the membership
functions associated with each of the variables. To do this, open the Membership Function
Editor.

You can open the Membership Function Editor in one of three ways:

• Within the Fuzzy Logic Designer window, select Edit > Membership Functions.
• Within the Fuzzy Logic Designer window, double-click the blue icon called tip.
• At the command line, type mfedit.

The Membership Function Editor
The Membership Function Editor is the tool that lets you display and edit all of the
membership functions associated with all of the input and output variables for the entire
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fuzzy inference system. The Membership Function Editor shares some features with the
Fuzzy Logic Designer, as shown in the next figure. In fact, all of the five basic UI tools
have similar menu options, status lines, and Help and Close buttons.

Menu commands for
saving, opening, and editing
a fuzzy system.

"Variable Palette" area.
Click a variable to edit its
membership functions.

Graph displays all
membership functions
for the selected variable.

Click a line to change its attributes,
such as name, type, and numerical parameters.
Drag the curve to move it or to change its shape.
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This status line
describes the most
recent operation.

Name and type of
current variable.

Set the range
of the current variable.

Set the display range
of the current plot.

Select the type of
current membership
function.

Change the numerical
parameters for current
membership function.

Edit name of current
membership function.

When you open the Membership Function Editor to work on a fuzzy inference system that
does not already exist in the workspace, there are no membership functions associated
with the variables that you defined with the Fuzzy Logic Designer.

On the upper-left side of the graph area in the Membership Function Editor is a "Variable
Palette" that lets you set the membership functions for a given variable.

To set up the membership functions associated with an input or an output variable for the
FIS, select a FIS variable in this region by clicking it.

Next select the Edit pull-down menu, and choose Add MFs .. A new window appears,
which allows you to select both the membership function type and the number of
membership functions associated with the selected variable. In the lower-right corner of
the window are the controls that let you change the name, type, and parameters (shape),
of the membership function, after it is selected.

The membership functions from the current variable are displayed in the main graph.
These membership functions can be manipulated in two ways. You can first use the mouse
to select a particular membership function associated with a given variable quality, (such
as poor, for the variable, service), and then drag the membership function from side to
side. This action affects the mathematical description of the quality associated with that

2 Fuzzy Inference System Modeling

2-24



membership function for a given variable. The selected membership function can also be
tagged for dilation or contraction by clicking on the small square drag points on the
membership function, and then dragging the function with the mouse toward the outside,
for dilation, or toward the inside, for contraction. This action changes the parameters
associated with that membership function.

Below the Variable Palette is some information about the type and name of the current
variable. There is a text field in this region that lets you change the limits of the current
variable's range (universe of discourse) and another that lets you set the limits of the
current plot (which has no real effect on the system).

The process of specifying the membership functions for the two-input tipping example,
tipper, is as follows:

1 Double-click the input variable service to open the Membership Function Editor.
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2 In the Membership Function Editor, enter [0 10] in the Range and the Display
Range fields.

3 Create membership functions for the input variable service.

a Select Edit > Remove All MFs to remove the default membership functions for
the input variable service.

b Select Edit > Add MFs to open the Membership Functions dialog box.
c In the Membership Functions dialog box, select gaussmf as the MF Type.

d Verify that 3 is selected as the Number of MFs.
e Click OK to add three Gaussian curves to the input variable service.

4 Rename the membership functions for the input variable service, and specify their
parameters.

a Click on the curve named mf1 to select it, and specify the following fields in the
Current Membership Function (click on MF to select) area:

• In the Name field, enter poor.
• In the Params field, enter [1.5 0].

The two inputs of Params represent the standard deviation and center for the
Gaussian curve.

Tip To adjust the shape of the membership function, type in the desired
parameters or use the mouse, as described previously.

b Click on the curve named mf2 to select it, and specify the following fields in the
Current Membership Function (click on MF to select) area:

• In the Name field, enter good.
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• In the Params field, enter [1.5 5].
c Click on the curve named mf3, and specify the following fields in the Current

Membership Function (click on MF to select) area:

• In the Name field, enter excellent.
• In the Params field, enter [1.5 10].

The Membership Function Editor window looks similar to the following figure.

5 In the FIS Variables area, click the input variable food to select it.
6 Enter [0 10] in the Range and the Display Range fields.
7 Create the membership functions for the input variable food.

a Select Edit > Remove All MFs to remove the default Membership Functions for
the input variable food.
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b Select Edit > Add MFs to open the Membership Functions dialog box.
c In the Membership Functions dialog box, select trapmf as the MF Type.
d Select 2 in the Number of MFs drop-down list.
e Click OK to add two trapezoidal curves to the input variable food.

8 Rename the membership functions for the input variable food, and specify their
parameters:

a In the FIS Variables area, click the input variable food to select it.
b Click on the curve named mf1, and specify the following fields in the Current

Membership Function (click on MF to select) area:

• In the Name field, enter rancid.
• In the Params field, enter [0 0 1 3].

c Click on the curve named mf2 to select it, and enter delicious in the Name
field.

Reset the associated parameters if desired.
9 Click on the output variable tip to select it.
10 Enter [0 30] in the Range and the Display Range fields to cover the output range.

The inputs ranges from 0 to 10, but the output is a tip between 5% and 25%.
11 Rename the default triangular membership functions for the output variable tip, and

specify their parameters.

a Click the curve named mf1 to select it, and specify the following fields in the
Current Membership Function (click on MF to select) area:

• In the Name field, enter cheap.
• In the Params field, enter [0 5 10].

b Click the curve named mf2 to select it, and specify the following fields in the
Current Membership Function (click on MF to select) area:

• In the Name field, enter average.
• In the Params field, enter [10 15 20].

c Click the curve named mf3 to select it, and specify the following:

• In the Name field, enter generous.
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• In the Params field, enter [20 25 30].

The Membership Function Editor looks similar to the following figure.

Now that the variables have been named and the membership functions have appropriate
shapes and names, you can enter the rules. To call up the Rule Editor, go to the Edit
menu and select Rules, or type ruleedit at the command line.
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The Rule Editor

Input or output selection menus.

The rules are
entered
automatically
using the GUI
tools.

The menu items allow
you to save, open, or
edit a fuzzy system
using any of the five
basic GUI tools.

Link input
statements in rules.

This status line
describes the most
recent operation.

Negate input or output
statements in rules.

Create or edit rules with the GUI buttons and
choices from the input or output selection menus.

The Help button
gives some
information about
how the Rule Editor
works, and the
Close button closes
the window.

Constructing rules using the graphical Rule Editor interface is fairly self evident. Based
on the descriptions of the input and output variables defined with the Fuzzy Logic
Designer, the Rule Editor allows you to construct the rule statements automatically. You
can:
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• Create rules by selecting an item in each input and output variable box, selecting one
Connection item, and clicking Add Rule. You can choose none as one of the variable
qualities to exclude that variable from a given rule and choose not under any variable
name to negate the associated quality.

• Delete a rule by selecting the rule and clicking Delete Rule.
• Edit a rule by changing the selection in the variable box and clicking Change Rule.
• Specify weight to a rule by typing in a desired number between 0 and 1 in Weight. If

you do not specify the weight, it is assumed to be unity (1).

Similar to those in the Fuzzy Logic Designer and the Membership Function Editor, the
Rule Editor has the menu bar and the status line. The menu items allow you to open,
close, save and edit a fuzzy system using the five basic UI tools. From the menu, you can
also:

• Set the format for the display by selecting Options > Format.
• Set the language by selecting Options > Language.

You can access information about the Rule Editor by clicking Help and close the UI using
Close.

To insert the first rule in the Rule Editor, select the following:

• poor under the variable service
• rancid under the variable food
• The or radio button, in the Connection block
• cheap, under the output variable, tip.

Then, click Add rule.

The resulting rule is
1. If (service is poor) or (food is rancid) then (tip is cheap) (1)

The numbers in the parentheses represent weights.

Follow a similar procedure to insert the second and third rules in the Rule Editor to get

1 If (service is poor) or (food is rancid) then (tip is cheap) (1)
2 If (service is good) then (tip is average) (1)
3 If (service is excellent) or (food is delicious) then (tip is generous) (1)
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Tip To change a rule, first click on the rule to be changed. Next make the desired
changes to that rule, and then click Change rule. For example, to change the first rule to
1. If (service not poor) or (food not rancid) then (tip is not cheap) (1)

Select the not check box under each variable, and then click Change rule.

The Format pop-up menu from the Options menu indicates that you are looking at the
verbose form of the rules. Try changing it to symbolic. You will see
1. (service==poor) | (food==rancid) => (tip=cheap) (1)
2. (service==good) => (tip=average) (1)
3. (service==excellent) | (food==delicious) => (tip=generous) (1)

There is not much difference in the display really, but it is slightly more language neutral,
because it does not depend on terms like if and then. If you change the format to indexed,
you see an extremely compressed version of the rules.
1 1, 1 (1) : 2
2 0, 2 (1) : 1
3 2, 3 (1) : 2

This is the version of the rules that the machine deals with.

• The first column in this structure corresponds to the input variables.
• The second column corresponds to the output variable.
• The third column displays the weight applied to each rule.
• The fourth column is shorthand that indicates whether this is an OR (2) rule or an

AND (1) rule.
• The numbers in the first two columns refer to the index number of the membership

function.

A literal interpretation of rule 1 is "If input 1 is MF1 (the first membership function
associated with input 1) or if input 2 is MF1, then output 1 should be MF1 (the first
membership function associated with output 1) with the weight 1."

The symbolic format does not consider the terms, if, then, and so on. The indexed format
doesn't even bother with the names of your variables. Obviously the functionality of your
system doesn't depend on how well you have named your variables and membership
functions. The whole point of naming variables descriptively is, as always, making the
system easier for you to interpret. Thus, unless you have some special purpose in mind, it
is probably be easier for you to continue with the verbose format.
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At this point, the fuzzy inference system has been completely defined, in that the
variables, membership functions, and the rules necessary to calculate tips are in place.
Now, look at the fuzzy inference diagram presented at the end of the previous section and
verify that everything is behaving the way you think it should. You can use the Rule
Viewer, the next of the UI tools we'll look at. From the View menu, select Rules.

The Rule Viewer

The Rule Viewer displays a roadmap of the whole fuzzy inference process. It is based on
the fuzzy inference diagram described in the previous section. You see a single figure
window with 10 plots nested in it. The three plots across the top of the figure represent
the antecedent and consequent of the first rule. Each rule is a row of plots, and each
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column is a variable. The rule numbers are displayed on the left of each row. You can click
on a rule number to view the rule in the status line.

• The first two columns of plots (the six yellow plots) show the membership functions
referenced by the antecedent, or the if-part of each rule.

• The third column of plots (the three blue plots) shows the membership functions
referenced by the consequent, or the then-part of each rule.

Notice that under food, there is a plot which is blank. This corresponds to the
characterization of none for the variable food in the second rule.

• The fourth plot in the third column of plots represents the aggregate weighted
decision for the given inference system.

This decision will depend on the input values for the system. The defuzzified output is
displayed as a bold vertical line on this plot.

The variables and their current values are displayed on top of the columns. In the lower
left, there is a text field Input in which you can enter specific input values. For the two-
input system, you will enter an input vector, [9 8], for example, and then press Enter.
You can also adjust these input values by clicking on any of the three plots for each input.
This will move the red index line horizontally, to the point where you have clicked.
Alternatively, you can also click and drag this line in order to change the input values.
When you release the line, (or after manually specifying the input), a new calculation is
performed, and you can see the whole fuzzy inference process take place:

• Where the index line representing service crosses the membership function line
"service is poor" in the upper-left plot determines the degree to which rule one is
activated.

• A yellow patch of color under the actual membership function curve is used to make
the fuzzy membership value visually apparent.

Each of the characterizations of each of the variables is specified with respect to the input
index line in this manner. If you follow rule 1 across the top of the diagram, you can see
the consequent "tip is cheap" has been truncated to exactly the same degree as the
(composite) antecedent — this is the implication process in action. The aggregation
occurs down the third column, and the resultant aggregate plot is shown in the single plot
appearing in the lower right corner of the plot field. The defuzzified output value is shown
by the thick line passing through the aggregate fuzzy set.

You can shift the plots using left, right, down, and up. The menu items allow you to save,
open, or edit a fuzzy system using any of the five basic UI tools.
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The Rule Viewer allows you to interpret the entire fuzzy inference process at once. The
Rule Viewer also shows how the shape of certain membership functions influences the
overall result. Because it plots every part of every rule, it can become unwieldy for
particularly large systems, but, for a relatively small number of inputs and outputs, it
performs well (depending on how much screen space you devote to it) with up to 30 rules
and as many as 6 or 7 variables.

The Rule Viewer shows one calculation at a time and in great detail. In this sense, it
presents a sort of micro view of the fuzzy inference system. If you want to see the entire
output surface of your system — the entire span of the output set based on the entire
span of the input set — you need to open up the Surface Viewer. This viewer is the last of
the five basic Fuzzy Logic Toolbox UI tools. To open the Surface Viewer, select Surface
from the View menu.

The Surface Viewer
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Upon opening the Surface Viewer, you see a three-dimensional curve that represents the
mapping from food and service quality to tip amount. Because this curve represents a
two-input one-output case, you can see the entire mapping in one plot. When we move
beyond three dimensions overall, we start to encounter trouble displaying the results.

Accordingly, the Surface Viewer is equipped with drop-down menus X (input), Y (input)
and Z (output) that let you select any two inputs and any one output for plotting. Below
these menus are two input fields X grids and Y grids that let you specify how many x-axis
and y-axis grid lines you want to include. This capability allows you to keep the
calculation time reasonable for complex problems.

By default, the surface plot updates automatically when you change the input or output
variable selections or the number of grid points. To disable automatic plot updates, in the
Options menu, clear the Always evaluate option. When this option is disabled, to update
the plot, click Evaluate.

If you want to create a smoother plot, use the Plot points field to specify the number of
points on which the membership functions are evaluated in the input or output range.
This field defaults to the minimum number of plot plots, 101. If you specify fewer plot
points, the field value automatically resets to 101. When you specify the number of plot
points, the surface plot automatically updates.

By clicking on the plot axes and dragging the mouse, you can manipulate the surface so
that you can view it from different angles.

The Ref. Input field is used in situations when there are more inputs required by the
system than the surface is mapping. You can edit this field to explicitly set inputs not
specified in the surface plot.

Suppose you have a four-input one-output system and would like to see the output
surface. The Surface Viewer can generate a three-dimensional output surface where any
two of the inputs vary, but two of the inputs must be held constant because computer
monitors cannot display a five-dimensional shape. In such a case, the input is a four-
dimensional vector with NaNs holding the place of the varying inputs while numerical
values indicates those values that remain fixed.

The menu items allow you to open, close, save and edit a fuzzy system using the five basic
UI tools. You can access information about the Surface Viewer by clicking Help and close
the UI using Close.
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Importing and Exporting Fuzzy Inference Systems
When you save a fuzzy system to a file, you are saving an ASCII text FIS file
representation of that system with the file suffix .fis. Do not manually edit the contents
of a .fis file. Doing so can produce unexpected results when loading the file. When you
save your fuzzy system to the MATLAB workspace, you are creating a variable that acts as
a MATLAB object for the fuzzy system.

Note If you do not save your FIS to a file, but only save it to the MATLAB workspace, you
cannot recover it for use in a new MATLAB session.

See Also
Fuzzy Logic Designer

More About
• “What Is Mamdani-Type Fuzzy Inference?” on page 2-4
• “Build Fuzzy Systems at the Command Line” on page 2-38
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
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Build Fuzzy Systems at the Command Line
You can construct a fuzzy inference system (FIS) at the MATLAB® command line. This
method is an alternative to interactively designing your FIS using Fuzzy Logic Designer.

This example shows you how to create a Mamdani fuzzy inference system. While you
create a Mamdani FIS, the methods used apply to creating Sugeno systems as well.

Tipping Problem at the Command Line

To demonstrate the command-line functionality for creating and viewing fuzzy inference
systems, this example uses the tipper FIS.

fis = readfis('tipper.fis');

This command returns a mamfis object that contains the properties of the fuzzy system.
For a Sugeno system, this command returns a sugfis object.

You can access the FIS properties using dot notation. For example, view the inputs of the
fuzzy system.

fis.Inputs

ans = 

  1x2 fisvar array with properties:

    Name
    Range
    MembershipFunctions

  Details:
           Name        Range     MembershipFunctions
         _________    _______    ___________________

    1    "service"    0    10        [1x3 fismf]    
    2    "food"       0    10        [1x2 fismf]    

To set the properties of your fuzzy system, use dot notation. For example, set the name of
the FIS.

fis.Name = "gratuity";
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FIS Object

You represent fuzzy inference systems using mamfis and sugfis objects. These objects
contain all the fuzzy inference system information, including the variable names,
membership function definitions, and fuzzy inference methods. Each FIS is itself a
hierarchy of objects. The following objects are used within a fuzzy system:

• fisvar objects represent both input and output variables.
• fismf objects represent membership functions within each input and output variable.
• fisrule objects represent fuzzy rules that map inputs to outputs.

View all the information for a FIS by directly listing its properties.

fis

fis = 

  mamfis with properties:

                       Name: "gratuity"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x2 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x3 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

You can view the properties of the objects within a FIS object using dot notation. For
example, view the fisvar object for first input variable.

fis.Inputs(1)

ans = 

  fisvar with properties:
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                   Name: "service"
                  Range: [0 10]
    MembershipFunctions: [1x3 fismf]

Also, view the membership functions for this variable.

fis.Inputs(1).MembershipFunctions

ans = 

  1x3 fismf array with properties:

    Name
    Type
    Parameters

  Details:
            Name          Type       Parameters
         ___________    _________    __________

    1    "poor"         "gaussmf"    1.5      0
    2    "good"         "gaussmf"    1.5      5
    3    "excellent"    "gaussmf"    1.5     10

System Display Functions

To get a high-level view of your fuzzy system from the command line, use the plotfis,
plotmf, and gensurf functions. plotfis displays the whole system as a block diagram,
as shown in the Fuzzy Logic Designer.

plotfis(fis)
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The plotmf function plots all the membership functions associated with a given variable.
For example, view the membership functions for the first input variable.

plotmf(fis,'input',1)
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Similarly, to view the membership functions for the first output, type:

plotmf(fis,'output',1)
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plotmf does not support viewing the output membership functions for Sugeno systems.

To view the rules of the fuzzy system, type:

fis.Rules

ans = 

  1x3 fisrule array with properties:

    Description
    Antecedent
    Consequent
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    Weight
    Connection

  Details:
                                Description                        
         __________________________________________________________

    1    "service==poor | food==rancid => tip=cheap (1)"           
    2    "service==good => tip=average (1)"                        
    3    "service==excellent | food==delicious => tip=generous (1)"

The gensurf function plots the output of the FIS for any one or two input variables.

gensurf(fis)
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Build Fuzzy Inference System

As an alternative to using the Fuzzy Logic Designer app, you can construct a FIS
entirely from the command line.

First, create a Mamdani FIS, specifying its name.

fis = mamfis('Name',"tipper");

Add the first input variable for the service quality using addInput.

fis = addInput(fis,[0 10],'Name',"service");
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Add membership functions for each of the service quality levels using addMF. In this case,
use Gaussian membership functions. For more information on Gaussian membership
function properties, see gaussmf.

fis = addMF(fis,"service","gaussmf",[1.5 0],'Name',"poor");
fis = addMF(fis,"service","gaussmf",[1.5 5],'Name',"good");
fis = addMF(fis,"service","gaussmf",[1.5 10],'Name',"excellent");

Add the second input variable for the food quality, and add two trapezoidal membership
functions. For information on trapezoidal membership functions, see trapmf.

fis = addInput(fis,[0 10],'Name',"food");
fis = addMF(fis,"food","trapmf",[-2 0 1 3],'Name',"rancid");
fis = addMF(fis,"food","trapmf",[7 9 10 12],'Name',"delicious");

Add the output variable for the tip, and add three triangular membership functions. For
more information on the triangular membership function, see trimf.

fis = addOutput(fis,[0 30],'Name',"tip");
fis = addMF(fis,"tip","trimf",[0 5 10],'Name',"cheap");
fis = addMF(fis,"tip","trimf",[10 15 20],'Name',"average");
fis = addMF(fis,"tip","trimf",[20 25 30],'Name',"generous");

Specify the following three rules for the FIS as a numeric array:

1 If (service is poor) or (food is rancid), then (tip is cheap).
2 If (service is good), then (tip is average).
3 If (service is excellent) or (food is delicious), then (tip is generous).

Each row of the array contains one rule in the following format.

• Column 1 - Index of membership function for first input
• Column 2 - Index of membership function for second input
• Column 3 - Index of membership function for output
• Column 4 - Rule weight (from 0 to 1)
• Column 5 - Fuzzy operator (1 for AND, 2 for OR)

For the membership function indices, indicate a NOT condition using a negative value.
For more information on fuzzy rule specification, see addRule.
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ruleList = [1 1 1 1 2;
            2 0 2 1 1;
            3 2 3 1 2];

Add the rules to the FIS.

fis = addRule(fis,ruleList);

Alternatively, you can create the fuzzy inference system using a combination of dot
notation and fisvar, fismf, and fisrule objects. This method is not a good practice
for most applications. However, you can use this approach when your application requires
greater flexibility in constructing and modifying your FIS.

Create the fuzzy inference system.

fis = mamfis('Name','tipper');

Add and configure the first input variable. In this case, create a default fisvar object
and specify its properties using dot notation.

fis.Inputs(1) = fisvar;
fis.Inputs(1).Name = "service";
fis.Inputs(1).Range = [0 10];

Define the membership functions for the first input variable. For each MF, create a fismf
object, and set the properties using dot notation.

fis.Inputs(1).MembershipFunctions(1) = fismf;
fis.Inputs(1).MembershipFunctions(1).Name = "poor";
fis.Inputs(1).MembershipFunctions(1).Type = "gaussmf";
fis.Inputs(1).MembershipFunctions(1).Parameters = [1.5 0];
fis.Inputs(1).MembershipFunctions(2) = fismf;
fis.Inputs(1).MembershipFunctions(2).Name = "good";
fis.Inputs(1).MembershipFunctions(2).Type = "gaussmf";
fis.Inputs(1).MembershipFunctions(2).Parameters = [1.5 5];
fis.Inputs(1).MembershipFunctions(3) = fismf;
fis.Inputs(1).MembershipFunctions(3).Name = "excellent";
fis.Inputs(1).MembershipFunctions(3).Type = "gaussmf";
fis.Inputs(1).MembershipFunctions(3).Parameters = [1.5 10];

Add and configure the second input variable. For this variable, specify the name and
range when you create the fisvar object.

fis.Inputs(2) = fisvar([0 10],'Name',"food");
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Specify the membership functions for the second input. For each MF, specify the name,
type, and parameters when you create the fismf object.

fis.Inputs(2).MembershipFunctions(1) = fismf("trapmf",[-2 0 1 3],...
                                             'Name',"rancid");
fis.Inputs(2).MembershipFunctions(2) = fismf("trapmf",[7 9 10 12],...
                                             'Name',"delicious");

Similarly, add and configure the output variable and its membership functions.

fis.Outputs(1) = fisvar([0 30],'Name',"tip");

In this case, specify the output membership functions using a vector of fismf objects.

mf1 = fismf("trimf",[0 5 10],'Name',"cheap");
mf2 = fismf("trimf",[10 15 20],'Name',"average");
mf3 = fismf("trimf",[20 25 30],'Name',"generous");
fis.Outputs(1).MembershipFunctions = [mf1 mf2 mf3];

Create the rules for the fuzzy system. For each rule create a fisrule object. Then,
specify the rules using a vector of these objects. When creating a fisrule object using
numeric values, you must specify the number of inputs variables.

rule1 = fisrule([1 1 1 1 2],2);
rule2 = fisrule([2 0 2 1 1],2);
rule3 = fisrule([3 2 3 1 2],2);
rules = [rule1 rule2 rule3];

Before adding your rules to your fuzzy system, you must update them using the data in
the FIS object. Update the rules using the update function, and add them the fuzzy
system.

rules = update(rules,fis);
fis.Rules = rules;

When constructing your fuzzy system, you can also specify custom membership functions
and inference functions. For more information, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.

Evaluate Fuzzy Inference System

To evaluate the output of a fuzzy system for a given input combination, use the evalfis
command. For example, evaluate fis using input variable values of 1 and 2.

evalfis(fis,[1 2])
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ans =

    5.5586

You can also evaluate multiple input combinations using an array where each row
represents one input combination.

inputs = [3 5;
          2 7;
          3 1];
evalfis(fis,inputs)

ans =

   12.2184
    7.7885
    8.9547

See Also
evalfis | gensurf | mamfis | plotfis | plotmf | sugfis

More About
• “What Is Mamdani-Type Fuzzy Inference?” on page 2-4
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
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Build Fuzzy Systems Using Custom Functions

Build Fuzzy Inference Systems Using Custom Functions in
Fuzzy Logic Designer
When you build a fuzzy inference system, as described in “Fuzzy Inference Process” on
page 1-28, you can replace the built-in membership functions, inference functions, or both
with custom functions. In this section, you learn how to build a fuzzy inference system
using custom functions in the Fuzzy Logic Designer app.

To build a fuzzy inference system using custom functions in the Fuzzy Logic Designer
app:

1 Open Fuzzy Logic Designer. At the MATLAB command line, type:

fuzzyLogicDesigner
2 Specify the number of inputs and outputs of the fuzzy system, as described in “The

Fuzzy Logic Designer” on page 2-17.
3 Create custom membership functions, and replace the built-in membership functions

with them, as described in “Specify Custom Membership Functions” on page 2-51.

Membership functions define how each point in the input space is mapped to a
membership value between 0 and 1.

4 Create rules using the Rule Editor, as described in “The Rule Editor” on page 2-30.

Rules define the logical relationship between the inputs and the outputs.
5 Create custom inference functions, and replace the built-in inference functions with

them, as described in “Specify Custom Inference Functions” on page 2-57.

Inference methods include the AND, OR, implication, aggregation, and defuzzification
methods. This action generates the output values for the fuzzy system.

The next figure shows the tipping problem example where the built-in Implication,
Aggregation and Defuzzification functions are replaced with the custom functions,
customimp, customagg, and customdefuzz, respectively.

2 Fuzzy Inference System Modeling

2-50



6 Select View > Surface to view the output of the fuzzy inference system in the
Surface Viewer, as described in “The Surface Viewer” on page 2-35.

Specify Custom Membership Functions
You can create custom membership functions and use them in the fuzzy inference
process. The values of these functions must lie between 0 and 1. For more information on
the properties of membership functions, see “Membership Functions” on page 1-14.

To create a custom membership function, and replace the built-in membership function:

1 Create a MATLAB function, and save it in your current working folder.

To learn how to create MATLAB functions, see “Scripts vs. Functions” (MATLAB).
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The following code is an example of a multistep custom membership function,
custmf1, that depends on eight parameters between 0 and 10.

% Function to generate a multi-step custom membership function
% using 8 parameters for the input argument x
function out = custmf1(x,params)

for i = 1:length(x)
    if x(i) < params(1)
        y(i) = params(1);
    elseif x(i) < params(2)
        y(i) = params(2);
    elseif x(i) < params(3)
        y(i) = params(3);
    elseif x(i) < params(4)
        y(i) = params(4);
    elseif x(i) < params(5)
        y(i) = params(5);
    elseif x(i) < params(6)
        y(i) = params(6);
    elseif x(i) < params(7)
        y(i) = params(7);
    elseif x(i) < params(8)
        y(i) = params(8);
    else
        y(i) = 0;
    end
end

out = 0.1*y'; % Scale the output to lie between 0 and 1.
2 Open the Fuzzy Logic Designer app.

fuzzyLogicDesigner

The Fuzzy Logic Designer opens with the default FIS name, Untitled, and
contains one input, input1, and one output, output1.

3 In the Fuzzy Logic Designer, select Edit > Membership Functions to open the
Membership Function Editor.

Three triangular-shaped membership functions for input1 are displayed by default.
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4 To replace the default membership function with a custom function in the
Membership Function Editor:

a Select Edit > Remove All MFs to remove the default membership functions for
input1.

b Select Edit > Add Custom MF to open the Custom Membership Function dialog
box.
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5 To specify a custom function, in the Custom Membership Function dialog box:

a In the MF name field, specify a name for the custom membership function.

Note When adding additional custom membership functions, specify a different
MF name for each function.

b In the M-file function name field, specify the name of the custom membership
function file.

c In the Parameter list, specify a vector of parameters.

These values determine the shape and position of the membership function, and
the function is evaluated using these parameter values.

Note The length of the parameter vector must be greater than or equal to the
number of parameters in the custom membership function.

Using the custmf1 example in step 1, the Custom Membership Function dialog
box looks similar to the following figure.
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d Click OK to add the custom membership function.
e Specify both the Range and Display Range to be [0 10] to match the range of

the custom membership function.

The Membership Function Editor displays the custom membership function plot.
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This action also adds the custom membership function to the Rule Viewer, and makes
it available for creating rules for the fuzzy inference process. To view the custom
function in the Rule Viewer, select Edit > Rules in either the Fuzzy Logic Designer
or the Membership Function Editor.
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6 To add custom membership functions for output1, select it in the Membership
Function Editor, and repeat steps 4 and 5.

You can also add a custom membership function to a FIS at the MATLAB command line.
For example, to add custmf1 to the first input variable, input1 of the FIS, myFIS, and
name it customMF1, type the following:
myFIS = addMF(myFIS,"input1","custmf1",[0 1 2 4 6 8 9 10],'Name',"customMF1");

Specify Custom Inference Functions
You can replace the built-in AND, OR, implication, aggregation, and defuzzification
inference methods with custom functions. After you create the custom inference function,
save it in your current working folder. To learn how to build fuzzy systems using custom
inference functions, see the “Build Fuzzy Inference Systems Using Custom Functions in
Fuzzy Logic Designer” on page 2-50 section.
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The guidelines for creating and specifying the functions for building fuzzy inference
systems are described in the following sections.

• “Create Custom AND and OR Functions” on page 2-58
• “Create Custom Implication Functions” on page 2-59
• “Create Custom Aggregation Functions” on page 2-60
• “Create Custom Defuzzification Functions” on page 2-61
• “Steps for Specifying Custom Inference Functions” on page 2-61

Create Custom AND and OR Functions

The custom AND and OR inference functions must operate column-wise on a matrix, in
the same way as the MATLAB functions max, min, or prod.

For a row or column vector x, min(x) returns the minimum element.

x = [1 2 3 4];
min(x)

ans =
     1

For a matrix x, min(x) returns a row vector containing the minimum element from each
column.

x = [1 2 3 4;5 6 7 8;9 10 11 12];
min(x)

ans =
     1     2     3     4

For N-D arrays, min(x) operates along the first non-singleton dimension.

The function min(x,y) returns an array that is same size as x and y with the minimum
elements from x or y. Either of the input arguments can be a scalar. Functions such as
max, and prod operate in a similar manner.

In the toolbox, the AND implication methods perform an element by element matrix
operation, similar to the MATLAB function min(x,y).

a = [1 2; 3 4];
b = [2 2; 2 2];
min(a,b)
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ans = 
    1     2
    2     2

The OR implication methods perform an element by element matrix operation, similar to
the MATLAB function max(x,y).

Create Custom Implication Functions

Custom implication functions must operate in the same way as the MATLAB functions
max, min, or prod. Your custom implication function must be a T-norm fuzzy intersection
operation. For more information, see “Additional Fuzzy Operators” on page 1-21.

An implication function must support either one or two inputs because the software calls
the function in two ways:

• To calculate the output fuzzy set values using the firing strength of all the rules and
the corresponding output membership functions. In this case, the software calls the
implication function using two inputs, similar to the following example:

impvals = customimp(w,outputmf)

• w — Firing strength of multiple rules, specified as an nr-by-ns matrix. Here, nr is
the number of rules and ns is the number of samples of the output membership
functions.

w(:,j) = w(:,1) for all j. w(i,1) is the firing strength of the ith rule.
• outputmf — Output membership function values, specified as an nr-by-ns matrix.

Here, nr is the number of rules and ns is the number of samples of the output
membership functions.

outputmf(i,:) contains the data of the ith output membership function.
• To calculate the output fuzzy value using the firing strength of a single rule and the

corresponding output membership function, for a given sample. In this case, the
software calls the implication function using one input, similar to the following
example:

impval = customimp([w outputmf])

w and outputmf are scalar values representing the firing strength of a rule and the
corresponding output membership function value, for a given sample.
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The following is an example of a bounded product custom implication function with binary
mapping T a, b = max 0, a + b− 1 . [1]

function y = customimp(x1,x2)

if nargin == 1
    % x1 assumed to be non-empty column vector or matrix.    
    minVal = zeros(1,size(x1,2));
    y = ones(1,size(x1,2));    
 
    for i = 1:size(x1,1)
        y = max(minVal,sum([y;x1(i,:)])-1);
    end
else    
    % x1 and x2 assumed to be non-empty matrices.                  
    minVal = zeros(1,size(x1,2));
    y = zeros(size(x1));
  
    for i = 1:size(x1,1)
        y(i,:) = max(minVal,sum([x1(i,:);x2(i,:)])-1);
    end    
end

Note Custom implication functions are not supported for Sugeno-type systems.

Create Custom Aggregation Functions

The custom aggregation functions must operate in the same way as the MATLAB
functions max, min, or prod and must be of the form y = customagg(x). Your custom
implication function must be a T-conorm (S-norm) fuzzy intersection operation. For more
information, see “Additional Fuzzy Operators” on page 1-21.

x is an nv-by-nr matrix, which is the list of truncated output functions returned by the
implication method for each rule. nv is the number of output variables, and nr is the
number of rules. The output of the aggregation method is one fuzzy set for each output
variable.

The following is an example of a bounded sum custom aggregation function with binary
mapping S a, b = min a + b, 1 . [1]

function y = customagg(x)
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maxVal = ones(1,size(x,2));
y = zeros(1,size(x,2));

for i = 1:size(x,1)
    y = min(maxVal,sum([y;x(i,:)]));
end

Note Custom aggregation functions are not supported for Sugeno-type systems.

Create Custom Defuzzification Functions

The custom defuzzification functions must be of the form y =
customdefuzz(xmf,ymf), where (xmf,ymf) is a finite set of membership function
values. xmf is the vector of values in the membership function input range. ymf is the
value of the membership function at xmf.

The following is an example of a custom defuzzification function:

function defuzzfun = customdefuzz(xmf,ymf)

total_area = sum(ymf);
defuzzfun = sum(ymf.*xmf)/total_area;

Note Custom defuzzification functions are not supported for Sugeno-type systems.

Steps for Specifying Custom Inference Functions

After you create and save a custom inference function, specify the function in the fuzzy
inference system using the following steps:

1 In the lower-left panel of the Fuzzy Logic Designer, select Custom from the drop-
down menu corresponding to the inference method for which you want to specify the
custom function.
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Doing so opens a dialog box where you specify the name of the custom inference
function.

2 In the Method name field, specify the name of the custom inference function, and
click OK.
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The custom function replaces the built-in function when building the fuzzy inference
system.

Note In order to specify a custom inference function, you must first add at least one
rule to your FIS.

3 To specify custom functions for other inference methods, repeat steps 1 and 2.

You can also specify custom inference functions for a FIS at the MATLAB command line.
For example, to add a custom:

• Defuzzification method, type

myFIS.DefuzzificationMethod = "customdefuzz";

where customdefuzz is the name of the custom defuzzification function.
• Implication method, type

myFIS.ImplicationMethod = "customimp";

where customimp is the name of the custom implication function.
• Aggregation method, type

myFIS.AggregationMethod = "customagg";

where customagg is the name of the custom aggregation function.

Use Custom Functions in Code Generation
You can use custom functions in fuzzy inference systems for which you generate code. For
more information on code generation for fuzzy systems, see “Deploy Fuzzy Inference
Systems” on page 6-2.

If you use a nondouble data type for your generated code, you must propagate the data
type from the input arguments of your custom function to the output argument. For
example, the following custom aggregation function maintains the data type of x in y
using the ones and zeros with the 'like' argument.

function y = customagg(x)

maxVal = ones(1,size(x,2),'like',x);
y = zeros(1,size(x,2),'like',x);
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for i = 1:size(x,1)
    y = min(maxVal,sum([y;x(i,:)]));
end

For more information on writing functions that support C/C++ code generation, see
“MATLAB Programming for Code Generation” (MATLAB Coder).

References
[1] Mizumoto, M. "Pictorial Representations of Fuzzy Connectives, Part II: Cases of

Compensatory Operators and Self-Dual Operators." Fuzzy Sets and Systems. Vol.
32, Number 1., 1989, pp. 45-79.
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Related Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
• “Build Fuzzy Systems at the Command Line” on page 2-38
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Fuzzy Trees
As the number of inputs to a fuzzy system increases, the number of rules increases
exponentially. This large rule base reduces the computational efficiency of the fuzzy
system. It also makes the operation of the fuzzy system harder to understand, and it
makes the tuning of rule and membership function parameters more difficult. Because
many applications have a limited amounts of training data, a large rule base reduces the
generalizability of tuned fuzzy systems.

To overcome this issue, you can implement a fuzzy inference system (FIS) as a tree of
smaller interconnected FIS objects rather than as a single monolithic FIS. These fuzzy
trees are also known as hierarchical fuzzy systems because the fuzzy systems are
arranged in hierarchical tree structures. In a tree structure, the outputs of the low-level
fuzzy systems are used in high-level fuzzy systems. A fuzzy tree is more computationally
efficient and easier to understand than a single FIS with the same number of inputs.

Types of Hierarchical Structures
There are several fuzzy tree structures that you can use for your application. The
following figure shows commonly used fuzzy tree structures: an incremental, aggregated,
or cascaded structure.
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Incremental Structure

In an incremental structure, input values are incorporated in multiple stages to refine the
output values in several levels. For example, the previous figure shows a three-level
incremental fuzzy tree having fuzzy inference systems FISi

n, where i indicates the index of
a FIS in the nth level. In an incremental fuzzy tree, i = 1, meaning that each level has only
one fuzzy inference system. In the previous figure, the jth input of the ith FIS in the nth
level is shown as input xi jn, whereas the kth output of the ith FIS in the nth level is shown
as input xikn. In the figure, n = 3, j = 1 or 2, and k = 1. If each input has m membership
functions (MFs), each FIS has a complete set of m2 rules. Hence, the total number of rules
is nm2 = 3 ⨉ 32 = 27.

The following figure shows a monolithic (n = 1) FIS with four inputs (j=1, 2, 3, 4) and
three MFs (m = 3).
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In the FIS of this figure, the total number of rules is nm4 = 1 ⨉ 34 = 81. Hence, the total
number of rules in an incremental fuzzy tree is linear with the number of input pairs.

Input selection at different levels in an incremental fuzzy tree uses input rankings based
on their contributions to the final output values. The input values that contribute the most
are generally used at the lowest level, while the least influential ones are used at the
highest level. In other words, low-rank input values are dependent on high-rank input
values.

In an incremental fuzzy tree, each input value usually contributes to the inference process
to a certain extent, without being significantly correlated with the other inputs. For
example, a fuzzy system forecasts the possibility of buying an automobile using four
inputs: color, number of doors, horse power, and autopilot. The inputs are four distinct
automobile features, which can independently influence a buyer’s decision. Hence, the
inputs can be ranked using the existing data to construct a fuzzy tree, as shown in the
following figure.
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For an example that illustrates creating an incremental fuzzy tree in MATLAB, see the
example Create Incremental FIS Tree on the fistree reference page.

Aggregated Structure

In an aggregated structure, input values are incorporated as groups at the lowest level,
where each input group is fed into a FIS. The outputs of the lower level fuzzy systems are
combined (aggregated) using the higher level fuzzy systems. For example, the following
shows a two-level aggregated fuzzy tree having fuzzy inference systems FISin

n , where in
indicates the index of a FIS in the nth level.

In this aggregated fuzzy tree, i1 = 1,2 and i2 = 1. Hence, each level includes a different
number of FIS. The jth input of the inth FIS is shown in the figure as input xin j, and the kth
output of the inth FIS is shown as output yink. In the figure, j = 1,2 and k = 1. In other
words, each FIS has two inputs and one output. If each input has m MFs, then each FIS
has a complete set of m2 rules. Hence, the total number of rules for the three fuzzy
systems is 3 m2 = 3 ⨉ 32 = 27, which is the same as an incremental FIS for a similar
configuration.

In an aggregated fuzzy tree, input values are naturally grouped together for specific
decision-making. For example, an autonomous robot navigation task combines obstacle
avoidance and target reaching subtasks for collision-free navigation. To achieve the
navigation task, the fuzzy tree can use four inputs: distance to the closest obstacle, angle
of the closest obstacle, distance to the target, and angle of the target. Distances and
angles are measured with respect to the current position and heading direction of the
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robot. In this case, at the lowest level, the inputs naturally group as shown in the
following figure: obstacle distance and obstacle angle (group 1) and target distance and
target angle (group 2). Two fuzzy systems separately process individual group inputs and
then another fuzzy system combines their outputs to produce a collision-free heading for
the robot.

For an example that illustrates creating an aggregated fuzzy tree in MATLAB, see the
example Create Aggregated FIS Tree on the fistree reference page.

Variation on Aggregated Structure

In a variation of the aggregated structure known as parallel structure [1], the outputs of
the lowest-level fuzzy systems are directly summed to generate the final output value. The
following figure shows an example of a parallel fuzzy tree, where outputs of fis1 and fis2
are summed to produce the final output.
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The fistree object does not provide the summing node Σ. Therefore, you must add a
custom aggregation method to evaluate a parallel fuzzy tree. For an example, see Create
and Evaluate Parallel FIS Tree on the fistree reference page.

Cascaded or Combined Structure

A cascaded structure, also known as combined structure, combines both incremental and
aggregated structures to construct a fuzzy tree. This structure is suitable for a system
that includes both correlated and uncorrelated inputs. The tree groups the correlated
inputs in an aggregated structure, and adds uncorrelated inputs in an incremental
structure. The following figure shows an example of a cascaded tree structure, where the
first four inputs are grouped pairwise in an aggregated structure and the fifth input is
added in an incremental structure.
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For example, consider the robot navigation task discussed in “Aggregated Structure” on
page 2-68. Suppose that tasks includes another input, the previous heading direction of
the robot, taken into account to prevent large changes in the robot’s heading direction.
You can add this input using the incremental structure of the following diagram.

For an example that illustrates creating an aggregated fuzzy tree in MATLAB, see the
example Create Cascaded FIS Tree on the fistree reference page.
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Add or Remove FIS Tree Outputs
When you evaluate a fistree object, it returns results for only the open outputs, which
are not connected to any FIS inputs in the fuzzy tree. You can optionally access other
outputs in the tree. For instance, in the following diagram of an aggregated fuzzy tree,
you might want to obtain the output of fis2 when you evaluate the tree.

You can add such outputs to a fistree object. You can also remove outputs, provided
that the fuzzy tree always has at least one output. For an example, see Update FIS Tree
Outputs on the fistree reference page.

Use the Same Value for Multiple inputs of FIS Tree
A fistree object allows using the same value for multiple inputs. For instance, in the
following figure, input2 of fis1 and input 1 of fis2 use the same value during evaluation.
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For an example showing how to construct a FIS tree in this way, see the example Use
Same Value for Multiple Inputs of a FIS Tree on the fistree reference page.

Update Fuzzy Inference Systems in FIS Tree
You can add or remove individual FIS elements from a fistree object. When you do so,
the software automatically updates the Connections, Inputs, and Outputs properties
of the fistree object. For an example, see Update Fuzzy Inference Systems in a FIS
Tree in the fistree reference page.

Tune a Fuzzy Tree
Once you have configured the internal connections in your fuzzy tree as you want them,
the next step is to tune the parameters of the tree. For an example, see “Tune FIS Tree
for Gas Mileage Prediction” on page 3-47.

References
[1] Siddique, N., and H. Adeli. Computational Intelligence: Synergies of Fuzzy Logic,

Neural Networks and Evolutionary Computing. Hoboken, NJ: Wiley, 2013.
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More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-47
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Fuzzy Logic Image Processing
This example shows how to use fuzzy logic for image processing. Specifically, this
example shows how to detect edges in an image.

An edge is a boundary between two uniform regions. You can detect an edge by
comparing the intensity of neighboring pixels. However, because uniform regions are not
crisply defined, small intensity differences between two neighboring pixels do not always
represent an edge. Instead, the intensity difference might represent a shading effect.

The fuzzy logic approach for image processing allows you to use membership functions to
define the degree to which a pixel belongs to an edge or a uniform region.

Import RGB Image and Convert to Grayscale

Import the image.

Irgb = imread('peppers.png');

Irgb is a 384 x 512 x 3 uint8 array. The three channels of Irgb (third array dimension)
represent the red, green, and blue intensities of the image.

Convert Irgb to grayscale so that you can work with a 2-D array instead of a 3-D array.
To do so, use the rgb2gray function.

Igray = rgb2gray(Irgb);

figure
image(Igray,'CDataMapping','scaled')
colormap('gray')
title('Input Image in Grayscale')
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Convert Image to Double-Precision Data

The evalfis function for evaluating fuzzy inference systems supports only single-
precision and double-precision data. Therefore, convert Igray to a double array using
the im2double function.

I = im2double(Igray);

Obtain Image Gradient

The fuzzy logic edge-detection algorithm for this example relies on the image gradient to
locate breaks in uniform regions. Calculate the image gradient along the x-axis and y-axis.
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Gx and Gy are simple gradient filters. To obtain a matrix containing the x-axis gradients of
I, you convolve I with Gx using the conv2 function. The gradient values are in the [-1 1]
range. Similarly, to obtain the y-axis gradients of I, convolve I with Gy.

Gx = [-1 1];
Gy = Gx';
Ix = conv2(I,Gx,'same');
Iy = conv2(I,Gy,'same');

Plot the image gradients.

figure
image(Ix,'CDataMapping','scaled')
colormap('gray')
title('Ix')
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figure
image(Iy,'CDataMapping','scaled')
colormap('gray')
title('Iy')
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You can use other filters to obtain the image gradients, such as the Sobel operator or the
Prewitt operator. For information about how you can filter an image using convolution,
see “What Is Image Filtering in the Spatial Domain?” (Image Processing Toolbox)

Alternatively, if you have the Image Processing Toolbox software, you can use the
imfilter, imgradientxy, or imgradient functions to obtain the image gradients.

Define Fuzzy Inference System (FIS) for Edge Detection

Create a fuzzy inference system (FIS) for edge detection, edgeFIS.

edgeFIS = mamfis('Name','edgeDetection');

Specify the image gradients, Ix and Iy, as the inputs of edgeFIS.
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edgeFIS = addInput(edgeFIS,[-1 1],'Name','Ix');
edgeFIS = addInput(edgeFIS,[-1 1],'Name','Iy');

Specify a zero-mean Gaussian membership function for each input. If the gradient value
for a pixel is 0, then it belongs to the zero membership function with a degree of 1.

sx = 0.1;
sy = 0.1;
edgeFIS = addMF(edgeFIS,'Ix','gaussmf',[sx 0],'Name','zero');
edgeFIS = addMF(edgeFIS,'Iy','gaussmf',[sy 0],'Name','zero');

sx and sy specify the standard deviation for the zero membership function for the Ix and
Iy inputs. To adjust the edge detector performance, you can change the values of sx and
sy. Increasing the values makes the algorithm less sensitive to the edges in the image
and decreases the intensity of the detected edges.

Specify the intensity of the edge-detected image as an output of edgeFIS.

edgeFIS = addOutput(edgeFIS,[0 1],'Name','Iout');

Specify the triangular membership functions, white and black, for Iout.

wa = 0.1;
wb = 1;
wc = 1;
ba = 0;
bb = 0;
bc = 0.7;
edgeFIS = addMF(edgeFIS,'Iout','trimf',[wa wb wc],'Name','white');
edgeFIS = addMF(edgeFIS,'Iout','trimf',[ba bb bc],'Name','black');

As you can with sx and sy, you can change the values of wa, wb, wc, ba, bb, and bc to
adjust the edge detector performance. The triplets specify the start, peak, and end of the
triangles of the membership functions. These parameters influence the intensity of the
detected edges.

Plot the membership functions of the inputs and outputs of edgeFIS.

figure
subplot(2,2,1)
plotmf(edgeFIS,'input',1)
title('Ix')
subplot(2,2,2)
plotmf(edgeFIS,'input',2)

2 Fuzzy Inference System Modeling

2-80



title('Iy')
subplot(2,2,[3 4])
plotmf(edgeFIS,'output',1)
title('Iout')

Specify FIS Rules

Add rules to make a pixel white if it belongs to a uniform region and black otherwise. A
pixel is in a uniform region when the image gradient is zero in both directions. If either
direction has a nonzero gradient, then the pixel is on an edge.

r1 = "If Ix is zero and Iy is zero then Iout is white";
r2 = "If Ix is not zero or Iy is not zero then Iout is black";
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edgeFIS = addRule(edgeFIS,[r1 r2]);
edgeFIS.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                       Description              
         _______________________________________

    1    "Ix==zero & Iy==zero => Iout=white (1)"
    2    "Ix~=zero | Iy~=zero => Iout=black (1)"

Evaluate FIS

Evaluate the output of the edge detector for each row of pixels in I using corresponding
rows of Ix and Iy as inputs.

Ieval = zeros(size(I));
for ii = 1:size(I,1)
    Ieval(ii,:) = evalfis(edgeFIS,[(Ix(ii,:));(Iy(ii,:))]');
end

Plot Results

Plot the original grayscale image.

figure
image(I,'CDataMapping','scaled')
colormap('gray')
title('Original Grayscale Image')
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Plot the detected edges.

figure
image(Ieval,'CDataMapping','scaled')
colormap('gray')
title('Edge Detection Using Fuzzy Logic')
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See Also
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More About
• “Build Fuzzy Systems at the Command Line” on page 2-38
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Fuzzy Inference System Tuning

• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Mamdani Fuzzy Inference System” on page 3-33
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-47
• “Tune Fuzzy Systems using Custom Cost Function” on page 3-70
• “Neuro-Adaptive Learning and ANFIS” on page 3-86
• “Comparison of anfis and Neuro-Fuzzy Designer Functionality” on page 3-91
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-97
• “Test Data Against Trained System” on page 3-102
• “Save Training Error Data to MATLAB Workspace” on page 3-119
• “Predict Chaotic Time-Series using ANFIS” on page 3-127
• “Modeling Inverse Kinematics in a Robotic Arm” on page 3-137
• “Adaptive Noise Cancellation Using ANFIS” on page 3-148
• “Nonlinear System Identification” on page 3-158
• “Gas Mileage Prediction” on page 3-173
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Tuning Fuzzy Inference Systems
Designing a complex fuzzy inference system (FIS) with large number of inputs and
membership functions (MFs) is a challenging problem due to large number of MF
parameters and increasing number of rules. A promising solution to this problem is to
design FIS trees, which include hierarchically connected modular FISs having small
number of inputs. Designing a FIS tree with appropriate MF parameters and rules,
however, is a difficult task when adequate expert knowledge is not available for a complex
system. Hence, the data-driven approach of tuning and optimizing MF and rule
parameters offers an elegant solution to this problem.

You can tune a fuzzy system using the tunefis command. The following figure shows
how a fuzzy system is tuned with input/output training data. The tuning process uses an
optimization method on an optimization problem created from a fuzzy system.

In each iteration, the optimization method generates multiple sets of solutions, which are
values for the selected parameters of the fuzzy system. The fuzzy system is updated with
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each solution and then evaluated using the input training data. The evaluated output is
compared with the output training data to generate costs of the solutions. This process
continues for multiple iterations until the stop condition is met, and then it returns the
minimum cost solution with the optimized fuzzy system parameters. For an example that
uses this approach, see “Tune Mamdani Fuzzy Inference System” on page 3-33.

If input/output training data is not available, you can use a custom model in place of the
training data to evaluate a fuzzy system for cost measurement. This approach is shown in
the following figure.

In this case, the custom model uses the fuzzy system to minimize the cost of achieving
specific performance goals. The parameter solution that produces the best performance
of the custom model is returned as the optimization result. For example, in a robot
navigation model, the performance goal is to minimize the travelled distances to target
positions without colliding with any of the obstacles. Hence, the navigation model uses
the fuzzy system to control the robot’s heading direction to achieve the goal. For an
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example that uses this approach, see “Tune Fuzzy Systems using Custom Cost Function”
on page 3-70.

You can select individual MF and rule parameters of a fuzzy system for optimization.

Tune Membership Function Parameters

This example shows how to specify parameter settings for each input and output MF of a
FIS and tune it.

Create a FIS.

fis = mamfis;
fis = addInput(fis,[0 10],'NumMFs',3);
fis = addOutput(fis,[0 1],'NumMFs',3);
fis = addRule(fis,[1 1 1 1;1 1 1 1;1 1 1 1]);

Extract input and output parameter settings from the FIS.

[in,out] = getTunableSettings(fis)

in = 
  VariableSettings with properties:

                   Type: "input"
           VariableName: "input1"
    MembershipFunctions: [1x3 fuzzy.tuning.MembershipFunctionSettings]
                FISName: "fis"

out = 
  VariableSettings with properties:

                   Type: "output"
           VariableName: "output1"
    MembershipFunctions: [1x3 fuzzy.tuning.MembershipFunctionSettings]
                FISName: "fis"

The parameter settings are represented by VariableSettings objects that include the
FIS name, variable type, variable name, and MF parameter settings. Examine the
parameter settings of MF 1 of input 1.

in(1).MembershipFunctions(1).Parameters
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ans = 
  NumericParameters with properties:

    Minimum: [-Inf -Inf -Inf]
    Maximum: [Inf Inf Inf]
       Free: [1 1 1]

For each parameter value of an input/output MF, you can specify whether it is available
for tuning and its minimum and maximum values. By default, all MF parameters are free
for tuning and their ranges are set to [-Inf,Inf]. Make MF 1 of input 1 nontunable.

in(1).MembershipFunctions(1) = setTunable(in(1).MembershipFunctions(1),false);

Similarly, make the first parameter of MF 2 of input 1 nontunable.

in(1).MembershipFunctions(2).Parameters.Free(1) = false;

Set minimum ranges for second and third parameters of MF 3 of input 1 to 0.

in(1).MembershipFunctions(3).Parameters.Minimum(2:3) = 0;

Set maximum ranges for second and third parameters of MF 3 of input 1 to 15.

in(1).MembershipFunctions(3).Parameters.Maximum(2:3) = 15;

Note that the default minimum and maximum range values of tunable MF parameters are
set to corresponding input/output ranges in the tuning process.

Finally, make the output nontunable.

out = setTunable(out,false);

Now that you have configured the parameters, specify input and output training data.
Generate some data for this example.

x = (0:0.1:10)';
y = abs(sin(2*x)./exp(x/5));

Specify options for tunefis. Use genetic algorithm for optimization.

options = tunefisOptions("Method","ga");

Specify maximum 5 generations for optimization.

options.MethodOptions.MaxGenerations = 5;
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If you have Parallel Computing Toolbox™ software, you can improve the speed of the
tuning process by setting options.UseParallel to true. If you do not have Parallel
Computing Toolbox software, set options.UseParallel to false.

By default, tunefis uses root mean squared error (RMSE) for cost calculation. You can
change the cost function to norm1 or norm2 by setting options.DistanceMetric.

options.DistanceMetric = "norm1";

Tune fis using the parameter settings, training data, and tuning options.

rng('default')  % for reproducibility
[fisout,optimout] = tunefis(fis,[in;out],x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100           32.84           32.84        0
    2              150           32.84           32.84        1
    3              200           32.84           32.84        2
    4              250           32.84           32.84        3
    5              300           32.84           32.84        4
Optimization terminated: maximum number of generations exceeded.

fisout includes the updated parameter values. optimout provides additional outputs of
the optimization method and any error message that are returned during the update
process of the input fuzzy system using the optimized parameter values.

optimout

optimout = struct with fields:
    tuningOutputs: [1x1 struct]
     errorMessage: []

optimout.tuningOutputs

ans = struct with fields:
             x: [5 9.1667 5.8333 10 14.1667]
          fval: 32.8363
      exitflag: 0
        output: [1x1 struct]
    population: [50x5 double]
        scores: [50x1 double]
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You can optionally tune fis using either input or output parameter settings. In this
example, output parameter settings are set to nontunable. Therefore, tuning fis with
only input parameter settings produces the same results.

rng('default')
tunefis(fis,in,x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100           32.84           32.84        0
    2              150           32.84           32.84        1
    3              200           32.84           32.84        2
    4              250           32.84           32.84        3
    5              300           32.84           32.84        4
Optimization terminated: maximum number of generations exceeded.

Note that the best optimization costs shown in column 3 of both tuning results are the
same, which indicates that the optimization results are the same in both cases.

Tune Fuzzy Rules

You can specify only rule parameters of a fuzzy system for tuning.

Use getTunableSettings to get rule parameter settings from a fuzzy system. Rule
parameter settings are returned as the third output argument.

[~,~,rule] = getTunableSettings(fis)

rule = 
  3x1 RuleSettings array with properties:

    Index
    Antecedent
    Consequent
    FISName

Each rule parameter settings include FIS name, index of the rule in the FIS, and
parameter settings for the rule antecedent and consequent (the rule clause).

The parameter settings for a rule clause include three options:

• Whether the input/output MF indices are available for tuning. By default, clause
parameters are free for tuning.
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• Whether the clause allows use of NOT logic, in other words, whether it allows negative
MF indices. By default, rules do not allow NOT logic.

• Whether the cluase allows absence of input/output variables, in other words, if it
allows zero MF indices. By default, absence of a variable is allowed.

rule(1).Antecedent(1)

ans = 
  ClauseParameters with properties:

      AllowNot: 0
    AllowEmpty: 1
          Free: 1

Allow NOT logic in the antecedent of rule 1.

rule(1).Antecedent.AllowNot = true;

Make the consequent of rule 1 not available for tuning.

rule(1).Consequent.Free = 0;

Do not allow absence of a variable in the consequent of rule 2.

rule(2).Consequent.AllowEmpty = false;

Set rule 3 nontunable.

rule(3) = setTunable(rule(3),false);

Set options.DistanceMetric to norm2.

options.DistanceMetric = "norm2";

Tune fis with the rule parameter settings.

rng('default')  % for reproducibility
fisout = tunefis(fis,rule,x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100           1.648           2.575        0
    2              150           1.648           2.448        1
    3              200           1.648           2.212        2
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    4              250           1.648           2.052        3
    5              300           1.648           1.874        4
Optimization terminated: maximum number of generations exceeded.

Because you made rule 3 nontunable, you can exclude rule 3 when you tune fis.

rng('default')  % for reproducibility
tunefis(fis,rule(1:2),x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              100           1.648           2.575        0
    2              150           1.648           2.448        1
    3              200           1.648           2.212        2
    4              250           1.648           2.052        3
    5              300           1.648           1.874        4
Optimization terminated: maximum number of generations exceeded.

Note that the best optimization costs shown in column 3 of both tuning results are the
same, which indicates the optimization results are the same in both cases.

Learn Fuzzy Rules

You can tune a fuzzy system without any rules in tunefis. In this case, set the
OptimizationType option of tunefisOptionsto learning so that tunefis learns
rules for the FIS.

fisin = fis;
fisin.Rules = [];
options.OptimizationType = 'learning';

Specify maximum size of the rule base to 3. This value specifies the maximum number of
rules in the tuned FIS.

options.NumMaxRules = 3;

Note that the size of the tuned rule base may be less than NumMaxRules, because
tunefis removes duplicate rules from the tuned FIS. If you do not specify
NumMaxRules, then tunefis adds the maximum number of rules determined by the
combinations of input MFs. The default input MF combinations include zero MF indices,
which allow absence of variables. The default combinations exclude negative MF indices,
so that NOT logic is not allowed.

Set options.DistanceMetric to rmse and tune the FIS.
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options.DistanceMetric = "rmse";
rng('default')  % for reproducibility
fisout = tunefis(fisin,[],x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400           0.165          0.2973        0
    2              600           0.165          0.2891        1
    3              800           0.165          0.2685        2
    4             1000           0.165          0.2548        3
    5             1200           0.165          0.2378        4
Optimization terminated: maximum number of generations exceeded.

During the tuning process, the FIS automatically learns rules after cost optimization with
the training data. Examine the tuned rules.

fisout.Rules

ans = 
  1x3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf3 => output1=mf1 (1)"
    2    "input1==mf1 => output1=mf2 (1)"
    3    "input1==mf2 => output1=mf1 (1)"

You can remove some of the existing rules and learn additional rules.

fisout.Rules(2:end) = [];
rng('default')  % for reproducibility
fisout = tunefis(fisin,[],x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400           0.165          0.2973        0
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    2              600           0.165          0.2891        1
    3              800           0.165          0.2685        2
    4             1000           0.165          0.2548        3
    5             1200           0.165          0.2378        4
Optimization terminated: maximum number of generations exceeded.

fisout.Rules

ans = 
  1x3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf3 => output1=mf1 (1)"
    2    "input1==mf1 => output1=mf2 (1)"
    3    "input1==mf2 => output1=mf1 (1)"

You can also tune existing rules and learn new rules.

fisout.Rules(2:end) = [];
fisout.Rules(1).Antecedent = 1;
fisout.Rules(1).Consequent = 1;
[~,~,rule] = getTunableSettings(fisout);
rng('default')
fisout = tunefis(fisin,rule,x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400           0.165          0.3075        0
    2              600           0.165          0.2738        1
    3              800           0.165          0.2545        2
    4             1000           0.165          0.2271        3
    5             1200           0.165          0.2083        4
Optimization terminated: maximum number of generations exceeded.

fisout.Rules
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ans = 
  1x3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf2 (1)"
    2    "input1==mf2 => output1=mf1 (1)"
    3    "input1==mf3 => output1=mf1 (1)"

Tune MF and Rule Parameters

You can tune all FIS parameters together.

[in,out,rule] = getTunableSettings(fis);
options = tunefisOptions('Method','ga');
options.MethodOptions.MaxGenerations = 5;
rng('default')  % for reproducibility
fisout = tunefis(fis,[in;out;rule],x,y,options);

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400          0.1624          0.2997        0
    2              600          0.1624          0.2776        1
    3              800          0.1624          0.2653        2
    4             1000          0.1592          0.2486        0
    5             1200          0.1592          0.2342        1
Optimization terminated: maximum number of generations exceeded.

For a large fuzzy system, tuning all FIS parameters in the same tuning process may take
several iterations to obtain the expected results. Hence, you can tune parameters in two
steps:

1 Tune or learn rule parameters only.
2 Tune both MF and rule parameters.
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The first step is less computationally expensive due to the small number of rule
parameters. It quickly converges to a fuzzy rule base during training. In the second step,
using the rule base from the first step as an initial condition provides fast convergence of
the parameter tuning process.

Tune FIS Tree Parameters

You can tune the parameters of a FIS tree using a similar two-step process to the one
described above for tuning a FIS.

Create a FIS tree to model sin x + cos x
exp x  as shown in the following figure.

Create fis1 as a Sugeno type FIS, which results in faster tuning process due to
computationally efficient defuzzification method. Add two inputs with range [0 10] having
three MFs each. Use a smooth differentiable MF, such as gaussmf, to match
characteristics of the data type you are modeling.

fis1 = sugfis('Name','fis1');
fis1 = addInput(fis1,[0 10],'NumMFs',3,'MFType','gaussmf');
fis1 = addInput(fis1,[0 10],'NumMFs',3,'MFType','gaussmf');

Add an output with range [–1.5 1.5] having nine MFs to provide maximum granularity
corresponding to each combination of the input MFs. The output range is set according to
the values of sin x + cos x .

fis1 = addOutput(fis1,[-1.5 1.5],'NumMFs',9);
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Create fis2 as a Sugeno type FIS as well. Add two inputs. Use [-1.5 1.5] as the range of
the first input, which is the output of fis1. The second input is the same as the inputs of
fis1, so it also uses range [0 10]. Add three MFs for each of the inputs.

fis2 = sugfis('Name','fis2');
fis2 = addInput(fis2,[-1.5 1.5],'NumMFs',3,'MFType','gaussmf');
fis2 = addInput(fis2,[0 10],'NumMFs',3,'MFType','gaussmf');

Add an output with range [0 1] having nine MFs to provide maximum granularity
corresponding to each combination of the input MFs. The output range is set according to
the values of sin x + cos x

exp x .

fis2 = addOutput(fis2,[0 1],'NumMFs',9);

Connect the inputs and the outputs as shown in the diagram. Output 1 of fis1 connects
to input 1 of fis2, inputs 1 and 2 of fis1 connect to each other, and input 2 of fis1
connects to input 2 of fis2.

con1 = ["fis1/output1" "fis2/input1"];
con2 = ["fis1/input1" "fis1/input2"];
con3 = ["fis1/input2" "fis2/input2"];

Finally, create a FIS tree using fis1, fis2, con1, con2, and con3.

fisT = fistree([fis1 fis2],[con1;con2;con3]);

Specify an additional output to the FIS tree to access the output of fis1.

fisT.Outputs = ["fis1/output1";fisT.Outputs];

Generate input and output training data.

x = (0:0.1:10)';
y1 = sin(x)+cos(x);
y2 = y1./exp(x);
y = [y1 y2];

Tune the FIS tree parameters in two steps. First, use a global optimization method such
as particle swarm or genetic algorithm to learn the rules of the FIS tree. Create tunefis
options for learning with the particleswarm method.

options = tunefisOptions('Method','particleswarm','OptimizationType','learning');

This tuning step uses small number of iterations to learn a rule base without overfitting
the training data. The rule base provides an educated initial condition for the second step
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to optimize all the FIS tree parameters together. Set the maximum iteration number to 5,
and learn the rule base.

options.MethodOptions.MaxIterations = 5;
rng('default')  % for reproducibility
fisTout1 = tunefis(fisT,[],x,y,options);

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100          0.6682          0.9395        0
    1             200          0.6682           1.023        0
    2             300          0.6652          0.9308        0
    3             400          0.6259           0.958        0
    4             500          0.6259           0.918        1
    5             600          0.5969          0.9179        0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

To tune all the FIS tree parameters, the second step uses a local optimization method
such as pattern search or simulation annealing method. Local optimization is generally
faster than global optimization and can produce better results when the input fuzzy
system parameters are already consistent with the training data.

Use the patternsearch method for optimization. Set the number of iterations to 25.

options.Method = 'patternsearch';
options.MethodOptions.MaxIterations = 25;

Use getTunableSettings to get input, output, and rule parameter settings from
fisTout1.

[in,out,rule] = getTunableSettings(fisTout1);

Tune all FIS tree parameters.

rng('default') % for reproducibility
fisTout2 = tunefis(fisTout1,[in;out;rule],x,y,options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.596926             1      
    1           3       0.551284             2     Successful Poll
    2          13       0.548551             4     Successful Poll
    3          20       0.546331             8     Successful Poll
    4          33       0.527482            16     Successful Poll
    5          33       0.527482             8     Refine Mesh
    6          61       0.511532            16     Successful Poll
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    7          61       0.511532             8     Refine Mesh
    8          92       0.505355            16     Successful Poll
    9          92       0.505355             8     Refine Mesh
   10         128       0.505355             4     Refine Mesh
   11         175       0.487734             8     Successful Poll
   12         212       0.487734             4     Refine Mesh
   13         265       0.487734             2     Refine Mesh
   14         275       0.486926             4     Successful Poll
   15         328       0.486926             2     Refine Mesh
   16         339       0.483683             4     Successful Poll
   17         391       0.483683             2     Refine Mesh
   18         410       0.442624             4     Successful Poll
   19         462       0.442624             2     Refine Mesh
   20         469        0.44051             4     Successful Poll
   21         521        0.44051             2     Refine Mesh
   22         542       0.435381             4     Successful Poll
   23         594       0.435381             2     Refine Mesh
   24         614       0.398872             4     Successful Poll
   25         662       0.398385             8     Successful Poll
   26         698       0.398385             4     Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

The optimization cost reduces from 0.59 to 0.39 in the second step.

Tune FIS Tree with Selected Fuzzy Systems

You can tune specific fuzzy systems in a FIS tree. To get parameter settings of the specific
fuzzy systems, use getTunableSettings. For example, after learning the rule base of
the previous FIS tree, separately tune fis1 and fis2 parameters. First, get the
parameter settings for fis1.

[in,out,rule] = getTunableSettings(fisTout1,"FIS","fis1");

Tune fis1 parameters of the tree.

rng('default')
fisTout2 = tunefis(fisTout1,[in;out;rule],x,y,options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.596926             1      
    1           3       0.551284             2     Successful Poll
    2          18       0.510362             4     Successful Poll
    3          28       0.494804             8     Successful Poll
    4          56       0.494804             4     Refine Mesh
    5          84       0.493422             8     Successful Poll
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    6         107       0.492883            16     Successful Poll
    7         107       0.492883             8     Refine Mesh
    8         136       0.492883             4     Refine Mesh
    9         171       0.492883             2     Refine Mesh
   10         178       0.491534             4     Successful Poll
   11         213       0.491534             2     Refine Mesh
   12         229       0.482682             4     Successful Poll
   13         264       0.482682             2     Refine Mesh
   14         279       0.446645             4     Successful Poll
   15         313       0.446645             2     Refine Mesh
   16         330        0.44657             4     Successful Poll
   17         364        0.44657             2     Refine Mesh
   18         384       0.446495             4     Successful Poll
   19         418       0.446495             2     Refine Mesh
   20         461       0.445938             4     Successful Poll
   21         495       0.445938             2     Refine Mesh
   22         560       0.422421             4     Successful Poll
   23         594       0.422421             2     Refine Mesh
   24         597       0.397265             4     Successful Poll
   25         630       0.397265             2     Refine Mesh
   26         701       0.390338             4     Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

In this case, the optimization cost is improved by tuning only fis1 parameter values.

Next, get the paramter settings for fis2 and tune the fis2 parameters.

[in,out,rule] = getTunableSettings(fisTout2,"FIS","fis2");
rng('default') 
fisTout3 = tunefis(fisTout2,[in;out;rule],x,y,options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.390338             1      
    1           2       0.374103             2     Successful Poll
    2           5       0.373855             4     Successful Poll
    3          10       0.356619             8     Successful Poll
    4          33       0.356619             4     Refine Mesh
    5          43       0.350715             8     Successful Poll
    6          65       0.349417            16     Successful Poll
    7          65       0.349417             8     Refine Mesh
    8          87       0.349417             4     Refine Mesh
    9          91       0.349356             8     Successful Poll
   10         112       0.349356             4     Refine Mesh
   11         138       0.346102             8     Successful Poll
   12         159       0.346102             4     Refine Mesh
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   13         172       0.345938             8     Successful Poll
   14         193       0.345938             4     Refine Mesh
   15         222       0.342721             8     Successful Poll
   16         244       0.342721             4     Refine Mesh
   17         275       0.342721             2     Refine Mesh
   18         283       0.340727             4     Successful Poll
   19         312       0.340554             8     Successful Poll
   20         335       0.340554             4     Refine Mesh
   21         366       0.340554             2     Refine Mesh
   22         427       0.337873             4     Successful Poll
   23         457       0.337873             2     Refine Mesh
   24         521        0.33706             4     Successful Poll
   25         551        0.33706             2     Refine Mesh
   26         624       0.333193             4     Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

The optimization cost is further reduced by tuning fis2 parameter values. To avoid
overfitting of individual FIS parameter values, you can further tune both fis1 and fis2
parameters together.

[in,out,rule] = getTunableSettings(fisTout3);
rng('default') 
fisTout4 = tunefis(fisTout3,[in;out;rule],x,y,options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.333193             1      
    1           8       0.326804             2     Successful Poll
    2          91       0.326432             4     Successful Poll
    3         116       0.326261             8     Successful Poll
    4         154       0.326261             4     Refine Mesh
    5         205       0.326261             2     Refine Mesh
    6         302       0.326092             4     Successful Poll
    7         352       0.326092             2     Refine Mesh
    8         391       0.325964             4     Successful Poll
    9         441       0.325964             2     Refine Mesh
   10         478        0.32578             4     Successful Poll
   11         528        0.32578             2     Refine Mesh
   12         562       0.325691             4     Successful Poll
   13         612       0.325691             2     Refine Mesh
   14         713       0.229273             4     Successful Poll
   15         763       0.229273             2     Refine Mesh
   16         867        0.22891             4     Successful Poll
   17         917        0.22891             2     Refine Mesh
   18        1036       0.228688             4     Successful Poll
   19        1086       0.228688             2     Refine Mesh
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   20        1212       0.228688             1     Refine Mesh
   21        1266       0.228445             2     Successful Poll
   22        1369       0.228441             4     Successful Poll
   23        1381       0.227645             8     Successful Poll
   24        1407       0.226125            16     Successful Poll
   25        1407       0.226125             8     Refine Mesh
   26        1447       0.226125             4     Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

Overall, the optimization cost reduces from 0.59 to 0.22 in three steps.

Tune with Custom Cost Function

Suppose you want to modify the previous FIS tree as shown in the following diagram.

Create the FIS tree.

fis1 = sugfis('Name','fis1');
fis1 = addInput(fis1,[0 10],'NumMFs',3,'MFType','gaussmf');
fis1 = addOutput(fis1,[-1 1],'NumMFs',3);

fis2 = sugfis('Name','fis2');
fis2 = addInput(fis2,[0 10],'NumMFs',3,'MFType','gaussmf');
fis2 = addOutput(fis2,[-1 1],'NumMFs',3);

fis3 = sugfis('Name','fis3');
fis3 = addInput(fis3,[0 10],'NumMFs',3,'MFType','gaussmf');
fis3 = addOutput(fis3,[0 1],'NumMFs',3);
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con = ["fis1/input1" "fis2/input1";"fis2/input1" "fis3/input1"];

fisT = fistree([fis1 fis2 fis3],con);

To implement the addition and multiplication operations, use a custom cost function. For
this example, use the function customcostfcn, included at the end of the example.
Learn a rule base with this cost function.

options.Method = 'particleswarm';
options.MethodOptions.MaxIterations = 5;
rng('default')
fisTout1 = tunefis(fisT,[],@(fis)customcostfcn(fis,x,y),options);

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100           0.746           1.318        0
    1             200          0.5787           1.236        0
    2             300          0.5787           1.104        1
    3             400          0.5787           1.097        0
    4             500          0.5171           1.155        0
    5             600          0.5171           1.067        1
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Tune all parameters of the FIS tree.

options.Method = 'patternsearch';
options.MethodOptions.MaxIterations = 25;
[in,out,rule] = getTunableSettings(fisTout1);
rng('default')
fisTout2 = tunefis(fisTout1,[in;out;rule],@(fis)customcostfcn(fis,x,y),options);

Iter     Func-count       f(x)      MeshSize     Method
    0           1        0.51705             1      
    1          11       0.514884             2     Successful Poll
    2          21       0.512873             4     Successful Poll
    3          43       0.512873             8     Successful Poll
    4          56       0.512873             4     Refine Mesh
    5          79       0.512873             2     Refine Mesh
    6         106       0.512869             4     Successful Poll
    7         129       0.512869             2     Refine Mesh
    8         174       0.512869             1     Refine Mesh
    9         197       0.512862             2     Successful Poll
   10         242       0.512862             1     Refine Mesh
   11         314       0.512862           0.5     Refine Mesh
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   12         388       0.512862          0.25     Refine Mesh
   13         422       0.510163           0.5     Successful Poll
   14         429       0.509153             1     Successful Poll
   15         439       0.509034             2     Successful Poll
   16         460       0.509034             4     Successful Poll
   17         483       0.507555             8     Successful Poll
   18         495       0.507555             4     Refine Mesh
   19         519       0.507555             2     Refine Mesh
   20         565       0.507555             1     Refine Mesh
   21         636       0.507555             2     Successful Poll
   22         682       0.507555             1     Refine Mesh
   23         755       0.507555           0.5     Refine Mesh
   24         799       0.507554             1     Successful Poll
   25         872       0.507554           0.5     Refine Mesh
   26         947       0.507554          0.25     Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

You can add more input/output MFs and specify additional FIS tree outputs to improve
the tuning performance. Using additional MF parameters and more training data for
additional FIS tree outputs can further fine tune the outputs of fis1, fis2, and fis3.

Custom Optimization Method

You can implement your own FIS parameter optimization method using
getTunableSettings, getTunableValues, and setTunableValues. This example
uses these functions to tune a rule base of a fuzzy system.

Create a FIS to approximate sin θ , where θ varies from 0 to 2π.

fisin = mamfis;

Add an input with range [0 2π] having five MFs of Gaussian type, and an output with
range [–1 1] having five MFs of Gaussian type.

fisin = addInput(fisin,[0 2*pi],'NumMFs',5,'MFType','gaussmf');
fisin = addOutput(fisin,[-1 1],'NumMFs',5,'MFType','gaussmf');

Add 5 rules.

fisin = addRule(fisin,[1 1 1 1;2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1]);
fisin.Rules

ans = 
  1x5 fisrule array with properties:

 Tuning Fuzzy Inference Systems

3-21



    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf1 (1)"
    2    "input1==mf2 => output1=mf2 (1)"
    3    "input1==mf3 => output1=mf3 (1)"
    4    "input1==mf4 => output1=mf4 (1)"
    5    "input1==mf5 => output1=mf5 (1)"

Set DisableStructuralChecks to true for faster FIS update.

fisin.DisableStructuralChecks = true;

Get the rule parameter settings.

[~,~,rule] = getTunableSettings(fisin);

Make the antecedent nontunable. In the consequent, do not allow NOT logic (negative MF
indices) or empty variables (zero MF indices) in the rules.

for i = 1:numel(rule)
    rule(i).Antecedent.Free = false;
    rule(i).Consequent.AllowNot = false;
    rule(i).Consequent.AllowEmpty = false;
end

Generate data for tuning.

x = (0:0.1:2*pi)';
y = sin(x);

To tune the rule parameters, use the customtunefis function defined at the end of this
example. Set the number of iterations to 2, and do not allow invalid parameter values
when updating the FIS using setTunableValues.
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numite = 2;
ignoreinvp = false;
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);

Initial cost = 1.170519
Iteration 1: Cost = 0.241121
Iteration 2: Cost = 0.241121

Display tuned rules.

fisout.Rules

ans = 
  1x5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf4 (1)"
    2    "input1==mf2 => output1=mf5 (1)"
    3    "input1==mf3 => output1=mf3 (1)"
    4    "input1==mf4 => output1=mf1 (1)"
    5    "input1==mf5 => output1=mf2 (1)"

Allow NOT logic in the rules, and optimize the FIS again.

for i = 1:numel(rule)
    rule(i).Consequent.AllowNot = true;
end
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);

Initial cost = 1.170519
Iteration 1: Cost = 0.357052
Iteration 2: Cost = 0.241121

fisout.Rules

ans = 
  1x5 fisrule array with properties:
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    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf4 (1)"
    2    "input1==mf2 => output1=mf5 (1)"
    3    "input1==mf3 => output1=mf3 (1)"
    4    "input1==mf4 => output1=mf1 (1)"
    5    "input1==mf5 => output1=mf2 (1)"

With NOT logic, there are more combinations of rule parameters, and it generally takes
more iterations to tune a FIS.

Next, reset AllowNot to false and set AllowEmpty to true, in other words, allow
absence of variables (zero output MF indices) in the consequent. Tune the FIS with the
updated rule parameter settings.

for i = 1:numel(rule)
    rule(i).Consequent.AllowNot = false;
    rule(i).Consequent.AllowEmpty = true;
end

try
    fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);
catch me
    disp("Error: "+me.message)
end

Initial cost = 1.170519
Error: Rule consequent must have at least one nonzero membership function index.

The tuning process fails since the FIS only contains one output, which must be nonzero
(nonempty) in the rule consequent. To ignore invalid parameter values, specify
IgnoreInvalidParameters with setTunableValues.

Set ignoreinvp to true, which specifies IgnoreInvalidParameters value in the call
to setTunableValues used in customtunefis.
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ignoreinvp = true;
fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);

Initial cost = 1.170519
Iteration 1: Cost = 0.241121
Iteration 2: Cost = 0.241121

fisout.Rules

ans = 
  1x5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                   Description           
         ________________________________

    1    "input1==mf1 => output1=mf4 (1)"
    2    "input1==mf2 => output1=mf5 (1)"
    3    "input1==mf3 => output1=mf3 (1)"
    4    "input1==mf4 => output1=mf1 (1)"
    5    "input1==mf5 => output1=mf2 (1)"

In this case, the tuning process bypasses the invalid values and uses only valid parameter
values for optimization.

By default, tunefis ignores invalid values when updating fuzzy system parameters. You
can change this behavior by setting tunefisOptions.IgnoreInvalidParameters to
false.

Generate FIS from Data and Tune

You can generate a FIS from the training data using genfis and then optimize the FIS
with tunefis. In this approach, the tuning process can employ a local optimization
method because the rule base is derived from the training data.

This example describes the tuning steps to approximate the function
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sin 2x
exp x

5
,

where the input x varies from 0 to 10.

Generate training data.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);

Create options for genfis that specify five MFs, a Gaussian MF for the input, and a
constant MF for the output.

goptions = genfisOptions('GridPartition','NumMembershipFunctions',5, ...
    'InputMembershipFunctionType','gaussmf', ...
    'OutputMembershipFunctionType','constant');

Generate the initial FIS, and get its parameter settings.

fisin = genfis(x,y,goptions);
[in,out,rule] = getTunableSettings(fisin);

Use pattern search method for optimization, setting the maximum number of iterations to
25, and tune the FIS.

toptions = tunefisOptions('Method','patternsearch');
toptions.MethodOptions.MaxIterations = 25;
rng('default')
fisout = tunefis(fisin,[in;out],x,y,toptions);

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.346649             1      
    1          19       0.346649           0.5     Refine Mesh
    2          28       0.295219             1     Successful Poll
    3          34       0.295069             2     Successful Poll
    4          48       0.295069             1     Refine Mesh
    5          56       0.295064             2     Successful Poll
    6          71       0.294986             4     Successful Poll
    7          82       0.294986             2     Refine Mesh
    8          98       0.294986             1     Refine Mesh
    9         112       0.293922             2     Successful Poll
   10         128       0.293922             1     Refine Mesh
   11         131        0.29151             2     Successful Poll
   12         144       0.290141             4     Successful Poll
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   13         156       0.290141             2     Refine Mesh
   14         171       0.290006             4     Successful Poll
   15         184       0.290006             2     Refine Mesh
   16         200       0.290006             1     Refine Mesh
   17         207       0.289743             2     Successful Poll
   18         223       0.289743             1     Refine Mesh
   19         243       0.289743           0.5     Refine Mesh
   20         257       0.286935             1     Successful Poll
   21         260       0.282278             2     Successful Poll
   22         263       0.281878             4     Successful Poll
   23         267       0.280144             8     Successful Poll
   24         272       0.280144             4     Refine Mesh
   25         278       0.275167             8     Successful Poll
   26         284       0.275167             4     Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

You can increase the number of iterations to further optimize the cost.

Validate Training Results

To avoid overfitting of training data sets, check the performance of a trained fuzzy system
with validation data. One common approach is to divide available data into training and
validation data sets so that both data sets include similar characteristics.

If training and validation performances differ significantly, you can:

• Change the maximum number of tuning iterations. For example, if the training
performance is better than validation performance, you can reduce the number of
tuning iterations.

• Resample the training and validation data sets to maintain homogeneity.

To see how the validation performance can vary based on nonhomogenous sampling,
create a single-input-single-output fuzzy inference system to model the function

sin 2x
exp x

5
,

where the input varies from 0 to 10 and the output range is [0 1]. Add five default MFs to
the input and output. Get the input and output parameter settings.

fisin = sugfis;
fisin = addInput(fisin,[0 10],'NumMFs',5,'MFType','gaussmf');
fisin = addOutput(fisin,[0 1],'NumMFs',5);
[in,out] = getTunableSettings(fisin);
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Create tunefis options for learning with the particleswarm optimization method,
and set the maximum number of iterations to 5.

options = tunefisOptions('Method','particleswarm','OptimizationType','learning');
options.MethodOptions.MaxIterations = 5;

Divide the available data into two sets without maintaining homogeneity in the data sets.

x = (0:0.1:10)';
n = numel(x);
midn = floor(n/2);
trnX = x(1:midn);
vldX = x(midn+1:end);
f = @(x)(sin(2*x)./exp(x/5));
trnY = f(trnX);
vldY = f(vldX);

Tune the FIS parameters.

rng('default')
fisout = tunefis(fisin,[in;out],trnX,trnY,options);

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100          0.4279          0.5932        0
    1             200          0.3846          0.6183        0
    2             300          0.3751          0.5675        0
    3             400          0.3606           0.568        0
    4             500          0.3606          0.5596        1
    5             600          0.3598          0.5307        0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Find the optimization cost for validation data using the findcost function defined at the
end of this example.

vldCost = findcost(fisout,vldX,vldY)

vldCost = 0.1780

Note that the validation cost differs from the best training cost shown in column 3 of the
tuning result.

Next, resample the available data, and create two homogenous data sets for training and
validation.
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trnX = x(1:2:end);
vldX = x(2:2:end);
f = @(x)(sin(2*x)./exp(x/5));
trnY = f(trnX);
vldY = f(vldX);

Tune the FIS with the new training data.

rng('default')
fisout = tunefis(fisin,[in;out],trnX,trnY,options);

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100          0.3445          0.5852        0
    1             200          0.2996          0.5616        0
    2             300          0.2907          0.5381        0
    3             400          0.2878          0.5334        0
    4             500          0.2878          0.5624        1
    5             600          0.2877             Inf        0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Find the optimization cost for the new validation data.

vldCost = findcost(fisout,vldX,vldY)

vldCost = 0.2803

In this case, homogenous sampling reduces the difference between the training and
validation costs.

Ways to Improve Tuning Results

You can improve the training error of a tuned fuzzy systems by following these guidelines.

• Use multiple steps in a tuning process. For example, first learn the rules of a fuzzy
system, and then tune input/output MF parameters using the learned rule base. You
can also separately tune individual FIS parameters in a FIS tree and then tune all the
fuzzy systems together to generalize the parameter values.

• Increase the number of iterations in both the rule-learning and parameter-
tuning phases. Doing so increases the duration of the optimization process. It can
also increase validation error due to overtuned system parameters with the training
data.

• Use global optimization methods, such as ga and particleswarm, in both rule-
learning and parameter-tuning phases. Global optimizers ga and particleswarm
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perform better for large parameter tuning ranges than local optimizers. The local
optimizers patternsearch and simulannealbnd perform better for small
parameter ranges. If rules are already added to a FIS tree using training data, then
patternsearch and simulannealbnd can produce faster convergence compared to
ga and particleswarm. For more information on these optimization methods and
their options, see ga, particleswarm, patternsearch, and simulannealbnd.

• Change the clustering technique used by genfis. Depending on the clustering
technique, the generated rules can differ in their representation of the training data.
Hence, the use of different clustering techniques can affect the performance of
tunefis.

• Change FIS properties. Try changing properties such as the type of FIS, number of
inputs, number of input/output MFs, MF types, and number of rules. A Sugeno system
has fewer output MF parameters (assuming constant MFs) and faster defuzzification.
Therefore, for fuzzy systems with a large number of inputs, a Sugeno FIS generally
converges faster than a Mamdani FIS. Small numbers of MFs and rules reduce the
number of parameters to tune, producing a faster tuning process. Furthermore, a
large number of rules might overfit the training data.

• Modify tunable parameter settings for MFs and rules. For example, you can tune
the support of a triangular MF without changing its peak location. Doing so reduces
the number of tunable parameters and can produce a faster tuning process for specific
applications. For rules, you can exclude zero MF indices by setting the AllowEmpty
tunable setting to false, which reduces the overall number of rules during the
learning phase.

• Change FIS tree properties, such as the number of fuzzy systems and the
connections between the fuzzy systems.

• Use different ranking and grouping of the inputs to the FIS tree. For more
information about creating FIS trees, see “Fuzzy Trees” on page 2-65.

Local functions

function cost = customcostfcn(fis,x,y)

tY = evalfis(fis,x);
sincosx = tY(:,1)+tY(:,2);
sincosexpx = sincosx.*tY(:,3);
actY = [sincosx;sincosexpx];
d = y(:)-actY;
cost = sqrt(mean(d.*d));

end
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function fis = customtunefis(fis,rule,x,y,n,ignore)

% Show initial cost.
cost = findcost(fis,x,y);
fprintf('Initial cost = %f\n',cost);

% Optimize rule parameters.
numMFs = numel(fis.Outputs.MembershipFunctions);
for ite = 1:n
    for i = 1:numel(rule)
        % Get consequent value.
        pval = getTunableValues(fis,rule(i));
        % Loop through output MF indices to minimize the cost.
        % Use output indices according to AllowNot and AllowEmpty.
        allowNot = rule(i).Consequent.AllowNot;
        allowEmpty = rule(i).Consequent.AllowEmpty;
        if allowNot && allowEmpty
            mfID = -numMFs:numMFs;
        elseif allowNot && ~allowEmpty
            mfID = [-numMFs:-1 1:numMFs];
        elseif ~allowNot && allowEmpty
            mfID = 0:numMFs;
        else
            mfID = 1:numMFs;
        end
        cost = 1000;
        minCostFIS = fis;
        for j = 1:length(mfID)
            % Update consequent value.
            pval(1) = mfID(j);
            % Set updated consequent value to the FIS.
            fis = setTunableValues(fis,rule(i),pval,'IgnoreInvalidParameters',ignore);
            % Evaluate cost.
            rmse = findcost(fis,x,y);
            % Update FIS with the minimum cost.
            if rmse<cost
                cost = rmse;
                minCostFIS = fis;
            end
        end
        fis = minCostFIS;
    end
    fprintf('Iteration %d: Cost = %f\n',ite,cost);
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end

end

function cost = findcost(fis,x,y)

actY = evalfis(fis,x);
d = y - actY;
cost = sqrt(mean(d.*d));

end

See Also
genfis | getTunableSettings | tunefis

More About
• “Tune Mamdani Fuzzy Inference System” on page 3-33
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-47
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Tune Mamdani Fuzzy Inference System
This example shows how to tune membership function (MF) and rule parameters of a
Mamdani fuzzy inference system (FIS). This example uses particle swarm and pattern
search optimization, which require Global Optimization Toolbox™ software.

Automobile fuel consumption prediction in miles per gallon (MPG) is a typical nonlinear
regression problem. It uses several automobile profile attributes to predict fuel
consumption. The training data is available in the University of California at Irvine
Machine Learning Repository and contains data collected from automobiles of various
makes and models.

This example uses the following six input data attributes to predict the output data
attribute MPG with a FIS:

1 Number of cylinders
2 Displacement
3 Horsepower
4 Weight
5 Acceleration
6 Model year

Prepare Data

Load the data. Each row of the dataset obtained from the repository represents a
different automobile profile.

[data,name] = loadgas;

Remove leading and trailing whitespace from the attribute names.

name = strtrim(string(name));

data contains 7 columns, where the first six columns contain the following input
attributes.

• Number of cylinders
• Displacement
• Horsepower
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• Weight
• Acceleration
• Model year

The seventh column contains the output attribute, MPG.

Create separate input and output data sets, X and Y, respectively.

X = data(:,1:6);
Y = data(:,7);

Partition the input and output data sets into training data (odd-indexed samples) and
validation data (even-indexed samples).

trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set
vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set

Extract the range of each data attribute, which you will use for input/output range
definition during FIS construction.

dataRange = [min(data)' max(data)'];

Construct FIS using Data Attribute Ranges

Create a Mamdani FIS for tuning.

fisin = mamfis;

Add input and output variables to the FIS, where each variable represents one of the data
attributes. For each variable, use the corresponding attribute name and range.

To reduce the number of rules, use two MFs for each input variable, which results in
26 = 64 input MF combinations. Therefore, the FIS uses a maximum of 64 rules
corresponding to the input MF combinations.

To improve data generalization beyond the training data, use 64 MFs for the output
variable. Doing so allows the FIS to use a different output MF for each rule.

Both input and output variables use default triangular MFs, which are uniformly
distributed over the variable ranges.
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for i = 1:6
    fisin = addInput(fisin,dataRange(i,:),'Name',name(i),'NumMFs',2);
end
fisin = addOutput(fisin,dataRange(7,:),'Name',name(7),'NumMFs',64);

View the FIS structure. Initially, the FIS has zero rules. The rules of the system are found
during the tuning process.

figure
plotfis(fisin)

Tune FIS with Training Data

Tuning is performed in two steps.
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1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the parameters of the input/output MFs and rules.

The first step is less computationally expensive due to the small number of rule
parameters, and it quickly converges to a fuzzy rule base during training. In the second
step, using the rule base from the first step as an initial condition provides fast
convergence of the parameter tuning process.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object. Since
the FIS allows a large number of output MFs (used in rule consequents), use a global
optimization method (genetic algorithm or particle swarm). Such methods perform better
in large parameter tuning ranges as compared to local optimization methods (pattern
search and simulation annealing). For this example, tune the FIS using the particle swarm
optimization method ('particleswarm').

To learn new rules, set the OptimizationType to 'learning'. Restrict the maximum
number of rules to 64. The number of tuned rules can be less than this limit, since the
tuning process removes duplicate rules.

options = tunefisOptions('Method','particleswarm',...
    'OptimizationType','learning', ...
    'NumMaxRules',64);

If you have Parallel Computing Toolbox™ software, you can improve the speed of the
tuning process by setting options.UseParallel to true. If you do not have Parallel
Computing Toolbox software, set options.UseParallel to false.

Set the maximum number of iterations to 20. To reduce training error in the rule learning
process, you can increase the number of iterations. However, using too many iterations
can overtune the FIS to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 20;

Since particle swarm optimization uses random search, to obtain reproducible results,
initialize the random number generator to its default configuration.

rng('default')

Tune the FIS using the specified tuning data and options.
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Learning rules using the tunefis function takes approximately 5 minutes. For this
example, enable tuning by setting runtunefis to true. To load pretrained results
without running tunefis, you can set runtunefis to false.

runtunefis = true;

Parameter settings can be empty when learning new rules. For more information, see
tunefis.

if runtunefis
    fisout1 = tunefis(fisin,[],trnX,trnY,options); 
else
    tunedfis = load('tunedfismpgprediction.mat'); %#ok<UNRCH>
    fisout1 = tunedfis.fisout1;
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisout1,trnX,trnY));
end

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100           7.008           9.256        0
    1             200           6.515           9.432        0
    2             300           6.515           9.214        1
    3             400           6.496            9.02        0
    4             500           6.495           9.008        0
    5             600           6.084           8.783        0
    6             700           5.889           8.795        0
    7             800           5.889           8.794        1
    8             900           5.134           8.463        0
    9            1000           5.134           8.676        1
   10            1100           5.134           8.609        2
   11            1200           5.134           8.244        3
   12            1300           5.134           8.365        4
   13            1400           5.134           8.054        5
   14            1500           5.134           8.112        6
   15            1600           5.134           7.703        7
   16            1700           4.932           7.326        0
   17            1800           4.554           7.113        0
   18            1900           4.554           6.702        1
   19            2000           4.452           6.377        0
   20            2100           4.452           6.235        1
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

The Best f(x) column shows the training root-mean-squared-error (RMSE).

View the structure of the tuned FIS, fisout1.
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plotfis(fisout1)

The learning process produces a set of new rules for the FIS. For example, view the
descriptions of the first three rules.

[fisout1.Rules(1:3).Description]' 

ans = 3×1 string array
    "Cylinder==mf2 & Disp==mf2 & Power==mf2 & Weight==mf2 & Year==mf2 => MPG=mf5 (1)"
    "Cylinder==mf1 & Power==mf2 & Weight==mf2 & Acceler==mf2 & Year==mf1 => MPG=mf63 (1)"
    "Cylinder==mf2 & Disp==mf1 & Acceler==mf2 => MPG=mf28 (1)"

The learned system should have similar RMSE performance for both the training and
validation data sets. To calculate the RMSE for the validation data set, evaluate fisout1
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using validation input data set vldX. To hide run-time warnings during evaluation, set all
the warning options to none.

Calculate the RMSE between the generated output data and the validation output data
set vldY.

plotActualAndExpectedResultsWithRMSE(fisout1,vldX,vldY)

Since the training and validation errors are similar, the learned system does not overfit
the training data.

Tune All Parameters
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After learning the new rules, tune the input/output MF parameters along with the
parameters of the learned rules. To obtain the tunable parameters of the FIS, use the
getTunableSettings function.

[in,out,rule] = getTunableSettings(fisout1);

To tune the existing FIS parameter settings without learning new rules, set the
OptimizationType to 'tuning'.

options.OptimizationType = 'tuning';

Since the FIS already learned rules using the training data, use a local optimization
method for fast convergence of the parameter values. For this example, use the pattern
search optimization method ('patternsearch').

options.Method = 'patternsearch';

Tuning the FIS parameters takes more iterations than the previous rule-learning step.
Therefore, increase the maximum number of iterations of the tuning process to 60. As in
the first tuning stage, you can reduce training errors by increasing the number of
iterations. However, using too many iterations can overtune the parameters to the
training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 60;

Tune the FIS parameters using the specified tunable settings, training data, and tuning
options.

Tuning parameter values with tunefis function takes approximately 5 minutes. To load
pretrained results without running tunefis, you can set runtunefis to false.

if runtunefis
    rng('default')
    fisout = tunefis(fisout1,[in;out;rule],trnX,trnY,options);
else
    fisout = tunedfis.fisout; %#ok<UNRCH>
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisout,trnX,trnY));
end

Iter     Func-count       f(x)      MeshSize     Method
    0           1        4.25857             1      
    1           2        4.23578             2     Successful Poll
    2           4        4.23562             4     Successful Poll
    3           5        4.23525             8     Successful Poll
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    4           6        4.23473            16     Successful Poll
    5           7        4.23324            32     Successful Poll
    6           8        4.23129            64     Successful Poll
    7          10        4.17603           128     Successful Poll
    8          14        4.16089           256     Successful Poll
    9          19        4.02839           512     Successful Poll
   10          22         3.8461          1024     Successful Poll
   11          28         3.7905          2048     Successful Poll
   12          34         3.7905          1024     Refine Mesh
   13          39        3.73343          2048     Successful Poll
   14          45        3.73343          1024     Refine Mesh
   15          53        3.73343           512     Refine Mesh
   16          57        3.72264          1024     Successful Poll
   17          65        3.72264           512     Refine Mesh
   18          73        3.71039          1024     Successful Poll
   19          81        3.71039           512     Refine Mesh
   20          91        3.70128          1024     Successful Poll
   21          99        3.70128           512     Refine Mesh
   22         110        3.70128           256     Refine Mesh
   23         114        3.69992           512     Successful Poll
   24         120        3.68807          1024     Successful Poll
   25         128        3.68807           512     Refine Mesh
   26         135         3.6867          1024     Successful Poll
   27         142         3.6867           512     Refine Mesh
   28         152        3.67888          1024     Successful Poll
   29         159        3.67888           512     Refine Mesh
   30         170        3.67888           256     Refine Mesh

Iter     Func-count        f(x)       MeshSize      Method
   31         176        3.67859           512     Successful Poll
   32         186        3.67859           256     Refine Mesh
   33         194         3.6466           512     Successful Poll
   34         203         3.6466           256     Refine Mesh
   35         206        3.64121           512     Successful Poll
   36         215        3.64121           256     Refine Mesh
   37         228         3.6412           512     Successful Poll
   38         237         3.6412           256     Refine Mesh
   39         254         3.6412           128     Refine Mesh
   40         273        3.47202           256     Successful Poll
   41         280        3.47067           512     Successful Poll
   42         289        3.47067           256     Refine Mesh
   43         303        3.38247           512     Successful Poll
   44         308        3.34678          1024     Successful Poll
   45         315        3.34678           512     Refine Mesh

 Tune Mamdani Fuzzy Inference System

3-41



   46         324        3.34678           256     Refine Mesh
   47         330        3.34482           512     Successful Poll
   48         339        3.34482           256     Refine Mesh
   49         347        3.32178           512     Successful Poll
   50         348        3.32027          1024     Successful Poll
   51         355        3.32027           512     Refine Mesh
   52         364        3.32027           256     Refine Mesh
   53         371        3.30488           512     Successful Poll
   54         380        3.30488           256     Refine Mesh
   55         395        3.30488           128     Refine Mesh
   56         402        3.28894           256     Successful Poll
   57         405        3.27455           512     Successful Poll
   58         414        3.27455           256     Refine Mesh
   59         429        3.27209           512     Successful Poll
   60         438        3.27209           256     Refine Mesh
   61         454        3.27209           128     Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

At the end of the tuning process, some of the tuned MF shapes are different than the
original ones.

figure
plotfis(fisout)

3 Fuzzy Inference System Tuning

3-42



Check Performance

Validate the performance of the tuned FIS, fisout, using the validation input data set
vldX.

Compare the expected MPG obtained from the validation output data set vldY and actual
MPG generated using fisout. Compute the RMSE between these results.

plotActualAndExpectedResultsWithRMSE(fisout,vldX,vldY);
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Tuning the FIS parameters improves the RMSE compared to the results from the initial
learned rule base. Since the training and validation errors are similar, the parameters
values are not overtuned.

Conclusion

You can further improve the training error of the tuned FIS by:

• Increasing number of iterations in both the rule-learning and parameter-tuning
phases. Doing so increases the duration of the optimization process and can also
increase validation error due to overtuned system parameters with the training data.

• Using global optimization methods, such as ga and particleswarm, in both rule-
learning and parameter-tuning phases. ga and particleswarm perform better for
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large parameter tuning ranges since they are global optimizers. On the other hand,
patternsearch and simulannealbnd perform better for small parameter ranges
since they are local optimizers. If a FIS is generated from training data with genfis
or a rule base is already added to a FIS using training data, then patternsearch and
simulannealbnd may produce faster convergence as compared to ga and
particleswarm. For more information on these optimization methods and their
options, see ga, particleswarm, patternsearch, and simulannealbnd.

• Changing the FIS properties, such as the type of FIS, number of inputs, number of
input/output MFs, MF types, and number of rules. For fuzzy systems with a large
number of inputs, a Sugeno FIS generally converges faster than a Mamdani FIS since
a Sugeno system has fewer output MF parameters (if constant MFs are used) and
faster defuzzification. Small numbers of MFs and rules reduce the number of
parameters to tune, producing a faster tuning process. Furthermore, a large number
of rules may overfit the training data. In general, for larger fuzzy systems, a FIS tree
can produce similar performance with a smaller number of rules as compared to a
single FIS. For an example, see “Tune FIS Tree for Gas Mileage Prediction” on page 3-
47.

• Modifying tunable parameter settings for MFs and rules. For example, you can tune
the support of a triangular MF without changing its peak location. Doing so reduces
the number of tunable parameters and can produce a faster tuning process for specific
applications. For rules, you can exclude zero MF indices by setting the AllowEmpty
tunable setting to false, which reduces the overall number of rules during the
learning phase.

Local Functions

function plotActualAndExpectedResultsWithRMSE(fis,x,y)

% Calculate RMSE bewteen actual and expected results
[rmse,actY] = calculateRMSE(fis,x,y);

% Plot results
figure
subplot(2,1,1)
hold on
bar(actY)
bar(y)
bar(min(actY,y),'FaceColor',[0.5 0.5 0.5])
hold off
axis([0 200 0 60])
xlabel("Validation input dataset index"),ylabel("MPG")
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legend(["Actual MPG" "Expected MPG" "Minimum of actual and expected values"],...
        'Location','NorthWest')
title("RMSE = " + num2str(rmse) + " MPG")

subplot(2,1,2)
bar(actY-y)
xlabel("Validation input dataset index"),ylabel("Error (MPG)")
title("Difference Between Actual and Expected Values")

end

function [rmse,actY] = calculateRMSE(fis,x,y)

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
    evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
        "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
end

% Evaluate FIS
actY = evalfis(fis,x,evalOptions);

% Calculate RMSE 
del = actY - y;
rmse = sqrt(mean(del.^2));

end

See Also
getTunableSettings | mamfis | tunefis

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune FIS Tree for Gas Mileage Prediction” on page 3-47
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Tune FIS Tree for Gas Mileage Prediction
This example shows how to tune parameters of a FIS tree, which is a collection of
connected fuzzy inference systems. This example uses particle swarm and pattern search
optimization, which require Global Optimization Toolbox™ software.

Automobile fuel consumption prediction in miles per gallon (MPG) is a typical nonlinear
regression problem. It uses several automobile profile attributes to predict fuel
consumption. The training data is available in the University of California at Irvine
Machine Learning Repository and contains data collected from automobiles of various
makes and models.

This example uses the following six input data attributes to predict the output data
attribute MPG with a FIS tree:

1 Number of cylinders
2 Displacement
3 Horsepower
4 Weight
5 Acceleration
6 Model year

Prepare Data

Load the data. Each row of the dataset obtained from the repository represents a
different automobile profile.

data = loadgas;

data contains 7 columns, where the first six columns contain the following input
attributes.

• Number of cylinders
• Displacement
• Horsepower
• Weight
• Acceleration
• Model year
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The seventh column contains the output attribute, MPG.

Create separate input and output data sets, X and Y, respectively.

X = data(:,1:6);
Y = data(:,7);

Partition the input and output data sets into training data (odd-indexed samples) and
validation data (even-indexed samples).

trnX = X(1:2:end,:); % Training input data set
trnY = Y(1:2:end,:); % Training output data set
vldX = X(2:2:end,:); % Validation input data set
vldY = Y(2:2:end,:); % Validation output data set

Extract the range of each data attribute, which you will use for input/output range
definition during FIS construction.

dataRange = [min(data)' max(data)'];

Construct a FIS Tree

For this example, construct a FIS tree using the following steps:

1 Rank the input attributes based on their correlations with the output attribute.
2 Create multiple FIS objects using the ranked input attributes.
3 Construct a FIS tree from the FIS objects.

Rank Inputs According to Correlation Coefficients

Calculate the correlation coefficients for the training data. In the final row of the
correlation matrix, the first six elements show the correlation coefficients between the six
put data attributes and the output attribute.

c1 = corrcoef(data);
c1(end,:)

ans = 1×7

   -0.7776   -0.8051   -0.7784   -0.8322    0.4233    0.5805    1.0000

The first four input attributes have negative values, and the last two input attributes have
positive values.
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Rank the input attributes that have negative correlations in descending order by the
absolute value of their correlation coefficients.

1 Weight
2 Displacement
3 Horsepower
4 Number of cylinders

Rank the input attributes that have positive correlations in descending order by the
absolute value of their correlation coefficients.

1 Model year
2 Acceleration

These rankings show that the weight and model year have the highest negative and
positive correlations with MPG, respectively.

Create Fuzzy Inference Systems

For this example, implement a FIS tree with the following structure.

The FIS tree uses multiple two-input-one-output FIS objects to reduce the total number of
rules used In the inference process. fis1, fis2, and fis3 directly take the input values
and generate intermediate MPG values, which are further combined using fis4 and fis5.

Input attributes with negative and positive correlation values are paired up to combine
both positive and negative effects on the output for prediction. The inputs are grouped
according to their ranks as follows:

 Tune FIS Tree for Gas Mileage Prediction

3-49



• Weight and model year
• Displacement and acceleration
• Horsepower and number of cylinders

The last group includes only inputs with negative correlation values since there are only
two inputs with positive correlation values.

This example uses Sugeno-type FIS objects for faster evaluation during the tuning
process as compared to Mamdani systems. Each FIS includes two inputs and one output,
where each input contains two default triangular membership functions (MFs), and the
output includes 4 default constant MFs. Specify the input and output ranges using the
corresponding data attribute ranges.

The first FIS combines the weight and model year attributes.

fis1 = sugfis('Name','fis1');
fis1 = addInput(fis1,dataRange(4,:),'NumMFs',2,'Name',"weight");
fis1 = addInput(fis1,dataRange(6,:),'NumMFs',2,'Name',"year");
fis1 = addOutput(fis1,dataRange(7,:),'NumMFs',4);

The second FIS combines the displacement and acceleration attributes.

fis2 = sugfis('Name','fis2');
fis2 = addInput(fis2,dataRange(2,:),'NumMFs',2,'Name',"displacement");
fis2 = addInput(fis2,dataRange(5,:),'NumMFs',2,'Name',"acceleration");
fis2 = addOutput(fis2,dataRange(7,:),'NumMFs',4);

The third FIS combines the horsepower and number of cylinder attributes.

fis3 = sugfis('Name','fis3');
fis3 = addInput(fis3,dataRange(3,:),'NumMFs',2,'Name',"horsepower");
fis3 = addInput(fis3,dataRange(1,:),'NumMFs',2,'Name',"cylinders");
fis3 = addOutput(fis3,dataRange(7,:),'NumMFs',4);

The fourth FIS combines the outputs of the first and second FIS.

fis4 = sugfis('Name','fis4');
fis4 = addInput(fis4,dataRange(7,:),'NumMFs',2);
fis4 = addInput(fis4,dataRange(7,:),'NumMFs',2);
fis4 = addOutput(fis4,dataRange(7,:),'NumMFs',4);

The final FIS combines the outputs of third and fourth FIS and generates the estimated
MPG. This FIS has the same input and output ranges as the fourth FIS.
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fis5 = fis4;
fis5.Name = 'fis5';
fis5.Outputs(1).Name = "mpg";

Construct FIS Tree

Connect the fuzzy systems (fis1, fis2, fis3, fis4, and fis5) according to the FIS tree
diagram.

fisTin = fistree([fis1 fis2 fis3 fis4 fis5],[ ...
    "fis1/output1" "fis4/input1"; ...
    "fis2/output1" "fis4/input2"; ...
    "fis3/output1" "fis5/input2"; ...
    "fis4/output1" "fis5/input1"])

fisTin = 
  fistree with properties:

                        FIS: [1×5 sugfis]
                Connections: [4×2 string]
                     Inputs: [6×1 string]
                    Outputs: "fis5/mpg"
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Tune FIS Tree with Training Data

Tuning is performed in two steps.

1 Learn the rule base while keeping the input and output MF parameters constant.
2 Tune the parameters of the input/output MFs and rules.

The first step is less computationally expensive due to the small number of rule
parameters, and it quickly converges to a fuzzy rule base during training. In the second
step, using the rule base from the first step as an initial condition provides fast
convergence of the parameter tuning process.

Learn Rules

To learn a rule base, first specify tuning options using a tunefisOptions object. Global
optimization methods (genetic algorithm or particle swarm) are suitable for initial
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training when all the parameters of a fuzzy system are untuned. For this example, tune
the FIS tree using the particle swarm optimization method ('particleswarm').

To learn new rules, set the OptimizationType to 'learning'. Restrict the maximum
number of rules to 4. The number of tuned rules of each FIS can be less than this limit,
since the tuning process removes duplicate rules.

options = tunefisOptions('Method','particleswarm',...
    'OptimizationType','learning', ...
    'NumMaxRules',4);

If you have Parallel Computing Toolbox™ software, you can improve the speed of the
tuning process by setting options.UseParallel to true. If you do not have Parallel
Computing Toolbox software, set options.UseParallel to false.

Set the maximum number of iterations to 50. To reduce training error in the rule learning
process, you can increase the number of iterations. However, using too many iterations
can overtune the FIS tree to the training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 50;

Since particle swarm optimization uses random search, to obtain reproducible results,
initialize the random number generator to its default configuration.

rng('default')

Tune the FIS tree using the specified tuning data and options. Set the input order of the
training data according to the FIS tree connections as follows: weight, year,
displacement, acceleration, horsepower, and cylinders.

inputOrders1 = [4 6 2 5 3 1];
orderedTrnX1 = trnX(:,inputOrders1);

Learning rules with tunefis function takes approximately 4 minutes. For this example,
enable tuning by setting runtunefis to true. To load pretrained results without running
tunefis, you can set runtunefis to false.

runtunefis = true;

Parameter settings can be empty when learning new rules. For more information, see
tunefis.

if runtunefis
    fisTout1 = tunefis(fisTin,[],orderedTrnX1,trnY,options);
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else
    tunedfis = load('tunedfistreempgprediction.mat'); %#ok<UNRCH>
    fisTout1 = tunedfis.fisTout1;
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisTout1,orderedTrnX1,trnY));
end

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100           5.697           12.63        0
    1             200           5.697           14.45        0
    2             300           5.222           12.26        0
    3             400           5.222           13.44        1
    4             500           5.222            12.9        2
    5             600           4.944           12.19        0
    6             700           4.944            12.2        1
    7             800           4.563           13.31        0
    8             900           4.563           12.92        1
    9            1000           4.563           12.06        2
   10            1100           4.563           13.32        3
   11            1200           4.563           11.82        4
   12            1300           4.563           13.04        5
   13            1400           4.563            12.2        6
   14            1500           4.563           11.94        7
   15            1600           4.563           11.33        8
   16            1700           4.563           10.71        9
   17            1800           4.538           11.39        0
   18            1900           4.538           11.27        1
   19            2000           4.538           11.32        2
   20            2100           4.538           11.26        3
   21            2200           4.538           11.07        4
   22            2300           4.538           10.53        5
   23            2400           4.538           10.15        6
   24            2500           4.538           10.66        7
   25            2600           4.452           10.28        0
   26            2700           4.408           10.42        0
   27            2800           4.243           9.661        0
   28            2900           4.061           9.153        0
   29            3000           4.061           9.849        1
   30            3100           4.024           9.029        0

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
   31            3200           4.024            9.91        1
   32            3300           4.024           8.847        2
   33            3400           3.996           8.684        0
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   34            3500           3.991           8.674        0
   35            3600           3.569           9.125        0
   36            3700           3.569           8.942        1
   37            3800           3.512            8.21        0
   38            3900           3.512           8.262        1
   39            4000           3.512           8.452        2
   40            4100           3.485           8.343        0
   41            4200           3.485           8.451        1
   42            4300           3.437            8.52        0
   43            4400           3.425           8.136        0
   44            4500           3.425           8.254        1
   45            4600           3.423           8.065        0
   46            4700           3.423             7.6        1
   47            4800           3.417           7.586        0
   48            4900           3.399           7.546        0
   49            5000           3.399           7.335        1
   50            5100           3.399           7.816        2
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

The Best f(x) column shows the training root-mean-squared-error (RMSE).

The learning process produces a set of new rules for the FIS tree.

fprintf("Total number of rules = %d\n",numel([fisTout1.FIS.Rules]));

Total number of rules = 17

The learned system should have similar RMSE performance for both the training and
validation data sets. To calculate the RMSE for the validation data set, evaluate fisout1
using validation input data set vldX. To hide run-time warnings during evaluation, set all
the warning options to none.

Calculate the RMSE between the generated output data and the validation output data
set vldY. Since the training and validation errors are similar, the learned system does not
overfit the training data.

orderedVldX1 = vldX(:,inputOrders1);
plotActualAndExpectedResultsWithRMSE(fisTout1,orderedVldX1,vldY)
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Tune All Parameters

After learning the new rules, tune the input/output MF parameters along with the
parameters of the learned rules. To obtain the tunable parameters of the FIS tree, use the
getTunableSettings function.

[in,out,rule] = getTunableSettings(fisTout1);

To tune the existing FIS tree parameter settings without learning new rules, set the
OptimizationType to 'tuning'.

options.OptimizationType = 'tuning';
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Since the FIS tree already learned rules using the training data, use a local optimization
method for fast convergence of the parameter values. For this example, use the pattern
search optimization method ('patternsearch').

options.Method = 'patternsearch';

Tuning the FIS tree parameters takes more iterations than the previous rule-learning
step. Therefore, increase the maximum number of iterations of the tuning process to 75.
As in the first tuning stage, you can reduce training errors by increasing the number of
iterations. However, using too many iterations can overtune the parameters to the
training data, increasing the validation errors.

options.MethodOptions.MaxIterations = 75;

Tune the FIS tree parameters using the specified tunable settings, training data, and
tuning options.

Tuning parameter values with tunefis function takes several minutes. To load
pretrained results without running tunefis, you can set runtunefis to false.

rng('default')
if runtunefis
    fisTout2 = tunefis(fisTout1,[in;out;rule],orderedTrnX1,trnY,options);
else
    fisTout2 = tunedfis.fisTout2; %#ok<UNRCH>
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisTout2,orderedTrnX1,trnY));
end

Iter     Func-count       f(x)      MeshSize     Method
    0           1        3.56396             1      
    1           2        3.56389             2     Successful Poll
    2           3        3.56374             4     Successful Poll
    3           4        3.56344             8     Successful Poll
    4           5        3.56285            16     Successful Poll
    5           6        3.56172            32     Successful Poll
    6           7         3.5596            64     Successful Poll
    7           8          3.556           128     Successful Poll
    8           9        3.55073           256     Successful Poll
    9          10         3.5431           512     Successful Poll
   10          17         3.5431           256     Refine Mesh
   11          27           3.54           512     Successful Poll
   12          34           3.54           256     Refine Mesh
   13          48           3.54           128     Refine Mesh
   14          50        3.53968           256     Successful Poll
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   15          55        3.53961           512     Successful Poll
   16          62        3.53961           256     Refine Mesh
   17          76        3.53961           128     Refine Mesh
   18          84        3.35952           256     Successful Poll
   19          86        3.35153           512     Successful Poll
   20          93        3.35078          1024     Successful Poll
   21          99        3.35078           512     Refine Mesh
   22         107        3.35078           256     Refine Mesh
   23         120        3.35078           128     Refine Mesh
   24         141        3.34063           256     Successful Poll
   25         150        3.33599           512     Successful Poll
   26         158        3.33599           256     Refine Mesh
   27         172        3.33599           128     Refine Mesh
   28         181        3.33546           256     Successful Poll
   29         194        3.33546           128     Refine Mesh
   30         217         3.3198           256     Successful Poll

Iter     Func-count        f(x)       MeshSize      Method
   31         230         3.3198           128     Refine Mesh
   32         240        3.31883           256     Successful Poll
   33         253        3.31883           128     Refine Mesh
   34         275        3.31883            64     Refine Mesh
   35         276          3.316           128     Successful Poll
   36         298          3.316            64     Refine Mesh
   37         321          3.316            32     Refine Mesh
   38         329        3.31085            64     Successful Poll
   39         347        3.30905           128     Successful Poll
   40         348        3.30398           256     Successful Poll
   41         361        3.30398           128     Refine Mesh
   42         383        3.30398            64     Refine Mesh
   43         408        3.30398            32     Refine Mesh
   44         460        3.30398            16     Refine Mesh
   45         467        3.30375            32     Successful Poll
   46         519        3.30375            16     Refine Mesh
   47         532        3.30329            32     Successful Poll
   48         584        3.30329            16     Refine Mesh
   49         598        3.28079            32     Successful Poll
   50         608        3.28036            64     Successful Poll
   51         630        3.27888           128     Successful Poll
   52         639        3.27672           256     Successful Poll
   53         652        3.27672           128     Refine Mesh
   54         672        3.27672            64     Refine Mesh
   55         697        3.27672            32     Refine Mesh
   56         750        3.27672            16     Refine Mesh
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   57         779        3.27535            32     Successful Poll
   58         832        3.27535            16     Refine Mesh
   59         863        3.27182            32     Successful Poll
   60         910        3.26985            64     Successful Poll

Iter     Func-count        f(x)       MeshSize      Method
   61         935        3.26985            32     Refine Mesh
   62         988        3.26985            16     Refine Mesh
   63        1064        3.26985             8     Refine Mesh
   64        1066        3.26957            16     Successful Poll
   65        1142        3.26957             8     Refine Mesh
   66        1155        3.26792            16     Successful Poll
   67        1231        3.26792             8     Refine Mesh
   68        1247        3.26139            16     Successful Poll
   69        1323        3.26139             8     Refine Mesh
   70        1421        3.26139             4     Refine Mesh
   71        1422        3.26118             8     Successful Poll
   72        1520        3.26118             4     Refine Mesh
   73        1522        3.26095             8     Successful Poll
   74        1620        3.26095             4     Refine Mesh
   75        1633        3.26094             8     Successful Poll
   76        1731        3.26094             4     Refine Mesh
Maximum number of iterations exceeded: increase options.MaxIterations.

At the end of the tuning process, the training error reduces compared to the previous
step.

Check Performance

Validate the performance of the tuned FIS tree, fisout2, using the validation input data
set vldX.

Compare the expected MPG obtained from the validation output data set vldY and actual
MPG generated using fisout2. Compute the RMSE between these results.

plotActualAndExpectedResultsWithRMSE(fisTout2,orderedVldX1,vldY)
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Tuning the FIS tree parameters improves the RMSE compared to the results from the
initial learned rule base. Since the training and validation errors are similar, the
parameters values are not overtuned.

Analyze Intermediate Data

To gain insight into the operation of your fuzzy tree, you can add the outputs of the
component fuzzy systems as outputs of your FIS tree. For this example, to access the
intermediate FIS outputs, add three additional outputs to the tuned FIS tree.

fisTout3 = fisTout2;
fisTout3.Outputs(end+1) = "fis1/output1";
fisTout3.Outputs(end+1) = "fis2/output1";
fisTout3.Outputs(end+1) = "fis3/output1";
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To generate the additional outputs, evaluate the augmented FIS tree, fisTout3.

actY = evaluateFIS(fisTout3,orderedVldX1);
figure,plot(actY(:,[2 3 4 1])),xlabel("Input dataset index"),ylabel("MPG"),axis([1 200 0 55])
legend(["Output of fis1" "Output of fis2" "Output of fis3" "Output of fis5"],...
    'Location','NorthEast','NumColumns',2)
title("Intermediate and Final Outputs")

The final output of the FIS tree (fis5 output) appears to be highly correlated with the
outputs of fis1 and fis3. To validate this assessment, check the correlation coefficients
of the FIS outputs.

c2 = corrcoef(actY(:,[2 3 4 1]));
c2(end,:)
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ans = 1×4

    0.9724    0.7935   -0.8156    1.0000

The last row of the correlation matrix shows that the outputs of fis1 and fis3 (first and
third column, respectively) have higher correlations with the final output as compared to
the output of fis2 (second column). This result indicates that simplifying the FIS tree by
removing fis2 and fis4 and can potentially produce similar training results compared
to the original tree structure.

Simplify and Retrain FIS Tree

Remove fis2 and fis4 from the FIS tree and connect the output of fis1 to the first
input of fis5. When you remove a FIS from a FIS tree, any existing connections to that
FIS are also removed.

fisTout3.FIS([2 4]) = [];
fisTout3.Connections(end+1,:) = ["fis1/output1" "fis5/input1"];
fis5.Inputs(1).Name = "fis1out";

To make the number of FIS tree outputs match the number of outputs in the training data,
remove the FIS tree outputs from fis1 and fis3.

fisTout3.Outputs(2:end) = [];

Update the input training data order according to the new FIS tree input configuration.

inputOrders2 = [4 6 3 1];
orderedTrnX2 = trnX(:,inputOrders2);
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Since the FIS tree configuration is changed, you must rerun both the learning and tuning
steps. In the learning phase, the existing rule parameters are also tuned to fit the new
configuration of the FIS tree.

options.Method = "particleswarm";
options.OptimizationType = "learning";
options.MethodOptions.MaxIterations = 50;

[~,~,rule] = getTunableSettings(fisTout3);

rng('default')
if runtunefis
    fisTout4 = tunefis(fisTout3,rule,orderedTrnX2,trnY,options);
else
    fisTout4 = tunedfis.fisTout4; %#ok<UNRCH>
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisTout4,orderedTrnX2,trnY));
end

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0             100           5.592           11.74        0
    1             200           5.592           13.89        0
    2             300           5.278           12.52        0
    3             400            4.84           11.89        0
    4             500            4.84           12.98        1
    5             600           3.803           11.59        0
    6             700           3.803           12.25        1
    7             800           3.803           11.88        2
    8             900           3.803           12.28        3
    9            1000            3.17           11.53        0
   10            1100            3.17           12.09        1
   11            1200            3.17           11.92        2
   12            1300            3.17           11.38        3
   13            1400            3.17           11.89        4
   14            1500            3.17           10.51        5
   15            1600            3.17           9.628        6
   16            1700            3.17           9.383        7
   17            1800            3.17           8.849        8
   18            1900            3.17            8.35        9
   19            2000            3.17           8.374       10
   20            2100           3.163           7.869        0
   21            2200           3.163           7.388        1
   22            2300           3.163            7.35        2
   23            2400           3.163           7.067        3
   24            2500           3.163           7.111        4
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   25            2600           3.163           6.967        5
   26            2700           3.085           6.565        0
   27            2800           3.004           6.608        0
   28            2900           3.004           6.321        1
   29            3000           2.983           6.008        0
   30            3100           2.983           5.986        1

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
   31            3200           2.983           6.467        2
   32            3300           2.983           5.947        3
   33            3400           2.977           5.921        0
   34            3500           2.977            5.44        1
   35            3600           2.977           5.796        2
   36            3700           2.977           5.591        3
   37            3800           2.977           5.492        4
   38            3900           2.977           5.521        5
   39            4000           2.977           5.628        6
   40            4100           2.977           5.931        7
   41            4200           2.943           5.258        0
   42            4300           2.943           5.904        1
   43            4400           2.943           6.198        2
   44            4500           2.929           5.612        0
   45            4600           2.929           5.587        1
   46            4700           2.929           5.715        2
   47            4800           2.929           5.525        3
   48            4900           2.929           5.506        4
   49            5000           2.929           5.336        5
   50            5100           2.929           5.493        6
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

In the training phase, the parameters of the membership function and rules are tuned.

options.Method = "patternsearch";
options.OptimizationType = "tuning";
options.MethodOptions.MaxIterations = 75;
[in,out,rule] = getTunableSettings(fisTout4);
rng('default')
if runtunefis
    fisTout5 = tunefis(fisTout4,[in;out;rule],orderedTrnX2,trnY,options);
else
    fisTout5 = tunedfis.fisTout5; %#ok<UNRCH>
    fprintf('Training RMSE = %.3f MPG\n',calculateRMSE(fisTout5,orderedTrnX2,trnY));
end
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Iter     Func-count       f(x)      MeshSize     Method
    0           1        2.92888             1      
    1           2        2.92888             2     Successful Poll
    2           3        2.92887             4     Successful Poll
    3           4        2.92884             8     Successful Poll
    4           5        2.92881            16     Successful Poll
    5           6        2.92879            32     Successful Poll
    6          14         2.9117            64     Successful Poll
    7          15        2.91093           128     Successful Poll
    8          22        2.90552           256     Successful Poll
    9          23        2.88691           512     Successful Poll
   10          29        2.88691           256     Refine Mesh
   11          37        2.88691           128     Refine Mesh
   12          38        2.88549           256     Successful Poll
   13          46        2.88549           128     Refine Mesh
   14          59        2.88549            64     Refine Mesh
   15          65        2.88521           128     Successful Poll
   16          78        2.88521            64     Refine Mesh
   17          80         2.8825           128     Successful Poll
   18          85        2.87991           256     Successful Poll
   19          93        2.87991           128     Refine Mesh
   20         106        2.87991            64     Refine Mesh
   21         119        2.87526           128     Successful Poll
   22         131        2.87526            64     Refine Mesh
   23         147        2.87526            32     Refine Mesh
   24         154        2.87514            64     Successful Poll
   25         170        2.87514            32     Refine Mesh
   26         180        2.86842            64     Successful Poll
   27         187        2.86722           128     Successful Poll
   28         200        2.86722            64     Refine Mesh
   29         207        2.86719           128     Successful Poll
   30         220        2.86719            64     Refine Mesh

Iter     Func-count        f(x)       MeshSize      Method
   31         235        2.86719            32     Refine Mesh
   32         236        2.86708            64     Successful Poll
   33         251        2.86708            32     Refine Mesh
   34         260        2.86638            64     Successful Poll
   35         261        2.86515           128     Successful Poll
   36         274        2.86515            64     Refine Mesh
   37         289        2.86515            32     Refine Mesh
   38         290        2.86501            64     Successful Poll
   39         305        2.86501            32     Refine Mesh
   40         336        2.86501            16     Refine Mesh
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   41         339        2.85839            32     Successful Poll
   42         370        2.85839            16     Refine Mesh
   43         374        2.85824            32     Successful Poll
   44         405        2.85824            16     Refine Mesh
   45         417        2.85823            32     Successful Poll
   46         448        2.85823            16     Refine Mesh
   47         490        2.85823             8     Refine Mesh
   48         491        2.85822            16     Successful Poll
   49         533        2.85822             8     Refine Mesh
   50         535        2.85806            16     Successful Poll
   51         547        2.85797            32     Successful Poll
   52         578        2.85797            16     Refine Mesh
   53         590        2.85796            32     Successful Poll
   54         621        2.85796            16     Refine Mesh
   55         663        2.85796             8     Refine Mesh
   56         664        2.85795            16     Successful Poll
   57         706        2.85795             8     Refine Mesh
   58         711         2.8579            16     Successful Poll
   59         753         2.8579             8     Refine Mesh
   60         759        2.85743            16     Successful Poll

Iter     Func-count        f(x)       MeshSize      Method
   61         771        2.85698            32     Successful Poll
   62         778        2.85633            64     Successful Poll
   63         785        2.85584           128     Successful Poll
   64         797        2.85584            64     Refine Mesh
   65         813        2.85584            32     Refine Mesh
   66         844        2.85584            16     Refine Mesh
   67         886        2.85584             8     Refine Mesh
   68         904        2.85548            16     Successful Poll
   69         905        2.85539            32     Successful Poll
   70         936        2.85539            16     Refine Mesh
   71         937        2.85538            32     Successful Poll
   72         968        2.85538            16     Refine Mesh
   73        1010        2.85538             8     Refine Mesh
   74        1026        2.85537            16     Successful Poll
   75        1068        2.85537             8     Refine Mesh
   76        1090        2.82832            16     Successful Poll
Maximum number of iterations exceeded: increase options.MaxIterations.

At the end of the tuning process, the FIS tree contains updated MF and rule parameter
values. The rule base size of the new FIS tree configuration is smaller than the previous
configuration.
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fprintf("Total number of rules = %d\n",numel([fisTout5.FIS.Rules]));

Total number of rules = 11

Check Performance of the Simplified FIS Tree

Evaluate the updated FIS tree using the four input attributes of the checking dataset.

orderedVldX2 = vldX(:,inputOrders2);
plotActualAndExpectedResultsWithRMSE(fisTout5,orderedVldX2,vldY)

The simplified FIS tree with four input attributes produces better results in terms of
RMSE as compared to the first configuration, which uses six input attributes. Therefore, it
shows that a FIS tree can be represented with fewer number of inputs and rules to
generalize the training data.
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Conclusion

You can further improve the training error of the tuned FIS tree by:

• Increasing number of iterations in both the rule-learning and parameter-tuning
phases. Doing so increases the duration of the optimization process and can also
increase validation error due to overtuned system parameters with the training data.

• Using global optimization methods, such as ga and particleswarm, in both rule-
learning and parameter-tuning phases. ga and particleswarm perform better for
large parameter tuning ranges since they are global optimizers. On the other hand,
patternsearch and simulannealbnd perform better for small parameter ranges
since they are local optimizers. If rules are already added to a FIS tree using training
data, then patternsearch and simulannealbnd may produce faster convergence
as compared to ga and particleswarm. For more information on these optimization
methods and their options, see ga, particleswarm, patternsearch, and
simulannealbnd.

• Changing the FIS properties, such as the type of FIS, number of inputs, number of
input/output MFs, MF types, and number of rules. For fuzzy systems with a large
number of inputs, a Sugeno FIS generally converges faster than a Mamdani FIS since
a Sugeno system has fewer output MF parameters (if constant MFs are used) and
faster defuzzification. Small numbers of MFs and rules reduce the number of
parameters to tune, producing a faster tuning process. Furthermore, a large number
of rules may overfit the training data.

• Modifying tunable parameter settings for MFs and rules. For example, you can tune
the support of a triangular MF without changing its peak location. Doing so reduces
the number of tunable parameters and can produce a faster tuning process for specific
applications. For rules, you can exclude zero MF indices by setting the AllowEmpty
tunable setting to false, which reduces the overall number of rules during the
learning phase.

• Changing FIS tree properties, such as number of fuzzy systems and connections
between the fuzzy systems.

• Using different ranking and grouping of the inputs to the FIS tree.

Local Functions

function plotActualAndExpectedResultsWithRMSE(fis,x,y)

% Calculate RMSE bewteen actual and expected results
[rmse,actY] = calculateRMSE(fis,x,y);
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% Plot results
figure
subplot(2,1,1)
hold on
bar(actY)
bar(y)
bar(min(actY,y),'FaceColor',[0.5 0.5 0.5])
hold off
axis([0 200 0 60])
xlabel("Validation input dataset index"),ylabel("MPG")
legend(["Actual MPG" "Expected MPG" "Minimum of actual and expected values"],...
    'Location','NorthWest')
title("RMSE = " + num2str(rmse) + " MPG")

subplot(2,1,2)
bar(actY-y)
xlabel("Validation input dataset index"),ylabel("Error (MPG)")
title("Difference Between Actual and Expected Values")

end

function [rmse,actY] = calculateRMSE(fis,x,y)

% Evaluate FIS
actY = evaluateFIS(fis,x);

% Calculate RMSE
del = actY - y;
rmse = sqrt(mean(del.^2));

end

function y = evaluateFIS(fis,x)

% Specify options for FIS evaluation
persistent evalOptions
if isempty(evalOptions)
    evalOptions = evalfisOptions("EmptyOutputFuzzySetMessage","none", ...
        "NoRuleFiredMessage","none","OutOfRangeInputValueMessage","none");
end

% Evaluate FIS
y = evalfis(fis,x,evalOptions);
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end

See Also
fistree | getTunableSettings | sugfis | tunefis

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Mamdani Fuzzy Inference System” on page 3-33
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Tune Fuzzy Systems using Custom Cost Function
This example shows how to tune a fuzzy inference system (FIS) using a custom cost
function. The example requires Global Optimization Toolbox™ software.

Problem Description

You use a custom cost function to learn robot navigation in a simulation environment. The
goal of the navigation task is to reach a specified target while avoiding obstacles. The
direction to the target is represented as a unit force vector (Ft) directed from the robot to
a target location. The obstacle avoidance direction is represented by a unit force vector
(Fo) directed towards the robot from the closest obstacle location.
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The robot, target, and obstacle are shown as circles with 0.5 m radius in the 25 m x 25 m
simulation environment. The navigation task is to combine the force vectors such that the
direction θ of the resultant force vector F provides a collision-free direction for the robot.

F = wFo + 1 −w Ft, where 0 ≤ w ≤ 1

θ = ∠F

This example assumes a robot with differential kinematics for the simulation. In other
words, the robot can rotate on its center without any constraints. However, to avoid sharp
turns, the change per time step in the robot direction is limited to − π

4 , π
4 . Therefore, if

the current robot heading direction is θr k , the next heading direction is calculated as:

θr k + 1 = θr k + min max θ− θr k , π
4 , − π

4 .

The weight w of the force vector Fo is calculated using function fw:

w = fw α, θt, o

where

• α =
do
dt

 is the ratio of the robot-to-obstacle distance (do) and the robot-to-target-
distance (dt)

• θt, o is the absolute difference between the target and obstacle directions with respect
to the robot

To achieve the navigation task, the function fw must generate high w values, that is, focus
on avoiding the obstacle when:

• Both the target and obstacle directions from the robot are similar (θt, o is low)

• The obstacle is closer to the robot than the target (α is low).

Otherwise, fw must generate low w values, that is, focus on reaching the target.
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The goal of this example is to design a FIS that learns fuzzy rules and optimizes the FIS
parameters to model the function fw for collision-free robot navigation in the simulation
environment.

Assumptions

The following assumptions apply for the robot simulation:

• The robot can perfectly localize in the simulation environment; that is, the robot
knows its current position in the simulation environment.

• The robot is equipped with perfect sensors to identify the obstacle and determine its
location.

• The robot has no dynamic constraints; that is, the robot can rotate and move as
commanded without any mechanical constraints. To avoid sharp turns, a soft
constraint is imposed on rotation, which limits the change per time step in the robot
heading to − π

4 , π
4 .

• The robot runs with a fixed speed. You can include additional fuzzy systems to control
the robot speed. For simplicity, this example uses a fixed speed for the robot.

Construct Fuzzy Systems

To model function fw, construct a FIS as shown in the following figure. For this example,
use a Mamdani FIS.

fisin = mamfis;

Add the following two inputs as shown in the previous figure.

• α — Ratio of distances, robot-to-obstacle / robot-to-target
• θt, o — Difference between target and obstacle directions

Set the range of the first input to [0,2], which indicates that α contributes to obstacle
avoidance when the obstacle distance is less than or equal to twice the target distance.
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Set the range of the second input to [0,pi/2], which indicates that θt, o contributes to
obstacle avoidance when the difference between the target and obstacle directions is less
than or equal to pi/2.

fisin = addInput(fisin,[0 2],'Name','alpha');
fisin = addInput(fisin,[0 pi/2],'Name','theta_t_o');

To minimize the number of rules, which corresponds to the number of combinations of
input membership functions, add two membership functions (MFs) to each input. To
generate similar membership values beyond the input ranges, use zmf (Z-shaped curve
membership function) and smf (S-shaped curve membership function) MFs. The tuning
process optimizes the input MF parameter values.

Add membership functions to the first input.

fisin = addMF(fisin,'alpha','zmf',[0 2],'Name','low');
fisin = addMF(fisin,'alpha','smf',[0 2],'Name','high');

Add membership functions to the second input.

fisin = addMF(fisin,'theta_t_o','zmf',[0 pi/2],'Name','low');
fisin = addMF(fisin,'theta_t_o','smf',[0 pi/2],'Name','high');

Add an output to the FIS or the obstacle force vector weight, restricting the weight values
to the range [0,1].

fisin = addOutput(fisin,[0 1],'Name','w');

Add two MFs to the output. You can add more MFs to the output for finer granularity of
output values. However, doing so increases the number of tuning parameters. The output
MFs also use zmf and smf to generate similar membership values beyond the input
ranges. The tuning process optimizes the output MF parameter values.

fisin = addMF(fisin,'w','zmf',[0 1],'Name','low');
fisin = addMF(fisin,'w','smf',[0 1],'Name','high');

View the FIS structure. Initially, the FIS has zero rules. The tuning process finds rules for
the fuzzy system.

figure
plotfis(fisin)
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Learn Rules and Optimize FIS Parameters

Since you do not have training data for this example, you simulate the robot navigation
using a custom cost function. The tuning process uses this custom cost function when
optimizing the FIS parameters.

For parameter optimization, obtain the parameter settings from the FIS.

[in,out] = getTunableSettings(fisin);

Next, create tuning options with OptimizationType set to learning. This example
uses the genetic algorithm (ga) optimization method for the tuning process. To improve
the speed of the tuning process, set the UseParallel option to true, which requires
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Parallel Computing Toolbox™ software. If you do not have Parallel Computing Toolbox
software, set UseParallel to false.

options = tunefisOptions('Method','ga','OptimizationType','learning');

Set the population size of the genetic algorithm to 200. The larger population size
increases the probability of generating a better solution in fewer generations.

options.MethodOptions.PopulationSize = 200;

Set the maximum number of generations to 25. To tune the parameters further, you can
set a higher number of generations. However, doing so increases the duration of the
tuning process and can overtune the parameter values.

options.MethodOptions.MaxGenerations = 25;

Set the locations of the obstacle, target, and robot for the training environments. Set the
initial heading of the robot to pi/2 for the training environment. To learn navigation both
with and without obstacle avoidance on the way to the target location, use two training
tasks with different obstacle locations.

trnObstacle = [3 12;13 18];
trnTarget = [13 22;13 22];
trnRobot = [13 2 pi/2;13 2 pi/2;];

showSimulationEnvironmentsForTraining(trnObstacle,trnTarget,trnRobot)

Specify the custom cost function using a function handle.

costFunction = @(fis)navigationCostFcn(fis,trnObstacle,trnTarget,trnRobot);

In the cost function, the robot navigation is simulated in the training environments using
each FIS from the population. Each navigation task is run for 100 iterations, where each
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iteration is equivalent to a decision cycle of length 1 s. The robot uses a fixed speed of 0.5
m/s throughout the navigation task. For more simulation details, see the
getNavigationResults function.

function cost = navigationCostFcn(fis,obstacle,target,robot)

cost = 0;

for i = 1:size(obstacle,1)

results =
getNavigationResults(fis,obstacle(i,:),target(i,:),robot(i,:));

cost = cost + getNavigationCost(results);

end

end

The cost of each navigation task is the total distance traveled by the robot. If the robot
does not reach the target or collides with the obstacle, a high cost value (200) is assigned
for the simulation.

function cost = getNavigationCost(results)

if results.notSafe || ~results.reachedTarget

cost = 200;

else

cost = results.travelledDistance;

end

end

Since genetic algorithm optimization uses random search, to obtain reproducible results,
initialize the random number generator to its default configuration.

rng('default')
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Learning rules using the tunefis function takes approximately 10 minutes. For this
example, enable tuning by setting runtunefis to true. To load pretrained results
without running tunefis, you can set runtunefis to false.

runtunefis = true;

Tune the FIS using the specified training environments and tuning options.

if runtunefis
    fisout = tunefis(fisin,[in;out],costFunction,options);
else
   tunedfis = load('tunedfisnavigation.mat');  %#ok<UNRCH>
   fisout = tunedfis.fisout;
end

                                  Best           Mean      Stall
Generation      Func-count        f(x)           f(x)    Generations
    1              400           219.5           389.5        0
    2              600           219.5           368.4        1
    3              800            49.5           350.3        0
    4             1000            48.5           322.7        0
    5             1200            48.5             289        1
    6             1400            45.5           259.8        0
    7             1600            40.5           243.1        0
    8             1800            40.5           224.3        1
    9             2000              40           205.5        0
   10             2200              40             187        1
   11             2400              40           176.1        2
   12             2600              40           180.8        0
   13             2800              40           189.3        1
   14             3000              40           167.5        2
   15             3200            39.5             167        0
   16             3400            39.5           137.4        1
   17             3600            39.5           125.5        2
   18             3800            39.5           109.9        3
   19             4000            39.5           92.45        0
   20             4200            39.5           95.89        1
   21             4400            39.5           96.73        0
   22             4600            39.5           95.67        1
   23             4800            39.5             110        2
   24             5000            39.5           107.4        3
   25             5200            39.5           100.2        0
Optimization terminated: maximum number of generations exceeded.

The tuned FIS produces the following robot trajectories in the simulation environments.
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showNavigationTrajectories(fisout,trnObstacle,trnTarget,trnRobot)

In the first case, the robot reaches the target with minimum distance since the obstacle is
not on the path to the target. In the second case, the robot successfully avoids the
obstacle and reaches the target.

View the structure of the tuned FIS, fisout.

figure,plotfis(fisout)
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The tuning process produces a set of new rules for the FIS.

fisout.Rules

ans = 
  1×5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
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                         Description                 
         ____________________________________________

    1    "alpha==low & theta_t_o==high => w=low (1)" 
    2    "alpha==low & theta_t_o==low => w=high (1)" 
    3    "theta_t_o==high => w=low (1)"              
    4    "alpha==high & theta_t_o==high => w=low (1)"
    5    "alpha==low => w=low (1)"                   

The rules are described as follows with respect to the expected behaviors of fw:

• Rule 1 is consistent with the expected behavior of fw. When the obstacle is not located
in front of the robot on the way to the target (θt, o is high) and the obstacle is close (α
is low), this rule produces low weight values.

• Rule 4 is also consistent with the expected behavior of fw. When the obstacle is not
located in front of the robot on the way to the target (θt, o is high) and the obstacle is
farther away (α is high), this rule produces low weight values.

• Rule 3 generates low weight values when the obstacle is not located in front of the
robot (θt, o is high), irrespective of the obstacle distance. This rule covers the
conditions for both rule 1 and rule 4. Therefore, rules 1 and 4 are redundant and can
be removed.

• Rule 2 is also consistent with the expected behavior of fw. When the obstacle is close
to the robot (α is low) and is located in front of the robot on the way to the target (θt, o
is low), this rule produces high weight values for the obstacle avoidance task.

• Rule 5 generates low weight values when the obstacle distance is low. This rule
contradicts rule 2 when θt, o is low. In this case, the output of rule 5 does not
contribute to the final output due to the high output values of rule 2. Therefore, rule 5
can also be removed.

Remove the redundant rules.

fisoutpruned = fisout;
fisoutpruned.Rules([1 4 5]) = [];
fisoutpruned.Rules

ans = 
  1×2 fisrule array with properties:

    Description
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    Antecedent
    Consequent
    Weight
    Connection

  Details:
                         Description                
         ___________________________________________

    1    "alpha==low & theta_t_o==low => w=high (1)"
    2    "theta_t_o==high => w=low (1)"             

fisout and fisoutpruned generate similar control surfaces. Therefore, only two rules
are necessary for obstacle avoidance in the simulation environment.

figure
subplot(1,2,1)
gensurf(fisout)
title('Output surface of fisout')
subplot(1,2,2)
gensurf(fisoutpruned)
title('Output surface of fisoutpruned')
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Check Performance

Validate the performance of the tuned FIS with different positions of the obstacle, robot,
and target. In the following validation cases, the robot successfully avoids the obstacle to
reach the target position using the tuned FIS.

vldObstacle = [13 5;10 10;8 8];
vldRobot = [5 12 0;5 20 -pi/2;19 19 -pi];
vldTarget = [23 12;15 4;5 5];

showNavigationTrajectories(fisoutpruned,vldObstacle,vldTarget,vldRobot)
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Conclusion

This example uses a custom cost function that simulates robot navigation in different
training environments to learn fuzzy rules and optimize the FIS parameter values for
collision-free navigation. You can Include more training environments to learn obstacle
avoidance in other scenarios, for example narrow corridor and U-shape obstacles. In
these scenarios, the robot may need additional navigation subtasks, such as wall following
and subtarget (intermediate landmark) reaching, for successful collision-free navigation
to the target. Complex environments also require additional terms in the cost calculation
for safe navigation. For example, in a narrow corridor the robot should stay in the middle;
that is, the distances to the obstacles on the left and right should be the same.

Using a custom cost function with tunefis provides the flexibility of simulating a custom
system with custom cost calculation. However, the tradeoff is a lengthy tuning process
due to the number of simulations required (for each set of optimized parameter values).
Therefore, if possible, to expedite the tuning process, use training data. For instance, the
tuning process in this example would run faster if input/output decision data of a human
operator was available for tuning the FIS.

Local Functions

function showSimulationEnvironment(obstacle,target,robot,navigationResults)

% Show the robot trajectory in the simulation environment.

% Radius of the robot, target, and obstacle.
radius = 1; % 1m

% Use 25mx25m simulation environment.
axis([0 25 0 25]);
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% Set equal aspect ratio.
pbaspect([1 1 1])

% Temporary plots to enable legends.
hold on
plot(robot(1),robot(2)+radius,'ob','LineWidth',radius*1,'MarkerFaceColor','b')
plot(robot(1),robot(2)+radius,'or','LineWidth',radius*1,'MarkerFaceColor','r')
plot(robot(1),robot(2)+radius,'og','LineWidth',radius*1,'MarkerFaceColor','g')
hold off

% Draw obstacle.
rectangle('Position',[obstacle(1)-0.5*radius obstacle(2)+0.5*radius radius radius],'Curvature',[1 1], ...
    'FaceColor','b','EdgeColor','b')

% Draw target.
rectangle('Position',[target(1)-0.5*radius target(2)+0.5*radius radius radius],'Curvature',[1 1], ...
    'FaceColor','r','EdgeColor','r')

% Draw robot.
rectangle('Position',[robot(1)-0.5*radius robot(2)+0.5*radius radius radius],'Curvature',[1 1], ...
    'FaceColor','g','EdgeColor','g')

% Add labels, title, and legends.
xlabel('x (m)'),ylabel('y (m)')
title('Simulation Environment for Robot Navigation')
legend(["Obstacle" "Target" "Robot"])

% Plot the robot trajectory if specified.
if nargin == 4
    x = navigationResults.x;
    y = navigationResults.y;
    for i = 1:numel(x)
        rectangle('Position',[x(i)-0.5*radius y(i)+0.5*radius radius radius], ...
            'Curvature',[1 1],'FaceColor','g','EdgeColor','g')
    end
end

end

function showSimulationEnvironmentsForTraining(obstacle,target,robot)

% Show simulation environments for training.
drawEnvironmentAndShowTrajectory(obstacle,target,robot,'Training Task')
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end

function showNavigationTrajectories(fis,obstacle,target,robot)

% Show robot trajectories in the simulation environments.
drawEnvironmentAndShowTrajectory(obstacle,target,robot,'Navigation Task',fis)

end

function drawEnvironmentAndShowTrajectory(obstacle,target,robot,plotTitle,varargin)

% Expand figure horizontally to tile the simulation environments.
h = figure;
h.Position = [h.Position(1:2) 3*h.Position(3) h.Position(4)];
numTasks = size(target,1);

% Draw each simulation environment.
for i = 1:numTasks
    o = obstacle(i,:);
    t = target(i,:);
    r = robot(i,:);
    subplot(1,numTasks,i)
    if ~isempty(varargin)
        results = getNavigationResults(varargin{1},o,t,r);
        showSimulationEnvironment(o,t,r,results)
    else
        showSimulationEnvironment(o,t,r)
    end
    title([plotTitle ': ' num2str(i)])
end

end

See Also
getTunableSettings | mamfis | tunefis

More About
• “Tuning Fuzzy Inference Systems” on page 3-2
• “Tune Mamdani Fuzzy Inference System” on page 3-33
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Neuro-Adaptive Learning and ANFIS

When to Use Neuro-Adaptive Learning
The basic structure of Mamdani fuzzy inference system is a model that maps input
characteristics to input membership functions, input membership functions to rules, rules
to a set of output characteristics, output characteristics to output membership functions,
and the output membership functions to a single-valued output or a decision associated
with the output. Such a system uses fixed membership functions that are chosen
arbitrarily and a rule structure that is essentially predetermined by the user's
interpretation of the characteristics of the variables in the model.

anfis and the Neuro-Fuzzy Designer apply fuzzy inference techniques to data
modeling. As you have seen from the other fuzzy inference GUIs, the shape of the
membership functions depends on parameters, and changing these parameters change
the shape of the membership function. Instead of just looking at the data to choose the
membership function parameters, you choose membership function parameters
automatically using these Fuzzy Logic Toolbox applications.

Suppose you want to apply fuzzy inference to a system for which you already have a
collection of input/output data that you would like to use for modeling, model-following,
or some similar scenario. You do not necessarily have a predetermined model structure
based on characteristics of variables in your system.

In some modeling situations, you cannot discern what the membership functions should
look like simply from looking at data. Rather than choosing the parameters associated
with a given membership function arbitrarily, these parameters could be chosen so as to
tailor the membership functions to the input/output data in order to account for these
types of variations in the data values. In such cases, you can use the Fuzzy Logic Toolbox
neuro-adaptive learning techniques incorporated in the anfis command.

Model Learning and Inference Through ANFIS
The neuro-adaptive learning method works similarly to that of neural networks. Neuro-
adaptive learning techniques provide a method for the fuzzy modeling procedure to learn
information about a data set. Fuzzy Logic Toolbox software computes the membership
function parameters that best allow the associated fuzzy inference system to track the
given input/output data. The Fuzzy Logic Toolbox function that accomplishes this
membership function parameter adjustment is called anfis. The anfis function can be
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accessed either from the command line or through the Neuro-Fuzzy Designer. Because
the functionality of the command line function anfis and the Neuro-Fuzzy Designer is
similar, they are used somewhat interchangeably in this discussion, except when
specifically describing the Neuro-Fuzzy Designer app.

What Is ANFIS?

The acronym ANFIS derives its name from adaptive neuro-fuzzy inference system. Using
a given input/output data set, the toolbox function anfis constructs a fuzzy inference
system (FIS) whose membership function parameters are tuned (adjusted) using either a
back propagation algorithm alone or in combination with a least squares type of method.
This adjustment allows your fuzzy systems to learn from the data they are modeling.

FIS Structure and Parameter Adjustment

A network-type structure similar to that of a neural network, which maps inputs through
input membership functions and associated parameters, and then through output
membership functions and associated parameters to outputs, can be used to interpret the
input/output map.

The parameters associated with the membership functions changes through the learning
process. The computation of these parameters (or their adjustment) is facilitated by a
gradient vector. This gradient vector provides a measure of how well the fuzzy inference
system is modeling the input/output data for a given set of parameters. When the gradient
vector is obtained, any of several optimization routines can be applied in order to adjust
the parameters to reduce some error measure. This error measure is usually defined by
the sum of the squared difference between actual and desired outputs. anfis uses either
back propagation or a combination of least squares estimation and back propagation for
membership function parameter estimation.

Know Your Data

The modeling approach used by anfis is similar to many system identification
techniques. First, you hypothesize a parameterized model structure (relating inputs to
membership functions to rules to outputs to membership functions, and so on). Next, you
collect input/output data in a form that will be usable by anfis for training. You can then
use anfis to train the FIS model to emulate the training data presented to it by
modifying the membership function parameters according to a chosen error criterion.

In general, this type of modeling works well if the training data presented to anfis for
training (estimating) membership function parameters is fully representative of the
features of the data that the trained FIS is intended to model. In some cases however,
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data is collected using noisy measurements, and the training data cannot be
representative of all the features of the data that will be presented to the model. In such
situations, model validation is helpful.
Model Validation Using Testing and Checking Data Sets

Model validation is the process by which the input vectors from input/output data sets on
which the FIS was not trained, are presented to the trained FIS model, to see how well
the FIS model predicts the corresponding data set output values.

One problem with model validation for models constructed using adaptive techniques is
selecting a data set that is both representative of the data the trained model is intended
to emulate, yet sufficiently distinct from the training data set so as not to render the
validation process trivial.

If you have collected a large amount of data, hopefully this data contains all the necessary
representative features, so the process of selecting a data set for checking or testing
purposes is made easier. However, if you expect to be presenting noisy measurements to
your model, it is possible the training data set does not include all of the representative
features you want to model.

The testing data set lets you check the generalization capability of the resulting fuzzy
inference system. The idea behind using a checking data set for model validation is that
after a certain point in the training, the model begins overfitting the training data set. In
principle, the model error for the checking data set tends to decrease as the training
takes place up to the point that overfitting begins, and then the model error for the
checking data suddenly increases. Overfitting is accounted for by testing the FIS trained
on the training data against the checking data, and choosing the membership function
parameters to be those associated with the minimum checking error if these errors
indicate model overfitting.

Usually, these training and checking data sets are collected based on observations of the
target system and are then stored in separate files.

In the first example, two similar data sets are used for checking and training, but the
checking data set is corrupted by a small amount of noise. This example illustrates of the
use of the Neuro-Fuzzy Designer with checking data to reduce the effect of model
overfitting. In the second example, a training data set that is presented to anfis is
sufficiently different than the applied checking data set. By examining the checking error
sequence over the training period, it is clear that the checking data set is not good for
model validation purposes. This example illustrates the use of the Neuro-Fuzzy
Designer to compare data sets.
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• “Test Data Against Trained System” on page 3-102
• “Save Training Error Data to MATLAB Workspace” on page 3-119
• “Predict Chaotic Time-Series using ANFIS” on page 3-127
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Comparison of anfis and Neuro-Fuzzy Designer
Functionality

This topic discusses the arguments and range components of the command-line function
anfis and the analogous functionality of the Neuro-Fuzzy Designer.

You can configure the training options for the anfis command using an anfisOptions
option set.

opt = anfisOptions;
[fismat1,trnError,ss,fismat2,chkError] = anfis(trnData,opt);

where trnData is the training data. To use default training options, omit opt. You can
modify the default option set using dot notation. For more information on the available
options and their default values, see the anfisOptions reference page. All output
arguments other than fismat1, the tuned fuzzy system, are optional.

When you open the Neuro-Fuzzy Designer, only the training data set must exist before
implementing anfis. In addition, the step-size is fixed when the adaptive neuro-fuzzy
system is trained using this app.

Training Data
The training data, trnData, is a required argument to anfis, and to the Neuro-Fuzzy
Designer. Each row of trnData is a desired input/output pair of the target system you
want to model. Each row starts with an input vector and is followed by an output value.
Therefore, the number of rows of trnData is equal to the number of training data pairs.
Since there is only one output, the number of columns of trnData is equal to the number
of inputs plus one.

Input FIS Object
You can define the FIS object to tune using the opt.InitialFIS training option. You can
create this object using:

• The Fuzzy Logic Designer
• The Membership Function Editor
• The Rule Editor from the Neuro-Fuzzy Designer (which allows an FIS object to be

loaded from a file or the MATLAB workspace)
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• The command-line function, genfis (for which you only specify numbers and types of
membership functions)

The FIS object contains both the model structure (which specifies such items as the
number of rules in the FIS and the number of membership functions for each input) and
the parameters (which specify the shapes of membership functions).

There are two methods that anfis learning employs for updating membership function
parameters, which you can select using the opt.OptimizationMethod training option:

• Backpropagation for all parameters (a steepest descent method)
• A hybrid method consisting of backpropagation for the parameters associated with the

input membership functions, and least squares estimation for the parameters
associated with the output membership functions

As a result, the training error decreases, at least locally, throughout the learning process.
Therefore, the more the initial membership functions resemble the optimal ones, the
easier it is for the model parameter training to converge. Human expertise about the
target system to be modeled can aid in setting up these initial membership function
parameters in the FIS object.

The genfis function, when used with grid partitioning, produces an FIS object based on
a fixed number of membership functions. This object can cause an excessive number of
rules when the number of inputs is moderately large; that is, more than four or five. Fuzzy
Logic Toolbox software offers a method that provides for some dimension reduction in the
fuzzy inference system: you can generate an FIS object using the clustering algorithm
discussed in “Subtractive Clustering” on page 4-3. To use the clustering algorithm, you
must select the Sub. Clustering option in the Generate FIS portion of the Neuro-Fuzzy
Designer before the FIS is generated. This subtractive clustering method partitions the
data into clusters, and generates an FIS with the minimum number of rules required to
distinguish the fuzzy qualities associated with each clusters.

Training Options
The Neuro-Fuzzy Designer allows you to choose your desired error tolerance and
number of training epochs.

For anfis command, you can specify training the training termination condition and
gradient descent step size. To specify the following options, first create a default
anfisOptions option set, opt. You can then modify the options using dot notation.
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• opt.EpochNumber — Number of training epochs (default = 10)
• opt.ErrorGoal — Training error goal (default = 0)
• opt.InitialStepSize — Initial step-size (default = 0.01)
• opt.StepSizeDecreaseRate — Step-size decrease rate (default = 0.9)
• opt.StepSizeIncreaseRate — Step-size increase rate (default = 1.1)

If you do not modify an option in opt, the default value is used. The training process stops
if the designated epoch number is reached or the error goal is achieved, whichever comes
first.

Usually, the step-size profile is a curve that increases initially, reaches some maximum,
and then decreases for the remainder of the training. You achieve this ideal step-size
profile by adjusting the initial step-size and the increase and decrease rates
(opt.InitialStepSize, opt.StepSizeDecreaseRate,
opt.StepSizeIncreaseRate). The default values are configured to cover a wide range
of learning tasks. For any specific application, you can modify these step-size options to
optimize the training. However, there are no user-specified step-size options for training
the adaptive neuro-fuzzy inference system generated using the Neuro-Fuzzy Designer.

Display Options
Display options apply only to the command-line function anfis. You can specify what
training progress information to display in the MATLAB Command Window. As with the
training options, you specify the display options using the anfisOptions option set,
opt . For each display option, if you specify a value of 1 (the default value), the
corresponding data is displayed. Specifying a value of 0 suppresses the display:

• opt.DisplayANFISInformation — Display ANFIS information at the start of
training

• opt.DisplayErrorValues — Display the training error at each epoch
• opt.DisplayStepSize — Display the step-size each time it changes.
• opt.DisplayFinalResults — Display the final training error and validation error

Method
Both the Neuro-Fuzzy Designer and the command-line anfis apply either a
backpropagation form of the steepest descent method for membership function
parameter estimation, or a hybrid combination of backpropagation and the least-squares
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methods. The choices for this argument are hybrid or backpropagation. To specify the
training method for the anfis function, use the opt.OptimizationMethod training
option as either 1 (hybrid) or 0 (backpropagation).

Output FIS Object for Training Data
fismat1 is the output FIS object corresponding to the minimum training error. This FIS
object is the one that you use to represent the fuzzy system when there is no checking
data used for model cross-validation. fismat1 corresponds to the FIS object that the
Neuro-Fuzzy Designer saves when the checking data option is not used. For more
information on cross-validation using checking data, see “Checking Data” on page 3-95.

Training Error
The training error is the difference between the training data output value, and the
output of the fuzzy inference system corresponding to the same training data input value
(the one associated with that training data output value). The training error trnError
records the root mean squared error (RMSE) of the training data set at each epoch.
fismat1 is the snapshot of the FIS object when the training error measure is at its
minimum.

The Neuro-Fuzzy Designer plots the training error versus epochs curve as the system is
trained.

Step-Size
You cannot control the step-size options with the Neuro-Fuzzy Designer. Using the
command-line anfis, the step-size array ss records the step-size during the training.
Plotting ss gives the step-size profile, which serves as a reference for adjusting the initial
step-size (opt.InitialStepSize) and the corresponding decrease and increase rates.
The step-size for the command-line function anfis is updated according to the following
guidelines:

• If the error undergoes four consecutive reductions, increase the step-size by
multiplying it by a constant (opt.StepSizeIncreaseRate) greater than one.

• If the error undergoes two consecutive combinations of one increase and one
reduction, decrease the step-size by multiplying it by a constant
(opt.StepSizeDecreaseRate) less than one.
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The default value for the initial step-size is 0.01; the default values for
opt.StepSizeIncreaseRate and opt.StepSizeDecreaserate are 1.1 and 0.9,
respectively.

Checking Data
The checking data, opt.ValidationData, is used for testing the generalization
capability of the fuzzy inference system at each epoch. The checking data has the same
format as the training data, and its elements are distinct from those of the training data.

The checking data is important for learning tasks for which the input number is large or
the data itself is noisy. A fuzzy inference system should track a given input/output data set
well. Because the model structure used for anfis is fixed with a large number of
parameters, there is a tendency for the model to overfit the data on which it is trained,
especially for many training epochs. If overfitting does occur, the fuzzy inference system
may not respond well to other independent data sets, especially if they are noisy. A
validation or checking data set can be useful for these situations. This data set is used to
cross-validate the fuzzy inference model. This cross-validation requires applying the
checking data to the model and then seeing how well the model responds to this data.

When the checking data option is used with anfis, either via the command line, or using
the Neuro-Fuzzy Designer, the checking data is applied to the model at each training
epoch. When the command-line anfis is invoked, the model parameters that correspond
to the minimum checking error are returned via the output argument fismat2. When
both training and checking data are loaded, the FIS membership function parameters
computed using the Neuro-Fuzzy Designer are associated with the training epoch that
has a minimum checking error.

The use of the minimum checking data error epoch to set the membership function
parameters assumes the checking data:

• Is similar enough to the training data that the checking data error decreases as the
training begins.

• Increases at some point in the training after the data overfitting occurs.

For information on using checking data, see “Checking Data Does Not Validate Model” on
page 3-113.
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Output FIS Object for Checking Data
The output of the command-line anfis, fismat2, is the output FIS object with the
minimum checking error. This FIS object is the one that you should use for further
calculation if checking data is used for cross-validation. fismat2 is only returned if you
specify validation data using opt.ValidationData.

fismat2 corresponds to the FIS object that the Neuro-Fuzzy Designer saves when the
checking data option is used.

Checking Error
The checking error is the difference between the checking data output value, and the
output of the fuzzy inference system corresponding to the same checking data input
value, which is the one associated with that checking data output value. The checking
error chkError records the RMSE for the checking data at each epoch. fismat2 is the
snapshot of the FIS object when the checking error is at its minimum. chkError is only
returned if you specify validation data using opt.ValidationData.

The Neuro-Fuzzy Designer plots the checking error versus epochs curve as the system
is trained.
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Train Adaptive Neuro-Fuzzy Inference Systems
This example shows how to create, train, and test Sugeno-type fuzzy systems using the
Neuro-Fuzzy Designer.

To start the app, type the following command at the MATLAB prompt:

neuroFuzzyDesigner

The Neuro-Fuzzy Designer includes four distinct areas to support a typical workflow.
The app lets you perform the following tasks:

1 “Loading, Plotting, and Clearing the Data” on page 3-98
2 “Generating or Loading the Initial FIS Structure” on page 3-99
3 “Training the FIS” on page 3-100
4 “Validating the Trained FIS” on page 3-100

Access the online help topics by clicking Help in the Neuro-Fuzzy Designer.
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Loading, Plotting, and Clearing the Data
To train an FIS, you must begin by loading a Training data set that contains the desired
input/output data of the system to be modeled. Any data set you load must be an array
with the data arranged as column vectors, and the output data in the last column.
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You can also load Testing and Checking data in the designer. For more information on
testing and checking data sets, see “Model Validation Using Testing and Checking Data
Sets” on page 3-88.

To load a data set using the Load data portion of the designer:

1 Specify the data Type.
2 Select the data from a file or the MATLAB worksp.
3 Click Load Data.

After you load the data, it displays in the plot. The training, testing and checking data are
annotated in blue as circles, diamonds, and pluses respectively.

To clear a specific data set from the designer:

1 In the Load data area, select the data Type.
2 Click Clear Data.

This action also removes the corresponding data from the plot.

Generating or Loading the Initial FIS Structure
Before you start the FIS training, you must specify an initial FIS model structure. To
specify the model structure, perform one of the following tasks:

• Load a previously saved Sugeno-type FIS structure from a file or the MATLAB
workspace.

• Generate the initial FIS model by choosing one of the following partitioning
techniques:

• Grid partition— Generates a single-output Sugeno-type FIS by using grid
partitioning on the data.

• Sub. clustering — Generates an initial model for ANFIS training by first applying
subtractive clustering on the data.

To view a graphical representation of the initial FIS model structure, click Structure.
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Training the FIS
After loading the training data and generating the initial FIS structure, you can start
training the FIS.

Tip If you want to save the training error generated during ANFIS training to the
MATLAB workspace, see “Save Training Error Data to MATLAB Workspace” on page 3-
119.

The following steps show you how to train the FIS.

1 In Optim. Method, choose hybrid or backpropaga as the optimization method.

The optimization methods train the membership function parameters to emulate the
training data.

Note The hybrid optimization method is a combination of least-squares and
backpropagation gradient descent method.

2 Enter the number of training Epochs and the training Error Tolerance to set the
stopping criteria for training.

The training process stops whenever the maximum epoch number is reached or the
training error goal is achieved.

3 Click Train Now to train the FIS.

This action adjusts the membership function parameters and displays the error plots.

Examine the error plots to determine overfitting during the training. If you notice the
checking error increasing over iterations, it indicates model overfitting. For examples on
model overfitting, see “Checking Data Helps Model Validation” on page 3-102 and
“Checking Data Does Not Validate Model” on page 3-113.

Validating the Trained FIS
After the FIS is trained, validate the model using a Testing or Checking data that differs
from the one you used to train the FIS. To validate the trained FIS:

1 Select the validation data set and click Load Data.
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2 Click Test Now.

This action plots the test data against the FIS output (shown in red) in the plot.

For more information on the use of testing data and checking data for model validation,
see “Model Validation Using Testing and Checking Data Sets” on page 3-88.
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Test Data Against Trained System

Checking Data Helps Model Validation
In this section, we look at an example that loads similar training and checking data sets.
The checking data set is corrupted by noise.

1 “Loading Data” on page 3-102
2 “Initializing and Generating Your FIS” on page 3-106
3 “Viewing Your FIS Structure” on page 3-108
4 “ANFIS Training” on page 3-110
5 “Testing Your Data Against the Trained FIS” on page 3-112

Loading Data

To work both of the following examples, you load the training data sets (fuzex1trnData
and fuzex2trnData) and the checking data sets (fuzex1chkData and
fuzex2chkData), into the Neuro-Fuzzy Designer from the workspace. You may also
substitute your own data sets.

To load the data sets from the workspace into the Neuro-Fuzzy Designer:

1 Type the following commands at the MATLAB command line to load the data sets into
the MATLAB workspace:

load fuzex1trnData.dat
load fuzex2trnData.dat
load fuzex1chkData.dat
load fuzex2chkData.dat

2 Open the Neuro-Fuzzy Designer by typing neuroFuzzyDesigner in the MATLAB
command line.

3 To load the training data set from the workspace:

a In the Load data portion of the designer, select the following options:

• Type: Training
• From: worksp

b Click Load Data to open the Load from workspace dialog box.
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c Type fuzex1trnData as shown in the following figure, and click OK.

The training data set is used to train a fuzzy system by adjusting the membership
function parameters that best model this data, and appears in the plot in the
center of the app as a set of circles.
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The horizontal axis is marked data set index. This index indicates the row from
which that input data value was obtained (whether or not the input is a vector or
a scalar).

4 To load the checking data set from the workspace:

a In the Load data section, select Checking in the Type column.
b Click Load Data to open the Load from workspace dialog box.
c Type fuzex1chkData as the variable name and click OK.
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The checking data appears in the plot as pluses superimposed on the training
data.

The next step is to specify an initial fuzzy inference system for anfis to train.
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Initializing and Generating Your FIS

You can either initialize the FIS parameters to your own preference, or if you do not have
any preference for how you want the initial membership functions to be parameterized,
you can let anfis initialize the parameters for you, as described in the following sections:

• “Automatic FIS Structure Generation” on page 3-106
• “Specifying Your Own Membership Functions for ANFIS” on page 3-107

Automatic FIS Structure Generation

To initialize your FIS using anfis:

1 Choose Grid partition, the default partitioning method. The two partition methods,
grid partitioning and subtractive clustering, are described in genfis.

2 Click Generate FIS . Clicking this button displays a menu from which you can
choose the number of membership functions, MFs, and the type of input and output
membership functions. There are only two choices for the output membership
function: constant and linear. This limitation of output membership function
choices is because anfis only operates on Sugeno-type systems.

3 Fill in the entries as shown in the following figure, and click OK.
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You can also implement this FIS generation from the command line using genfis.

Specifying Your Own Membership Functions for ANFIS

You can choose your own preferred membership functions with specific parameters to be
used by anfis as an initial FIS for training.

To define your own FIS structure and parameters:

1 Open the Membership functions menu item from the Edit menu.
2 Add your desired membership functions (the custom membership option will be

disabled for anfis). The output membership functions must either be all constant or
all linear. For carrying out this and the following step, see “The Fuzzy Logic
Designer” on page 2-17 and “The Membership Function Editor” on page 2-22.
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3 Select the Rules menu item in the Edit menu, and use the Rule Editor to generate
the rules (see “The Rule Editor” on page 2-30).

4 Select the FIS Properties menu item from the Edit menu. Name your FIS, and save
it to either the workspace or to file.

5 Click the Close button to return to the Neuro-Fuzzy Designer to train the FIS.
6 To load an existing FIS for ANFIS initialization, in the Generate FIS portion of the

designer, click Load from worksp or Load from file. You load your FIS from a file if
you have saved an FIS previously that you would like to use. Otherwise you load your
FIS from the workspace.

Viewing Your FIS Structure

After you generate the FIS, you can view the model structure by clicking the Structure
button in the middle of the right side of the editor. A new editor appears, as follows.
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The branches in this graph are color coded. Color coding of branches characterize the
rules and indicate whether or not and, not, or or are used in the rules. The input is
represented by the left-most node and the output by the right-most node. The node
represents a normalization factor for the rules. Clicking on the nodes indicates
information about the structure.

You can view the membership functions or the rules by opening either the Membership
Function Editor, or the Rule Editor from the Edit menu.
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ANFIS Training

The two anfis parameter optimization method options available for FIS training are
hybrid (the default, mixed least squares and backpropagation) and backpropa
(backpropagation). Error Tolerance is used to create a training stopping criterion, which
is related to the error size. The training will stop after the training data error remains
within this tolerance. This is best left set to 0 if you are unsure how your training error
may behave.

Note If you want to save the training error data generated during ANFIS training to the
MATLAB workspace, you must train the FIS at the command line. For an example, “Save
Training Error Data to MATLAB Workspace” on page 3-119.

To start the training:

1 Leave the optimization method at hybrid.
2 Set the number of training Epochs to 40 (the default value is 3).
3 Select Train Now.

The following window appears on your screen.
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The plot shows the checking error as ♦ ♦ on the top . The training error appears as *
* on the bottom. The checking error decreases up to a certain point in the training,
and then it increases. This increase represents the point of model overfitting. anfis
chooses the model parameters associated with the minimum checking error (just
prior to this jump point). This example shows why the checking data option of anfis
is useful.
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Testing Your Data Against the Trained FIS

To test your FIS against the checking data, select Checking data in the Test FIS portion
of the Neuro-Fuzzy Designer, and click Test Now. When you test the checking data
against the FIS, it looks satisfactory.
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Loading More Data with anfis

If you load data into anfis after clearing previously loaded data, you must make sure
that the newly loaded data sets have the same number of inputs as the previously loaded
ones did. Otherwise, you must start a new Neuro-Fuzzy Designer session from the
command line.

Checking Data Option and Clearing Data

If you do not want to use the checking data option of anfis, then do not load any
checking data before you train the FIS. If you decide to retrain your FIS with no checking
data, you can unload the checking data in one of two ways:

• Select the Checking option button in the Load data portion of the Neuro-Fuzzy
Designer, and then click Clear Data to unload the checking data.

• Close the Neuro-Fuzzy Designer, and go to the MATLAB command line, and retype
neuroFuzzyDesigner. In this case you must reload the training data.

After clearing the data, you must regenerate your FIS. After the FIS is generated, you can
use your first training experience to decide on the number of training epochs you want for
the second round of training.

Checking Data Does Not Validate Model
This example examines what happens when the training and checking data sets are
sufficiently different. To see how the Neuro-Fuzzy Designer can be used to learn
something about data sets and how they differ:

1 Clear the Neuro-Fuzzy Designer:

• Clear both the training and checking data.
• (optional) Click the Clear Plot button on the right.

2 Load fuzex2trnData and fuzex2chkData (respectively, the training data and
checking data) from the MATLAB workspace just as you did in the previous example.

You should see a plot similar to the one in the following figure. The training data appears
as circles superimposed with the checking data, appearing as pluses.
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Train the FIS for this system exactly as you did in the previous example, except now
choose 60 Epochs before training. You should get the following plot, showing the
checking error as ♦ ♦ on top and the training error as * * on the bottom.
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In this case, the checking error is quite large. It appears that the minimum checking error
occurs within the first epoch. Using the checking data option with anfis automatically
sets the FIS parameters to be those associated with the minimum checking error. Clearly
this set of membership functions is not the best choice for modeling the training data.

This example illustrates the problem discussed earlier wherein the checking data set
presented to anfis for training was sufficiently different from the training data set. As a
result, the trained FIS did not capture the features of this data set very well. It is
important to know the features of your data set well when you select your training and
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checking data. When you do not know the features of your data, you can analyze the
checking error plots to see whether or not the checking data performed sufficiently well
with the trained model.

In this example, the checking error is sufficiently large to indicate that either you need to
select more data for training or modify your membership function choices (both the
number of membership functions and the type). Otherwise, the system can be retrained
without the checking data, if you think the training data sufficiently captures the features
you are trying to represent.

To complete this example, test the trained FIS model against the checking data. To do so,
select Checking data in the Test FIS portion of the app, and click Test Now. The
following plot in the app indicates that there is quite a discrepancy between the checking
data output and the FIS output.
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See Also
Neuro-Fuzzy Designer

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-86
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• “Comparison of anfis and Neuro-Fuzzy Designer Functionality” on page 3-91
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-97
• “Save Training Error Data to MATLAB Workspace” on page 3-119
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Save Training Error Data to MATLAB Workspace
When using Neuro-Fuzzy Designer, you can export your initial FIS structure to the
MATLAB workspace and then save the ANFIS training error values in the workspace.

The following example shows how to save the training error generated during ANFIS
training to the MATLAB workspace:

1 Load the training and checking data in the MATLAB workspace by typing the
following commands at the MATLAB prompt:

load fuzex1trnData.dat
load fuzex1chkData.dat

2 Open the Neuro-Fuzzy Designer by typing the following command:

neuroFuzzyDesigner
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3 Load the training data from the MATLAB workspace into the Neuro-Fuzzy
Designer:

a In the Load data panel of the Neuro-Fuzzy Designer, verify that Training is
selected in the Type column.

b Select worksp in the From column.
c Click Load Data to open the Load from workspace dialog box.
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d Type fuzex1trnData, and click OK.

The Neuro-Fuzzy Designer displays the training data in the plot as a set of
circles (○).
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4 Load the checking data from the MATLAB workspace into the Neuro-Fuzzy
Designer:

a In the Load data panel of the Neuro-Fuzzy Designer, select Checking in the
Type column.

b Click Load Data to open the Load from workspace dialog box.
c Type fuzex1chkData as the variable name, and click OK.
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The Neuro-Fuzzy Designer displays the checking data as plus signs (+)
superimposed on the training data.

5 Generate an initial FIS:

a In the Generate FIS panel, verify that Grid partition option is selected.
b Click Generate FIS.

This action opens a dialog box where you specify the structure of the FIS.
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c In the dialog box, specify the following:

• Enter 4 in the Number of MFs field.
• Select gbellmf as the Membership Type for the input.
• Select linear as the Membership Type for the output.

d Click OK to generate the FIS and close the dialog box.
6 Export the initial FIS to the MATLAB workspace:

a In the Neuro-Fuzzy Designer, select File > Export > To Workspace.

This action opens a dialog box where you specify the MATLAB variable name.
b In the dialog box, in the Workspace variable text box, enter initfis.
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c Click OK to close the dialog box.

A variable named initfis now appears in the MATLAB workspace.
7 Train the FIS for 40 epochs by typing the following command at the MATLAB prompt:

figure
hold on
fismat = initfis;
opt = anfisOptions('EpochNumber',2,'ValidationData',fuzex1chkData);
for ct = 1:40
    opt.InitialFIS = fismat;
    [fismat,error] = anfis(fuzex1trnData,opt);
    plot(ct,error(1),'b*');
end

To improve accuracy when you train the FIS, the code uses the results of the current
iteration returned by the anfis command as the initial conditions for the next
iteration. The output argument error contains the root mean squared errors
representing the training data error. For more information, see the anfis reference
page.

The plot of the training error versus the number of epochs appears in the next figure.
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See Also
Neuro-Fuzzy Designer

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-86
• “Comparison of anfis and Neuro-Fuzzy Designer Functionality” on page 3-91
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-97
• “Test Data Against Trained System” on page 3-102
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Predict Chaotic Time-Series using ANFIS
This example shows how to do chaotic time-series prediction using ANFIS.

Time Series Data

This example uses anfis to predict a time series generated by the following Mackey-
Glass (MG) time-delay differential equation.

ẋ(t) = 0 . 2x(t − τ)
1 + x10(t − τ)

= 0 . 1x(t)

This time series is chaotic with no clearly defined period. The series does not converge or
diverge, and the trajectory is highly sensitive to initial conditions. This benchmark
problem is used in the neural network and fuzzy modeling research communities.

To obtain the time series value at integer points, the fourth-order Runge-Kutta method
was used to find the numerical solution to the previous MG equation. It was assumed that
x(0) = 1 . 2, τ = 17, and x(t) = 0 for t < 0. The result was saved in the file mgdata.dat.

Load and plot the MG time series.

load mgdata.dat
time = mgdata(:,1);
x = mgdata(:, 2);
figure(1)
plot(time,x)
title('Mackey-Glass Chaotic Time Series')
xlabel('Time (sec)')
ylabel('x(t)')
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Preprocess Data

In time-series prediction, you use known values of the time series up to point in time, t, to
predict the value at some point in the future, t + P. The standard method for this type of
prediction is to create a mapping from D sample data points, sampled every Δ units in
time (x(t − (D− 1)Δ), …, x(t − Δ), x(t)) to a predicted future value x = (t + P). Following the
conventional settings for predicting the MG time series, set D = 4 and Δ = P = 6. For
each t, the input training data for anfis is a four-column vector of the following form.

w(t) = [x(t − 19), x(t − 12), x(t − 6), x(t)]

The output training data corresponds to the trajectory prediction.

s(t) = x(t + 6)
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For each t, ranging in values from 118 to 1117, there are 1000 input/output training
samples. For this example, use the first 500 samples as training data (trnData) and the
second 500 values as checking data for validation (chkData). Each row of the training
and checking data arrays contains one sample point where the first four columns contain
the four-dimensional input w and the fifth column contains the output s.

Construct the training and checking data arrays.

for t = 118:1117 
    Data(t-117,:) = [x(t-18) x(t-12) x(t-6) x(t) x(t+6)]; 
end
trnData = Data(1:500,:);
chkData = Data(501:end,:);

Build Initial Fuzzy System

Create an initial Sugeno FIS object for training using the genfis function with grid
partitioning.

fis = genfis(trnData(:,1:end-1),trnData(:,end),...
    genfisOptions('GridPartition'));

The number of FIS inputs and outputs corresponds to the number of columns in the input
and output training data, four and one, respectively.

By default, genfis creates two generalized bell membership functions for each of the
four inputs. The initial membership functions for each variable are equally spaced and
cover the whole input space.

figure
subplot(2,2,1)
plotmf(fis,'input',1)
subplot(2,2,2)
plotmf(fis,'input',2)
subplot(2,2,3)
plotmf(fis,'input',3)
subplot(2,2,4)
plotmf(fis,'input',4)
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The generated FIS object contains 24 = 16 fuzzy rules with 104 parameters (24 nonlinear
parameters and 80 linear parameters). To achieve good generalization capability, it is
important that the number of training data points be several times larger than the
number parameters being estimated. In this case, the ratio between data and parameters
is approximately five (500/104), which is a good balance between fitting parameters and
training sample points.

Train ANFIS Model

To configure training options, create an anfisOptions option set, specifying the initial
FIS and validation data.

options = anfisOptions('InitialFIS',fis,'ValidationData',chkData);
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Train the FIS using the specified training data and options.

[fis1,error1,ss,fis2,error2] = anfis(trnData,options);

ANFIS info: 
    Number of nodes: 55
    Number of linear parameters: 80
    Number of nonlinear parameters: 24
    Total number of parameters: 104
    Number of training data pairs: 500
    Number of checking data pairs: 500
    Number of fuzzy rules: 16

Start training ANFIS ...

   1      0.00296046      0.00292488
   2      0.00290346      0.0028684
   3      0.00285048      0.00281544
   4      0.00280117      0.00276566
   5      0.00275517      0.00271874
Step size increases to 0.011000 after epoch 5.
   6      0.00271214      0.00267438
   7      0.00266783      0.00262818
   8      0.00262626      0.00258435
   9      0.00258702      0.00254254
Step size increases to 0.012100 after epoch 9.
  10      0.00254972      0.00250247

Designated epoch number reached --> ANFIS training completed at epoch 10.

Minimal training RMSE = 0.002550
Minimal checking RMSE = 0.00250247

fis1 is the trained fuzzy inference system for the training epoch where the training error
is smallest. Since you specified validation data, the fuzzy system with the minimum
checking error, fis2, is also returned. The FIS with the smallest checking error shows
the best generalization beyond the training data.

Plots the membership functions for the trained system.

figure
subplot(2,2,1)
plotmf(fis2,'input',1)
subplot(2,2,2)
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plotmf(fis2,'input',2)
subplot(2,2,3)
plotmf(fis2,'input',3)
subplot(2,2,4)
plotmf(fis2,'input',4)

Plot Errors Curves

Plot the training and checking error signals.

figure
plot([error1 error2])
hold on
plot([error1 error2],'o')
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legend('Training error','Checking error')
xlabel('Epochs')
ylabel('Root Mean Squared Error')
title('Error Curves')

The training error is higher than the checking error in all epochs. This phenomenon is not
uncommon in ANFIS learning or nonlinear regression in general; it could indicate that
additional training could produce better training results.

Compare Original and Predicted Series

To check prediction capability of the trained system, evaluate the fuzzy system using the
training and checking data, and plot the result alongside the original
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anfis_output = evalfis(fis2,[trnData(:,1:4); chkData(:,1:4)]);

figure
index = 125:1124;
plot(time(index),[x(index) anfis_output])
xlabel('Time (sec)')
title('MG Time Series and ANFIS Prediction')

The predicted series is similar to the original series.

Calculate and plot the prediction error.

diff = x(index) - anfis_output;
plot(time(index),diff)
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xlabel('Time (sec)')
title('Prediction Errors')

The scale of the prediction error plot is about one-hundredth of the scale of the time-
series plot. In this example, you trained the system for only 10 epoch. Training for
additional epochs can improve the training results.

See Also
anfis | evalfis | genfis
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More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-86
• “Comparison of anfis and Neuro-Fuzzy Designer Functionality” on page 3-91
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Modeling Inverse Kinematics in a Robotic Arm
This example shows how to use a fuzzy system to model the inverse kinematics in a two-
joint robotic arm.

What Is Inverse Kinematics?

Kinematics is the science of motion. In a two-joint robotic arm, given the angles of the
joints, the kinematics equations give the location of the tip of the arm. Inverse kinematics
refers to the reverse process. Given a desired location for the tip of the robotic arm, what
should the angles of the joints be so as to locate the tip of the arm at the desired location.
There is usually more than one solution and can at times be a difficult problem to solve.

This is a typical problem in robotics that needs to be solved to control a robotic arm to
perform tasks it is designated to do. In a 2-dimensional input space, with a two-joint
robotic arm and given the desired coordinate, the problem reduces to finding the two
angles involved. The first angle is between the first arm and the ground (or whatever it is
attached to). The second angle is between the first arm and the second arm.

Figure 1: Illustration showing the two-joint robotic arm with the two angles, theta1 and
theta2
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Why Use Fuzzy Logic?

For simple structures like the two-joint robotic arm, it is possible to mathematically
deduce the angles at the joints given the desired location of the tip of the arm. However
with more complex structures (eg: n-joint robotic arms operating in a 3-dimensional input
space) deducing a mathematical solution for the inverse kinematics may prove
challenging.

Using fuzzy logic, we can construct a fuzzy inference system that deduces the inverse
kinematics if the forward kinematics of the problem is known, hence sidestepping the
need to develop an analytical solution. Also, the fuzzy solution is easily understandable
and does not require special background knowledge to comprehend and evaluate it.

In the following section, a broad outline for developing such a solution is described, and
later, the detailed steps are elaborated.

Overview of Fuzzy Solution

Since the forward kinematics formulae for the two-joint robotic arm are known, x and y
coordinates of the tip of the arm are deduced for the entire range of angles of rotation of
the two joints. The coordinates and the angles are saved to be used as training data to
train an ANFIS (adaptive neuro-fuzzy inference system) network.

During training, the ANFIS network learns to map the coordinates (x, y) to the angles
(theta1, theta2). The trained ANFIS network is then used as a part of a larger control
system to control the robotic arm. Knowing the desired location of the robotic arm, the
control system uses the trained ANFIS network to deduce the angular positions of the
joints and applies force to the joints of the robotic arm accordingly to move it to the
desired location.

What Is ANFIS?

ANFIS stands for adaptive neuro-fuzzy inference system. It is a hybrid neuro-fuzzy
technique that brings learning capabilities of neural networks to fuzzy inference systems.
The learning algorithm tunes the membership functions of a Sugeno-type fuzzy inference
system using the training input/output data.

In this case, the input/output data refers to the "coordinates/angles" dataset. The
coordinates act as input to the ANFIS and the angles act as the output. The learning
algorithm teaches the ANFIS to map the coordinates to the angles through a process
called training. At the end of training, the trained ANFIS network would have learned the
input-output map and be ready to be deployed into the larger control system solution.
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Data Generation

Let theta1 be the angle between the first arm and the ground. Let theta2 be the angle
between the second arm and the first arm (Refer to Figure 1 for illustration). Let the
length of the first arm be l1 and that of the second arm be l2.

Assume that the first joint has limited freedom to rotate and it can rotate between 0 and
90 degrees. Similarly, assume that the second joint has limited freedom to rotate and can
rotate between 0 and 180 degrees. (This assumption takes away the need to handle some
special cases which will confuse the discourse.) Hence, 0<=theta1<=pi/2 and
0<=theta2<=pi.
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Figure 2: Illustration showing all possible theta1 and theta2 values.

Now, for every combination of theta1 and theta2 values the x and y coordinates are
deduced using forward kinematics formulae.

The following code snippet shows how data is generated for all combination of theta1
and theta2 values and saved into a matrix to be used as training data. The reason for
saving the data in two matrices is explained in the following section.

l1 = 10; % length of first arm
l2 = 7; % length of second arm

theta1 = 0:0.1:pi/2; % all possible theta1 values
theta2 = 0:0.1:pi; % all possible theta2 values

[THETA1,THETA2] = meshgrid(theta1,theta2); % generate a grid of theta1 and theta2 values

X = l1 * cos(THETA1) + l2 * cos(THETA1 + THETA2); % compute x coordinates
Y = l1 * sin(THETA1) + l2 * sin(THETA1 + THETA2); % compute y coordinates

data1 = [X(:) Y(:) THETA1(:)]; % create x-y-theta1 dataset
data2 = [X(:) Y(:) THETA2(:)]; % create x-y-theta2 dataset

Click here for unvectorized code

The following plot shows all the X-Y data points generated by cycling through different
combinations of theta1 and theta2 and deducing x and y coordinates for each. The plot
can be generated by using the code-snippet shown below. The plot is illustrated further
for easier understanding.

  plot(X(:),Y(:),'r.'); 
  axis equal;
  xlabel('X','fontsize',10)
  ylabel('Y','fontsize',10)
  title('X-Y coordinates generated for all theta1 and theta2 combinations using forward kinematics formula','fontsize',10)
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Figure 3: X-Y coordinates generated for all theta1 and theta2 combinations using
forward kinematics formulae

Building ANFIS Networks

One approach to building an ANFIS solution for this problem, is to build two ANFIS
networks, one to predict theta1 and the other to predict theta2.

In order for the ANFIS networks to be able to predict the angles they have to be trained
with sample input-output data. The first ANFIS network will be trained with X and Y
coordinates as input and corresponding theta1 values as output. The matrix data1
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contains the x-y-theta1 dataset required to train the first ANFIS network. Therefore
data1 will be used as the dataset to train the first ANFIS network.

Similarly, the second ANFIS network will be trained with X and Y coordinates as input and
corresponding theta2 values as output. The matrix data2 contains the x-y-theta2
dataset required to train the second ANFIS network. Therefore data2 will be used as the
dataset to train the second ANFIS network.

To train an ANFIS network, first specify the training options using the anfisOptions
command. For this example, specify an FIS object with 7 membership functions for each
input variable. Train the system for 150 epochs and suppress the Command Window
display of training information.

opt = anfisOptions;
opt.InitialFIS = 7;
opt.EpochNumber = 150;
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train an ANFIS system using the first set of training data, data1.

disp('--> Training first ANFIS network.')

--> Training first ANFIS network.

anfis1 = anfis(data1,opt);

Change the number of input membership functions and train an ANFIS system using the
second set of training data, data2.

disp('--> Training second ANFIS network.')

--> Training second ANFIS network.

opt.InitialFIS = 6;
anfis2 = anfis(data2,opt);

For this example, the number of input membership functions and training epochs were
selected based on experimentation with different potential values.

anfis1 and anfis2 represent the two trained ANFIS networks that will be deployed in
the larger control system.
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Once the training is complete, the two ANFIS networks have learned to approximate the
angles (theta1, theta2) as a function of the coordinates (x, y). One advantage of using
the fuzzy approach is that the ANFIS network can now approximate the angles for
coordinates that are similar but not exactly the same as it was trained with. For example,
the trained ANFIS networks are now capable of approximating the angles for coordinates
that lie between two points that were included in the training dataset. This will allow the
final controller to move the arm smoothly in the input space.

We now have two trained ANFIS networks which are ready to be deployed into the larger
system that will utilize these networks to control the robotic arms.

Validating ANFIS Networks

Having trained the networks, an important follow up step is to validate the networks to
determine how well the ANFIS networks would perform inside the larger control system.

Since this example problem deals with a two-joint robotic arm whose inverse kinematics
formulae can be derived, it is possible to test the answers that the ANFIS networks
produce with the answers from the derived formulae.

Let's assume that it is important for the ANFIS networks to have low errors within the
operating range 0<x<2 and 8<y<10.

x = 0:0.1:2; % x coordinates for validation
y = 8:0.1:10; % y coordinates for validation

The theta1 and theta2 values are deduced mathematically from the x and y coordinates
using inverse kinematics formulae.

[X,Y] = meshgrid(x,y);

c2 = (X.^2 + Y.^2 - l1^2 - l2^2)/(2*l1*l2);
s2 = sqrt(1 - c2.^2);
THETA2D = atan2(s2,c2); % theta2 is deduced

k1 = l1 + l2.*c2;
k2 = l2*s2;
THETA1D = atan2(Y,X) - atan2(k2,k1); % theta1 is deduced

Click here for unvectorized code

THETA1D and THETA2D are the variables that hold the values of theta1 and theta2
deduced using the inverse kinematics formulae.
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theta1 and theta2 values predicted by the trained anfis networks are obtained by using
the command evalfis which evaluates a FIS for the given inputs.

Here, evalfis is used to find out the FIS outputs for the same x-y values used earlier in
the inverse kinematics formulae.

XY = [X(:) Y(:)];
THETA1P = evalfis(anfis1,XY); % theta1 predicted by anfis1
THETA2P = evalfis(anfis2,XY); % theta2 predicted by anfis2

Now, we can see how close the FIS outputs are with respect to the deduced values.

theta1diff = THETA1D(:) - THETA1P;
theta2diff = THETA2D(:) - THETA2P;

subplot(2,1,1);
plot(theta1diff);
ylabel('THETA1D - THETA1P','fontsize',10)
title('Deduced theta1 - Predicted theta1','fontsize',10)

subplot(2,1,2);
plot(theta2diff);
ylabel('THETA2D - THETA2P','fontsize',10)
title('Deduced theta2 - Predicted theta2','fontsize',10)

3 Fuzzy Inference System Tuning

3-144



The errors are in the 1e-3 range which is a fairly good number for the application it is
being used in. However this may not be acceptable for another application, in which case
the parameters to the anfis function may be tweaked until an acceptable solution is
arrived at. Also, other techniques like input selection and alternate ways to model the
problem may be explored.

Building a Solution Around the Trained ANFIS Networks

Now given a specific task, such as robots picking up an object in an assembly line, the
larger control system will use the trained ANFIS networks as a reference, much like a
lookup table, to determine what the angles of the arms must be, given a desired location
for the tip of the arm. Knowing the desired angles and the current angles of the joints, the
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system will apply force appropriately on the joints of the arms to move them towards the
desired location.

The invkine command launches a GUI that shows how the two trained ANFIS networks
perform when asked to trace an ellipse.

Figure 4: GUI for Inverse Kinematics Modeling.

The two ANFIS networks used in the example have been pretrained and are deployed into
a larger system that controls the tip of the two-joint robot arm to trace an ellipse in the
input space.

The ellipse to be traced can be moved around. Move the ellipse to a slightly different
location and observe how the system responds by moving the tip of the robotic arm from
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its current location to the closest point on the new location of the ellipse. Also observe
that the system responds smoothly as long as the ellipse to be traced lies within the 'x'
marked spots which represent the data grid that was used to train the networks. Once the
ellipse is moved outside the range of data it was trained with, the ANFIS networks
respond unpredictably. This emphasizes the importance of having relevant and
representative data for training. Data must be generated based on the expected range of
operation to avoid such unpredictability and instability issues.

See Also
anfis | evalfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-86
• “Comparison of anfis and Neuro-Fuzzy Designer Functionality” on page 3-91
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Adaptive Noise Cancellation Using ANFIS
This example shows how to do adaptive nonlinear noise cancellation using the anfis and
genfis commands.

Signal and Noise

Define a hypothetical information signal, x, sampled at 100Hz over 6 seconds.

time = (0:0.01:6)';
x = sin(40./(time+0.01));
plot(time,x)
title('Information Signal x','fontsize',10)
xlabel('time','fontsize',10)
ylabel('x','fontsize',10)
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Assume that x cannot be measured without an interference signal, n2, which is generated
from another noise source, n1, via a certain unknown nonlinear process.

The plot below shows noise source n1.

n1 = randn(size(time));
plot(time,n1)
title('Noise Source n_1','fontsize',10)
xlabel('time','fontsize',10)
ylabel('n_1','fontsize',10)
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Assume that the interference signal, n2, that appears in the measured signal is generated
via an unknown nonlinear equation:

n2 k =
4sin n1 k ⋅ n1 k− 1

1 + n1 k− 1 2

Plot this nonlinear characteristic as a surface.

domain = linspace(min(n1),max(n1),20);
[xx,yy] = meshgrid(domain,domain);
zz = 4*sin(xx).*yy./(1+yy.^2);

surf(xx,yy,zz);
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xlabel('n_1(k)','fontsize',10);
ylabel('n_1(k-1)','fontsize',10);
zlabel('n_2(k)','fontsize',10);
title('Unknown Interference Channel Characteristics','fontsize',10);

Compute the interference signal, n2, from the noise source, n1, and plot both signals.

n1d0 = n1;                            % n1 with delay 0
n1d1 = [0; n1d0(1:length(n1d0)-1)];   % n1 with delay 1
n2 = 4*sin(n1d0).*n1d1./(1+n1d1.^2);  % interference

subplot(2,1,1)
plot(time,n1);
ylabel('noise n_1','fontsize',10);
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subplot(2,1,2)
plot(time,n2);
ylabel('interference n_2','fontsize',10);

n2 is related to n1 via the highly nonlinear process shown previously; from the plots, it is
hard to see if these two signals are correlated in any way.

The measured signal, m, is the sum of the original information signal, x, and the
interference, n2. However, we do not know n2. The only signals available to us are the
noise signal, n1, and the measured signal m.

m = x + n2;             % measured signal
subplot(1,1,1)
plot(time, m)
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title('Measured Signal','fontsize',10)
xlabel('time','fontsize',10)
ylabel('m','fontsize',10)

You can recover the original information signal, x, using adaptive noise cancellation via
ANFIS training.

Build the ANFIS Model

Use the anfis command to identify the nonlinear relationship between n1 and n2. While
n2 is not directly available, you can assume that m is a "contaminated" version of n2 for
training. This assumption treats x as "noise" in this kind of nonlinear fitting.

 Adaptive Noise Cancellation Using ANFIS

3-153



Assume the order of the nonlinear channel is known (in this case, 2), so you can use a 2-
input ANFIS model for training.

Define the training data. The first two columns of data are the inputs to the ANFIS
model, n1 and a delayed version of n1. The final column of data is the measured signal, m.

delayed_n1 = [0; n1(1:length(n1)-1)];
data = [delayed_n1 n1 m];

Generate the initial FIS object. By default, the grid partitioning algorithm uses two
membership functions for each input variable, which produces four fuzzy rules for
learning.

genOpt = genfisOptions('GridPartition');
inFIS = genfis(data(:,1:end-1),data(:,end),genOpt);

Tune the FIS using the anfis command with an initial training step size of 0.2.

trainOpt = anfisOptions('InitialFIS',inFIS,'InitialStepSize',0.2);
outFIS = anfis(data,trainOpt);

ANFIS info: 
    Number of nodes: 21
    Number of linear parameters: 12
    Number of nonlinear parameters: 12
    Total number of parameters: 24
    Number of training data pairs: 601
    Number of checking data pairs: 0
    Number of fuzzy rules: 4

Start training ANFIS ...

   1      0.761817
   2      0.748426
   3      0.739315
   4      0.733993
   5      0.729492
Step size increases to 0.220000 after epoch 5.
   6      0.725382
   7      0.721269
   8      0.717621
   9      0.714474
Step size increases to 0.242000 after epoch 9.
  10      0.71207
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Designated epoch number reached --> ANFIS training completed at epoch 10.

Minimal training RMSE = 0.712070

The tuned FIS, outFIS, models the second-order relationship between n1 and n2.

Evaluate Model

Calculate the estimated interference signal, estimated_n2, by evaluating the tuned FIS
using the original training data.

estimated_n2 = evalfis(outFIS,data(:,1:2));

Plot the and actual n2 signal and the estimated version from the ANFIS output.

subplot(2,1,1)
plot(time, n2)
ylabel('n_2 (unknown)'); 

subplot(2,1,2)
plot(time, estimated_n2)
ylabel('Estimated n_2');
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The estimated information signal is equal to the difference between the measured signal,
m, and the estimated interference (ANFIS output).

estimated_x = m - estimated_n2;

Compare the original information signal, x, and the estimate, estimated_x.

figure
plot(time,estimated_x,'b',time,x,'r')
legend('Estimated x','Actual x (unknown)','Location','SouthEast')
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Without extensive training, the ANFIS produces a good estimate of the information signal.

See Also
anfis | evalfis | genfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-86
• “Comparison of anfis and Neuro-Fuzzy Designer Functionality” on page 3-91
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Nonlinear System Identification
This example shows how to use anfis command for nonlinear dynamic system
identification.

This example requires System Identification Toolbox™, as a comparison is made between
a nonlinear ANFIS and a linear ARX model.

Problem Setup

Exit if System Identification Toolbox is not available.

if ~fuzzychecktoolboxinstalled('ident')
    errordlg('DRYDEMO needs the System Identification Toolbox.');
    return;
end

The data set for ANFIS and ARX modeling was obtained from a laboratory device called
Feedback's Process Trainer PT 326, as described in Chapter 17 of Prof. Lennart Ljung's
book "System Identification, Theory for the User", Prentice-Hall, 1987. The device
functions like a hair dryer: air is fanned through a tube and heated at the inlet. The air
temperature is measured by a thermocouple at the outlet. The input u(k) is the voltage
over a mesh of resistor wires to heat incoming air; the output y(k) is the outlet air
temperature.

Here are the results of the test.

load drydemodata
data_n = length(y2);
output = y2;
input = [[0; y2(1:data_n-1)] ...
        [0; 0; y2(1:data_n-2)] ...
        [0; 0; 0; y2(1:data_n-3)] ...
        [0; 0; 0; 0; y2(1:data_n-4)] ...
        [0; u2(1:data_n-1)] ...
        [0; 0; u2(1:data_n-2)] ...
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        [0; 0; 0; u2(1:data_n-3)] ...
        [0; 0; 0; 0; u2(1:data_n-4)] ...
        [0; 0; 0; 0; 0; u2(1:data_n-5)] ...
        [0; 0; 0; 0; 0; 0; u2(1:data_n-6)]];
data = [input output];
data(1:6, :) = [];
input_name = char('y(k-1)','y(k-2)','y(k-3)','y(k-4)','u(k-1)','u(k-2)','u(k-3)','u(k-4)','u(k-5)','u(k-6)');
index = 1:100;
subplot(2,1,1)
plot(index,y2(index),'-',index,y2(index),'o')
ylabel('y(k)','fontsize',10)
subplot(2,1,2)
plot(index,u2(index),'-',index,u2(index),'o')
ylabel('u(k)','fontsize',10)
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The data points were collected at a sampling time of 0.08 seconds. One thousand input-
output data points were collected from the process as the input u(k) was chosen to be a
binary random signal shifting between 3.41 and 6.41 V. The probability of shifting the
input at each sample was 0.2. The data set is available from the System Identification
Toolbox, and the above plots show the output temperature y(k) and input voltage u(t) for
the first 100 time steps.

ARX Model Identification

A conventional method is to remove the means from the data and assume a linear model
of the form:

y(k)+a1*y(k-1)+...+am*y(k-m)=b1*u(k-d)+...+bn*u(k-d-n+1)

where ai (i = 1 to m) and bj (j = 1 to n) are linear parameters to be determined by least-
squares methods. This structure is called the ARX model and it is exactly specified by
three integers [m, n, d]. To find an ARX model for the dryer device, the data set was
divided into a training (k = 1 to 300) and a checking (k = 301 to 600) set. An exhaustive
search was performed to find the best combination of [m, n, d], where each of the integer
is allowed to changed from 1 to 10 independently. The best ARX model thus found is
specified by [m, n, d] = [5, 10, 2], with a training RMSE of 0.1122 and a checking RMSE
of 0.0749. The above figure shows the fitting results of the best ARX model.

trn_data_n = 300;
total_data_n = 600;
z = [y2 u2];
z = dtrend(z);
ave = mean(y2);
ze = z(1:trn_data_n,:);
zv = z(trn_data_n+1:total_data_n,:);
T = 0.08;

% Run through all different models
V = arxstruc(ze,zv,struc(1:10,1:10,1:10));
% Find the best model
nn = selstruc(V,0);
% Time domain plot
th = arx(ze,nn);
th.Ts = 0.08;
u = z(:,2);
y = z(:,1)+ave;
yp = sim(u,th)+ave;
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xlbl = 'Time Steps';

subplot(2,1,1)
index = 1:trn_data_n;
plot(index, y(index), index, yp(index), '.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title(sprintf(['(a) Training Data (Solid Line) and ARX Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
disp(['[na nb d] = ' num2str(nn)])
xlabel(xlbl,'fontsize',10)

subplot(2,1,2)
index = (trn_data_n+1):(total_data_n);
plot(index,y(index),index,yp(index),'.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title(sprintf(['(b) Checking Data (Solid Line) and ARX Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
xlabel(xlbl,'fontsize',10)

[na nb d] = 5  10   2
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ANFIS Model Identification

The ARX model is inherently linear and the most significant advantage is that we can
perform model structure and parameter identification rapidly. The performance in the
above plots appears to be satisfactory. However, if a better performance level is desired,
we might want to resort to a nonlinear model. In particular, we are going to use a neuro-
fuzzy modeling approach, ANFIS, to see if we can push the performance level with a fuzzy
inference system.

To use ANFIS for system identification, the first thing we need to do is select the input.
That is, to determine which variables should be the input arguments to an ANFIS model.
For simplicity, we suppose that there are 10 input candidates (y(k-1), y(k-2), y(k-3), y(k-4),
u(k-1), u(k-2), u(k-3), u(k-4), u(k-5), u(k-6)), and the output to be predicted is y(k). A
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heuristic approach to input selection is called sequential forward search, in which each
input is selected sequentially to optimize the total squared error. This can be done by the
function seqsrch; the result is shown in the above plot, where 3 inputs (y(k-1), u(k-3), and
u(k-4)) are selected with a training RMSE of 0.0609 and checking RMSE of 0.0604.

trn_data_n = 300;
trn_data = data(1:trn_data_n,:);
chk_data = data(trn_data_n+1:trn_data_n+300,:);
[~,elapsed_time] = seqsrch(3,trn_data,chk_data,input_name); % #ok<*ASGLU>
fprintf('\nElapsed time = %f\n',elapsed_time);
winH1 = gcf;

Selecting input 1 ...
ANFIS model 1: y(k-1) --> trn=0.2043, chk=0.1888
ANFIS model 2: y(k-2) --> trn=0.3819, chk=0.3541
ANFIS model 3: y(k-3) --> trn=0.5245, chk=0.4903
ANFIS model 4: y(k-4) --> trn=0.6308, chk=0.5977
ANFIS model 5: u(k-1) --> trn=0.8271, chk=0.8434
ANFIS model 6: u(k-2) --> trn=0.7976, chk=0.8087
ANFIS model 7: u(k-3) --> trn=0.7266, chk=0.7349
ANFIS model 8: u(k-4) --> trn=0.6215, chk=0.6346
ANFIS model 9: u(k-5) --> trn=0.5419, chk=0.5650
ANFIS model 10: u(k-6) --> trn=0.5304, chk=0.5601
Currently selected inputs: y(k-1)

Selecting input 2 ...
ANFIS model 11: y(k-1) y(k-2) --> trn=0.1085, chk=0.1024
ANFIS model 12: y(k-1) y(k-3) --> trn=0.1339, chk=0.1283
ANFIS model 13: y(k-1) y(k-4) --> trn=0.1542, chk=0.1461
ANFIS model 14: y(k-1) u(k-1) --> trn=0.1892, chk=0.1734
ANFIS model 15: y(k-1) u(k-2) --> trn=0.1663, chk=0.1574
ANFIS model 16: y(k-1) u(k-3) --> trn=0.1082, chk=0.1077
ANFIS model 17: y(k-1) u(k-4) --> trn=0.0925, chk=0.0948
ANFIS model 18: y(k-1) u(k-5) --> trn=0.1533, chk=0.1531
ANFIS model 19: y(k-1) u(k-6) --> trn=0.1952, chk=0.1853
Currently selected inputs: y(k-1) u(k-4)

Selecting input 3 ...
ANFIS model 20: y(k-1) u(k-4) y(k-2) --> trn=0.0808, chk=0.0822
ANFIS model 21: y(k-1) u(k-4) y(k-3) --> trn=0.0806, chk=0.0836
ANFIS model 22: y(k-1) u(k-4) y(k-4) --> trn=0.0817, chk=0.0855
ANFIS model 23: y(k-1) u(k-4) u(k-1) --> trn=0.0886, chk=0.0912
ANFIS model 24: y(k-1) u(k-4) u(k-2) --> trn=0.0835, chk=0.0843
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ANFIS model 25: y(k-1) u(k-4) u(k-3) --> trn=0.0609, chk=0.0604
ANFIS model 26: y(k-1) u(k-4) u(k-5) --> trn=0.0848, chk=0.0867
ANFIS model 27: y(k-1) u(k-4) u(k-6) --> trn=0.0890, chk=0.0894
Currently selected inputs: y(k-1) u(k-3) u(k-4)

Elapsed time = 25.675000

For input selection, another more computationally intensive approach is to do an
exhaustive search on all possible combinations of the input candidates. The function that
performs exhaustive search is exhsrch, which selects 3 inputs from 10 candidates.
However, exhsrch usually involves a significant amount of computation if all combinations
are tried. For instance, if 3 is selected out of 10, the total number of ANFIS models is
C(10, 3) = 120.
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Fortunately, for dynamic system identification, we do know that the inputs should not
come from either of the following two sets of input candidates exclusively:

Y = {y(k-1), y(k-2), y(k-3), y(k-4)}

U = {u(k-1), u(k-2), u(k-3), u(k-4), u(k-5), u(k-6)}

A reasonable guess would be to take two inputs from Y and one from U to form the inputs
to ANFIS; the total number of ANFIS models is then C(4,2)*6=36, which is much less. The
above plot shows that the selected inputs are y(k-1), y(k-2) and u(k-3), with a training
RMSE of 0.0474 and checking RMSE of 0.0485, which are better than ARX models and
ANFIS via sequential forward search.

group1 = [1 2 3 4];    % y(k-1), y(k-2), y(k-3), y(k-4)
group2 = [1 2 3 4];    % y(k-1), y(k-2), y(k-3), y(k-4)
group3 = [5 6 7 8 9 10];    % u(k-1) through y(k-6)

anfis_n = 6*length(group3);
index = zeros(anfis_n,3);
trn_error = zeros(anfis_n,1);
chk_error = zeros(anfis_n,1);
% ======= Training options
% Create option set for generating initial FIS.
genOpt = genfisOptions('GridPartition','NumMembershipFunctions',2, ...
                       'InputMembershipFunctionType','gbellmf');
% Create option set for |anfis| command and set options that remain constant
% for different training scenarios.
anfisOpt = anfisOptions('EpochNumber',1,...
                        'InitialStepSize',0.1,...
                        'StepSizeDecreaseRate',0.5,...
                        'StepSizeIncreaseRate',1.5,...
                        'DisplayANFISInformation',0,...
                        'DisplayErrorValues',0,...
                        'DisplayStepSize',0,...
                        'DisplayFinalResults',0);
% ====== Train ANFIS with different input variables
fprintf('\nTrain %d ANFIS models, each with 3 inputs selected from 10 candidates...\n\n',...
    anfis_n);
model = 1;
for i = 1:length(group1)
    for j = i+1:length(group2)
        for k = 1:length(group3)
            in1 = deblank(input_name(group1(i),:));
            in2 = deblank(input_name(group2(j),:));
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            in3 = deblank(input_name(group3(k),:));
            index(model, :) = [group1(i) group2(j) group3(k)];
            trn_data = data(1:trn_data_n, [group1(i) group2(j) group3(k) size(data,2)]);
            chk_data = data(trn_data_n+1:trn_data_n+300, [group1(i) group2(j) group3(k) size(data,2)]);
            in_fismat = genfis(trn_data(:,1:end-1),trn_data(:,end),genOpt);
            % Set initial FIS and validation data in option set for ANFIS training.
            anfisOpt.InitialFIS = in_fismat;
            anfisOpt.ValidationData = chk_data;
            [~, t_err, ~, ~, c_err] = anfis(trn_data,anfisOpt);
            trn_error(model) = min(t_err);
            chk_error(model) = min(c_err);
            fprintf('ANFIS model = %d: %s %s %s',model,in1,in2,in3);
            fprintf(' --> trn=%.4f,',trn_error(model));
            fprintf(' chk=%.4f',chk_error(model));
            fprintf('\n');
            model = model+1;
        end
    end
end

% ====== Reordering according to training error
[~, b] = sort(trn_error);
b = flipud(b);        % List according to decreasing trn error
trn_error = trn_error(b);
chk_error = chk_error(b);
index = index(b,:);

% ====== Display training and checking errors
x = (1:anfis_n)';
subplot(2,1,1)
plot(x, trn_error,'-',x,chk_error,'-', ...
     x,trn_error,'o',x,chk_error,'*')
tmp = x(:, ones(1,3))';
X = tmp(:);
tmp = [zeros(anfis_n,1) max(trn_error,chk_error) nan*ones(anfis_n,1)]';
Y = tmp(:);
hold on
plot(X,Y,'g')
hold off
axis([1 anfis_n -inf inf])
h_gca = gca;
h_gca.XTickLabel = [];

% ====== Add text of input variables

3 Fuzzy Inference System Tuning

3-166



for k = 1:anfis_n
    text(x(k), 0, ...
        [input_name(index(k,1),:) ' ' ...
         input_name(index(k,2),:) ' ' ...
         input_name(index(k,3),:)]);
end
h = findobj(gcf,'type','text');
set(h,'rot',90,'fontsize',11,'hori','right');

drawnow

% ====== Generate input_index for bjtrain.m
[a, b] = min(trn_error);
input_index = index(b,:);
title('Training (Circles) and Checking (Asterisks) Errors','fontsize',10)
ylabel('RMSE','fontsize',10)

Train 36 ANFIS models, each with 3 inputs selected from 10 candidates...

ANFIS model = 1: y(k-1) y(k-2) u(k-1) --> trn=0.0990, chk=0.0962
ANFIS model = 2: y(k-1) y(k-2) u(k-2) --> trn=0.0852, chk=0.0862
ANFIS model = 3: y(k-1) y(k-2) u(k-3) --> trn=0.0474, chk=0.0485
ANFIS model = 4: y(k-1) y(k-2) u(k-4) --> trn=0.0808, chk=0.0822
ANFIS model = 5: y(k-1) y(k-2) u(k-5) --> trn=0.1023, chk=0.0991
ANFIS model = 6: y(k-1) y(k-2) u(k-6) --> trn=0.1021, chk=0.0974
ANFIS model = 7: y(k-1) y(k-3) u(k-1) --> trn=0.1231, chk=0.1206
ANFIS model = 8: y(k-1) y(k-3) u(k-2) --> trn=0.1047, chk=0.1085
ANFIS model = 9: y(k-1) y(k-3) u(k-3) --> trn=0.0587, chk=0.0626
ANFIS model = 10: y(k-1) y(k-3) u(k-4) --> trn=0.0806, chk=0.0836
ANFIS model = 11: y(k-1) y(k-3) u(k-5) --> trn=0.1261, chk=0.1311
ANFIS model = 12: y(k-1) y(k-3) u(k-6) --> trn=0.1210, chk=0.1151
ANFIS model = 13: y(k-1) y(k-4) u(k-1) --> trn=0.1420, chk=0.1353
ANFIS model = 14: y(k-1) y(k-4) u(k-2) --> trn=0.1224, chk=0.1229
ANFIS model = 15: y(k-1) y(k-4) u(k-3) --> trn=0.0700, chk=0.0765
ANFIS model = 16: y(k-1) y(k-4) u(k-4) --> trn=0.0817, chk=0.0855
ANFIS model = 17: y(k-1) y(k-4) u(k-5) --> trn=0.1337, chk=0.1405
ANFIS model = 18: y(k-1) y(k-4) u(k-6) --> trn=0.1421, chk=0.1333
ANFIS model = 19: y(k-2) y(k-3) u(k-1) --> trn=0.2393, chk=0.2264
ANFIS model = 20: y(k-2) y(k-3) u(k-2) --> trn=0.2104, chk=0.2077
ANFIS model = 21: y(k-2) y(k-3) u(k-3) --> trn=0.1452, chk=0.1497
ANFIS model = 22: y(k-2) y(k-3) u(k-4) --> trn=0.0958, chk=0.1047
ANFIS model = 23: y(k-2) y(k-3) u(k-5) --> trn=0.2048, chk=0.2135
ANFIS model = 24: y(k-2) y(k-3) u(k-6) --> trn=0.2388, chk=0.2326
ANFIS model = 25: y(k-2) y(k-4) u(k-1) --> trn=0.2756, chk=0.2574
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ANFIS model = 26: y(k-2) y(k-4) u(k-2) --> trn=0.2455, chk=0.2400
ANFIS model = 27: y(k-2) y(k-4) u(k-3) --> trn=0.1726, chk=0.1797
ANFIS model = 28: y(k-2) y(k-4) u(k-4) --> trn=0.1074, chk=0.1157
ANFIS model = 29: y(k-2) y(k-4) u(k-5) --> trn=0.2061, chk=0.2133
ANFIS model = 30: y(k-2) y(k-4) u(k-6) --> trn=0.2737, chk=0.2836
ANFIS model = 31: y(k-3) y(k-4) u(k-1) --> trn=0.3842, chk=0.3605
ANFIS model = 32: y(k-3) y(k-4) u(k-2) --> trn=0.3561, chk=0.3358
ANFIS model = 33: y(k-3) y(k-4) u(k-3) --> trn=0.2719, chk=0.2714
ANFIS model = 34: y(k-3) y(k-4) u(k-4) --> trn=0.1763, chk=0.1808
ANFIS model = 35: y(k-3) y(k-4) u(k-5) --> trn=0.2132, chk=0.2240
ANFIS model = 36: y(k-3) y(k-4) u(k-6) --> trn=0.3460, chk=0.3601

This window shows ANFIS predictions on both training and checking data sets. Obviously
the performance is better than those of the ARX model.
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if ishghandle(winH1),delete(winH1);
end

trn_data = data(1:trn_data_n,[input_index, size(data,2)]);
chk_data = data(trn_data_n+1:600,[input_index, size(data,2)]);

% generate FIS matrix
in_fismat = genfis(trn_data(:,1:end-1),trn_data(:,end));
anfisOpt = anfisOptions('InitialFIS',in_fismat,...
                        'EpochNumber',1,...
                        'InitialStepSize',0.01,...
                        'StepSizeDecreaseRate',0.5,...
                        'StepSizeIncreaseRate',1.5,...
                        'ValidationData',chk_data);
[trn_out_fismat,trn_error,step_size,chk_out_fismat,chk_error] = ...
    anfis(trn_data,anfisOpt);

subplot(2,1,1)
index = 1:trn_data_n;
plot(index,y(index),index,yp(index),'.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title(sprintf(['(a) Training Data (Solid Line) and ARX Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
disp(['[na nb d] = ' num2str(nn)])
xlabel('Time Steps','fontsize',10)
subplot(2,1,2)
index = (trn_data_n+1):(total_data_n);
plot(index, y(index),index,yp(index),'.')
rmse = norm(y(index)-yp(index))/sqrt(length(index));
title(sprintf(['(b) Checking Data (Solid Line) and ARX Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
xlabel('Time Steps','fontsize',10)

ANFIS info: 
    Number of nodes: 34
    Number of linear parameters: 32
    Number of nonlinear parameters: 18
    Total number of parameters: 50
    Number of training data pairs: 300
    Number of checking data pairs: 300
    Number of fuzzy rules: 8

Start training ANFIS ...

   1      0.0474113      0.0485325
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Designated epoch number reached --> ANFIS training completed at epoch 1.

Minimal training RMSE = 0.047411
Minimal checking RMSE = 0.0485325
[na nb d] = 5  10   2

y_hat = evalfis(chk_out_fismat,data(1:600,input_index));

subplot(2,1,1)
index = 1:trn_data_n;
plot(index,data(index,size(data,2)),'-', ...
     index,y_hat(index),'.')
rmse = norm(y_hat(index)-data(index,size(data,2)))/sqrt(length(index));
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title(sprintf(['Training Data (Solid Line) and ANFIS Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
xlabel('Time Index','fontsize',10)
ylabel('')

subplot(2,1,2)
index = trn_data_n+1:600;
plot(index,data(index,size(data,2)),'-',index,y_hat(index),'.')
rmse = norm(y_hat(index)-data(index,size(data,2)))/sqrt(length(index));
title(sprintf(['Checking Data (Solid Line) and ANFIS Prediction (Dots)\nwith RMSE = ' num2str(rmse)]),'fontsize',10)
xlabel('Time Index','fontsize',10)
ylabel('')
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Conclusion

The table above is a comparison among various modeling approaches. The ARX modeling
spends the least amount of time to reach the worst precision, and the ANFIS modeling via
exhaustive search takes the most amount of time to reach the best precision. In other
words, if fast modeling is the goal, then ARX is the right choice. But if precision is the
utmost concern, then we should go with ANFIS, which is designed for nonlinear modeling
and higher precision.

See Also
anfis | evalfis | genfis

More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-86
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Gas Mileage Prediction
This example shows how to predict of fuel consumption (miles per gallon) for
automobiles, using data from previously recorded observations.

Introduction

Automobile MPG (miles per gallon) prediction is a typical nonlinear regression problem,
in which several attributes of an automobile's profile information are used to predict
another continuous attribute, the fuel consumption in MPG. The training data is available
in the UCI (Univ. of California at Irvine) Machine Learning Repository and contains data
collected from automobiles of various makes and models.

The table shown above is several observations or samples from the MPG data set. The six
input attributes are no. of cylinders, displacement, horsepower, weight, acceleration, and
model year. The output variable to be predicted is the fuel consumption in MPG. (The
automobile's manufacturers and models in the first column of the table are not used for
prediction).

Partitioning Data

The data set is obtained from the original data file 'auto-gas.dat'. The dataset is then
partitioned into a training set (odd-indexed samples) and a checking set (even-indexed
samples).

[data,input_name] = loadgas;
trn_data = data(1:2:end,:);
chk_data = data(2:2:end,:);

Input Selection

The function exhsrch performs an exhaustive search within the available inputs to select
the set of inputs that most influence the fuel consumption. The first parameter to the
function specifies the number of input combinations to be tried during the search.
Essentially, exhsrch builds an ANFIS model for each combination and trains it for one
epoch and reports the performance achieved. In the following example, exhsrch is used
to determine the one most influential input attribute in predicting the output.

exhsrch(1,trn_data,chk_data,input_name);

Train 6 ANFIS models, each with 1 inputs selected from 6 candidates...

ANFIS model 1: Cylinder --> trn=4.6400, chk=4.7255

 Gas Mileage Prediction

3-173

https://www.ics.uci.edu/~mlearn/MLRepository.html,


ANFIS model 2: Disp --> trn=4.3106, chk=4.4316
ANFIS model 3: Power --> trn=4.5399, chk=4.1713
ANFIS model 4: Weight --> trn=4.2577, chk=4.0863
ANFIS model 5: Acceler --> trn=6.9789, chk=6.9317
ANFIS model 6: Year --> trn=6.2255, chk=6.1693

Figure 1: Every input variable's influence on fuel consumption

The left-most input variable in Figure 1 has the least error or in other words the most
relevance with respect to the output.

The plot and results from the function clearly indicate that the input attribute 'Weight' is
the most influential. The training and checking errors are comparable, which implies that
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there is no overfitting. This means we can push a little further and explore if we can
select more than one input attribute to build the ANFIS model.

Intuitively, we can simply select Weight and Disp directly since they have the least
errors as shown in the plot. However, this will not necessarily be the optimal combination
of two inputs that result in the minimal training error. To verify this, we can use exhsrch
to search for the optimal combination of 2 input attributes.

input_index = exhsrch(2,trn_data,chk_data,input_name);

Train 15 ANFIS models, each with 2 inputs selected from 6 candidates...

ANFIS model 1: Cylinder Disp --> trn=3.9320, chk=4.7920
ANFIS model 2: Cylinder Power --> trn=3.7364, chk=4.8683
ANFIS model 3: Cylinder Weight --> trn=3.8741, chk=4.6763
ANFIS model 4: Cylinder Acceler --> trn=4.3287, chk=5.9625
ANFIS model 5: Cylinder Year --> trn=3.7129, chk=4.5946
ANFIS model 6: Disp Power --> trn=3.8087, chk=3.8594
ANFIS model 7: Disp Weight --> trn=4.0271, chk=4.6350
ANFIS model 8: Disp Acceler --> trn=4.0782, chk=4.4890
ANFIS model 9: Disp Year --> trn=2.9565, chk=3.3905
ANFIS model 10: Power Weight --> trn=3.9310, chk=4.2976
ANFIS model 11: Power Acceler --> trn=4.2740, chk=3.8738
ANFIS model 12: Power Year --> trn=3.3796, chk=3.3505
ANFIS model 13: Weight Acceler --> trn=4.0875, chk=4.0095
ANFIS model 14: Weight Year --> trn=2.7657, chk=2.9953
ANFIS model 15: Acceler Year --> trn=5.6242, chk=5.6481
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Figure 2: All two input variable combinations and their influence on fuel consumption

The results from exhsrch indicate that Weight and Year form the optimal combination
of two input attributes. The training and checking errors are getting distinguished,
indicating the outset of overfitting. It may not be prudent to use more than two inputs for
building the ANFIS model. We can test this premise to verify it's validity.

exhsrch(3,trn_data,chk_data,input_name);

Train 20 ANFIS models, each with 3 inputs selected from 6 candidates...

ANFIS model 1: Cylinder Disp Power --> trn=3.4446, chk=11.5329
ANFIS model 2: Cylinder Disp Weight --> trn=3.6686, chk=4.8922
ANFIS model 3: Cylinder Disp Acceler --> trn=3.6610, chk=5.2384
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ANFIS model 4: Cylinder Disp Year --> trn=2.5463, chk=4.9001
ANFIS model 5: Cylinder Power Weight --> trn=3.4797, chk=9.3761
ANFIS model 6: Cylinder Power Acceler --> trn=3.5432, chk=4.4804
ANFIS model 7: Cylinder Power Year --> trn=2.6300, chk=3.6300
ANFIS model 8: Cylinder Weight Acceler --> trn=3.5708, chk=4.8379
ANFIS model 9: Cylinder Weight Year --> trn=2.4951, chk=4.0435
ANFIS model 10: Cylinder Acceler Year --> trn=3.2698, chk=6.2616
ANFIS model 11: Disp Power Weight --> trn=3.5879, chk=7.4942
ANFIS model 12: Disp Power Acceler --> trn=3.5395, chk=3.9953
ANFIS model 13: Disp Power Year --> trn=2.4607, chk=3.3563
ANFIS model 14: Disp Weight Acceler --> trn=3.6075, chk=4.2318
ANFIS model 15: Disp Weight Year --> trn=2.5617, chk=3.7866
ANFIS model 16: Disp Acceler Year --> trn=2.4149, chk=3.2480
ANFIS model 17: Power Weight Acceler --> trn=3.7884, chk=4.0480
ANFIS model 18: Power Weight Year --> trn=2.4371, chk=3.2852
ANFIS model 19: Power Acceler Year --> trn=2.7276, chk=3.2580
ANFIS model 20: Weight Acceler Year --> trn=2.3603, chk=2.9152
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Figure 3: All three input variable combinations and their influence on fuel consumption

The plot shows the result of selecting three inputs, in which Weight, Year, and Acceler
are selected as the best combination of three input variables. However, the minimal
training (and checking) error do not reduce significantly from that of the best two-input
model, which indicates that the newly added attribute Acceler does not improve the
prediction much. For better generalization, we always prefer a model with a simple
structure. Therefore we will stick to the two-input ANFIS for further exploration.

We then extract the selected input attributes from the original training and checking
datasets.
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close all;
new_trn_data = trn_data(:,[input_index, size(trn_data,2)]);
new_chk_data = chk_data(:,[input_index, size(chk_data,2)]);

Training ANFIS Model

The function exhsrch only trains each ANFIS for a single epoch in order to be able to
quickly find the right inputs. Now that the inputs are fixed, we can spend more time on
ANFIS training (100 epochs).

The genfis function generates a initial FIS from the training data, which is then fine-
tuned by ANFIS to generate the final model.

in_fismat = genfis(new_trn_data(:,1:end-1),new_trn_data(:,end));
anfisOpt = anfisOptions('InitialFIS',in_fismat,'EpochNumber',100,...
                        'StepSizeDecreaseRate',0.5,...
                        'StepSizeIncreaseRate',1.5,...
                        'ValidationData',new_chk_data,...
                        'DisplayANFISInformation',0,...
                        'DisplayErrorValues',0,...
                        'DisplayStepSize',0,...
                        'DisplayFinalResults',0);
[trn_out_fismat,trn_error,step_size,chk_out_fismat,chk_error] = ...
    anfis(new_trn_data,anfisOpt);

ANFIS returns the error with respect to training data and checking data in the list of its
output parameters. The plot of the errors provides useful information about the training
process.

[a,b] = min(chk_error);
plot(1:100,trn_error,'g-',1:100,chk_error,'r-',b,a,'ko')
title('Training (green) and checking (red) error curve','fontsize',10)
xlabel('Epoch numbers','fontsize',10)
ylabel('RMS errors','fontsize',10)
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Figure 4: ANFIS training and checking errors

The plot above shows the error curves for 100 epochs of ANFIS training. The green curve
gives the training errors and the red curve gives the checking errors. The minimal
checking error occurs at about epoch 45, which is indicated by a circle. Notice that the
checking error curve goes up after 50 epochs, indicating that further training over fits the
data and produces worse generalization

ANFIS vs Linear Regression

A good exercise at this point would be to check the performance of the ANFIS model with
a linear regression model.
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The ANFIS prediction can be compared against a linear regression model by comparing
their respective RMSE (Root mean square) values against checking data.

% Performing Linear Regression
N = size(trn_data,1);
A = [trn_data(:,1:6) ones(N,1)];
B = trn_data(:,7);
coef = A\B; % Solving for regression parameters from training data

Nc = size(chk_data,1);
A_ck = [chk_data(:,1:6) ones(Nc,1)];
B_ck = chk_data(:,7);
lr_rmse = norm(A_ck*coef-B_ck)/sqrt(Nc);
% Printing results
fprintf('\nRMSE against checking data\nANFIS : %1.3f\tLinear Regression : %1.3f\n',a,lr_rmse);

RMSE against checking data
ANFIS : 2.978    Linear Regression : 3.444

It can be seen that the ANFIS model outperforms the linear regression model.

Analyzing ANFIS Model

The variable chk_out_fismat represents the snapshot of the ANFIS model at the
minimal checking error during the training process. The input-output surface of the
model is shown in the plot below.

chk_out_fismat.Inputs(1).Name = "Weight";
chk_out_fismat.Inputs(2).Name = "Year";
chk_out_fismat.Outputs(1).Name = "MPG";

% Generating the FIS output surface plot
gensurf(chk_out_fismat);
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Figure 5: Input-Output surface for trained FIS

The input-output surface shown above is a nonlinear and monotonic surface and
illustrates how the ANFIS model will respond to varying values of 'weight' and 'year'.

Limitations and Cautions

We can see some spurious effects at the far-end corner of the surface. The elevated
corner says that the heavier an automobile is, the more gas-efficient it will be. This is
totally counter-intuitive, and it is a direct result from lack of data.

plot(new_trn_data(:,1),new_trn_data(:, 2),'bo', ...
     new_chk_data(:,1),new_chk_data(:, 2),'rx')
xlabel('Weight','fontsize',10)
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ylabel('Year','fontsize',10)
title('Training (o) and checking (x) data','fontsize',10)

Figure 6: Weight vs Year plot showing lack of data in the upper-right corner

This plot above shows the data distribution. The lack of training data at the upper right
corner causes the spurious ANFIS surface mentioned earlier. Therefore the prediction by
ANFIS should always be interpreted with the data distribution in mind.

See Also
anfis | evalfis | genfis
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More About
• “Neuro-Adaptive Learning and ANFIS” on page 3-86
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Data Clustering

• “Fuzzy Clustering” on page 4-2
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-4
• “Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page 4-8
• “Fuzzy C-Means Clustering” on page 4-12
• “Fuzzy C-Means Clustering for Iris Data” on page 4-17
• “Model Suburban Commuting Using Subtractive Clustering” on page 4-22
• “Modeling Traffic Patterns using Subtractive Clustering” on page 4-34
• “Data Clustering Using Clustering Tool” on page 4-48
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Fuzzy Clustering

What Is Data Clustering?
Clustering of numerical data forms the basis of many classification and system modeling
algorithms. The purpose of clustering is to identify natural groupings of data from a large
data set to produce a concise representation of a system's behavior.

Fuzzy Logic Toolbox tools allow you to find clusters in input-output training data. You can
use the cluster information to generate a Sugeno-type fuzzy inference system that best
models the data behavior using a minimum number of rules. The rules partition
themselves according to the fuzzy qualities associated with each of the data clusters. to
automatically generate this type of FIS, use the genfis command.

Fuzzy C-Means Clustering
Fuzzy c-means (FCM) is a data clustering technique wherein each data point belongs to a
cluster to some degree that is specified by a membership grade. This technique was
originally introduced by Jim Bezdek in 1981 [1] as an improvement on earlier clustering
methods. It provides a method that shows how to group data points that populate some
multidimensional space into a specific number of different clusters.

The command line function fcm starts with an initial guess for the cluster centers, which
are intended to mark the mean location of each cluster. The initial guess for these cluster
centers is most likely incorrect. Additionally, fcm assigns every data point a membership
grade for each cluster. By iteratively updating the cluster centers and the membership
grades for each data point, fcm iteratively moves the cluster centers to the right location
within a data set. This iteration is based on minimizing an objective function that
represents the distance from any given data point to a cluster center weighted by that
data point's membership grade.

The command line function fcm outputs a list of cluster centers and several membership
grades for each data point. You can use the information returned by fcm to help you build
a fuzzy inference system by creating membership functions to represent the fuzzy
qualities of each cluster. To generate a Sugeno-type fuzzy inference system that models
the behavior of input/output data, you can configure the genfis command to use FCM
clustering.
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Subtractive Clustering
If you do not have a clear idea how many clusters there should be for a given set of data,
subtractive clustering is a fast, one-pass algorithm for estimating the number of clusters
and the cluster centers for a set of data [2]. The cluster estimates, which are obtained
from the subclust function, can be used to initialize iterative optimization-based
clustering methods (fcm) and model identification methods (like anfis). The subclust
function finds the clusters using the subtractive clustering method.

To generate a Sugeno-type fuzzy inference system that models the behavior of input/
output data, you can configure the genfis command to use subtractive clustering.

References

[1] Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum
Press, New York, 1981.

[2] Chiu, S., "Fuzzy Model Identification Based on Cluster Estimation," Journal of
Intelligent & Fuzzy Systems, Vol. 2, No. 3, Sept. 1994.

See Also
fcm | genfis | subclust

More About
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-4
• “Model Suburban Commuting Using Subtractive Clustering” on page 4-22
• “Data Clustering Using Clustering Tool” on page 4-48

 See Also

4-3



Cluster Quasi-Random Data Using Fuzzy C-Means
Clustering

This example shows how FCM clustering works using quasi-random two-dimensional
data.

Load the data set and plot it.

load fcmdata.dat
plot(fcmdata(:,1),fcmdata(:,2),'o')

Next, invoke the command-line function, fcm, to find two clusters in this data set until the
objective function is no longer decreasing much at all.
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[center,U,objFcn] = fcm(fcmdata,2);

Iteration count = 1, obj. fcn = 8.970479
Iteration count = 2, obj. fcn = 7.197402
Iteration count = 3, obj. fcn = 6.325579
Iteration count = 4, obj. fcn = 4.586142
Iteration count = 5, obj. fcn = 3.893114
Iteration count = 6, obj. fcn = 3.810804
Iteration count = 7, obj. fcn = 3.799801
Iteration count = 8, obj. fcn = 3.797862
Iteration count = 9, obj. fcn = 3.797508
Iteration count = 10, obj. fcn = 3.797444
Iteration count = 11, obj. fcn = 3.797432
Iteration count = 12, obj. fcn = 3.797430

center contains the coordinates of the two cluster centers, U contains the membership
grades for each of the data points, and objFcn contains a history of the objective function
across the iterations.

The fcm function is an iteration loop built on top of the following routines:

• initfcm - initializes the problem
• distfcm - performs Euclidean distance calculation
• stepfcm - performs one iteration of clustering

To view the progress of the clustering, plot the objective function.

figure
plot(objFcn)
title('Objective Function Values')   
xlabel('Iteration Count')
ylabel('Objective Function Value')
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Finally, plot the two cluster centers found by the fcm function. The large characters in the
plot indicate cluster centers.

maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2,:) == maxU);
figure
line(fcmdata(index1,1), fcmdata(index1,2), 'linestyle',...
                        'none','marker', 'o','color','g')
line(fcmdata(index2,1),fcmdata(index2,2),'linestyle',...
                        'none','marker', 'x','color','r')
hold on
plot(center(1,1),center(1,2),'ko','markersize',15,'LineWidth',2)
plot(center(2,1),center(2,2),'kx','markersize',15,'LineWidth',2)
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Note: Every time you run this example, the fcm function initializes with different initial
conditions. This behavior swaps the order in which the cluster centers are computed and
plotted.

See Also
fcm

More About
• “Fuzzy Clustering” on page 4-2
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Adjust Fuzzy Overlap in Fuzzy C-Means Clustering
This example shows how to adjust the amount of fuzzy overlap when performing fuzzy c-
means clustering.

Create a random data set. For reproducibility, initialize the random number generator to
its default value.

rng('default')
data = rand(100,2);

Specify fuzzy partition matrix exponents.

M = [1.1 2.0 3.0 4.0];

The exponent values in M must be greater than 1, with smaller values specifying a lower
degree of fuzzy overlap. In other words, as M approaches 1, the boundaries between the
clusters become more crisp.

For each overlap exponent:

• Cluster the data.
• Classify each data point into the cluster for which it has the highest degree of

membership.
• Find the data points with maximum membership values below 0.6. These points have

a more fuzzy classification.
• To quantify the degree of fuzzy overlap, calculate the average maximum membership

value across all data points. A higher average maximum membership value indicates
that there is less fuzzy overlap.

• Plot the clustering results.

for i = 1:4
    % Cluster the data.
    options = [M(i) NaN NaN 0];
    [centers,U] = fcm(data,2,options);
    
    % Classify the data points.
    maxU = max(U);
    index1 = find(U(1,:) == maxU);
    index2 = find(U(2,:) == maxU);
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    % Find data points with lower maximum membership values.
    index3 = find(maxU < 0.6);
    
    % Calculate the average maximum membership value.
    averageMax = mean(maxU);
    
    % Plot the results.
    subplot(2,2,i)
    plot(data(index1,1),data(index1,2),'ob')
    hold on
    plot(data(index2,1),data(index2,2),'or')
    plot(data(index3,1),data(index3,2),'xk','LineWidth',2)
    plot(centers(1,1),centers(1,2),'xb','MarkerSize',15,'LineWidth',3)
    plot(centers(2,1),centers(2,2),'xr','MarkerSize',15,'LineWidth',3)
    hold off
    title(['M = ' num2str(M(i)) ', Ave. Max. = ' num2str(averageMax,3)])
end
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A given data point is classified into the cluster for which it has the highest membership
value, as indicated by maxU. A maximum membership value of 0.5 indicates that the
point belongs to both clusters equally. The data points marked with a black x have
maximum membership values below 0.6. These points have a greater degree of
uncertainty in their cluster membership.

More data points with low maximum membership values indicate a greater degree of
fuzzy overlap in the clustering result. The average maximum membership value,
averageMax, provides a quantitative description of the overlap. An averageMax value of
1 indicates crisp clusters, with smaller values indicating more overlap.
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See Also
fcm

More About
• “Fuzzy Clustering” on page 4-2
• “Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-4
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Fuzzy C-Means Clustering
This example shows how to perform fuzzy c-means clustering on 2-dimensional data. For
an example that clusters higher-dimensional data, see “Fuzzy C-Means Clustering for Iris
Data” on page 4-17.

Fuzzy c-means (FCM) is a data clustering technique in which a data set is grouped into N
clusters with every data point in the dataset belonging to every cluster to a certain
degree. For example, a data point that lies close to the center of a cluster will have a high
degree of membership in that cluster, and another datapoint that lies far away from the
center of a cluster will have a low degree of membership to that cluster.

The fcm function performs FCM clustering. It starts with a random initial guess for the
cluster centers; that is the mean location of each cluster. Next, fcm assigns every data
point a random membership grade for each cluster. By iteratively updating the cluster
centers and the membership grades for each data point, fcm moves the cluster centers to
the correct location within a data set and, for each data point, finds the degree of
membership in each cluster. This iteration minimizes an objective function that represents
the distance from any given data point to a cluster center weighted by the membership of
that data point in the cluster.

Load Data

Load the five sample data sets, and select a data set to cluster. These data sets have
different numbers of clusters and data distributions.

load fcmdata
dataset = fcmdata3;

Specify FCM Settings

Configure the clustering algorithm settings. For more information on these settings, see
fcm. To obtain accurate clustering results for each data set, try different clustering
options.

Specify the number of clusters to compute, which must be greater than 1.

N = 4;

Specify the exponent the fuzzy partition matrix, which controls the degree of fuzzy
overlap between clusters. This value must be greater than 1, with smaller values creating
more crisp cluster boundaries. For more information, see “Adjust Fuzzy Overlap in Fuzzy
C-Means Clustering” on page 4-8.
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exponent = 2;

Specify the maximum number of optimization iterations.

maxIterations = 100;

Specify the minimum improvement in the objective function between successive
iterations. When the objective function improves by a value below this threshold, the
optimization stops. A smaller value produces more accurate clustering results, but the
clustering can take longer to converge.

minImprovement = 0.00001;

Specify whether to display the objective function value after each iteration.

displayObjectiveFunction = false;

Create an option vector for the fcm function using these settings.

options = [exponent maxIterations minImprovement displayObjectiveFunction];

Cluster Data

Cluster the data into N clusters.

[C,U] = fcm(dataset,N,options);

C contains the computed centers for each cluster. U contains the computed fuzzy partition
matrix, which indicates the degree of membership of each data point within each cluster.

Classify each data point into the cluster for which it has the highest degree of
membership.

maxU = max(U);
index = cell(N,1);
for i=1:N
    index{i} = find(U(i,:) == maxU);
end

Plot Clustering Results

Plot the clustering results.

figure
hold on
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for i=1:N
    plot(dataset(index{i},1),dataset(index{i},2),'o')
    plot(C(i,1),C(i,2),'xk','MarkerSize',15,'LineWidth',3)
end
hold off

The data points in each cluster are shown in a different colors. The center for each cluster
is shown as a black X.

Plot Data Point Membership Values

Select a cluster for which to plot a membership function surface.

cluster = 2;
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Obtain the membership function for the selected cluster by fitting a surface to the cluster
membership values for all data points. For more information on interpolating scattered 3-
D data, see griddata.

[X,Y] = meshgrid(0:0.05:1, 0:0.05:1);
Z = griddata(dataset(:,1),dataset(:,2),U(cluster,:),X,Y);
surf(X,Y,Z)
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When you decrease the exponent value, the transition from maximum full cluster
membership to zero cluster membership becomes more steep; that is, the cluster
boundary becomes more crisp.

See Also
fcm

More About
• “Fuzzy Clustering” on page 4-2
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Fuzzy C-Means Clustering for Iris Data
This example shows how to use fuzzy c-means clustering for the iris data set. This dataset
was collected by botanist Edgar Anderson and contains random samples of flowers
belonging to three species of iris flowers: setosa, versicolor, and virginica. For each of the
species, the data set contains 50 observations for sepal length, sepal width, petal length,
and petal width.

Load Data

Load the data set from the iris.dat data file.

load iris.dat

Partition the data into three groups named setosa, versicolor, and virginica.

setosaIndex = iris(:,5)==1;
versicolorIndex = iris(:,5)==2;
virginicaIndex = iris(:,5)==3;

setosa = iris(setosaIndex,:);
versicolor = iris(versicolorIndex,:);
virginica = iris(virginicaIndex,:);

Plot Data in 2-D

The iris data contains four dimensions representing sepal length, sepal width, petal
length, and petal width. Plot the data points for each combination of two dimensions.

Characteristics = {'sepal length','sepal width','petal length','petal width'};
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];

for i = 1:6
    x = pairs(i,1); 
    y = pairs(i,2);   
    subplot(2,3,i)
    plot([setosa(:,x) versicolor(:,x) virginica(:,x)],...
         [setosa(:,y) versicolor(:,y) virginica(:,y)], '.')
    xlabel(Characteristics{x})
    ylabel(Characteristics{y})
end
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Setup Parameters

Specify the options for clustering the data using fuzzy c-means clustering. These options
are:

• Nc — Number of clusters
• M — Fuzzy partition matrix exponent, which indicates the degree of fuzzy overlap

between clusters. For more information, see “Adjust Fuzzy Overlap in Fuzzy C-Means
Clustering” on page 4-8.

• maxIter — Maximum number of iterations. The clustering process stops after this
number of iterations.
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• minImprove — Minimum improvement. The clustering process stops when the
objective function improvement between two consecutive iterations is less than this
value.

Nc = 3;
M = 2.0;
maxIter = 100;
minImprove = 1e-6;

For more information about these options and the fuzzy c-means algorithm, see fcm.

Compute Clusters

Fuzzy c-means clustering is an iterative process. Initially, the fcm function generates a
random fuzzy partition matrix. This matrix indicates the degree of membership of each
data point in each cluster.

In each clustering iteration, fcm calculates the cluster centers and updates the fuzzy
partition matrix using the calculated center locations. It then computes the objective
function value.

Cluster the data, displaying the objective function value after each iteration.

clusteringOptions = [M maxIter minImprove true];
[centers,U] = fcm(iris,Nc,clusteringOptions);

Iteration count = 1, obj. fcn = 28838.424340
Iteration count = 2, obj. fcn = 21010.880067
Iteration count = 3, obj. fcn = 15272.280943
Iteration count = 4, obj. fcn = 11029.756194
Iteration count = 5, obj. fcn = 10550.015503
Iteration count = 6, obj. fcn = 10301.776800
Iteration count = 7, obj. fcn = 9283.793786
Iteration count = 8, obj. fcn = 7344.379868
Iteration count = 9, obj. fcn = 6575.117093
Iteration count = 10, obj. fcn = 6295.215539
Iteration count = 11, obj. fcn = 6167.772051
Iteration count = 12, obj. fcn = 6107.998500
Iteration count = 13, obj. fcn = 6080.461019
Iteration count = 14, obj. fcn = 6068.116247
Iteration count = 15, obj. fcn = 6062.713326
Iteration count = 16, obj. fcn = 6060.390433
Iteration count = 17, obj. fcn = 6059.403978
Iteration count = 18, obj. fcn = 6058.988494
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Iteration count = 19, obj. fcn = 6058.814438
Iteration count = 20, obj. fcn = 6058.741777
Iteration count = 21, obj. fcn = 6058.711512
Iteration count = 22, obj. fcn = 6058.698925
Iteration count = 23, obj. fcn = 6058.693695
Iteration count = 24, obj. fcn = 6058.691523
Iteration count = 25, obj. fcn = 6058.690622
Iteration count = 26, obj. fcn = 6058.690247
Iteration count = 27, obj. fcn = 6058.690092
Iteration count = 28, obj. fcn = 6058.690028
Iteration count = 29, obj. fcn = 6058.690001
Iteration count = 30, obj. fcn = 6058.689990
Iteration count = 31, obj. fcn = 6058.689985
Iteration count = 32, obj. fcn = 6058.689983
Iteration count = 33, obj. fcn = 6058.689983

The clustering stops when the objective function improvement is below the specified
minimum threshold.

Plot the computed cluster centers as bold numbers.

for i = 1:6
    subplot(2,3,i);
    for j = 1:Nc
        x = pairs(i,1);
        y = pairs(i,2);
        text(centers(j,x),centers(j,y),int2str(j),'FontWeight','bold');
    end
end
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See Also
fcm

More About
• “Fuzzy Clustering” on page 4-2
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Model Suburban Commuting Using Subtractive
Clustering

This example shows how to model the relationship between the number of automobile
trips generated from an area and the demographics of the area using the genfis
function. Demographic and trip data are from 100 traffic analysis zones in New Castle
County, Delaware. Five demographic factors are considered: population, number of
dwelling units, vehicle ownership, median household income, and total employment.
Hence, the model has five input variables and one output variable.

Load and plot the data.

mytripdata
subplot(2,1,1)
plot(datin)
ylabel('input')
subplot(2,1,2)
plot(datout)
ylabel('output')

4 Data Clustering

4-22



The mytripdata command creates several variables in the workspace. Of the original
100 data points, use 75 data points as training data (datin and datout) and 25 data
points as checking data (as well as for test data to validate the model). The checking data
input/output pair variables are chkdatin and chkdatout.

Generate a model from the data using subtractive clustering using the genfis command.

First, create a genfisOptions option set for subtractive clustering, specifying
ClusterInfluenceRange range property. The ClusterInfluenceRange property
indicates the range of influence of a cluster when you consider the data space as a unit
hypercube. Specifying a small cluster radius usually yields many small clusters in the
data, and results in many rules. Specifying a large cluster radius usually yields a few
large clusters in the data, and results in fewer rules.
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opt = genfisOptions('SubtractiveClustering','ClusterInfluenceRange',0.5);

Generate the FIS model using the training data and the specified options.

fismat = genfis(datin,datout,opt);

The genfis command uses a one-pass method that does not perform any iterative
optimization. The model type for the generated FIS object is a first order Sugeno model
with three rules.

Verify the model. Here, trnRMSE is the root mean squared error of the system generated
by the training data.

fuzout = evalfis(fismat,datin);
trnRMSE = norm(fuzout-datout)/sqrt(length(fuzout))

trnRMSE = 0.5276

Next, apply the test data to the FIS to validate the model. In this example, the validation
data is used for both checking and testing the FIS parameters. Here, chkRMSE is the root
mean squared error of the system generated by the validation data.

chkfuzout = evalfis(fismat,chkdatin);
chkRMSE = norm(chkfuzout-chkdatout)/sqrt(length(chkfuzout))

chkRMSE = 0.6179

Plot the output of the model, chkfuzout, against the validation data, chkdatout.

figure
plot(chkdatout)
hold on
plot(chkfuzout,'o')
hold off
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The model output and validation data are shown as circles and solid blue line,
respectively. The plot shows that the model does not perform well on the validation data.

At this point, you can use the optimization capability of anfis to improve the model.
First, try using a relatively short training period (20 epochs) without using validation
data, and then test the resulting FIS model against the testing data.

anfisOpt = anfisOptions('InitialFIS',fismat,'EpochNumber',20,...
                        'InitialStepSize',0.1);
fismat2 = anfis([datin datout],anfisOpt);

ANFIS info: 
    Number of nodes: 44
    Number of linear parameters: 18
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    Number of nonlinear parameters: 30
    Total number of parameters: 48
    Number of training data pairs: 75
    Number of checking data pairs: 0
    Number of fuzzy rules: 3

Start training ANFIS ...

   1      0.527607
   2      0.513727
   3      0.492996
   4      0.499985
   5      0.490585
   6      0.492924
   7      0.48733
Step size decreases to 0.090000 after epoch 7.
   8      0.485036
   9      0.480813
  10      0.475097
Step size increases to 0.099000 after epoch 10.
  11      0.469759
  12      0.462516
  13      0.451177
  14      0.447856
Step size increases to 0.108900 after epoch 14.
  15      0.444357
  16      0.433904
  17      0.433739
  18      0.420408
Step size increases to 0.119790 after epoch 18.
  19      0.420512
  20      0.420275

Designated epoch number reached --> ANFIS training completed at epoch 20.

Minimal training RMSE = 0.420275

After the training is complete, validate the model.

fuzout2 = evalfis(fismat2,datin);
trnRMSE2 = norm(fuzout2-datout)/sqrt(length(fuzout2))

trnRMSE2 = 0.4203
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chkfuzout2 = evalfis(fismat2,chkdatin);
chkRMSE2 = norm(chkfuzout2-chkdatout)/sqrt(length(chkfuzout2))

chkRMSE2 = 0.5894

The model has improved a lot with respect to the training data, but only a little with
respect to the validation data. Plot the improved model output obtained using anfis
against the testing data.

figure
plot(chkdatout)
hold on
plot(chkfuzout2,'o')
hold off
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The model output and validation data are shown as circles and solid blue line,
respectively. This plot shows that subtractive clustering with genfis can be used as a
standalone, fast method for generating a fuzzy model from data, or as a preprocessor to
determine the initial rules for anfis training. An important advantage of using a
clustering method to find rules is that the resultant rules are more tailored to the input
data than they are in a FIS generated without clustering. This result reduces the problem
of an excessive propagation of rules when the input data has a high dimension.

Overfitting can be detected when the checking error starts to increase while the training
error continues to decrease.

To check the model for overfitting, use anfis with validation data to train the model for
200 epochs.

First configure the ANFIS training options by modifying the existing anfisOptions
option set. Specify the epoch number and validation data. Since the number of training
epochs is larger, suppress the display of training information to the Command Window.

anfisOpt.EpochNumber = 200;
anfisOpt.ValidationData = [chkdatin chkdatout];
anfisOpt.DisplayANFISInformation = 0;
anfisOpt.DisplayErrorValues = 0;
anfisOpt.DisplayStepSize = 0;
anfisOpt.DisplayFinalResults = 0;

Train the FIS.

[fismat3,trnErr,stepSize,fismat4,chkErr] = anfis([datin datout],anfisOpt);

Here,

• fismat3 is the FIS object when the training error reaches a minimum.
• fismat4 is the snapshot FIS object when the validation data error reaches a

minimum.
• stepSize is a history of the training step sizes.
• trnErr is the RMSE using the training data
• chkErr is the RMSE using the validation data for each training epoch.

After the training completes, validate the model.

fuzout4 = evalfis(fismat4,datin);
trnRMSE4 = norm(fuzout4-datout)/sqrt(length(fuzout4))
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trnRMSE4 = 0.3393

chkfuzout4 = evalfis(fismat4,chkdatin);
chkRMSE4 = norm(chkfuzout4-chkdatout)/sqrt(length(chkfuzout4))

chkRMSE4 = 0.5834

The error with the training data is the lowest thus far, and the error with the validation
data is also slightly lower than before. This result suggests possible overfitting, which
occurs when you fit the fuzzy system to the training data so well that it no longer does a
good job of fitting the validation data. The result is a loss of generality.

View the improved model output. Plot the model output against the checking data.

figure
plot(chkdatout)
hold on
plot(chkfuzout4,'o')
hold off
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The model output and validation data are shown as circles and solid blue line,
respectively.

Next, plot the training error, trnErr.

figure
plot(trnErr)
title('Training Error')
xlabel('Number of Epochs')
ylabel('Training Error')

4 Data Clustering

4-30



This plot shows that the training error settles at about the 60th epoch point.

Plot the checking error, chkErr.

figure
plot(chkErr)
title('Checking Error')
xlabel('Number of Epochs')
ylabel('Checking Error')
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The plot shows that the smallest value of the validation data error occurs at the 52nd
epoch. After this point it increases slightly even as anfis continues to minimize the error
against the training data all the way to the 200th epoch. Depending on the specified error
tolerance, the plot also indicates the ability of the model to generalize the test data.

You can also compare the output of fismat2 and fistmat4 against the validation data,
chkdatout.

figure
plot(chkdatout)
hold on
plot(chkfuzout4,'ob')
plot(chkfuzout2,'+r')
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See Also
anfis | subclust

More About
• “Fuzzy Clustering” on page 4-2
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Modeling Traffic Patterns using Subtractive Clustering
This example shows how to use subtractive clustering to model traffic patterns in an area
based on the demographics of the area.

The Problem: Understanding Traffic Patterns

In this example we attempt to understand the relationship between the number of
automobile trips generated from an area and the area's demographics. Demographic and
trip data were collected from traffic analysis zones in New Castle County, Delaware. Five
demographic factors are considered: population, number of dwelling units, vehicle
ownership, median household income and total employment.

Hereon, the demographic factors will be addressed as inputs and the trips generated will
be addressed as output. Hence our problem has five input variables (five demographic
factors) and one output variable (number of trips generated).

The Data

Load the input and output variables used for this example into the workspace.

tripdata

Two variables are loaded in the workspace, datin and datout. datin has 5 columns
representing the 5 input variables and datout has 1 column representing the 1 output
variable.

subplot(2,1,1)
plot(datin)
legend('population', 'num. of dwelling units', 'vehicle ownership',...
    'median household income', 'total employment')
title('Input Variables','fontsize',10)

subplot(2,1,2)
plot(datout)
legend('num of trips')
title('Output Variable','fontsize',10)
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Figure 1: Input and Output variables

The number of rows in datin and datout, 75, represent the number of observations or
samples or datapoints available. A row in datin, say row 11, constitutes a set of observed
values of the 5 input variables (population, number of dwelling units, vehicle ownership,
median household income and total employment) and the corresponding row, row 11, in
datout represents the observed value for the number of trips generated given the
observations made for the input variables.

We will model the relationship between the input variables (demographics) and the output
variable (trips) by first clustering the data. The cluster centers will then be used as a
basis to define a Fuzzy Inference System (FIS) which can then be used to explore and
understand traffic patterns.

 Modeling Traffic Patterns using Subtractive Clustering

4-35



Why Clustering and Fuzzy Logic?

Clustering can be a very effective technique to identify natural groupings in data from a
large data set, thereby allowing concise representation of relationships embedded in the
data. In this example, clustering allows us to group traffic patterns into broad categories
hence allowing for easier understandability.

Fuzzy logic is an effective paradigm to handle imprecision. It can be used to take fuzzy or
imprecise observations for inputs and yet arrive at crisp and precise values for outputs.
Also, the Fuzzy Inference System (FIS) is a simple and commonsensical way to build
systems without using complex analytical equations.

In our example, fuzzy logic will be employed to capture the broad categories identified
during clustering into a Fuzzy Inference System (FIS). The FIS will then act as a model
that will reflect the relationship between demographics and auto trips.

Clustering and fuzzy logic together provide a simple yet powerful means to model the
traffic relationship that we want to study.

Clustering the Data

subclust is the function that implements a clustering technique called subtractive
clustering. Subtractive clustering, [1], is a fast, one-pass algorithm for estimating the
number of clusters and the cluster centers in a dataset.

In this section, we will see how subtractive clustering is performed on a dataset and in
the next section we will explore independently how clustering is used to build a Fuzzy
Inference System(FIS).

[C,S] = subclust([datin datout],0.5);

The first argument to the subclust function is the data to be clustered. The second
argument to the function is the radii which marks a cluster's radius of influence in the
input space.

The variable C now holds all the centers of the clusters that have been identified by
subclust. Each row of C contains the position of a cluster.

C

C =
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    1.8770    0.7630    0.9170   18.7500    1.5650    2.1830
    0.3980    0.1510    0.1320    8.1590    0.6250    0.6480
    3.1160    1.1930    1.4870   19.7330    0.6030    2.3850

In this case, C has 3 rows representing 3 clusters with 6 columns representing the
positions of the clusters in each dimension.

subclust has hence identified 3 natural groupings in the demographic-trip dataset being
considered. The following plot shows how the clusters have been identified in the 'total
employment' and 'trips' dimensions of the input space.

clf
plot(datin(:,5),datout(:,1),'.',C(:,5),C(:,6),'r*')
legend('Data points','Cluster centers','Location','SouthEast')
xlabel('total employment','fontsize',10)
ylabel('num of trips','fontsize',10)
title('Data and Clusters in selected two dimensions of the input space','fontsize',10)
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Figure 2: Cluster centers in the 'total employment' and 'trips' dimensions of the input
space

The variable S contains the sigma values that specify the range of influence of a cluster
center in each of the data dimensions. All cluster centers share the same set of sigma
values.

S

S =

    1.1621    0.4117    0.6555    7.6139    2.8931    1.4395
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S in this case has 6 columns representing the influence of the cluster centers on each of
the 6 dimensions.

Generating the Fuzzy Inference System (FIS)

genfis is the function that creates a FIS using subtractive clustering. genfis employs
subclust behind the scenes to cluster the data and uses the cluster centers and their
range of influences to build a FIS which will then be used to explore and understand
traffic patterns.

myfis=genfis(datin,datout, ...
    genfisOptions('SubtractiveClustering','ClusterInfluenceRange',0.5));

The first argument is the input variables matrix datin, the second argument is the output
variables matrix datout and the third argument is the radii that should be used while
using subclust.

genfis assigns default names for inputs, outputs and membership functions. For our
understanding it is beneficial to rename the inputs and outputs meaningfully.

Assign names to the inputs and outputs.

myfis.Inputs(1).Name = "population";
myfis.Inputs(2).Name = "dwelling units";
myfis.Inputs(3).Name = "num vehicles";
myfis.Inputs(4).Name = "income";
myfis.Inputs(5).Name = "employment";
myfis.Outputs(1).Name = "num of trips";

Understanding the Clusters-FIS Relationship

An FIS is composed of inputs, outputs, and rules. Each input and output can have any
number of membership functions. The rules dictate the behavior of the fuzzy system
based on inputs, outputs and membership functions. genfis constructs the FIS in an
attempt to capture the position and influence of each cluster in the input space.

myfis is the FIS that genfis has generated. Since the dataset has 5 input variables and
1 output variable, genfis constructs a FIS with 5 inputs and 1 output. Each input and
output has as many membership functions as the number of clusters that subclust has
identified. As seen previously, for the current dataset subclust identified 3 clusters.
Therefore each input and output will be characterized by 3 membership functions. Also,
the number of rules equals the number of clusters and hence 3 rules are created.
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We can now probe the FIS to understand how the clusters got converted internally into
membership functions and rules using the Fuzzy Logic Designer app.

fuzzyLogicDesigner(myfis)

Figure 3: The graphical editor for building Fuzzy Inference Systems (FIS)

As can be seen, the FIS has 5 inputs and 1 output with the inputs mapped to the outputs
through a rule base (white box in the figure).
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Let's now try to analyze how the cluster centers and the membership functions are
related.

mfedit(myfis)

Figure 4: The graphical membership function editor
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mfedit(myfis) launches the graphical membership function editor. It can also be
launched by clicking on the inputs or the outputs in the FIS editor launched by
fuzzyLogicDesigner.

Notice that all the inputs and outputs have exactly 3 membership functions. The 3
membership functions represent the 3 clusters that were identified by subclust.

Each input in the FIS represents an input variable in the input dataset datin and each
output in the FIS represents an output variable in the output dataset datout.

By default, the first membership function, in1cluster1, of the first input population
would be selected in the membership function editor. Notice that the membership
function type is gaussmf (Gaussian type membership function) and the parameters of the
membership function are [1.162 1.877], where 1.162 represents the spread
coefficient of the Gaussian curve and 1.877 represents the center of the Gaussian curve.
in1cluster1 captures the position and influence of the first cluster for the input
variable population. (C(1,1)=1.877, S(1)=1.1621 )

Similarly, the position and influence of the other 2 clusters for the input variable
population are captured by the other two membership functions in1cluster2 and
in1cluster3.

The rest of the 4 inputs follow the exact pattern mimicking the position and influence of
the 3 clusters along their respective dimensions in the dataset.

Now, let's explore how the fuzzy rules are constructed.

ruleedit(myfis)
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Figure 5: The graphical rule editor

ruleedit is the graphical fuzzy rule editor. As you can notice, there are exactly three
rules. Each rule attempts to map a cluster in the input space to a cluster in the output
space.

The first rule can be explained simply as follows. If the inputs to the FIS, population,
dwelling units, num vehicles, income, and employment, strongly belong to their
respective cluster1 membership functions then the output, num of trips, must
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strongly belong to its cluster1 membership function. The (1) at the end of the rule is to
indicate that the rule has a weight or an importance of "1". Weights can take any value
between 0 and 1. Rules with lesser weights will count for less in the final output.

The significance of the rule is that it succinctly maps cluster 1 in the input space to
cluster 1 in the output space. Similarly the other two rules map cluster 2 and cluster 3 in
the input space to cluster 2 and cluster 3 in the output space.

If a datapoint closer to the first cluster, or in other words having strong membership to
the first cluster, is fed as input to myfis then rule1 will fire with more firing strength
than the other two rules. Similarly, an input with strong membership to the second cluster
will fire the second rule will with more firing strength than the other two rules and so on.

The output of the rules (firing strengths) are then used to generate the output of the FIS
through the output membership functions.

The one output of the FIS, num of trips, has 3 linear membership functions
representing the 3 clusters identified by subclust. The coefficients of the linear
membership functions though are not taken directly from the cluster centers. Instead,
they are estimated from the dataset using least squares estimation technique.

All 3 membership functions in this case will be of the form a*population +
b*dwelling units + c*num vehicles + d*income + e*employment + f, where
a, b, c, d, e and f represent the coefficients of the linear membership function. Click on
any of the num of trips membership functions in the membership function editor to
observe the parameters of these linear membership functions.

Using the FIS for Data Exploration

You can now use the FIS that has been constructed to understand the underlying
dynamics of relationship being modeled.

surfview(myfis)
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Figure 6: Input-Output Surface viewer

surfview is the surface viewer that helps view the input-output surface of the fuzzy
system. In other words, this tool simulates the response of the fuzzy system for the entire
range of inputs that the system is configured to work for. Thereafter, the output or the
response of the FIS to the inputs are plotted against the inputs as a surface. This
visualization is very helpful to understand how the system is going to behave for the
entire range of values in the input space.

In the plot above the surface viewer shows the output surface for two inputs population
and num of dwelling units. As you can see the number of auto trips increases with
increase in population and dwelling units, which sounds very rational. You can change the

 Modeling Traffic Patterns using Subtractive Clustering

4-45



inputs in the X and Y drop-down boxes to observe the output surface with respect to the
inputs you choose.

ruleview(myfis)

Figure 7: Rule viewer that simulates the entire fuzzy inference process

ruleview is the graphical simulator for simulating the FIS response for specific values of
the input variables. Now, having built the fuzzy system, if we want to understand how
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many trips will occur for a particular demographic setup, say an area with a particular
population, a certain number of dwelling units and so on, this tool will help you simulate
the FIS response for the input of your choice.

Another feature of this GUI tool is, it gives you a snapshot of the entire fuzzy inference
process, right from how the membership functions are being satisfied in every rule to how
the final output is being generated through defuzzification.

Conclusion

This example has attempted to convey how clustering and fuzzy logic can be employed as
effective techniques for data modeling and analysis.

Fuzzy logic has also found various applications in other areas of technology like non-
linear control, automatic control, signal processing, system identification, pattern
recognition, time series prediction, data mining, financial applications etc.

Reference

[1] - S. Chiu, "Fuzzy Model Identification Based on Cluster Estimation," J. of Intelligent &
Fuzzy Systems, Vol. 2, No. 3, 1994.
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Data Clustering Using Clustering Tool
The Clustering tool implements the fuzzy data clustering functions fcm and subclust,
and lets you perform clustering on data. For more information on the clustering methods,
see “Fuzzy Clustering” on page 4-2.

To open the tool, at the MATLAB command line, type:

findcluster
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Use the Clustering tool to perform the following tasks:

1 Load and plot the data.
2 Perform the clustering.
3 Save the cluster center.

Access the online help topics by clicking Info or using the Help menu.

Load and Plot Data
To load a data set, perform either of the following actions:

• Click Load Data, and select the file containing the data.
• Open the Clustering Tool with a data set directly by calling findcluster with the

data set as an input argument.

The data set file must have the extension .dat. Each line of the data set file contains
one data point. For example, if you have 5-dimensional data with 100 data points, the
file contains 100 lines, and each line contains five values.

For example, enter:

findcluster('clusterdemo.dat')

The Clustering tool works on multidimensional data sets, but displays only two of those
dimensions on the plot. To select other dimensions in the data set for plotting, you can
use the drop-down lists under X-axis and Y-axis.

Cluster Data
To start clustering the data:

1 Choose the clustering function fcm (fuzzy C-Means clustering) or subtractiv
(subtractive clustering) from the drop-down menu under Methods.

2 Set options for:

• Fuzzy c-means clustering using the Cluster Num, Max Iteration, Min, and
Exponent fields. For information on these options, see fcm.

• Subtractive clustering using the Influence Range, Squash, Aspect Ratio, and
Reject Ratio fields. For information on these options, see subclust.
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3 Cluster the data by clicking Start.

Once the clustering is complete, the cluster centers appear in black as shown in the
next figure.

Tip Using the Clustering tool, you can obtain only the computed cluster centers. To
obtain additional information for:
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• Fuzzy c-means clustering, such as the fuzzy partition matrix, cluster the data using
fcm.

• Subtractive clustering, such as the range of influence in each data dimension, cluster
the data using subclust.

To use the same clustering data with either fcm or subclust, first load the data file into
the MATLAB workspace. For example, at the MATLAB command line, type:

load clusterdemo.dat

Save Cluster Centers
To save the cluster centers, click Save Center.

See Also
fcm | findcluster | subclust

More About
• “Fuzzy Clustering” on page 4-2
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Fuzzy Logic in Simulink

• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Water Level Control in a Tank” on page 5-15
• “Temperature Control in a Shower” on page 5-23
• “Implement Fuzzy PID Controller in Simulink Using Lookup Table” on page 5-30
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Simulate Fuzzy Inference Systems in Simulink
You can simulate a fuzzy inference system (FIS) in Simulink using either the Fuzzy Logic
Controller or Fuzzy Logic Controller with Ruleviewer blocks. Alternatively, you can
evaluate fuzzy systems at the command line using evalfis.

For more information on creating fuzzy inference systems, see “Build Fuzzy Systems
Using Fuzzy Logic Designer” on page 2-14 and “Build Fuzzy Systems at the Command
Line” on page 2-38.

Simulate Fuzzy Inference System
Once you have implemented a fuzzy inference system using Fuzzy Logic Designer, using
Neuro-Fuzzy Designer, or at the command line, you can simulate the system in
Simulink.

For this example, you control the level of water in a tank using a fuzzy inference system
implemented using a Fuzzy Logic Controller block. Open the sltank model.

open_system('sltank')
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For this system, you control the water that flows into the tank using a valve. The outflow
rate depends on the diameter of the output pipe, which is constant, and the pressure in
the tank, which varies with water level. Therefore, the system has nonlinear
characteristics.

The two inputs to the fuzzy system are the water level error, level, and the rate of
change of the water level, rate. The output of the fuzzy system is the rate at which the
control valve is opening or closing, valve.

To implement a fuzzy inference system, specify the FIS name parameter of the Fuzzy
Logic Controller block as the name of a FIS object in the MATLAB® workspace. In this
example, the block uses the mamfis object tank.

For more information on this system, see “Water Level Control in a Tank” on page 5-15.

As a first attempt to control the water level, set the following rules in the FIS. These rules
adjust the valve based on only the water level error.
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• If the water level is okay, then do not adjust the valve.
• If the water level is low, then open the valve quickly.
• If the water level is high, then close the valve quickly.

Specify the rules by creating a vector of fisrule objects and assigning it to the Rules
property of the tank FIS object.

rule1 = "If level is okay then valve is no_change";
rule2 = "If level is low then valve is open_fast";
rule3 = "If level is high then valve is close_fast";
rules = [rule1 rule2 rule3];
tank.Rules = fisrule(rules);

Simulate the model, and view the water level.

open_system('sltank/Comparison')
sim('sltank',100)
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These rules are insufficient for controlling the system, since the water level oscillates
around the setpoint.

To reduce the oscillations, add two more rules to the system. These rules adjust the valve
based on the rate of change of the water level when the water level is near the setpoint.

• If the water level is okay and increasing, then close the valve slowly.
• If the water level is okay and decreasing, then open the valve slowly.

To add these rules, use the addRule function.

rule4 = "If level is okay and rate is positive then valve is close_slow";
rule5 = "If level is okay and rate is negative then valve is open_slow";
newRules = [rule4 rule5];
tank = addRule(tank,newRules);

Simulate the model.

sim('sltank',100)

5 Fuzzy Logic in Simulink

5-6



 Simulate Fuzzy Inference Systems in Simulink

5-7



The water level now tracks the setpoint without oscillating.

You can also simulate fuzzy systems using the Fuzzy Logic Controller with Ruleviewer
block. The sltankrule model is the same as the sltank model, except that it uses the
Fuzzy Logic Controller with Ruleviewer block.

open_system('sltankrule')
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During simulation, this block displays the Rule Viewer from the Fuzzy Logic Designer
app.

sim('sltankrule',100)
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If you pause the simulation, you can examine the FIS behavior by manually adjusting the
input variable values in the Rule Viewer, and observing the inference process and output.

You can also access the Fuzzy Logic Designer editors from the Rule Viewer. From the
Rule Viewer, you can then adjust the parameters of your fuzzy system using these editors,
and export the updated system to the MATLAB workspace. To simulate the updated FIS,
restart the simulation. For more information on using these editors, see “Build Fuzzy
Systems Using Fuzzy Logic Designer” on page 2-14.

Access Intermediate Fuzzy Inference Results
You can access intermediate fuzzy inference results using the Fuzzy Logic Controller
block. You can use this data to visualize the fuzzy inference process or troubleshoot the
performance of your FIS. To access this data, enable the corresponding parameters in the
block, and connect signals to the corresponding output ports.
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Block Parameter Description Output Port
Fuzzified Inputs Fuzzified input values, obtained by evaluating

the input membership functions of each rule at
the current input values.

fi

Rule firing
strengths

Rule firing strengths, obtained by evaluating the
antecedent of each rule.

rfs

Rule outputs Rule outputs, obtained by evaluating the
consequent of each rule.

ro

Aggregated
outputs

Aggregate output for each output variable,
obtained by combining the corresponding
outputs from all the rules.

ao

For more information, see Fuzzy Logic Controller.

Simulation Modes
The Fuzzy Logic Controller block has the following two simulation modes:

• Interpreted execution — Simulate fuzzy systems using precompiled MEX files.
Using this option reduces the initial compilation time of the model.

• Code generation — Simulate fuzzy system without precompiled MEX files. Use this
option when simulating fuzzy systems for code generation applications. Doing so
simulates your system using the same code path used for generated code.

To select a simulation mode, set the Simulate using parameter of the block. By default,
the block uses Interpreted execution mode for simulation.

Map Command-Line Functionality to Fuzzy Logic Controller
Block
The parameters and ports of the Fuzzy Logic Controller block map to the input and output
arguments of evalfis or the properties of evalfisOptions. The following table shows
the block parameters and ports that map to evalfis arguments.

evalfis Argument Description Block Parameter or Port
fis Fuzzy inference system FIS name

5 Fuzzy Logic in Simulink

5-12



evalfis Argument Description Block Parameter or Port
input, when a single row Input variable values in
output, when a single row Output variable values out
fuzzifiedIn Fuzzified inputs fi
ruleOut Rule outputs ro
aggregateOut Aggregated outputs ao
ruleFiring Rule firing strengths rfs

The following table shows the block parameters that map to evalfisOptions
properties.

evalfisOptions Property Description Block Parameter or Port
NumSamplePoints Number of points in output

fuzzy sets
Number of samples for
output discretization

OutOfRangeInputValueM
essage

Diagnostic message
behavior when an input is
out of range

Out of range input value

NoRuleFiredMessage Diagnostic message
behavior when no rules fire

No rule fired

EmptyOutputFuzzySetMe
ssage

Diagnostic message
behavior when an output
fuzzy set is empty

Empty output fuzzy set

The remaining parameters of the Fuzzy Logic Controller block do not map to arguments
of evalfis. Also, unlike the Fuzzy Logic Controller, evalfis does not support fixed-
point data for simulation or code generation.

See Also
Blocks
Fuzzy Logic Controller | Fuzzy Logic Controller with Ruleviewer

More About
• “Temperature Control in a Shower” on page 5-23
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• “Water Level Control in a Tank” on page 5-15
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Water Level Control in a Tank
This model shows how to implement a fuzzy inference system (FIS) in a Simulink® model.

Simulink Model

This model controls the level of water in a tank using a fuzzy inference system
implemented using a Fuzzy Logic Controller block. Open the sltank model.

open_system('sltank')

For this system, you control the water that flows into the tank using a valve. The outflow
rate depends on the diameter of the output pipe, which is constant, and the pressure in
the tank, which varies with water level. Therefore, the system has nonlinear
characteristics.
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Fuzzy Inference System

The fuzzy system is defined in a FIS object, tank, in the MATLAB® workspace. For more
information on how to specify a FIS in a Fuzzy Logic Controller block, see Fuzzy Logic
Controller.

The two inputs to the fuzzy system are the water level error, level, and the rate of
change of the water level, rate. Each input has three membership functions.

figure
plotmf(tank,'input',1)
figure
plotmf(tank,'input',2)
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The output of the fuzzy system is the rate at which the control valve is opening or closing,
valve, which has five membership functions.

plotmf(tank,'output',1)
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Due to the diameter of the outflow pipe, the water tank in this system empties more
slowly than it fills up. To compensate for this imbalance, the close_slow and
open_slow valve membership functions are not symmetrical. A PID controller does not
support such asymmetry.

The fuzzy system has five rules. The first three rules adjust the valve based on only the
water level error.

• If the water level is okay, then do not adjust the valve.
• If the water level is low, then open the valve quickly.
• If the water level is high, then close the valve quickly.
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The other two rules adjust the valve based on the rate of change of the water level when
the water level is near the setpoint.

• If the water level is okay and increasing, then close the valve slowly.
• If the water level is okay and decreasing, then open the valve slowly.

tank.Rules

ans = 

  1x5 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                              Description                      
         ______________________________________________________

    1    "level==okay => valve=no_change (1)"                  
    2    "level==low => valve=open_fast (1)"                   
    3    "level==high => valve=close_fast (1)"                 
    4    "level==okay & rate==positive => valve=close_slow (1)"
    5    "level==okay & rate==negative => valve=open_slow (1)" 

In this model, you can also control the water level using a PID controller. To switch to the
PID controller, set the const block to a value greater than or equal to zero.

Simulation

The model simulates the controller with periodic changes in the setpoint of the water
level. Run the simulation.

sim('sltank',100)
open_system('sltank/Comparison')
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The water level tracks the setpoint well. You can adjust the performance of the controller
by modifying the rules of the tank FIS. For example, if you remove the last two rules,
which are analogous to a derivative control action, the controller performs poorly, with
large oscillations in the water level.

See Also
Blocks
Fuzzy Logic Controller | Fuzzy Logic Controller with Ruleviewer
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More About
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Temperature Control in a Shower” on page 5-23

5 Fuzzy Logic in Simulink

5-22



Temperature Control in a Shower
This model shows how to implement a fuzzy inference system (FIS) in a Simulink® model.

Simulink Model

The model controls the temperature of a shower using a fuzzy inference system
implemented using a Fuzzy Logic Controller block. Open the shower model.

open_system('shower')

For this system, you control the flow rate and temperature of a shower by adjusting hot
and cold water valves.

Since there are two inputs for the fuzzy system, the model concatenates the input signals
using a Mux block. The output of the Mux block is connected to the input of the Fuzzy
Logic Controller block. Similarly, the two output signals are obtained using a Demux block
connected to the controller.
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Fuzzy Inference System

The fuzzy system is defined in a FIS object, fisMatrix, in the MATLAB® workspace. For
more information on how to specify a FIS in a Fuzzy Logic Controller block, see Fuzzy
Logic Controller.

The two inputs to the fuzzy system are the temperature error, temp, and the flow rate
error, flow. Each input has three membership functions.

figure
plotmf(fisMatrix,'input',1)
figure
plotmf(fisMatrix,'input',2)
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The two outputs of the fuzzy system are the rate at which the cold and hot water valves
are opening or closing, cold and hot respectively. Each output has five membership
functions.

figure
plotmf(fisMatrix,'output',1)
figure
plotmf(fisMatrix,'output',2)

 Temperature Control in a Shower

5-25



5 Fuzzy Logic in Simulink

5-26



The fuzzy system has nine rules for adjusting the hot and cold water valves based on the
flow and temperature errors. The rules adjust the total flow rate based on the flow error,
and adjust the relative hot and cold flow rates based on the temperature error.

fisMatrix.Rules

ans = 

  1x9 fisrule array with properties:

    Description
    Antecedent
    Consequent
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    Weight
    Connection

  Details:
                                  Description                          
         ______________________________________________________________

    1    "temp==cold & flow==soft => cold=openSlow, hot=openFast (1)"  
    2    "temp==cold & flow==good => cold=closeSlow, hot=openSlow (1)" 
    3    "temp==cold & flow==hard => cold=closeFast, hot=closeSlow (1)"
    4    "temp==good & flow==soft => cold=openSlow, hot=openSlow (1)"  
    5    "temp==good & flow==good => cold=steady, hot=steady (1)"      
    6    "temp==good & flow==hard => cold=closeSlow, hot=closeSlow (1)"
    7    "temp==hot & flow==soft => cold=openFast, hot=openSlow (1)"   
    8    "temp==hot & flow==good => cold=openSlow, hot=closeSlow (1)"  
    9    "temp==hot & flow==hard => cold=closeSlow, hot=closeFast (1)" 

Simulation

The model simulates the controller with periodic changes in the setpoints of the water
temperature and flow rate.

set_param('shower/flow scope','Open','on','Ymin','0','Ymax','1')
set_param('shower/temp scope','Open','on','Ymin','15','Ymax','30')
sim('shower',50)
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The flow rate tracks the setpoint well. The temperature also tracks its setpoint, though
there are temperature deviations when the controller adjusts to meet a new flow setpoint.

bdclose('shower') % Closing model also clears its workspace variables.

See Also
Blocks
Fuzzy Logic Controller

More About
• “Simulate Fuzzy Inference Systems in Simulink” on page 5-2
• “Water Level Control in a Tank” on page 5-15
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Implement Fuzzy PID Controller in Simulink Using
Lookup Table

This example shows how to implement a fuzzy inference system for nonlinear PID control
using a 2-D Lookup Table block.

Overview

A fuzzy inference system (FIS) maps given inputs to outputs using fuzzy logic. For
example, a typical mapping of a two-input, one-output fuzzy controller can be depicted in
a 3-D plot. The plot is often referred to as a control surface plot.
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For control applications, typical FIS inputs are the error (e(k)) and change of error
(e(k)-e(k-1)), E and CE respectively in the control surface plot. The FIS output is the
control action inferred from the fuzzy rules, u in the surface plot. Fuzzy Logic Toolbox™
provides commands and apps for designing a FIS for a desired control surface. You can
then simulate the designed FIS using the Fuzzy Logic Controller block in Simulink®.

You can often approximate nonlinear control surfaces using lookup tables to simplify the
generated code and improve execution speed. For example, you can replace a Fuzzy Logic
Controller block in Simulink with a set of Lookup Table blocks, one table for each output
defined in the FIS. You can compute the data used in the lookup table using the evalfis
command.

For this example, you design a nonlinear fuzzy PID controller for a plant in Simulink. The
plant is a single-input, single-output system in discrete time. The design goal is to achieve
good reference tracking performance.

Ts = 0.1;
Plant = c2d(zpk([],[-1 -3 -5],1),Ts);

You also implement the fuzzy inference system using a 2-D lookup table that approximates
the control surface and achieves the same control performance.

Fuzzy PID Controller Structure

The fuzzy controller in this example is in the feedback loop and computes PID-like actions
using fuzzy inference. Open the Simulink model.

open_system('sllookuptable')
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The fuzzy PID controller uses a parallel structure as shown in the Fuzzy PID subsystem.
For more information, see [1]. The controller is a combination of fuzzy PI control and
fuzzy PD control.

open_system('sllookuptable/Fuzzy PID')

5 Fuzzy Logic in Simulink

5-32



The fuzzy PID controller uses the change of the output -(y(k)-y(k-1)), instead of
change of error e(k)-e(k-1), as the second input signal to the FIS. Doing so prevents
the step change in reference signal from directly triggering the derivative action. The two
gain blocks, GCE and GCU, in the feed forward path from r to u, ensure that the error
signal e is used in proportional action when the fuzzy PID controller is linear.

Design Conventional PID Controller

The conventional PID controller in this example is a discrete-time PID controller with
Backward Euler numerical integration in both the integral and derivative actions. The
controller gains are Kp, Ki, and Kd.

open_system('sllookuptable/Conventional PID')

Similar to the fuzzy PID controller, the input signal to the derivative action is -y(k),
instead of e(k).

You can tune the PID controller gains manually or using tuning formulas. In this example,
obtain the initial PID design using the pidtune command from Control System Toolbox™.

Define the PID structure, tune the controller, and extract the PID gains.
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C0 = pid(1,1,1,'Ts',Ts,'IF','B','DF','B');
C = pidtune(Plant,C0)
[Kp,Ki,Kd] = piddata(C);

C =
 
             Ts*z           z-1 
  Kp + Ki * ------ + Kd * ------
              z-1          Ts*z 

  with Kp = 30.6, Ki = 25.2, Kd = 9.02, Ts = 0.1
 
Sample time: 0.1 seconds
Discrete-time PID controller in parallel form.

Design Equivalent Linear Fuzzy PID Controller

By configuring the FIS and selecting the four scaling factors, you can obtain a linear fuzzy
PID controller that reproduces the control performance of the conventional PID
controller.

First, configure the fuzzy inference system so that it produces a linear control surface
from inputs E and CE to output u. The FIS settings are based on design choices described
in [2]:

• Use a Sugeno style fuzzy inference system with default inference methods.
• Normalize the ranges of both inputs to [-10 10].
• Use triangular input membership functions that overlap their neighbor functions at a

membership value of 0.5.
• Use an output range of [-20 20].
• Use constant output membership functions.

Construct the fuzzy inference system.

FIS = sugfis;

Define input variable E.

FIS = addInput(FIS,[-10 10],'Name','E');
FIS = addMF(FIS,'E','trimf',[-20 -10 0],'Name','Negative');
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FIS = addMF(FIS,'E','trimf',[-10 0 10],'Name','Zero');
FIS = addMF(FIS,'E','trimf',[0 10 20],'Name','Positive');

Define input CE.

FIS = addInput(FIS,[-10 10],'Name','CE');
FIS = addMF(FIS,'CE','trimf',[-20 -10 0],'Name','Negative');
FIS = addMF(FIS,'CE','trimf',[-10 0 10],'Name','Zero');
FIS = addMF(FIS,'CE','trimf',[0 10 20],'Name','Positive');

Define output variable u with constant membership functions.

FIS = addOutput(FIS,[-20 20],'Name','u');
FIS = addMF(FIS,'u','constant',-20,'Name','LargeNegative');
FIS = addMF(FIS,'u','constant',-10,'Name','SmallNegative');
FIS = addMF(FIS,'u','constant',0,'Name','Zero');
FIS = addMF(FIS,'u','constant',10,'Name','SmallPositive');
FIS = addMF(FIS,'u','constant',20,'Name','LargePositive');

Define the following fuzzy rules:

1 If E is negative and CE is negative, then u is -20.
2 If E is negative and CE is zero, then u is -10.
3 If E is negative and CE is positive then u is 0.
4 If E is zero and CE is negative, then u is -10.
5 If E is zero and CE is zero, then u is 0.
6 If E is zero and CE is positive, then u is 10.
7 If E is positive and CE is negative, then u is 0.
8 If E is positive and CE is zero, then u is 10.
9 If E is positive and CE is positive, then u is 20.

ruleList = [1 1 1 1 1;   % Rule 1
            1 2 2 1 1;   % Rule 2
            1 3 3 1 1;   % Rule 3
            2 1 2 1 1;   % Rule 4
            2 2 3 1 1;   % Rule 5
            2 3 4 1 1;   % Rule 6
            3 1 3 1 1;   % Rule 7
            3 2 4 1 1;   % Rule 8
            3 3 5 1 1];  % Rule 9
FIS = addRule(FIS,ruleList);
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While you implement your FIS from the command line in this example, you can
alternatively build your FIS using the Fuzzy Logic Designer app.

Plot the linear control surface.

gensurf(FIS)

Determine scaling factors GE, GCE, GCU, and GU from the Kp, Ki, and Kd gains of by the
conventional PID controller. Comparing the expressions of the traditional PID and the
linear fuzzy PID, the variables are related as follows:

• Kp = GCU * GCE + GU * GE
• Ki = GCU * GE
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• Kd = GU * GCE

Assume that the maximum reference step is 1, and thus the maximum error e is 1. Since
the input range of E is [-10 10], set GE to 10. You can then solve for GCE, GCU, and GU.

GE = 10;
GCE = GE*(Kp-sqrt(Kp^2-4*Ki*Kd))/2/Ki;
GCU = Ki/GE;
GU = Kd/GCE;

Implement Fuzzy Inference System Using 2-D Lookup Table

The fuzzy controller block has two inputs (E and CE) and one output (u). Therefore, you
can replace the fuzzy system using a 2-D lookup table.

To generate a 2-D lookup table from your FIS, loop through the input universe, and
compute the corresponding output values using evalfis. Since the control surface is
linear, you can use a few sample points for each input variable.

Step = 10;
E = -10:Step:10;
CE = -10:Step:10;
N = length(E);
LookUpTableData = zeros(N);
for i=1:N
   for j=1:N
      % Compute output u for each combination of sample points.
      LookUpTableData(i,j) = evalfis(FIS,[E(i) CE(j)]);
   end
end

View the fuzzy PID controller using 2-D lookup table.

open_system('sllookuptable/Fuzzy PID using Lookup Table')
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The only difference compared to the Fuzzy PID controller is that the Fuzzy Logic
Controller block is replaced with a 2-D Lookup Table block.

When the control surface is linear, a fuzzy PID controller using the 2-D lookup table
produces the same result as one using the Fuzzy Logic Controller block.

Simulate Closed-Loop Response in Simulink

The Simulink model simulates three different controller subsystems, namely Conventional
PID, Fuzzy PID, and Fuzzy PID using Lookup Table, to control the same plant.

Run the simulation. To compare the closed-loop responses to a step reference change,
open the scope. As expected, all three controllers produce the same result.

sim('sllookuptable')
open_system('sllookuptable/Scope')
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Design Fuzzy PID Controller with Nonlinear Control Surface

Once you have a linear fuzzy PID controller, you can obtain a nonlinear control surface by
adjusting your FIS settings, such as its style, membership functions, and rule base.

For this example, design a steep control surface using a Sugeno-type FIS. Each input set
has two terms (Positive and Negative), and the number of rules is reduced to four.

Construct the FIS.

FIS = sugfis;

Define input E.

FIS = addInput(FIS,[-10 10],'Name','E');
FIS = addMF(FIS,'E','gaussmf',[7 -10],'Name','Negative');
FIS = addMF(FIS,'E','gaussmf',[7 10],'Name','Positive');

Define input CE.
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FIS = addInput(FIS,[-10 10],'Name','CE');
FIS = addMF(FIS,'CE','gaussmf',[7 -10],'Name','Negative');
FIS = addMF(FIS,'CE','gaussmf',[7 10],'Name','Positive');

Define output u.

FIS = addOutput(FIS,[-20 20],'Name','u');
FIS = addMF(FIS,'u','constant',-20,'Name','Min');
FIS = addMF(FIS,'u','constant',0,'Name','Zero');
FIS = addMF(FIS,'u','constant',20,'Name','Max');

Define the following rules:

1 If E is negative and CE is negative, then u is -20.
2 If E is negative and CE is positive, then u is 0.
3 If E is positive and CE is negative, then u is 0.
4 If E is positive and CE is positive, then u is 20.

ruleList = [1 1 1 1 1;...   % Rule 1
            1 2 2 1 1;...   % Rule 2
            2 1 2 1 1;...   % Rule 3
            2 2 3 1 1];     % Rule 4
FIS = addRule(FIS,ruleList);

View the 3-D nonlinear control surface. This surface has a higher gain near the center of
the E and CE plane than the linear surface has, which helps reduce the error more quickly
when the error is small. When the error is large, the controller becomes less aggressive
to avoid possible saturation.

gensurf(FIS)
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Before starting the simulation, update the lookup table with the new control surface data.
Since the surface is nonlinear, to obtain a sufficient approximation, add more sample
points.

Step = 1;
E = -10:Step:10;
CE = -10:Step:10;
N = length(E);
LookUpTableData = zeros(N);
for i=1:N
   for j=1:N
      % Compute output u for each combination of sample points.
      LookUpTableData(i,j) = evalfis(FIS,[E(i) CE(j)]);
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   end
end

Run the simulation.

sim('sllookuptable')

Compared with the traditional linear PID controller (the response curve with large
overshoot), the nonlinear fuzzy PID controller reduces the overshoot by 50%. The two
response curves from the nonlinear fuzzy controllers almost overlap, which indicates that
the 2-D lookup table approximates the fuzzy system well.

bdclose('sllookuptable') % Closing model also clears its workspace variables.

Conclusion

You can approximate a nonlinear fuzzy PID controller using a lookup table. By replacing a
Fuzzy Logic Controller block with Lookup Table blocks in Simulink, you can deploy a
fuzzy controller with simplified generated code and improved execution speed.
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Deployment
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• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-4
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Deploy Fuzzy Inference Systems
You can deploy a fuzzy inference system (FIS) by generating code in either Simulink or
MATLAB. All fuzzy inference system options, including custom inference functions,
support code generation.

Generate Code in Simulink
You can generate code for evaluating fuzzy inference systems in Simulink using the Fuzzy
Logic Controller block. You can generate code for double-precision, single-precision, or
fixed-point data using Simulink Coder™ or Simulink PLC Coder™.

For more information, see “Generate Code for Fuzzy System Using Simulink Coder” on
page 6-4 and “Generate Structured Text for Fuzzy System Using Simulink PLC Coder”
on page 6-9.

Generate Code in MATLAB
You can generate code for evaluating fuzzy inference systems in MATLAB. You can
generate code for double-precision or single-precision data using MATLAB Coder.

Code generation in MATLAB does not support fuzzy inference system objects. Instead,
convert your fuzzy system into a homogeneous structure using
getFISCodeGenerationData, and pass the resulting structure to evalfis.

For more information, see “Generate Code for Fuzzy System Using MATLAB Coder” on
page 6-12.

Note Code generation does not support the construction of fuzzy systems at the
command line.

See Also
Functions
evalfis | mamfis | sugfis

Blocks
Fuzzy Logic Controller

6 Deployment

6-2



More About
• “Build Fuzzy Systems at the Command Line” on page 2-38
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
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Generate Code for Fuzzy System Using Simulink Coder
You can generate code for a Fuzzy Logic Controller block using Simulink® Coder™. For
more information on generating code, see “Generate Code Using Simulink® Coder™”
(Simulink Coder).

Generate Code for Fuzzy Inference System

By default, the Fuzzy Logic Controller block uses double-precision data for simulation and
code generation. The fuzzyPID model is configured to use double-precision data. For
more information on configuring your fuzzy inference system for code generation, see
Fuzzy Logic Controller.

mdl = 'fuzzyPID';
open_system(mdl)

It is good practice to validate the performance of the system in Simulink. Run the
simulation. The model saves the output response, u, to the MATLAB® workspace.

sim(mdl)

To generate code for the model, use the rtwbuild function. For this example, suppress
the Command Window output for the build process.

set_param(mdl,'RTWVerbose','off')
rtwbuild(mdl)

### Starting build procedure for model: fuzzyPID
### Successful completion of build procedure for model: fuzzyPID
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By default, Simulink Coder generates C code for a generic real-time target. To select a
different target file and language, in the Configuration Parameters dialog box, modify the
System target file and Language parameters, respectively.

The generated code is stored in a new fuzzyPID_grt_rtw folder in your current
working folder. The name of this folder depends on the selected target file.

On a Windows® system, by default, an executable file named fuzzyPID.exe is also
added to the current working folder. To generate code without compilation, in the
Configuration parameters dialog box, select the Generate code only parameter before
generating code.

Run the executable.

if ispc
    status = system(mdl);
else
    disp('The example only runs the executable on Windows system.');
end

 
** starting the model ** 
** created fuzzyPID.mat ** 
 

After the executable completes successfully (status = 0), the software creates a
fuzzyPID.mat data file that contains the simulation results.

You can compare the output response from the generated code, rtw_y, with the output
from the Simulink simulation, y, using the following code:

load fuzzyPID.mat
plot(tout,y,'b-',rt_tout,rt_y,'ro')
legend('Simulink','Executable','Location','Southeast')
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The result from the generated code matches the Simulink simulation.

You can also generate code for just the controller subsystem in this model. To do so,
specify the subsystem when calling the rtwbuild function.

rtwbuild([mdl '/Fuzzy PID'])

### Starting build procedure for model: Fuzzy0
### Successful completion of build procedure for model: Fuzzy0

You can deploy generated code according to your application needs. For example, you can
configure the properties of executable files and create static or dynamic libraries. For
more information, see “Build Process Workflow for Real-Time Systems” (Simulink Coder).
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Generate Code for Other Data Types

The Fuzzy Logic Controller block also supports single-precision and fixed-point data for
simulation and code generation. In both cases, your resulting fuzzy system has decreased
accuracy compared to an equivalent double-precision fuzzy system. Use:

• Single-precision data to reduce the memory footprint of your system.
• Fixed-point data if your target platform only supports fixed-point arithmetic.

To use one of these data types, set the Data type property of the block, and configure the
other components in the model to use the same data type.

The fuzzyPID_single model is configured for single-precision data. Open the model.

mdl2 = 'fuzzyPID_single';
open_system(mdl2)

In this model, the Data type parameter of the Fuzzy Logic Controller block is set to
single. The Fuzzy Logic Controller block automatically converts input signals to the
specified data type. Also, the Simulate using parameter is set to Code Generation.
The Simulate using option does not affect the code generation process. Instead, setting
this option simulates your fuzzy system using the same code path used by generated
code.

Generate code for this model.

set_param(mdl2,'RTWVerbose','off')
rtwbuild(mdl2)

### Starting build procedure for model: fuzzyPID_single
### Successful completion of build procedure for model: fuzzyPID_single
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Setting the Data type parameter of a Fuzzy Logic Controller block ensures that all the
inference steps use the specified data type. However, depending on the configuration of
other blocks in the model, some of the generated code can still use double-precision data.

See Also
Fuzzy Logic Controller

More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Structured Text for Fuzzy System Using Simulink PLC Coder” on page 6-

9
• “Generate Code for Fuzzy System Using MATLAB Coder” on page 6-12
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Generate Structured Text for Fuzzy System Using
Simulink PLC Coder

You can generate Structured Text for a Fuzzy Logic Controller block using Simulink® PLC
Coder™. For more information on generating Structured Text, see “Code Generation”
(Simulink PLC Coder).

By default, the Fuzzy Logic Controller block uses double-precision data for simulation and
code generation. The fuzzyPID model is configured to use double-precision data. You
can also use either single-precision or fixed-point data. For more information on
configuring your fuzzy inference system for code generation, see Fuzzy Logic Controller.

mdl = 'fuzzyPID';
open_system(mdl)

It is good practice to validate the performance of the system in Simulink before
generating code. Run the simulation.

sim(mdl)
open_system([mdl '/Output'])
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To generate Structured Text for the model, use the plcgeneratecode command. This
command generates code for an atomic subsystem in a model. To generate code for the
Fuzzy PID controller, configure the subsystem as an atomic subsystem by selecting the
Treat as atomic unit parameter for the subsystem.

subsys = [mdl '/Fuzzy PID'];
set_param(subsys,'TreatAsAtomicUnit','on')

When generating code for just a Fuzzy Logic Controller block, place the block inside a
subsystem, and set the Treat as atomic unit parameter of that subsystem.

Generate Structured Text for the Fuzzy PID subsystem.

plcgeneratecode(subsys);

PLC code generation successful for 'fuzzyPID/Fuzzy PID'.

Generated files:
<a href="matlab: edit('plcsrc\fuzzyPID.exp')">plcsrc\fuzzyPID.exp</a>
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By default, the software saves the generated code in the following location:

plcsrc/fuzzy_PID.exp

See Also
Fuzzy Logic Controller

More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-4
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Generate Code for Fuzzy System Using MATLAB Coder
You can generate code for evaluating a fuzzy inference system using MATLAB® Coder™.
For more information on generating code, see “Code Generation” (MATLAB Coder).

To generate code for evaluating fuzzy systems, you must first create a fuzzy inference
system (FIS). For more information, see “Build Fuzzy Systems at the Command Line” on
page 2-38 and “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14.

Generating code using MATLAB Coder does not support mamfis or sugfis objects. To
generate code for evaluating fuzzy systems, you must convert your fuzzy inference system
objects into homogeneous structures using the getFISCodeGenerationData function.

Embed FIS Data in Generated Code

You can embed the data for your fuzzy inference system within the generated code. Use
this option if you do not want to change the FIS data after compilation.

First, create a fuzzy system, or load a fuzzy system from a .fis file. For this example,
load the fuzzy system from tipper.fis.

fisObject = readfis("tipper.fis");

To use this FIS for code generation, convert it to a homogeneous structure.

fis = getFISCodeGenerationData(fisObject);

Create a function for evaluating the fuzzy system fis for a given input vector x. Within
this function, you can specify options for the evalfis function using evalfisOptions.

function y = evaluatefis1(fis,x)
    %#codegen
    opt = evalfisOptions('NumSamplePoints',51);
    y = evalfis(fis,x,opt);
end

Generate code for evaluatefis1, specifying that the fis input argument is constant.
You can specify different targets for your build, such as a static library, an executable, or
a MEX file. For this example, generate a MEX file.

codegen('evaluatefis1','-args',{coder.Constant(fis),[0 0]},'-config:mex')

To verify the execution of the MEX file:
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1 Evaluate the MEX file for one or more input values. When you call the MEX file,
specify the same FIS structure that you used at compile time.

2 Evaluate the original FIS for the same input values using evalfis. When evaluating
using evalfis, use the same homogeneous FIS structure.

3 Compare the evaluation results.

mexOutput1 = evaluatefis1_mex(fis,[7 9])

mexOutput1 = 21.0327

opt = evalfisOptions('NumSamplePoints',51);
evalfisOutput = evalfis(fis,[7 9],opt)

evalfisOutput = 21.0327

The MEX file output matches the evalfis output.

Alternatively, you can embed the FIS data in the generated code by reading the FIS data
from a file at code generation time. Specify a function for evaluating a fuzzy system for
given input vector x. Within this function, read the FIS data from the file tipper.fis.

function y = evaluatefis2(x)
    %#codegen
    fis = getFISCodeGenerationData('tipper.fis');
    opt = evalfisOptions('NumSamplePoints',51);
    y = evalfis(fis,x,opt);
end

Generate code for evaluatefis2.

codegen('evaluatefis2','-args',{[0 0]},'-config:mex')

Verify the execution of the MEX file using the same input values for x. In this case, you do
not have to specify the original FIS structure used at compile time.

mexOutput2 = evaluatefis2_mex([7 9])

mexOutput2 = 21.0327

evalfisOutput

evalfisOutput = 21.0327
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Generate Code for Loading FIS Data at Run Time

You can generate code for evaluating a FIS that is read from a .fis file specified at run
time. In this case, the FIS data is not embedded in the generated code. Specify a function
for evaluating the fuzzy system defined in the specified file fileName for a given input
vector x.

function y = evaluatefis3(fileName,x)
    %#codegen
    fis = getFISCodeGenerationData(fileName);
    opt = evalfisOptions('NumSamplePoints',51);
    y = evalfis(fis,x,opt);
end

Define input data types for this function.

fileName = coder.newtype('char',[1 Inf],[false true]);
x = coder.newtype('double',[1 Inf],[false true]);

Generate code for evaluatefis3.

codegen('evaluatefis3','-args',{fileName,x},'-config:mex')

Verify the execution of the MEX file using the same input values for x. In this case, you
specify the name of the .fis file.

mexOutput3 = evaluatefis3_mex('tipper.fis',[7 9])

mexOutput3 = 21.0327

evalfisOutput

evalfisOutput = 21.0327

Each time you run evaluatefis3, it reloads the fuzzy system from the file. For
computational efficiency, you can create a function that only loads the FIS when a new file
name is specified.

function y = evaluatefis4(fileName,x)
    %#codegen
    %#internal
    
    persistent fisName fis
    if isempty(fisName)
        [fisName,fis] = loadFIS(fileName);
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    elseif ~strcmp(fisName,fileName)
        [fisName,fis] = loadFIS(fileName);
    end

    opt = evalfisOptions('NumSamplePoints',51);
    y = evalfis(fis,x,opt);
end

function [fisName,fis] = loadFIS(fileName)
    fisName = fileName;
    fis = getFISCodeGenerationData(fisName);
end

Generate code evaluatefis4. The input data types for this function are the same as for
evaluatefis3.

codegen('evaluatefis4','-args',{fileName,x},'-config:mex')

Verify the execution of the MEX file using the same input values file name.

mexOutput4 = evaluatefis4_mex('tipper.fis',[7 9])

mexOutput4 = 21.0327

evalfisOutput

evalfisOutput = 21.0327

Generate Code for Single-Precision Data

The preceding examples generated code for double-precision data. To generate code for
single-precision data, specify the data type of the input values as single. For example,
generate code for evaluatefis2 using single-precision data.

codegen('evaluatefis2','-args',{single([0 0])},'-config:mex')

Verify the MEX file execution, passing in single-precision input values.

mexOutputSingle = evaluatefis2_mex(single([7 9]))

mexOutputSingle = single
    21.0327

evalfisOutput
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evalfisOutput = 21.0327

See Also
evalfis | getFISCodeGenerationData

More About
• “Deploy Fuzzy Inference Systems” on page 6-2
• “Generate Code for Fuzzy System Using Simulink Coder” on page 6-4
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Fuzzy Logic Designer
Design and test fuzzy inference systems

Description
The Fuzzy Logic Designer app lets you design and test fuzzy inference systems for
modeling complex system behaviors.

Using this app, you can:

• Design Mamdani and Sugeno fuzzy inference systems.
• Add or remove input and output variables.
• Specify input and output membership functions.
• Define fuzzy if-then rules.
• Select fuzzy inference functions for:

• And operations
• Or operations
• Implication
• Aggregation
• Defuzzification

• Adjust input values and view associated fuzzy inference diagrams.
• View output surface maps for fuzzy inference systems.
• Export fuzzy inference systems to the MATLAB workspace.

Open the Fuzzy Logic Designer App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis,

click the app icon.
• MATLAB command prompt: Enter fuzzyLogicDesigner.
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Examples
• “Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14

Programmatic Use
fuzzyLogicDesigner opens the Fuzzy Logic Designer app.

fuzzyLogicDesigner(fis) opens the app and loads the fuzzy inference system fis.
fis can be any mamfis or sugfis object in the MATLAB workspace.

fuzzyLogicDesigner(fileName) opens the app and loads a fuzzy inference system
from a file. fileName is the name of a .fis file on the MATLAB path.

To save a fuzzy inference system to a .fis file:

• In Fuzzy Logic Designer, select File > Export > To File.
• At the command line, use writeFIS.

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.
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See Also
Apps
Neuro-Fuzzy Designer

Functions
evalfis | mfedit | newfis | plotfis | ruleedit | ruleview | surfview

Topics
“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14
“What Is Fuzzy Logic?” on page 1-3
“Foundations of Fuzzy Logic” on page 1-10
“Fuzzy Inference Process” on page 1-28

Introduced in R2014b
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Neuro-Fuzzy Designer
Design, train, and test Sugeno-type fuzzy inference systems

Description
The Neuro-Fuzzy Designer app lets you design, train, and test adaptive neuro-fuzzy
inference systems (ANFIS) using input/output training data.

Using this app, you can:

• Tune membership function parameters of Sugeno-type fuzzy inference systems.
• Automatically generate an initial inference system structure based on your training

data.
• Modify the inference system structure before tuning.
• Prevent overfitting to the training data using additional checking data.
• Test the generalization ability of your tuned system using testing data.
• Export your tuned fuzzy inference system to the MATLAB workspace.

You can use the Neuro-Fuzzy Designer to train a Sugeno-type fuzzy inference system
that:

• Has a single output.
• Uses weighted average defuzzification.
• Has output membership functions all of the same type, for example linear or

constant.
• Has complete rule coverage with no rule sharing; that is, the number of rules must

match the number of output membership functions, and every rule must have a
different consequent.

• Has unity weight for each rule.
• Does not use custom membership functions.

 Neuro-Fuzzy Designer
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Open the Neuro-Fuzzy Designer App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis,

click the app icon.
• MATLAB command prompt: Enter neuroFuzzyDesigner.

Examples
• “Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-97
• “Test Data Against Trained System” on page 3-102

Programmatic Use
neuroFuzzyDesigner opens the Neuro-Fuzzy Designer app.

neuroFuzzyDesigner(fis) opens the app and loads the fuzzy inference system fis.
fis can be any valid sugfis object in the MATLAB workspace.

You can create an initial Sugeno-type fuzzy inference system from training data using the
genfis command.

neuroFuzzyDesigner(fileName) opens the app and loads a fuzzy inference system.
fileName is the name of a .fis file on the MATLAB path.

To save a fuzzy inference system to a .fis file:

• In the Fuzzy Logic Designer, select File > Export > To File
• At the command line, use writeFIS.

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b
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Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
Apps
Fuzzy Logic Designer

Functions
anfis | genfis

Topics
“Train Adaptive Neuro-Fuzzy Inference Systems” on page 3-97
“Test Data Against Trained System” on page 3-102
“Neuro-Adaptive Learning and ANFIS” on page 3-86
“Comparison of anfis and Neuro-Fuzzy Designer Functionality” on page 3-91

Introduced in R2014b
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addInput
Add input variable to fuzzy inference system

Syntax
fisOut = addInput(fisIn)
fisOut = addInput(fisIn,range)
fisOut = addInput( ___ ,Name,Value)

Description
fisOut = addInput(fisIn) adds a default input variable to fisIn and returns the
resulting fuzzy system in fisOut. This input variable has a default name, default range,
and no membership functions.

fisOut = addInput(fisIn,range) adds an input variable with the specified range.

fisOut = addInput( ___ ,Name,Value)configures the input variable using one or
more name-value pair arguments.

Examples

Add Input Variable to Fuzzy Inference System

Create a Sugeno fuzzy inference system.

fis = sugfis('Name','tipper');

Add an input variable with default specifications.

fis = addInput(fis);

You can configure the input variable properties using dot notation. For example, specify
the name and range for the variable.
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fis.Inputs(1).Name = "service";
fis.Inputs(1).Range = [0 10];

View the input variable.

fis.Inputs(1)

ans = 
  fisvar with properties:

                   Name: "service"
                  Range: [0 10]
    MembershipFunctions: [0x0 fismf]

You can also specify a variable name and range when you add it to the fuzzy system.

fis2 = sugfis('Name','tipper');
fis2 = addInput(fis2,[0 10],'Name',"service");

Add Input Variable with Membership Functions

Create a fuzzy inference system.

fis = mamfis('Name',"tipper");

Add an input variable with three Gaussian membership functions distributed over the
input range.

fis = addInput(fis,'NumMFs',3,'MFType',"gaussmf");

View the membership functions.

plotmf(fis,'input',1)
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Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

range — Variable range
[0 1] (default) | two-element vector
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Variable range, specified as a two-element element vector where the first element is less
than the second element. The first element specifies the lower bound of the range, and
the second element specifies the upper bound of the range.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumMFs',3 configures the variable to use three membership functions

Name — Variable name
string | character vector

Variable name, specified as the comma-separated pair consisting of 'Name' and a string
or character vector. The default variable name is "input<uniqueIndex>", where
uniqueIndex is automatically generated based on the current number of inputs in
fisIn.

NumMFs — Number of membership functions
0 (default) | nonnegative integer

Number of membership functions, specified as the comma-separated pair consisting of
'NumMFs' and a nonnegative integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type, specified as the comma-separated pair consisting of
'MFType' and one of the following:

• "trimf" — Triangular membership functions
• "gaussmf" — Gaussian membership functions

The membership functions are uniformly distributed over the input variable range with
approximately 80% overlap in the membership function supports.
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Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. fisOut contains the
added input variable, with all other properties matching the properties of fisIn.

See Also
addOutput | fisvar | mamfis | removeInput | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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addMF
Add membership function to fuzzy variable

Syntax
fisOut = addMF(fisIn,varName)
fisOut = addMF(fisIn,varName,type,parameters)
fisOut = addMF( ___ ,Name,Value)

varOut = addMF(varIn)
varOut = addMF(varIn,type,parameters)
varOut = addMF( ___ ,Name,Value)

Description
fisOut = addMF(fisIn,varName) adds a default membership function to the input or
output variable varName in the fuzzy inference system fisIn and returns the resulting
fuzzy system in fisOut.

fisOut = addMF(fisIn,varName,type,parameters) adds a membership function
with the specified type and parameters.

fisOut = addMF( ___ ,Name,Value) configures the membership function using one or
more name-value pair arguments.

varOut = addMF(varIn) adds a default membership function to fuzzy variable varIn
and returns the resulting fuzzy variable in varOut.

varOut = addMF(varIn,type,parameters) adds a membership function with the
specified type and parameters.

varOut = addMF( ___ ,Name,Value) specifies the name of the membership function
using the Name name-value pair argument.
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Examples

Add Membership Function to Fuzzy Inference System

Create a Mamdani fuzzy system, and add three input variables and one output variable.
For this example, give the second input variable and the output variable the same name.

fis = mamfis;
fis = addInput(fis,[0 80],"Name","speed");
fis = addInput(fis,[0 100],"Name","throttle");
fis = addInput(fis,[0 10],"Name","distance");
fis = addOutput(fis,[0 100],"Name","throttle");

Add a membership function to the first input variable, specifying a trapezoidal
membership function, and set the membership function parameters.

fis = addMF(fis,"speed","trapmf",[-5 0 10 30]);

You can also specify the name of your membership when you add it to a fuzzy system. Add
a membership function called "high" to the first input variable.

fis = addMF(fis,"speed","trapmf",[50 70 80 85],'Name',"high");

View the membership functions for the first input variable.

plotmf(fis,"input",1)
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If your system has an input variable with the same name as an output variable, you must
specify the variable type when adding a membership function. For example, add a
membership function to the output variable.

fis = addMF(fis,"throttle","trimf",[0 20 40],'VariableType',"output");
plotmf(fis,"output",1)
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Alternatively, you can add a default membership function to a fuzzy system and set its
parameters using dot notation. For example, add and configure a membership function for
the third input variable.

fis = addMF(fis,"distance");
fis.Inputs(3).MembershipFunctions(1).Type = "trapmf";
fis.Inputs(3).MembershipFunctions(1).Parameters = [-1 0 2 4];
plotmf(fis,"input",3)
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Add Membership Function to Fuzzy Variable

Create a fuzzy variable with a specified range.

var = fisvar([0 1]);

Add a membership function to the variable, specifying a trapezoidal membership function,
and set the membership function parameters.

var = addMF(var,"trapmf",[-0.5 0 0.2 0.4]);
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You can also specify the name of your membership when you add it to a fuzzy variable.
For example, add a membership function called "large".

var = addMF(var,"trapmf",[0.6 0.8 1 1.5],'Name',"large");

View the membership functions.

var.MembershipFunctions

ans = 
  1x2 fismf array with properties:

    Name
    Type
    Parameters

  Details:
          Name        Type               Parameters         
         _______    ________    ____________________________

    1    "mf1"      "trapmf"    -0.5       0     0.2     0.4
    2    "large"    "trapmf"     0.6     0.8       1     1.5

Alternatively, you can add a default membership function to a fuzzy variable and set its
parameters using dot notation.

var = fisvar([0 1]);
var = addMF(var);
var.MembershipFunctions(1).Type = "trapmf";
var.MembershipFunctions(1).Parameters = [-0.5 0 0.2 0.4];

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

varName — Variable name
string | character vector
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Variable name, specified as a string or character vector. You can specify the name of
either an input or output variable in your FIS. If your system has an input variable with
the same name as an output variable, specify the type of the variable you want to add a
membership function to using the VariableType name-value pair.

type — Membership function type
"trimf" (default) | string | character vector | function handle

Membership function type, specified as a string or character vector that contains the
name of a function in the current working folder or on the MATLAB path. You can also
specify a handle to such a function. When you specify type, you must also specify
parameters.

This table describes the values that you can specify for type.

Membership
Function Type

Description For More Information

"gbellmf" Generalized bell-shaped
membership function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination

membership function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"sigmf" Sigmoidal membership function sigmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf

"psigmf" Product of two sigmoidal
membership functions

psigmf

"zmf" Z-shaped membership function zmf
"pimf" Pi-shaped membership function pimf
"smf" S-shaped membership function smf
"constant" Constant membership function

(not supported for output
variables of Mamdani systems or
for any input variables)

“What Is Sugeno-Type Fuzzy
Inference?” on page 2-5
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Membership
Function Type

Description For More Information

"linear" Linear membership function (not
supported for output variables of
Mamdani systems or for any input
variables)

String or
character vector

Name of a custom membership
function in the current working
folder or on the MATLAB path.
Custom functions are not
supported for output variables of
Sugeno systems.

“Build Fuzzy Systems Using
Custom Functions” on page 2-50

Function handle Handle to a custom membership
function in the current working
folder or on the MATLAB path.
Custom functions are not
supported for output variables of
Sugeno systems.

parameters — Membership function parameters
[0 0.5 1] (default) | vector

Membership function parameters, specified as a vector. The length of the parameter
vector depends on the membership function type. When you specify parameters, you
must also specify type.

varIn — Fuzzy variable
fisvar object

Fuzzy variable, specified as a fisvar object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Name',"large" specifies the membership function name "large"
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Name — Membership function name
string | character vector

Membership function name, specified as the comma-separated pair consisting of 'Name'
and a string or character vector. The default membership function name is
"mf<uniqueIndex>", where uniqueIndex is automatically generated based on the
current number of membership functions in the associated variable.

VariableType — Variable type
"input" | "output"

Variable type, specified as the comma-separated pair 'VariableType' and one of the
following:

• "input" — Input variable
• "output" — Output variable

If your system has an input variable with the same name as an output variable, specify
which variable to add the membership function to VariableType.

This name-value pair applies only when adding a membership function to a mamfis or
sugfis object.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. fisOut contains the
added membership function, with all other properties matching the properties of fisIn.

varOut — Fuzzy variable
fisvar object

Fuzzy variable, returned as a fisvar object. varOut contains the added membership
function, with all other properties matching the properties of varIn.
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Compatibility Considerations

addmf is now addMF and its function syntax has changed
Behavior changed in R2018b

The name and behavior of the addmf function has changed. Now:

• addmf is addMF
• You specify the variable to which you want to add the membership function by name

rather than by index.
• You specify the name of the membership function using a name-value pair argument.

These changes require updates to your code.

Update Code

The following table shows some typical usages of addmf for adding membership functions
to fuzzy variables and how to update your code. In this table, fis is a fuzzy inference
system with two inputs, service and food, and one output, tip.

If your code has this form: Use this code instead:
fis = addmf(fis'input',1,...
            'poor',...
            'gaussmf',[1.5 0])

fis = addMF(fis,"service",...
            "gaussmf",[1.5 0],
            'Name',"poor")

fis = addmf(fis,'input',2,...
            'rancid',...
            'trapmf',[-2 0 1 3])

fis = addMF(fis,"food",...
            "trapmf",[-2 0 1 3],...
            'Name',"rancid")

fis = addmf(fis,'output',1,...
            'cheap',...
            'trimf',[0 5 10])

fis = addMF(fis,"tip",...
            "trimf",[0 5 10],...
            'Name',"cheap")

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:
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• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
addInput | addOutput | addRule | fisvar | mamfis | removeMF | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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addOutput
Add output variable to fuzzy inference system

Syntax
fisOut = addOutput(fisIn)
fisOut = addOutput(fisIn,range)
fisOut = addOutput( ___ ,Name,Value)

Description
fisOut = addOutput(fisIn) adds a default output variable to fisIn, and returns the
resulting fuzzy system in fisOut. This output variable has a default name, default range,
and no membership functions.

fisOut = addOutput(fisIn,range) adds an output variable with the specified range.

fisOut = addOutput( ___ ,Name,Value)configures the output variable using one or
more name-value pair arguments.

Examples

Add Output Variable to Fuzzy Inference System

Create a Mamdani fuzzy inference system.

fis = mamfis('Name','tipper');

Add an output variable with default specifications.

fis = addOutput(fis);

You can configure the output variable properties using dot notation. For example, specify
the name and range for the variable.
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fis.Outputs(1).Name = "tip";
fis.Outputs(1).Range = [10 30];

View the output variable.

fis.Outputs(1)

ans = 
  fisvar with properties:

                   Name: "tip"
                  Range: [10 30]
    MembershipFunctions: [0x0 fismf]

You can also specify the variable name and range when you add it to the fuzzy system.

fis2 = mamfis('Name','tipper');
fis2 = addOutput(fis2,[10 30],'Name',"tip");

Add Output Variable with Membership Functions

Create a Sugeno fuzzy inference system.

fis = sugfis('Name',"tipper");

Add an output variable with three constant membership functions distributed over the
output range.

fis = addOutput(fis,'NumMFs',3,'MFType',"constant");

View the membership functions.

fis.Outputs(1).MembershipFunctions

ans = 
  1x3 fismf array with properties:

    Name
    Type
    Parameters

  Details:
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         Name        Type       Parameters
         _____    __________    __________

    1    "mf1"    "constant"         0    
    2    "mf2"    "constant"       0.5    
    3    "mf3"    "constant"         1    

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

range — Variable range
[0 1] (default) | two-element vector

Variable range, specified as a two-element element vector where the first element is less
than the second element. The first element specifies the lower bound of the range, and
the second element specifies the upper bound of the range.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumMFs',3 configures the variable to use three membership functions

Name — Variable name
string | character vector

Variable name, specified as the comma-separated pair consisting of 'Name' and a string
or character vector.

NumMFs — Number of membership functions
0 (default) | nonnegative integer
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Number of membership functions, specified as the comma-separated pair consisting of
'NumMFs' and a nonnegative integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"

Membership function type, specified as the comma-separated pair consisting of
'MFType' and one of the following:

• "trimf" — Triangular membership functions for the outputs of Mamdani system
• "gaussmf" — Gaussian membership functions for the outputs of Mamdani systems
• "constant" — Constant membership functions for the outputs of Sugeno systems
• "linear" — Linear membership functions for the outputs of Sugeno systems. To add

an output variable with linear membership functions, your FIS must have at least one
input variable.

The membership functions are uniformly distributed over the variable range with
approximately 80% overlap in the membership function supports.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. fisOut contains the
added output variable, with all other properties matching the properties of fisIn.

See Also
addInput | fisvar | mamfis | removeOutput | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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addRule
Add rule to fuzzy inference system

Syntax
fisOut = addRule(fisIn)
fisOut = addRule(fisIn,ruleDescription)

Description
fisOut = addRule(fisIn) adds a single fuzzy rule to fuzzy inference system fisIn
with the default description "input1==mf1 => output1=mf1" and returns the
resulting fuzzy system in fisOut.

fisOut = addRule(fisIn,ruleDescription) adds one or more fuzzy rules using
the rule descriptions in ruleDescription.

Examples

Add Single Rule to Fuzzy Inference System

Load a fuzzy inference system (FIS), and clear the existing rules.

fis = readfis('tipper');
fis.Rules = [];

Add a rule to the FIS.

ruleTxt = 'If service is poor then tip is cheap';
fis2 = addRule(fis,ruleTxt);

fis2 is equivalent to fis, except that the specified rule is added to the rule base.

fis2.Rules
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ans = 
  fisrule with properties:

    Description: "service==poor => tip=cheap (1)"
     Antecedent: [1 0]
     Consequent: 1
         Weight: 1
     Connection: 1

Add Rules Using Symbolic Expressions

Load a fuzzy inference system (FIS), and clear the existing rules.

fis = readfis('tipper');
fis.Rules = [];

Specify the following rules using symbolic expressions:

• If service is poor or food is rancid then tip is cheap.
• If service is excellent and food is not rancid then tip is generous.

rule1 = "service==poor | food==rancid => tip=cheap";
rule2 = "service==excellent & food~=rancid => tip=generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = addRule(fis,rules);

fis2 is equivalent to fis, except that the specified rules are added to the rule base.

fis2.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection
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  Details:
                               Description                      
         _______________________________________________________

    1    "service==poor | food==rancid => tip=cheap (1)"        
    2    "service==excellent & food~=rancid => tip=generous (1)"

Add Rules Using Membership Function Indices

Load fuzzy inference system (FIS) and clear the existing rules.

fis = readfis('mam22.fis');
fis.Rules = [];

Specify the following rules using membership function indices:

• If angle is small and velocity is big, then force is negBig and force2 is
posBig2.

• If angle is not small and velocity is small, then force is posSmall and force2
is negSmall2.

rule1 = [1 2 1 4 1 1];
rule2 = [-1 1 3 2 1 1];
rules = [rule1; rule2];

Add the rules to the FIS.

fis2 = addRule(fis,rules);

fis2 is equivalent to fis, except that the specified rules are added to the rule base.

fis2.Rules

ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
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    Connection

  Details:
                                       Description                               
         ________________________________________________________________________

    1    "angle==small & velocity==big => force=negBig, force2=posBig2 (1)"      
    2    "angle~=small & velocity==small => force=posSmall, force2=negSmall2 (1)"

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

ruleDescription — Rule description
string | character vector | numeric row vector | string array | character array | numeric
array

Rule description, specified using either a text or numeric rule definition

Text Rule Description

For a text rule description, specify ruleDescription as one of the following:

• String or character vector specifying a single rule

rule = "If service is poor or food is rancid then tip is cheap";
• String array, where each element corresponds to a rule. For example:

ruleList = ["If service is poor or food is rancid then tip is cheap";
            "If service is good then tip is average";
            "If service is excellent or food is delicious then tip is generous"];

• Character array where each row corresponds to a rule. For example:
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';
rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

For each rule, use one of the following rule text formats:
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• Verbose — Linguistic expression in the following format, using the IF and THEN
keywords:

"IF <antecedent> THEN <consequent> (<weight>)"

In <antecedent>, specify the membership function for each input variable using the
IS or IS NOT keyword. Connect these conditions using the AND or OR keywords. If a
rule does not use a given input variable, omit it from the antecedent.

In <consequent>, specify the condition for each output variable using the IS or IS
NOT keyword, and separate these conditions using commas. The IS NOT keyword is
not supported for Sugeno outputs. If a rule does not use a given output variable, omit
it from the consequent.

Specify the weight using a positive numerical value.

For example:

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"

• Symbolic — Expression that uses the symbols in the following table instead of
keywords. There is no symbol for the IF keyword.

Symbol Keyword
== IS (in rule antecedent)
~= IS NOT
& AND
| OR
=> THEN
= IS (in rule consequent)

For example, the following symbolic rule is equivalent to the previous verbose rule.

"A==a & B~=b => X=x, Y~=y (1)"

Numeric Rule Description

For a numeric rule description, specify ruleDescription as one of the following:

• Row vector to specify a single fuzzy rule
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• Array, where each row of ruleValues specifies one rule

For each row, the numeric rule description has M+N+2 columns, where M is the number
of input variables and N is the number of output variables. Each column contains the
following information:

• The first M columns specify input membership function indices and correspond to the
Antecedent property of the rule. To indicate a NOT condition, specify a negative
value. If a rule does not use a given input, set the corresponding index to 0. For each
rule, at least one input membership function index must be nonzero.

• The next N columns specify output membership function indices and correspond to the
Consequent property of the rule. To indicate a NOT condition for Mamdani systems,
specify a negative value. NOT conditions are not supported for Sugeno outputs. If a
rule does not use a given output, set the corresponding index to 0. For each rule, at
least one output membership function index must be nonzero.

• Column M+N+1 specifies the rule weight and corresponds to the Weight property of
the rule.

• The final column specifies the antecedent fuzzy operator and corresponds to the
Connection property of the rule.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. fisOut contains the
added rules, with all other properties matching those of fisIn.

Compatibility Considerations

addrule is now addRule
Behavior changed in R2018b

addrule is now addRule. To update your code, change the function name from addrule
to addRule. The syntaxes are equivalent.
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Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
addInput | addMF | addOutput | mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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addvar
(To be removed) Add variable to fuzzy inference system

Note addvar will be removed in a future release. Use addInput or addOutput instead.
For more information, see “Compatibility Considerations”.

Syntax
fis = addvar(fis,varType,varName,varBounds)

Description
addvar has four input arguments:

• fis — Fuzzy inference system in the MATLAB workspace, specified as a FIS structure.
• varType — Type of variable to add, specified as 'input' or 'output'.
• varName — Name of the variable to add, specified as a character vector or string.
• varBounds — Variable range, specified as a two-element vector, where the first

element is the minimum value and the second element is the maximum value for the
variable.

Indices are applied to variables in the order in which they are added. Therefore, the first
input variable added to a system is always known as input variable number one for that
system. Input and output variables are numbered independently.

Examples

Add Variable to Fuzzy Inference System

Create new FIS.

fis = newfis('tipper');
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Add new input variable.

fis = addvar(fis,'input','service',[0 10]);

View new variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'service'
    NumMFs: 0
     range: [0 10]

Compatibility Considerations

addvar will be removed
Not recommended starting in R2018b

addvar will be removed in a future release. Use addInput or addOutput instead. There
are differences between these functions that require updates to your code.

To add input or output variables to a fuzzy system, use addInput or addOutput,
respectively.

Update Code

This table shows some typical usages of addvar and how to update your code to use
addInput or addOutput instead.

If your code has this form: Use this code instead:
fis = addvar(fis,'input',...
             'service',[0 10])

fis = addInput(fis,[0 10],...
               'Name',"service")

fis = addvar(fis,'output',...
             'tip',[0 30])

fis = addOutput(fis,[0 30],...
                'Name',"tip")

See Also
addInput | addMF | addOutput | addRule | rmmf | rmvar
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Introduced before R2006a
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anfis
Tune Sugeno-type fuzzy inference system using training data

Syntax
fis = anfis(trainingData)
fis = anfis(trainingData,options)

[fis,trainError] = anfis( ___ )
[fis,trainError,stepSize] = anfis( ___ )

[fis,trainError,stepSize,chkFIS,chkError] = anfis(trainingData,
options)

Description
fis = anfis(trainingData) generates a single-output Sugeno fuzzy inference
system (FIS) and tunes the system parameters using the specified input/output training
data. The FIS object is automatically generated using grid partitioning.

The training algorithm uses a combination of the least-squares and backpropagation
gradient descent methods to model the training data set.

fis = anfis(trainingData,options) tunes an FIS using the specified training data
and options. Using this syntax, you can specify:

• An initial FIS object to tune.
• Validation data for preventing overfitting to training data.
• Training algorithm options.
• Whether to display training progress information.

[fis,trainError] = anfis( ___ ) returns the root mean square training error for
each training epoch.

[fis,trainError,stepSize] = anfis( ___ ) returns the training step size at each
training epoch.
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[fis,trainError,stepSize,chkFIS,chkError] = anfis(trainingData,
options) returns the validation data error for each training epoch, chkError, and the
tuned FIS object for which the validation error is minimum, chkFIS. To use this syntax,
you must specify validation data using options.ValidationData.

Examples

Train Fuzzy Inference System Using ANFIS

Load training data. This data has a single input and a single output.

load fuzex1trnData.dat

Generate and train a fuzzy inference system. By default, the FIS structure is created
using a grid partition of the input variable range with two membership functions.

fis = anfis(fuzex1trnData);

ANFIS info: 
    Number of nodes: 12
    Number of linear parameters: 4
    Number of nonlinear parameters: 6
    Total number of parameters: 10
    Number of training data pairs: 25
    Number of checking data pairs: 0
    Number of fuzzy rules: 2

Start training ANFIS ...

   1      0.229709
   2      0.22896
   3      0.228265
   4      0.227624
   5      0.227036
Step size increases to 0.011000 after epoch 5.
   6      0.2265
   7      0.225968
   8      0.225488
   9      0.225052
Step size increases to 0.012100 after epoch 9.
  10      0.22465
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Designated epoch number reached --> ANFIS training completed at epoch 10.

Minimal training RMSE = 0.224650

Plot the ANFIS output and training data.

x = fuzex1trnData(:,1);
anfisOutput = evalfis(fis,x);
plot(x,fuzex1trnData(:,2),'*r',x,anfisOutput,'.b')
legend('Training Data','ANFIS Output','Location','NorthWest')

The ANFIS data does not match the training data well. To improve the match:
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• Increase the number of membership functions in the FIS structure to 4. Doing so adds
fuzzy rules and tunable parameters to the system.

• Increase the number of training epochs.

opt = anfisOptions('InitialFIS',4,'EpochNumber',40);

Suppress the error and step size Command Window display.

opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;

Train the FIS.

fis = anfis(fuzex1trnData,opt);

ANFIS info: 
    Number of nodes: 20
    Number of linear parameters: 8
    Number of nonlinear parameters: 12
    Total number of parameters: 20
    Number of training data pairs: 25
    Number of checking data pairs: 0
    Number of fuzzy rules: 4

Minimal training RMSE = 0.083385

Plot the ANFIS output and training data.

figure
anfisOutput = evalfis(fis,x);
plot(x,fuzex1trnData(:,2),'*r',x,anfisOutput,'.b')
legend('Training Data','ANFIS Output','Location','NorthWest')
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The match between the training data and ANFIS output has improved.

Create Initial FIS for ANFIS Training

Create single-input, single-output training data.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);

Define an initial FIS structure with five Gaussian input membership functions.
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genOpt = genfisOptions('GridPartition');
genOpt.NumMembershipFunctions = 5;
genOpt.InputMembershipFunctionType = 'gaussmf';
inFIS = genfis(x,y,genOpt);

Configure the ANFIS training options. Set the initial FIS, and suppress the training
progress display.

opt = anfisOptions('InitialFIS',inFIS);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train the FIS using the specified options.

outFIS = anfis([x y],opt);

Compare the ANFIS output with the training data.

plot(x,y,x,evalfis(outFIS,x))
legend('Training Data','ANFIS Output')
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Obtain ANFIS Training Error

Load training data. This data has a single input and a single output.

load fuzex2trnData.dat

Specify the training options.

opt = anfisOptions('InitialFIS',4,'EpochNumber',40);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
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opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Train the FIS, and return the training error.

[fis,trainError] = anfis(fuzex2trnData,opt);

trainError contains the root mean squared error for the training data at each training
epoch. The training error for fis is the minimum value in trainError.

fisRMSE = min(trainError)

fisRMSE = 0.2572

Obtain ANFIS Step Size Profile

Create single-input, single-output training data.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);

Configure the ANFIS training options. Set the initial FIS, and suppress the training
progress display.

opt = anfisOptions('InitialFIS',4,'EpochNumber',60);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

A larger step size increase rate can make the training converge faster. However,
increasing the step size increase rate too much can lead to poor convergence. For this
example, try doubling the step size increase rate.

opt.StepSizeIncreaseRate = 2*opt.StepSizeIncreaseRate;

Train the FIS, and return the step size array.

[fis,~,stepSize] = anfis([x y],opt);

Plot the step size profile. An optimal step size profile should increase initially, reach a
maximum, and then decrease for the rest of the training.
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figure
plot(stepSize)

Validate ANFIS Training

Load training data.

load fuzex1trnData.dat

Load validation data.

load fuzex1chkData.dat
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Specify the following training options:

• 4 input membership functions
• 30 training epochs
• Suppress training progress display

opt = anfisOptions('InitialFIS',4,'EpochNumber',30);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.DisplayFinalResults = 0;

Add the validation data to the training options.

opt.ValidationData = fuzex1chkData;

Train the FIS, and return the validation results.

[fis,trainError,stepSize,chkFIS,chkError] = anfis(fuzex1trnData,opt);

The training error, trainError, and validation error, chkError, arrays each contain one
error value per training epoch. Plot the training error and the validation error.

x = [1:30];
plot(x,trainError,'.b',x,chkError,'*r')
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The minimum validation error occurs at epoch 17. The increase in validation error after
this point indicates overfitting of the model parameters to the training data. Therefore,
the tuned FIS at epoch 17, chkFIS, exhibits the best generalization performance.

Input Arguments
trainingData — Training data
array

Training data, specified as an array. For a fuzzy system with N inputs, specify
trainingData as an array with N+1 columns. The first N columns contain input data,
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and the final column contains output data. Each row of trainingData contains one data
point.

Generally, training data should fully represent the features of the data the FIS is intended
to model.

options — Training options
anfisOptions option set

Training options, specified as an anfisOptions option set. Using options, you can
specify:

• An initial FIS structure to tune, options.InitialFIS.
• Validation data for preventing overfitting to training data,

options.ValidationData.
• Training algorithm options, such as the maximum number of training epochs,

options.EpochNumber, or the training error goal, options.ErrorGoal.
• Whether to display training progress information, such as the training error values for

each training epoch, options.DisplayErrorValues.

Output Arguments
fis — Trained fuzzy inference system
mamfis object | sugfis object

Trained fuzzy inference system with membership function parameters tuned using the
training data, returned as a mamfis or sugfis object. This fuzzy system corresponds to
the epoch for which the training error is smallest. If two epochs have the same minimum
training error, the FIS from the earlier epoch is returned.

trainError — Root mean square training error
array

Root mean square training error for each training epoch, returned as an array. The
minimum value in trainError is the training error for fuzzy system fis.

stepSize — Training step size
array
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Training step size for each epoch, returned as an array. The anfis training algorithm
tunes the FIS parameters using gradient descent optimization methods. The training step
size is the magnitude of the gradient transitions in the parameter space.

Ideally, the step size increases at the start of training, reaches a maximum, and then
decreases for the remainder of the training. To achieve this step size profile, adjust the
initial step size (options.InitialStepSize), step size increase rate
(options.StepSizeIncreaseRate), and step size decrease rate
options.StepSizeDecreaseRate.

chkFIS — Tuned FIS for which the validation error is minimum
mamfis object | sugfis object

Tuned FIS for which the validation error is minimum, returned as a mamfis or sugfis
object. If two epochs have the same minimum validation error, the FIS from the earlier
epoch is returned.

chkFIS is returned only when you specify validation data using
options.ValidationData.

chkError — Root mean square validation error
array

Root mean square training error, returned as an array with length equal to the number of
training epochs. The minimum value in chkError is the training error for fuzzy system
chkFIS.

chkError is returned only when you specify validation data using
options.ValidationData.

Alternative Functionality

tunefis Function
Starting in R2019a, you can tune a fuzzy system using tunefis. This function provides
several other options for tuning algorithms, specified by the tunefisOptions object.

To use ANFIS, specify the tuning algorithm as "anfis" in tunefisOptions. Then, use
the options object as an input argument for tunefis. For example:
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Create the initial fuzzy inference system, and define the tunable parameter settings.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);
[in,out,rule] = getTunableSettings(fisin);

Tune the membership function parameters with "anfis".

opt = tunefisOptions("Method","anfis");
fisout = tunefis(fisin,[in;out],x,y,opt);

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

References
[1] Jang, J.-S. R., "Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter

Algorithm," Proc. of the Ninth National Conf. on Artificial Intelligence (AAAI-91).
July 1991, pp. 762-767.
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[2] Jang, J.-S. R., "ANFIS: Adaptive-Network-based Fuzzy Inference Systems," IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, May 1993, pp.
665-685.

See Also
Apps
Neuro-Fuzzy Designer

Functions
anfisOptions | genfis | tunefis

Topics
“Neuro-Adaptive Learning and ANFIS” on page 3-86
“Comparison of anfis and Neuro-Fuzzy Designer Functionality” on page 3-91
“Predict Chaotic Time-Series using ANFIS” on page 3-127
“Modeling Inverse Kinematics in a Robotic Arm” on page 3-137

Introduced before R2006a
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anfisOptions
Option set for anfis command

Syntax
opt = anfisOptions
opt = anfisOptions(Name,Value)

Description
opt = anfisOptions creates a default option set for tuning a Sugeno fuzzy inference
system using anfis. Use dot notation to modify this option set for your specific
application. Any options that you do not modify retain their default values.

opt = anfisOptions(Name,Value) creates an option set with options specified by
one or more Name,Value pair arguments.

Examples

Create Option Set for ANFIS Training

Create a default option set.

opt = anfisOptions;

Specify training options using dot notation. For example, specify the following options:

• Initial FIS with 4 membership functions for each input variable
• Maximum number of training epochs equal to 30.

opt.InitialFIS = 4;
opt.EpochNumber = 30;

You can also specify options when creating the option set using one or more Name,Value
pair arguments.
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opt2 = anfisOptions('InitialFIS',4,'EpochNumber',30);

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'EpochNumber',50 sets the maximum number of training epochs to 50.

InitialFIS — Initial FIS structure
2 (default) | positive integer greater than 1 | vector of positive integers | FIS structure

Initial FIS structure to tune, specified as the comma-separated pair consisting of
'InitialFIS' and one of the following:

• Positive integer greater than 1 specifying the number of membership functions for all
input variables. anfis generates an initial FIS structure with the specified number of
membership functions using genfis with grid partitioning.

• Vector of positive integers with length equal to the number of input variables
specifying the number of membership functions for each input variable. anfis
generates an initial FIS structure with the specified numbers of membership functions
using genfis with grid partitioning.

• FIS structure generated using genfis command with grid partitioning or subtractive
clustering. The specified system must have the following properties:

• Single output, obtained using weighted average defuzzification.
• First or zeroth order Sugeno-type system; that is, all output membership functions

must be the same type and be either 'linear' or 'constant'.
• No rule sharing. Different rules cannot use the same output membership function;

that is, the number of output membership functions must equal the number of
rules.

• Unity weight for each rule.
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• No custom membership functions or defuzzification methods.

EpochNumber — Maximum number of training epochs
10 (default) | positive integer

Maximum number of training epochs, specified as the comma-separated pair consisting of
'EpochNumber' and a positive integer. The training process stops when it reaches the
maximum number of training epochs.

ErrorGoal — Training error goal
0 (default) | scalar

Training error goal, specified as the comma-separated pair consisting of 'ErrorGoal'
and a scalar. The training process stops when the training error is less than or equal to
ErrorGoal.

InitialStepSize — Initial training step size
0.01 (default) | positive scalar

Initial training step size, specified as the comma-separated pair consisting of
'InitialStepSize' and a positive scalar.

The anfis training algorithm tunes the FIS parameters using gradient descent
optimization methods. The training step size is the magnitude of each gradient transition
in the parameter space. Typically, you can increase the rate of convergence of the training
algorithm by increasing the step size. During optimization, anfis automatically updates
the step size using StepSizeIncreaseRate and StepSizeDecreaseRate.

StepSizeDecreaseRate — Step size decrease rate
0.9 (default) | positive scalar less than 1

Step size decrease rate, specified as the comma-separated pair consisting of
'StepSizeDecreaseRate' and a positive scalar less than 1. If the training error
undergoes two consecutive combinations of an increase followed by a decrease, then
anfis scales the step size by the decrease rate.

StepSizeIncreaseRate — Step size increase rate
1.1 (default) | scalar greater than 1

Step size increase rate, specified as the comma-separated pair consisting of
'StepSizeIncreaseRate' and a scalar greater than 1. If the training error decreases
for four consecutive epochs, then anfis scales the step size by the increase rate.
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DisplayANFISInformation — Flag for showing ANFIS information
1 (default) | 0

Flag for showing ANFIS information at the start of the training process, specified as the
comma-separated pair consisting of 'DisplayANFISInformation' and one of the
following:

• 1 — Display the following information about the ANFIS system and training data:

• Number of nodes in the ANFIS system
• Number of linear parameters to tune
• Number of nonlinear parameters to tune
• Total number of parameters to tune
• Number of training data pairs
• Number of checking data pairs
• Number of fuzzy rules

• 0 — Do not display the information.

DisplayErrorValues — Flag for showing training error values
1 (default) | 0

Flag for showing training error values after each training epoch, specified as the comma-
separated pair consisting of 'DisplayErrorValues' and one of the following:

• 1 — Display the training error.
• 0 — Do not display the training error.

DisplayStepSize — Flag for showing step size
1 (default) | 0

Flag for showing step size whenever the step size changes, specified as the comma-
separated pair consisting of 'DisplayStepSize' and one of the following:

• 1 — Display the step size.
• 0 — Do not display the step size.

DisplayFinalResults — Flag for displaying final results
1 (default) | 0
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Flag for displaying final results after training, specified as the comma-separated pair
consisting of 'DisplayFinalResults' and one of the following:

• 1 — Display the results.
• 0 — Do not display the results.

ValidationData — Validation data
[] (default) | array

Validation data for preventing overfitting to the training data, specified as the comma-
separated pair consisting of 'ValidationData' and an array. For a fuzzy system with N
inputs, specify ValidationData as an array with N+1 columns. The first N columns
contain input data and the final column contains output data. Each row of
ValidationData contains one data point.

At each training epoch, the training algorithm validates the FIS using the validation data.

Generally, validation data should fully represent the features of the data the FIS is
intended to model, while also being sufficiently different from the training data to test
training generalization.

OptimizationMethod — Optimization method
1 (default) | 0

Optimization method used in membership function parameter training, specified as the
comma-separated pair consisting of 'OptimizationMethod' and one of the following:

• 1 — Use a hybrid method, which uses a combination of backpropagation to compute
input membership function parameters, and least squares estimation to compute
output membership function parameters.

• 0 — Use backpropagation gradient descent to compute all parameters.

Output Arguments
opt — Training options for anfis command
anfisOptions option set

Training options for anfis command, returned as an anfisOptions option set.
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See Also
anfis | genfis

Introduced in R2017a
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convertfis
Convert previous versions of fuzzy inference data in current format

In R2018b, the format of fuzzy inference systems changed from a structure format to an
object format. To convert fuzzy systems in an old format to the new format, use
convertfis.

Syntax
fisNew = convertfis(fisOld)

Description
fisNew = convertfis(fisOld) converts the old-format fuzzy inference system
fisOld into the current object format.

Examples

Convert Old-Format Fuzzy Inference System

Load a fuzzy inference system created using an old format. For example, load a FIS
structure from a MAT-file.

load fisStructure

View the fields of the structure.

fisStructure

fisStructure = struct with fields:
            name: 'tipper'
            type: 'mamdani'
       andMethod: 'min'
        orMethod: 'max'
    defuzzMethod: 'centroid'
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       impMethod: 'min'
       aggMethod: 'max'
           input: [1x2 struct]
          output: [1x1 struct]
            rule: [1x3 struct]

Convert the structure to a mamfis object and view the object properties.

fisObject = convertfis(fisStructure)

fisObject = 
  mamfis with properties:

                       Name: "tipper"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x2 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x3 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Input Arguments
fisOld — Old-format fuzzy inference system
structure | matrix

Old-format fuzzy inference system, specified as a structure or a matrix.

Output Arguments
fisNew — New-format fuzzy inference system
mamfis object | sugfis object

New-format fuzzy inference system, returned as a mamfis object or a sugfis object.
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See Also
mamfis | sugfis

Introduced in R2018b
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convertToStruct
Convert fuzzy inference system object into a structure

Syntax
fisStructure = convertToStruct(fisObject)

Description
fisStructure = convertToStruct(fisObject) converts a fuzzy inference system
object into a structure.

Examples

Convert FIS Object into Structure

Load a fuzzy inference system.

fisObject = readfis('tipper')

fisObject = 
  mamfis with properties:

                       Name: "tipper"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x2 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x3 fisrule]
    DisableStructuralChecks: 0
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    See 'getTunableSettings' method for parameter optimization.

Convert the fuzzy inference system object into a structure.

fisStructure = convertToStruct(fisObject)

fisStructure = struct with fields:
            name: 'tipper'
            type: 'mamdani'
       andMethod: 'min'
        orMethod: 'max'
    defuzzMethod: 'centroid'
       impMethod: 'min'
       aggMethod: 'max'
           input: [1x2 struct]
          output: [1x1 struct]
            rule: [1x3 struct]

Input Arguments
fisObject — Fuzzy inference system object
mamfis object | sugfis object

Fuzzy inference system object, specified as a mamfis or sugfis object.

Output Arguments
fisStructure — Fuzzy inference system structure
structure

Fuzzy inference system structure, returned as a structure. The fields of the structure
correspond to the properties of the FIS object. For object properties that are themselves
objects, the corresponding structure field is a structure.

See Also
mamfis | sugfis
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Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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convertToSugeno
Transform Mamdani fuzzy inference system into Sugeno fuzzy inference system

Syntax
sugenoFIS = convertToSugeno(mamdaniFIS)

Description
sugenoFIS = convertToSugeno(mamdaniFIS) transforms a Mamdani fuzzy
inference system mamdaniFIS into a Sugeno fuzzy inference system sugenoFIS.

Examples

Transform Mamdani FIS into Sugeno FIS

Load a Mamdani fuzzy inference system.

mam_fismat = readfis('mam22.fis');

Convert this system to a Sugeno fuzzy inference system.

sug_fismat = convertToSugeno(mam_fismat);

Plot the output surfaces for both fuzzy systems.

subplot(2,2,1)
gensurf(mam_fismat)
title('Mamdani system (Output 1)')
subplot(2,2,2)
gensurf(sug_fismat)
title('Sugeno system (Output 1)')
subplot(2,2,3)
gensurf(mam_fismat,gensurfOptions('OutputIndex',2))
title('Mamdani system (Output 2)')
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subplot(2,2,4)
gensurf(sug_fismat,gensurfOptions('OutputIndex',2))
title('Sugeno system (Output 2)')

The output surfaces for both systems are similar.

Input Arguments
mamdaniFIS — Mamdani fuzzy inference system
mamfis object
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Mamdani fuzzy inference system, specified as a mamfis object. Construct mamdaniFIS at
the command line or using Fuzzy Logic Designer. For more information, see “Build
Fuzzy Systems at the Command Line” on page 2-38 and “Build Fuzzy Systems Using
Fuzzy Logic Designer” on page 2-14.

Output Arguments
sugenoFIS — Sugeno fuzzy inference system
sugfis object

Sugeno fuzzy inference system, returned as a sugfis object. sugenoFIS:

• Has constant output membership functions, whose values correspond to the centroids
of the output membership functions in mamdaniFIS

• Uses the weighted-average defuzzification method
• Uses the product implication method
• Uses the sum aggregation method

The remaining properties of sugenoFIS, including the input membership functions and
rule definitions remain unchanged from mamdaniFIS.

Tips
• If you have a functioning Mamdani fuzzy inference system, consider using

convertToSugeno to convert to a more computationally efficient Sugeno structure to
improve performance.

• If sugFIS has a single output variable and you have appropriate measured input/
output training data, you can tune the membership function parameters of sugFIS
using anfis.

See Also
Functions
mamfis | sugfis
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Apps
Fuzzy Logic Designer

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38
“Comparison of Sugeno and Mamdani Systems” on page 2-12

Introduced in R2018b
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defuzz
Defuzzify membership function

Syntax
out = defuzz(x,mf,type) 

Description
defuzz(x,mf,type) returns a defuzzified value out, of a membership function mf
positioned at associated variable value x, using one of several defuzzification strategies,
according to the argument, type. The variable type can be one of the following:

• 'centroid' — Centroid of the area under the output fuzzy set. This method is the
default for Mamdani systems.

• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is maximum
• 'lom' — Largest value for which the output fuzzy set is maximum
• 'som' — Smallest value for which the output fuzzy set is maximum

You can also specify type using a character vector or string that contains the name of a
custom function in the current working folder or on the MATLAB path. For more
information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.

Examples

Obtain Defuzzified Value

x = -10:0.1:10;
mf = trapmf(x,[-10 -8 -4 7]);
out = defuzz(x,mf,'centroid')
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out = -3.2857

See Also
Fuzzy Logic Designer

Topics
“Fuzzy Inference Process” on page 1-28

Introduced before R2006a
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dsigmf
Difference between two sigmoidal membership functions

This function computes fuzzy membership values using the difference between two
sigmoidal membership functions. You can also compute this membership function using a
fismf object. For more information, see “fismf Object” on page 8-67.

This membership function is related to the sigmf and psigmf membership functions.

Syntax
y = dsigmf(x,params)

Description
y = dsigmf(x,params) returns fuzzy membership values computed using the
difference between two sigmoidal membership functions. Each sigmoidal function is given
by:

f x; a, c = 1
1 + e−a(x− c)

To specify the a and c parameters for each sigmoidal function, use params.

Membership values are computed for each input value in x.

Examples

Obtain Difference of Two Sigmoidal Functions

x = 0:0.1:10;
y = dsigmf(x,[5 2 5 7]);
plot(x,y)
xlabel('dsigmf, P = [5 2 5 7]')
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four
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Membership function parameters, specified as the vector [a1 c1 a2 c2]. Here, a1 and c1 are
the parameters of the first sigmoidal function, and a2 and c2 are the parameters of the
second sigmoidal function.

For each sigmoidal function, to open the function to the left or right, specify a negative or
positive value for a, respectively. The magnitude of a defines the width of the transition
area, and parameter c defines the center of the transition area.

To define a unimodal membership function with a maximum value of 1, specify the same
signs for a1 and a2, and select c values far enough apart to allow for both transition areas
to reach 1.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the dsigmf membership
function.

mf = fismf("dsigmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of dsigmf, respectively.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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evalfis
Evaluate fuzzy inference system

Syntax
output = evalfis(fis,input)
output = evalfis(fis,input,options)
[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis( ___ )

Description
output = evalfis(fis,input) evaluates the fuzzy inference system fis for the
input values in input and returns the resulting output values in output.

output = evalfis(fis,input,options) evaluates the fuzzy inference system using
specified evaluation options.

[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis( ___ )
returns intermediate results from the fuzzy inference process. This syntax is not
supported when fis is a fistree object.

Examples

Evaluate Fuzzy Inference System

Load FIS.

fis = readfis('tipper');

Evaluate the FIS when the first input is 2 and the second input is 1.

output = evalfis(fis,[2 1])

output = 7.0169
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Evaluate FIS for Multiple Input Combinations

Load FIS.

fis = readfis('tipper');

Specify the input combinations to evaluate using an array with one row per input
combination.

input = [2 1;
         4 5;
         7 8];

Evaluate the FIS for the specified input combinations.

output = evalfis(fis,input)

output = 3×1

    7.0169
   14.4585
   20.3414

Each row of output is the defuzzified output value for the corresponding row of input.

Specify Number of Output Samples for FIS Evaluation

Load FIS.

fis = readfis('tipper');

Create an evalfisOptions option set, specifying the number of samples in the output
fuzzy sets.

options = evalfisOptions('NumSamplePoints',50);

Evaluate the FIS using this option set.

output = evalfis(fis,[2 1],options);
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Evaluate Tree of Fuzzy Inference Systems

Create a pair of Mamdani fuzzy inference systems.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Define the connection between the two.

con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Create an evalfisOptions option set, specifying the number of samples in the output
fuzzy sets.

options = evalfisOptions('NumSamplePoints',50);

Evaluate the fistree object using a specified input combination and this option set.

y = evalfis(tree,[0.5 0.2 0.7],options)

y = 0.1553

Obtain Intermediate Fuzzy Inference Results

Load FIS.

fis = readfis('tipper');

Evaluate the FIS, and return the intermediate inference results.

[output,fuzzifiedIn,ruleOut,aggregatedOut,ruleFiring] = evalfis(fis,[2 1]);

You can examine the intermediate results to understand or visualize the fuzzy inference
process. For example, view the aggregated output fuzzy set, which is the fuzzy set that
evalfis defuzzifies to find the output value. Also, plot the defuzzified output value.
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outputRange = linspace(fis.output.range(1),fis.output.range(2),length(aggregatedOut))'; 
plot(outputRange,aggregatedOut,[output output],[0 1])
xlabel('Tip')
ylabel('Output Membership')
legend('Aggregated output fuzzy set','Defuzzified output')

The length of aggregatedOutput corresponds to the number of sample points used to
discretize output fuzzy sets.
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Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | fistree object | homogeneous structure

Fuzzy inference system to be evaluated, specified as a mamfis object, sugfis object, or
fistree object.

To create a fuzzy inference system, you can:

• Use the Fuzzy Logic Designer app. For an example, see “Build Fuzzy Systems Using
Fuzzy Logic Designer” on page 2-14.

• Automatically generate the FIS object using the genfis command.
• Build the system at the command line. For an example, see “Build Fuzzy Systems at

the Command Line” on page 2-38.

Use fistree to create a tree of interconnected fuzzy inference systems to evaluate.
Multiple output arguments are not supported when using a fistree object.

For code generation applications, you can also specify fis as a homogeneous structure
create using getFISCodeGenerationData. For an example, see “Generate Code for
Fuzzy System Using MATLAB Coder” on page 6-12.

input — Input values
M-by-NU array

Input values, specified as an M-by-NU array, where NU is the number of input variables in
fis and M is the number of input combinations to evaluate.

evalfis supports double-precision or single-precision input values.

options — Evaluation options
evalfisOptions object

Evaluation options, specified as an evalfisOptions object.

Output Arguments
output — Output values
M-by-NY array
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Output values, returned as an M-by-NY array, where NY is the number of output variables
in fis. evalfis evaluates fis for each row of input and returns the resulting
defuzzified outputs in the corresponding row of output.

fuzzifiedIn — Fuzzified input values
NR-by-NU array

Fuzzified input values, returned as an NR-by-NU array, where NR is the number of rules in
fis. Element (i,j) of fuzzifiedIn is the value of the input membership function for the
jth input in the ith rule.

If input specifies multiple input combinations, then fuzzifiedIn corresponds to the
combination in the last row of input.

For more information on fuzzifying input values, see “Fuzzify Inputs” on page 1-29.

ruleOut — Rule outputs
NS-by-(NRNY) array | NR-by-NY array

Rule outputs, returned as an NS-by-(NRNY) array or an NR-by-NY array, where NS is the
number of sample points used for evaluating output variable ranges. To obtain the output
for each rule, evalfis applies the firing strength from the rule antecedent to the output
membership function using the implication method specified in fis.

For a Mamdani system, each rule output is a fuzzy set. In this case, ruleOut is an NS-by-
(NRNY) array. Each column of ruleOut contains the output fuzzy set for one rule. The first
NR columns contain the rule outputs for the first output variable, the next NR columns
correspond to the second output variable, and so on.

For a Sugeno system, each rule output is a scalar value. In this case, ruleOut is an NR-
by-NY array. Element (j,k) of ruleOut is the value of the kth output variable for the jth
rule.

If input specifies multiple input combinations, then ruleOut corresponds to the
combination in the last row of input.

For more information on fuzzy implication, see “Apply Implication Method” on page 1-31
and “What Is Sugeno-Type Fuzzy Inference?” on page 2-5

aggregatedOut — Aggregated output
NS-by-NY array | row vector of length NY
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Aggregated output for each output variable, returned as an NS-by-NY array or a row
vector of length NY. For each output variable, evalfis combines the corresponding
outputs from all the rules using the aggregation method specified in fis.

For a Mamdani system, the aggregate result for each output variable is a fuzzy set. In this
case, aggregatedOut is as an NS-by-NY array. Each column of aggregatedOut contains
the aggregate fuzzy set for one output variable.

For a Sugeno system, the aggregate result for each output variable is a scalar value. In
this case, aggregatedOut is a row vector of length NY, where element k is the aggregate
result for the kth output variable.

If input specifies multiple input combinations, then aggregatedOut corresponds to the
combination in the last row of input.

For more information on fuzzy aggregation, see “Aggregate All Outputs” on page 1-31 and
“What Is Sugeno-Type Fuzzy Inference?” on page 2-5

ruleFiring — Rule firing strengths
column vector of length NR

Rule firing strength, returned as a column vector of length NR. To obtain the firing
strength for each rule, evalfis evaluates the rule antecedents; that is, it applies fuzzy
operator to the values of the fuzzified inputs.

If input specifies multiple input combinations, then ruleFiring corresponds to the
combination in the last row of input.

For more information on applying the fuzzy operator, see “Apply Fuzzy Operator” on page
1-30.

Alternative Functionality

App
You can evaluate fuzzy inference systems using the Rule Viewer in the Fuzzy Logic
Designer app.
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Simulink Block
You can evaluate fuzzy inference systems using the Fuzzy Logic Controller block. For
more information on mapping the arguments of evalfis to the Fuzzy Logic Controller
block, see “Simulate Fuzzy Inference Systems in Simulink” on page 5-2.

Compatibility Considerations
evalfis input argument order has changed
Behavior changed in R2018b

The order of input arguments for evalfis has changed, which requires updates to your
code.

Update Code

Previously, to evaluate a fuzzy inference system, fis, you specified the input variable
values, input, as the first input argument. For example:

output = evalfis(input,fis);
output = evalfis(input,fis,options);

Update your code to specify the fuzzy inference system as the first input argument. For
example:

output = evalfis(fis,input);
output = evalfis(fis,input,options);

To specify the number of sample points for output fuzzy sets,
you now us an evalfisOptions object
Behavior changed in R2018a

To specify the number of sample points for output fuzzy sets, you now us an
evalfisOptions object, which requires updates to your code.

Update Code

Previously, to specify the number of sample points, numPts, to use when evaluating
output fuzzy sets of fuzzy inference system fis, you used an input argument. For
example:

8 Functions — Alphabetical List

8-76



output = evalfis(input,fis,numPts);

Update your code to specify the number of sample points using an evalfisOptions
object. For example:

opt = evalfisOptions('NumSamplePoints',numPts);
output = evalfis(input,fis,opt);

evalfis diagnostic message behavior has changed
Behavior changed in R2018a

The diagnostic message behavior of the evalfis function has changed. Previously, the
evalfis function had the following behaviors for diagnostic conditions.

Diagnostic Condition Previous Behavior
Input values outside of their specified
variable ranges

MATLAB warning

No rules fired for a given output at the
current input values

MATLAB Command Window message

Empty output fuzzy sets MATLAB Command Window message

Starting in R2018a, these diagnostic conditions are reported as MATLAB warnings by
default. You can change this behavior by specifying the corresponding options in an
evalfisOptions object.

Update Code

To disable the default warning messages, update your code to use an evalfisOptions
object, and specify the diagnostic message options. For example, disable the empty output
fuzzy set message.

opt = evalfisOptions('EmptyOutputFuzzySetMessage',"none");
output = evalfis(input,fis,opt);

Intermediate fuzzy inference outputs for Sugeno systems are
now analogous to outputs for Mamdani systems
Behavior changed in R2018a

When evaluating a Sugeno system using the following syntax, the intermediate fuzzy
inference results are now analogous to the intermediate results for Mamdani systems.
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[output,fuzzifiedInputs,ruleOutputs,aggregatedOutput] = evalfis(input,fis);

For a Sugeno system:

• ruleOutputs now returns an array that contains the scalar output value for each
rule; that is, the product of the rule firing strength and the rule output level.

• aggregatedOutput now returns the sum of all the rule output values for each output
variable.

Previously, for a Sugeno fuzzy system:

• ruleOutputs returned an array that contained the output level for each rule.
• aggregatedOutput returned an array that contained the firing strength for each

rule.

Starting in R2018a, if your code returns intermediate fuzzy inference results when
evaluating a Sugeno system using evalfis, modify your code to use the new
ruleOutputs and aggregatedOutput results.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All evalfis syntaxes are supported for code generation. However, mamfis, sugfis,
and fistree objects are not supported. To use evalfis for code generation, you
must convert your FIS objects into homogenous structures using
getFISCodeGenerationData.

• Unlike the Fuzzy Logic Controller, evalfis does not support fixed-point data for
simulation or code generation.

• When evaluating a fuzzy inference system in Simulink, it is recommended to not use
evalfis or evalfisOptions within a MATLAB Function block. Instead, evaluate
your fuzzy inference system using the Fuzzy Logic Controller block.
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See Also
Functions
evalfisOptions | fistree | mamfis | sugfis

Topics
“Fuzzy Inference Process” on page 1-28
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced before R2006a
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evalmf
Evaluate fuzzy membership function

Syntax
y = evalmf(mf,x)

Description
y = evalmf(mf,x) evaluates one or more membership functions in mf based on the
input values in x.

Examples

Evaluate Membership Function

Evaluate a generalized bell-shaped membership function across a range of input values
from 0 through 10.

x = 0:0.1:10;
mf = fismf("gbellmf",[2 4 6]);
y = evalmf(mf,x);

Plot the evaluation.

plot(x,y)
xlabel('gbellmf, P = [2 4 6]')

8 Functions — Alphabetical List

8-80



Evaluate Multiple Membership Functions

Create a vector of three Gaussian membership functions.

mf = [fismf("gaussmf",[0.9 2.5],'Name',"low");
      fismf("gaussmf",[0.9 5],'Name',"medium");
      fismf("gaussmf",[0.9 7.55],'Name',"high")];

Specify the input range over which to evaluate the membership functions.

x = (-2:0.1:12)';
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Evaluate the membership functions.

y = evalmf(mf,x);

Plot the evaluation results.

plot(x,y)
xlabel('Input (x)')
ylabel('Membership value (y)')
legend("low","medium","high")
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Input Arguments
mf — Membership function
fismf object | vector of fismf objects

Membership function, specified as a fismf object or a vector of fismf objects.

x — Input value
scalar | vector | 2-D matrix

Input value, specified as a scalar, vector, or 2-D matrix. If mf is a:

• Single fismf object, then you can specify x as a scalar, vector, or matrix
• Vector of fismf objects, then you can specify x as a scalar or vector

Output Arguments
y — Output membership value
scalar | vector | 2-D matrix

Output membership value, returned as a scalar, vector, or 2-D matrix. If mf is a:

• Single fismf object, then y is a scalar, vector, or matrix with the same dimensions as
x. Each element of y is the evaluated membership value for the corresponding element
of x.

• Vector of fismf objects, then y is an M-by-N matrix, where M and N are the lengths of
mf and x, respectively. y(i,j) is the evaluated value of membership function mf(i) for
input value x(j).

Compatibility Considerations
evalmf now takes a fismf object as an input argument
Behavior changed in R2018b

evalmf now takes a fismf object as an input argument rather than the type and
parameters of the membership function. Also, you can now evaluate multiple membership
functions by passing an array of fismf objects to evalmf. There are differences between
these approaches that require updates to your code.
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Update Code

Previously, you evaluated a membership function for given input values, x, by specifying
the type of membership function, type, and the membership functions parameters,
params.

y = evalmf(x,params,type);

Update your code to first create a fismf object, mf. Then, pass this object to evalmf.

mf = fismf(type,params);
y = evalmf(mf,x);

Also, previously, to evaluate multiple membership functions you called evalmf once for
each membership function.

y1 = evalmf(x,params1,type1);
y2 = evalmf(x,params2,type2);
y3 = evalmf(x,params3,type3);

Now, you can evaluate multiple membership functions by passing an array of fismf
objects to evalmf.

mf1 = fismf(type1,params1);
mf2 = fismf(type2,params2);
mf2 = fismf(type3,params3);
y = evalmf([mf1 mf2 mf3],x);

Here, y = [y1 y2 y3]';

See Also
fismf

Topics
“Foundations of Fuzzy Logic” on page 1-10

Introduced before R2006a
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fcm
Fuzzy c-means clustering

Syntax
[centers,U] = fcm(data,Nc)
[centers,U] = fcm(data,Nc,options)

[centers,U,objFunc] = fcm( ___ )

Description
[centers,U] = fcm(data,Nc) performs fuzzy c-means clustering on the given data
and returns Nc cluster centers.

[centers,U] = fcm(data,Nc,options) specifies additional clustering options.

[centers,U,objFunc] = fcm( ___ ) also returns the objective function values at each
optimization iteration for all of the previous syntaxes.

Examples

Cluster Data Using Fuzzy C-Means Clustering

Load data.

load fcmdata.dat

Find 2 clusters using fuzzy c-means clustering.

[centers,U] = fcm(fcmdata,2);

Iteration count = 1, obj. fcn = 8.970479
Iteration count = 2, obj. fcn = 7.197402
Iteration count = 3, obj. fcn = 6.325579
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Iteration count = 4, obj. fcn = 4.586142
Iteration count = 5, obj. fcn = 3.893114
Iteration count = 6, obj. fcn = 3.810804
Iteration count = 7, obj. fcn = 3.799801
Iteration count = 8, obj. fcn = 3.797862
Iteration count = 9, obj. fcn = 3.797508
Iteration count = 10, obj. fcn = 3.797444
Iteration count = 11, obj. fcn = 3.797432
Iteration count = 12, obj. fcn = 3.797430

Classify each data point into the cluster with the largest membership value.

maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2,:) == maxU);

Plot the clustered data and cluster centers.

plot(fcmdata(index1,1),fcmdata(index1,2),'ob')
hold on
plot(fcmdata(index2,1),fcmdata(index2,2),'or')
plot(centers(1,1),centers(1,2),'xb','MarkerSize',15,'LineWidth',3)
plot(centers(2,1),centers(2,2),'xr','MarkerSize',15,'LineWidth',3)
hold off
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Specify Fuzzy Overlap Between Clusters

Create a random data set.

data = rand(100,2);

To increase the amount of fuzzy overlap between the clusters, specify a large fuzzy
partition matrix exponent.

options = [3.0 NaN NaN 0];

Cluster the data.
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[centers,U] = fcm(data,2,options);

Configure Clustering Termination Conditions

Load the clustering data.

load clusterdemo.dat

Set the clustering termination conditions such that the optimization stops when either of
the following occurs:

• The number of iterations reaches a maximum of 25.
• The objective function improves by less than 0.001 between two consecutive

iterations.

options = [NaN 25 0.001 0];

The first option is NaN, which sets the fuzzy partition matrix exponent to its default value
of 2. Setting the fourth option to 0 suppresses the objective function display.

Cluster the data.

[centers,U,objFun] = fcm(clusterdemo,3,options);

To determine which termination condition stopped the clustering, view the objective
function vector.

objFun

objFun = 13×1

   54.7257
   42.9867
   42.8554
   42.1857
   39.0857
   31.6814
   28.5736
   27.1806
   20.7359
   15.7147
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      ⋮

The optimization stopped because the objective function improved by less than 0.001
between the final two iterations.

Input Arguments
data — Data set to be clustered
matrix

Data set to be clustered, specified as a matrix with Nd rows, where Nd is the number of
data points. The number of columns in data is equal to the data dimensionality.

Nc — Number of clusters
integer greater than 1

Number of clusters to create, specified as an integer greater than 1.

options — Clustering options
vector

Clustering options, specified as a vector with the following elements:

Option Description Default
option
s(1)

Exponent for the fuzzy partition matrix, U, specified as a scalar
greater than 1.0. This option controls the amount of fuzzy
overlap between clusters, with larger values indicating a greater
degree of overlap.

If your data set is wide with a lot of overlap between potential
clusters, then the calculated cluster centers might be very close
to each other. In this case, each data point has approximately the
same degree of membership in all clusters. To improve your
clustering results, decrease this value, which limits the amount of
fuzzy overlap during clustering.

For an example of fuzzy overlap adjustment, see “Adjust Fuzzy
Overlap in Fuzzy C-Means Clustering” on page 4-8.

2.0

 fcm

8-89



Option Description Default
option
s(2)

Maximum number of iterations, specified as a positive integer. 100

option
s(3)

Minimum improvement in objective function between two
consecutive iterations, specified as a positive scalar.

1e-5

option
s(4)

Information display flag indicating whether to display the
objective function value after each iteration, specified as one of
the following:

• true — Display objective function.
• false — Do not display objective function.

true

If any element of options is NaN, the default value for that option is used.

The clustering process stops when the maximum number of iterations is reached or when
the objective function improvement between two consecutive iterations is less than the
specified minimum.

Output Arguments
centers — Cluster centers
matrix

Final cluster centers, returned as a matrix with Nc rows containing the coordinates of
each cluster center. The number of columns in centers is equal to the dimensionality of
the data being clustered.

U — Fuzzy partition matrix
matrix

Fuzzy partition matrix, returned as a matrix with Nc rows and Nd columns. Element
U(i,j) indicates the degree of membership of the jth data point in the ith cluster. For a
given data point, the sum of the membership values for all clusters is one.

objFunc — Objective function values
vector

Objective function values for each iteration, returned as a vector.
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Tips
• To generate a fuzzy inference system using FCM clustering, use the genfis

command. For example, suppose you cluster your data using the following syntax:

[centers,U] = fcm(data,Nc,options);

where the first M columns of data correspond to input variables, and the remaining
columns correspond to output variables.

You can generate a fuzzy system using the same training data and FCM clustering
configuration. To do so:

1 Configure clustering options.

opt = genfisOptions('FCMClustering');
opt.NumClusters = Nc;
opt.Exponent = options(1);
opt.MaxNumIteration = options(2);
opt.MinImprovement = options(3);
opt.Verbose = options(4);

2 Extract the input and output variable data.

inputData = data(:,1:M);
outputData = data(:,M+1:end);

3 Generate the FIS structure.

fis = genfis(inputData,outputData,opt);

The fuzzy system, fis, contains one fuzzy rule for each cluster, and each input and
output variable has one membership function per cluster. For more information, see
genfis and genfisOptions.

Algorithms
Fuzzy c-means (FCM) is a clustering method that allows each data point to belong to
multiple clusters with varying degrees of membership.

FCM is based on the minimization of the following objective function

Jm = ∑
i = 1

D
∑

j = 1

N
μi j

m xi− c j
2,
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where

• D is the number of data points.
• N is the number of clusters.
• m is fuzzy partition matrix exponent for controlling the degree of fuzzy overlap, with m

> 1. Fuzzy overlap refers to how fuzzy the boundaries between clusters are, that is the
number of data points that have significant membership in more than one cluster.

• xi is the ith data point.
• cj is the center of the jth cluster.
• μij is the degree of membership of xi in the jth cluster. For a given data point, xi, the

sum of the membership values for all clusters is one.

fcm performs the following steps during clustering:

1 Randomly initialize the cluster membership values, μij.
2 Calculate the cluster centers:

c j =
∑

i = 1

D
μi j

mxi

∑
i = 1

D
μi j

m
.

3 Update μij according to the following:

μi j = 1

∑
k = 1

N xi− c j
xi− ck

2
m− 1

.

4 Calculate the objective function, Jm.
5 Repeat steps 2–4 until Jm improves by less than a specified minimum threshold or

until after a specified maximum number of iterations.

References
[1] Bezdec, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum

Press, New York, 1981.
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See Also
findcluster | genfis

Topics
“Fuzzy Clustering” on page 4-2
“Cluster Quasi-Random Data Using Fuzzy C-Means Clustering” on page 4-4
“Adjust Fuzzy Overlap in Fuzzy C-Means Clustering” on page 4-8

Introduced before R2006a
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findcluster
Open Clustering tool

Syntax
findcluster

findcluster(fileName)

Description
findcluster opens a UI to implement either fuzzy c-means or fuzzy subtractive
clustering. For more information on:

• Clustering methods, see “Fuzzy Clustering” on page 4-2.
• Using the Clustering tool, see “Data Clustering Using Clustering Tool” on page 4-48.

findcluster(fileName) opens the UI, loads the data set in the file fileName,
specified as a character vector or string, and plots the first two dimensions of the data.

The data set file must have the extension .dat. Each line of the data set file contains one
data point. For example, if you have 5-dimensional data with 100 data points,the file
contains 100 lines, and each line contains five values.
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Examples

Open Clustering Tool and Load Data Set
findcluster('clusterdemo.dat')
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Tips
• Using the Clustering tool, you can obtain only the computed cluster centers. To obtain

additional information for:

• Fuzzy c-means clustering, such as the fuzzy partition matrix, cluster the data using
fcm.

• Subtractive clustering, such as the range of influence in each data dimension,
cluster the data using subclust.

• To use the same clustering data with either fcm or subclust, first load the data file
into the MATLABworkspace. For example, at the MATLAB command line, type:

load clusterdemo.dat

See Also
fcm | subclust

Topics
“Data Clustering Using Clustering Tool” on page 4-48

Introduced before R2006a
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fuzarith
Perform fuzzy arithmetic

Syntax
C = fuzarith(X,A,B,operator)  

Description
Using interval arithmetic, C = fuzarith(X,A,B,operator) returns a fuzzy set C as
the result of applying the function represented by the operator, which performs a
binary operation on the sampled convex fuzzy sets A and B. The elements of A and B are
derived from convex functions of the sampled universe, X:

• A, B, and X are vectors of the same dimension.
• operator is one of the following: 'sum', 'sub', 'prod', and 'div'.
• The returned fuzzy set C is a column vector with the same length as X.

Note Fuzzy addition might generate the message "divide by zero" but this does not
affect the accuracy of this function.

Examples

Perform Fuzzy Arithmetic

Specify Gaussian and Trapezoidal membership functions.

N = 101;
minx = -20;
maxx = 20;
x = linspace(minx,maxx,N);
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A = trapmf(x,[-10 -2 1 3]);
B = gaussmf(x,[2 5]);

Evaluate the sum, difference, and product of A and B.

Csum = fuzarith(x,A,B,'sum');
Csub = fuzarith(x,A,B,'sub');
Cprod = fuzarith(x,A,B,'prod');

Plot the results.

figure
subplot(3,1,1)
plot(x,A,'b--',x,B,'m:',x,Csum,'c')
title('Fuzzy Addition, A+B')
legend('A','B','A+B')
subplot(3,1,2)
plot(x,A,'b--',x,B,'m:',x,Csub,'c')
title('Fuzzy Subtraction, A-B')
legend('A','B','A-B')
subplot(3,1,3)
plot(x,A,'b--',x,B,'m:',x,Cprod,'c')
title('Fuzzy Product, A*B')
legend('A','B','A*B')
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Introduced before R2006a
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gauss2mf
Gaussian combination membership function

This function computes fuzzy membership values using a combination of two Gaussian
membership functions. You can also compute this membership function using a fismf
object. For more information, see “fismf Object” on page 8-102.

Syntax
y = gauss2mf(x,params)

Description
y = gauss2mf(x,params) returns fuzzy membership values computed using a
combination of two Gaussian membership functions computed. Each Gaussian function
defines the shape of one side of the membership function and is given by:

f x; σ, c = e
− x− c 2

2σ2

To specify the standard deviation, σ, and mean, c, for each Gaussian function, use
params.

Membership values are computed for each input value in x.

Examples

Gaussian Combination Membership Functions

x = [0:0.1:10]';
y1 = gauss2mf(x,[2 4 1 8]);
y2 = gauss2mf(x,[2 5 1 7]);
y3 = gauss2mf(x,[2 6 1 6]);
y4 = gauss2mf(x,[2 7 1 5]);
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y5 = gauss2mf(x,[2 8 1 4]);
plot(x,[y1 y2 y3 y4 y5])

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four
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Membership function parameters, specified as the vector [σ1 c1 σ2 c2]. Here:

• σ1 and c1 are the standard deviation and mean of the left Gaussian function,
respectively.

• σ2 and c2 are the standard deviation and mean of the right Gaussian function,
respectively.

When c1 ≤ c2, the gauss2mf function reaches a maximum value of 1 over the range [c1,
c2].

Otherwise, when c1> c2, the maximum value is less than one.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the gauss2mf membership
function.

mf = fismf("gauss2mf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gauss2mf,
respectively.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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gaussmf
Gaussian membership function

This function computes fuzzy membership values using a Gaussian membership function.
You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-106.

A Gaussian membership function is not the same as a Gaussian probability distribution.
For example, a Gaussian membership function always has a maximum value of 1. For
more information on Gaussian probability distributions, see “Normal Distribution”
(Statistics and Machine Learning Toolbox).

Syntax
y = gaussmf(x,params)

Description
y = gaussmf(x,params) returns fuzzy membership values computed using the
following Gaussian membership function:

f x; σ, c = e
− x− c 2

2σ2

To specify the standard deviation, σ, and mean, c, for the Gaussian function, use params.

Membership values are computed for each input value in x.

Examples

Gaussian Membership Function

x = 0:0.1:10;
y = gaussmf(x,[2 5]);
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plot(x,y)
xlabel('gaussmf, P=[2 5]')

Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two
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Membership function parameters, specified as the vector [σ c], where σ is the standard
deviation and c is the mean.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the gaussmf membership
function.

mf = fismf("gaussmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gaussmf,
respectively.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf
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Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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gbellmf
Generalized bell-shaped membership function

This function computes fuzzy membership values using a generalized bell-shaped
membership function. You can also compute this membership function using a fismf
object. For more information, see “fismf Object” on page 8-110.

Syntax
y = gbellmf(x,params)

Description
y = gbellmf(x,params) returns fuzzy membership values computed using the
following generalized bell-shaped membership function:

f x; a, b, c = 1
1 + x− c

a
2b

To configure the membership function, specify parameters, a, b, and c using params.

Membership values are computed for each input value in x.

Examples

Generalized Bell-Shaped Membership Function

x = 0:0.1:10;
y = gbellmf(x,[2 4 6]);
plot(x,y)
xlabel('gbellmf, P=[2 4 6]')
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b c].
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Here:

• a defines the width of the membership function, where a larger value creates a wider
membership function.

• b defines the shape of the curve on either side of the central plateau, where a larger
value creates a more steep transition.

• c defines the center of the membership function.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the gbellmf membership
function.

mf = fismf("gbellmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of gbellmf,
respectively.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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genfis
Generate fuzzy inference system object from data

Syntax
fis = genfis(inputData,outputData)
fis = genfis(inputData,outputData,options)

Description
fis = genfis(inputData,outputData) returns a single-output Sugeno fuzzy
inference system (FIS) using a grid partition of the given input and output data.

fis = genfis(inputData,outputData,options) returns an FIS generated using
the specified input/output data and options. You can generate fuzzy systems using grid
partitioning, subtractive clustering, or fuzzy c-means (FCM) clustering.

Examples

Generate Fuzzy Inference System Using Default Options

Define training data.

inputData = [rand(10,1) 10*rand(10,1)-5];
outputData = rand(10,1);

Generate a fuzzy inference system.

fis = genfis(inputData,outputData);

The generated system, fis, is created using grid partitioning with default options.
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Generate FIS Using Grid Partitioning

Define training data.

inputData = [rand(10,1) 10*rand(10,1)-5];
outputData = rand(10,1);

Create a default genfisOptions option set for grid partitioning.

opt = genfisOptions('GridPartition');

Specify the following input membership functions for the generated FIS:

• 3 Gaussian membership functions for the first input variable
• 5 triangular membership functions for the second input variable

opt.NumMembershipFunctions = [3 5];
opt.InputMembershipFunctionType = ["gaussmf" "trimf"];

Generate the FIS.

fis = genfis(inputData,outputData,opt);

Plot the input membership functions. Each input variable has the specified number and
type of input membership functions, evenly distributed over their input range.

[x,mf] = plotmf(fis,'input',1);
subplot(2,1,1)
plot(x,mf)
xlabel('input 1 (gaussmf)')
[x,mf] = plotmf(fis,'input',2);
subplot(2,1,2)
plot(x,mf)
xlabel('input 2 (trimf)')
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Generate FIS Using Subtractive Clustering

Obtain input and output training data.

load clusterdemo.dat
inputData = clusterdemo(:,1:2);
outputData = clusterdemo(:,3);

Create a genfisOptions option set and specify the range of influence for each data
dimension. Specify 0.5 and 0.25 as the range of influence for the first and second input
variables. Specify 0.3 as the range of influence for the output data.
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opt = genfisOptions('SubtractiveClustering',...
                    'ClusterInfluenceRange',[0.5 0.25 0.3]);

Generate the FIS.

fis = genfis(inputData,outputData,opt);

The generated FIS contains one rule for each cluster.

showrule(fis)

ans = 3x83 char array
    '1. If (in1 is in1cluster1) and (in2 is in2cluster1) then (out1 is out1cluster1) (1)'
    '2. If (in1 is in1cluster2) and (in2 is in2cluster2) then (out1 is out1cluster2) (1)'
    '3. If (in1 is in1cluster3) and (in2 is in2cluster3) then (out1 is out1cluster3) (1)'

Generate FIS Using FCM Clustering

Obtain the input and output data.

load clusterdemo.dat
inputData = clusterdemo(:,1:2);
outputData = clusterdemo(:,3);

Create a genfisOptions option set for FCM Clustering, specifying a Mamdani FIS type.

opt = genfisOptions('FCMClustering','FISType','mamdani');

Specify the number of clusters.

opt.NumClusters = 3;

Suppress the display of iteration information to the Command Window.

opt.Verbose = 0;

Generate the FIS.

fis = genfis(inputData,outputData,opt);

The generated FIS contains one rule for each cluster.
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showrule(fis)

ans = 3x83 char array
    '1. If (in1 is in1cluster1) and (in2 is in2cluster1) then (out1 is out1cluster1) (1)'
    '2. If (in1 is in1cluster2) and (in2 is in2cluster2) then (out1 is out1cluster2) (1)'
    '3. If (in1 is in1cluster3) and (in2 is in2cluster3) then (out1 is out1cluster3) (1)'

Plot the input and output membership functions.

[x,mf] = plotmf(fis,'input',1);
subplot(3,1,1)
plot(x,mf)
xlabel('Membership Functions for Input 1')
[x,mf] = plotmf(fis,'input',2);
subplot(3,1,2)
plot(x,mf)
xlabel('Membership Functions for Input 2')
[x,mf] = plotmf(fis,'output',1);
subplot(3,1,3)
plot(x,mf)
xlabel('Membership Functions for Output')
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Input Arguments
inputData — Input data
array

Input data, specified as an N-column array, where N is the number of FIS inputs.

inputData and outputData must have the same number of rows.

outputData — Output data
array
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Output data, specified as an M-column array, where M is the number of FIS outputs.

When using grid partitioning, outputData must have one column. If you specify more
than one column for grid partitioning, genfis uses the first column as the output data.

inputData and outputData must have the same number of rows.

options — FIS generation options
genfisOptions option set

FIS generation options, specified as a genfisOptions option set. If you do not specify
options, genfis uses a default grid partitioning option set.

You can generate fuzzy systems using one of the following methods, which you specify
when you create the option set:

• Grid partitioning — Generate input membership functions by uniformly partitioning
the input variable ranges, and create a single-output Sugeno fuzzy system. The fuzzy
rule base contains one rule for each input membership function combination.

options = genfisOptions('GridPartition');

• Subtractive clustering — Generate a Sugeno fuzzy system using membership functions
and rules derived from data clusters found using subtractive clustering of input and
output data. For more information on subtractive clustering, see subclust.

options = genfisOptions('SubtractiveClustering');

• FCM Clustering — Generate a fuzzy system using membership function and rules
derived from data clusters found using FCM clustering of input and output data. For
more information on FCM clustering, see fcm.

options = genfisOptions('FCMClustering');

Output Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. The properties of fis
depend on the type of clustering used and the corresponding options.
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Clu
ster
ing
Typ
e

Fuzz
y
Syst
em
Type

Input Membership
Functions

Fuzzy Rules Output Membership
Functions

Grid
Part
itio
ning

Suge
no

Each input variable has
evenly distributed input
membership function.
Specify the number of
membership functions
using
options.NumMembersh
ipFunctions. Specify
the membership function
type using
options.InputMember
shipFunctionType.

One rule for each input
membership function
combination. The
consequent of each rule
corresponds to a
different output
membership function.

One output membership
function for each fuzzy
rule. Specify the
membership function
type using
options.OutputMembe
rshipFunctionType.

Sub
trac
tive
Clus
teri
ng

Suge
no

Each input variable has
one 'gaussmf' input
membership function for
each fuzzy cluster.

One rule for each fuzzy
cluster

Each output variable has
one 'linear' output
membership function for
each fuzzy cluster.

FC
M
Clus
teri
ng

Mam
dani
or
Suge
no

Each input variable has
one 'gaussmf' input
membership function for
each fuzzy cluster.

One rule for each fuzzy
cluster

Each output variable has
one output membership
function for each fuzzy
cluster. The membership
function type is
'gaussmf' for
Mamdani systems and
'linear' for Sugeno
systems.

If fis is a single-output Sugeno system, you can tune the membership function
parameters using the anfis command.
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Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
anfis | fcm | genfisOptions | subclust

Introduced in R2017a
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genfis1
(To be removed) Generate Fuzzy Inference System structure from data using grid
partition

Note genfis1 will be removed in a future release. Use genfis instead. For more
information, see “Compatibility Considerations”.

Syntax
fismat = genfis1(data) 

fismat = genfis1(data,numMFs,inmftype,outmftype) 

Description
genfis1 generates a Sugeno-type FIS structure used as initial conditions (initialization of
the membership function parameters) for anfis training.

genfis1(data) generates a single-output Sugeno-type fuzzy inference system using a
grid partition on the data.

genfis1(data,numMFs,inmftype,outmftype) generates an FIS structure from a
training data set, data, with the number and type of input membership functions and the
type of output membership functions explicitly specified.

The arguments for genfis1 are as follows:

• data is the training data matrix, which must be entered with all but the last columns
representing input data, and the last column representing the single output.

• numMFs is a vector whose coordinates specify the number of membership functions
associated with each input. If you want the same number of membership functions to
be associated with each input, then specify numMFs as a single number.

• inmftype is a character array in which each row specifies the membership function
type associated with each input. This can be a character vector if the type of
membership functions associated with each input is the same.
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• outmftype is a character vector that specifies the membership function type
associated with the output. There can only be one output, because this is a Sugeno-
type system. The output membership function type must be either linear or
constant. The number of membership functions associated with the output is the
same as the number of rules generated by genfis1.

The default number of membership functions, numMFs, is 2; the default input membership
function type is 'gbellmf'; and the default output membership function type is
'linear'. These are used whenever genfis1 is invoked without the last three
arguments.

The following table summarizes the default inference methods.

Inference Method Default
AND prod
OR max
Implication prod
Aggregation max
Defuzzification wtaver

Examples

Generate FIS Using Grid Partitioning
Generate a FIS using grid partitioning.

data = [rand(10,1) 10*rand(10,1)-5 rand(10,1)];
numMFs = [3 7];
mfType = char('pimf','trimf');
fismat = genfis1(data,numMFs,mfType);

To see the contents of fismat, use showfis(fismat).

Plot the FIS input membership functions.

[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1), plot(x,mf)
xlabel('input 1 (pimf)')
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[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2), plot(x,mf)
xlabel('input 2 (trimf)')

Compatibility Considerations

genfis1 will be removed
Not recommended starting in R2017a

genfis1 will be removed in a future release. Use genfis instead. There are differences
between these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions
set.

opt = genfisOptions('GridPartition');

You can modify the options using dot notation. Any options you do not modify remain at
their default values.

Then, update your code to use genfis. For example, if your code has the following form:

fis = genfis1(data,numMFs,inmftype,outmftype);

Use the following code instead:

opt = genfisOptions('GridPartition');
opt.NumMembershipFunctions = numMFs;
opt.InputMembershipFunctionType = inmftype;
opt.OutputMembershipFunctionType = outmftype;
inputData = data(:,end-1);
outputData = data(:,end);
fis = genfis(inputData,outputData,opt);

See Also
anfis | genfis | genfis2 | genfis3
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Introduced before R2006a
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genfis2
(To be removed) Generate Fuzzy Inference System structure from data using subtractive
clustering

Note genfis2 will be removed in a future release. Use genfis instead. For more
information, see “Compatibility Considerations”.

Syntax
fismat = genfis2(Xin,Xout,radii) 

fismat = genfis2(Xin,Xout,radii,xBounds) 

fismat = genfis2(Xin,Xout,radii,xBounds,options) 

fismat = genfis2(Xin,Xout,radii,xBounds,options,user_centers)

Description
genfis2 generates a Sugeno-type FIS structure using subtractive clustering and
requires separate sets of input and output data as input arguments. When there is only
one output, genfis2 may be used to generate an initial FIS for anfis training. genfis2
accomplishes this by extracting a set of rules that models the data behavior.

The rule extraction method first uses the subclust function to determine the number of
rules and antecedent membership functions and then uses linear least squares estimation
to determine each rule's consequent equations. This function returns an FIS structure
that contains a set of fuzzy rules to cover the feature space.

The arguments for genfis2 are as follows:

• Xin is a matrix in which each row contains the input values of a data point.
• Xout is a matrix in which each row contains the output values of a data point.
• radii is a vector that specifies a cluster center's range of influence in each of the

data dimensions, assuming the data falls within a unit hyperbox.
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For example, if the data dimension is 3 (e.g., Xin has two columns and Xout has one
column), radii = [0.5 0.4 0.3] specifies that the ranges of influence in the first,
second, and third data dimensions (i.e., the first column of Xin, the second column of
Xin, and the column of Xout) are 0.5, 0.4, and 0.3 times the width of the data space,
respectively. If radii is a scalar value, then this scalar value is applied to all data
dimensions, i.e., each cluster center has a spherical neighborhood of influence with
the given radius.

• xBounds is a 2-by-N optional matrix that specifies how to map the data in Xin and
Xout into a unit hyperbox, where N is the data (row) dimension. The first row of
xBounds contains the minimum axis range values and the second row contains the
maximum axis range values for scaling the data in each dimension.

For example, xBounds = [-10 0 -1; 10 50 1] specifies that data values in the first data
dimension are to be scaled from the range [-10 +10] into values in the range [0 1];
data values in the second data dimension are to be scaled from the range [0 50]; and
data values in the third data dimension are to be scaled from the range [-1 +1]. If
xBounds is an empty matrix or not provided, then xBounds defaults to the minimum
and maximum data values found in each data dimension.

• options is an optional vector for specifying algorithm parameters to override the
default values. These parameters are explained in the help text for subclust. Default
values are in place when this argument is not specified.

• user_centers is an optional matrix for specifying custom cluster centers.
user_centers has a size of J-by-N where J is the number of clusters and N is the
total number of inputs and outputs.

The input membership function type is 'gaussmf', and the output membership function
type is 'linear'.

The following table summarizes the default inference methods.

Inference Method Default
AND prod
OR probor
Implication prod
Aggregation max
Defuzzification wtaver
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Examples
Specify One Cluster Center Range of Influence For All Data
Dimensions
Generate an FIS using subtractive clustering, and specify the cluster center range of
influence.

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,0.5);

fismat uses a range of influence of 0.5 for all data dimensions.

To see the contents of fismat, use showfis(fismat).

Plot the input membership functions.

[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1)
plot(x,mf)
xlabel('Membership Functions for input 1')
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2)
plot(x,mf)
xlabel('Membership Functions for input 2')

Specify Cluster Center Range of Influence For Each Data
Dimension
Suppose the input data has two columns, and the output data has one column. Specify
0.5 and 0.25 as the range of influence for the first and second input data columns.
Specify 0.3 as the range of influence for the output data.

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,[0.5 0.25 0.3]); 

Specify Data Hyperbox Scaling Range
Suppose the input data has two columns, and the output data has one column. Specify the
scaling range for the inputs and outputs to normalize the data into the [0 1] range. The
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ranges for the first and second input data columns and the output data are: [-10 +10], [-5
+5], and [0 20].

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);
fismat = genfis2(Xin,Xout,0.5,[-10 -5 0;10 5 20]);

Here, the third input argument, 0.5, specifies the range of influence for all data
dimensions. The fourth input argument specifies the scaling range for the input and
output data.

Compatibility Considerations

genfis2 will be removed
Not recommended starting in R2017a

genfis2 will be removed in a future release. Use genfis instead. There are differences
between these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions
set.

opt = genfisOptions('SubtractiveClustering');

You can modify the options using dot notation. Any options you do not modify remain at
their default values.

Then, update your code to use genfis. For example, if your code has the following form:

fis = genfis2(inputData,outputData,radii,xBounds,options,userCenters);

Use the following code instead:

opt = genfisOptions('SubtractiveClustering');
opt.ClusterInfluenceRange = radii;
opt.DataScale = xBounds;
opt.SquashFactor = options(1);
opt.AcceptRatio = options(2);
opt.RejectRatio = options(3);
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opt.Verbose = options(4);
opt.CustomClusterCenters = userCenters;
fis = genfis(inputData,outputData,opt);

See Also
anfis | genfis | genfis1 | genfis3 | subclust

Introduced before R2006a
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genfis3
(To be removed) Generate Fuzzy Inference System structure from data using FCM
clustering

Note genfis3 will be removed in a future release. Use genfis instead. For more
information, see “Compatibility Considerations”.

Syntax
fismat = genfis3(Xin,Xout) 

fismat = genfis3(Xin,Xout,type) 

fismat = genfis3(Xin,Xout,type,cluster_n) 

fismat = genfis3(Xin,Xout,type,cluster_n,fcmoptions) 

Description
genfis3 generates an FIS using fuzzy c-means (FCM) clustering by extracting a set of
rules that models the data behavior. The function requires separate sets of input and
output data as input arguments. When there is only one output, you can use genfis3 to
generate an initial FIS for anfis training. The rule extraction method first uses the fcm
function to determine the number of rules and membership functions for the antecedents
and consequents.

fismat = genfis3(Xin,Xout) generates a Sugeno-type FIS structure (fismat) given
input data Xin and output data Xout. The matrices Xin and Xout have one column per
FIS input and output, respectively.

fismat = genfis3(Xin,Xout,type) generates an FIS structure of the specified
type, where type is either 'mamdani' or 'sugeno'.

fismat = genfis3(Xin,Xout,type,cluster_n) generates an FIS structure of the
specified type and allows you to specify the number of clusters (cluster_n) to be
generated by FCM.
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The number of clusters determines the number of rules and membership functions in the
generated FIS. cluster_n must be an integer or 'auto'. When cluster_n is 'auto',
the function uses the subclust algorithm with a radii of 0.5 and the minimum and
maximum values of Xin and Xout as xBounds to find the number of clusters. See
subclust for more information.

fismat = genfis3(Xin,Xout,type,cluster_n,fcmoptions) generates an FIS
structure of the specified type and number of clusters and uses the specified
fcmoptions for the FCM algorithm. If you omit fcmoptions, the function uses the
default FCM values. See fcm for information about these parameters.

The input membership function type is 'gaussmf'. By default, the output membership
function type is 'linear'. However, if you specify type as 'mamdani', then the output
membership function type is 'gaussmf'.

The following table summarizes the default inference methods.

Inference Method Default
AND prod
OR probor
Implication prod
Aggregation sum
Defuzzification wtaver

Examples

Generate Sugeno-Type FIS and Specify Number of Clusters
Obtain the input and output data.

Xin = [7*rand(50,1) 20*rand(50,1)-10];
Xout = 5*rand(50,1);

Generate a Sugeno-type FIS with 3 clusters.

opt = NaN(4,1);
opt(4) = 0;
fismat = genfis3(Xin,Xout,'sugeno',3,opt);
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The fourth input argument specifies the number of clusters. The fifth input argument,
opt, specifies the options for the FCM algorithm. The NaN entries of opt specify default
option values. opt(4) turns off the display of iteration information at the command line.

To see the contents of fismat, use showfis(fismat).

Plot the input membership functions.

[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1), plot(x,mf)
xlabel('Membership Functions for Input 1')
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2), plot(x,mf)
xlabel('Membership Functions for Input 2')

Compatibility Considerations
genfis3 will be removed
Not recommended starting in R2017a

genfis3 will be removed in a future release. Use genfis instead. There are differences
between these functions that require updates to your code.

Update Code

To generate a fuzzy system using grid partitioning, first create a default genfisOptions
set.

opt = genfisOptions('FCMClustering');

You can modify the options using dot notation. Any options you do not modify remain at
their default values.

Then, update your code to use genfis. For example, if your code has the following form:

fis = genfis3(inputData,outputData,type,cluster_n,fcmoptions);

Use the following code instead:

opt = genfisOptions('FCMClustering');
opt.FISType = type;
opt.NumClusters = cluster_n;
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opt.Exponent = fcmoptions(1);
opt.MaxNumIteration = fcmoptions(2);
opt.MinImprovement = fcmoptions(3);
opt.Verbose = fcmoptions(4);
fis = genfis(inputData,outputData,opt);

See Also
anfis | fcm | genfis | genfis1 | genfis2

Introduced before R2006a
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genfisOptions
Option set for genfis command

Syntax
opt = genfisOptions(clusteringType)
opt = genfisOptions(clusteringType,Name,Value)

Description
opt = genfisOptions(clusteringType) creates a default option set for generating
a fuzzy inference system structure using genfis. The option set, opt, contains different
options that depend on the specified clustering algorithm, clusteringType. Use dot
notation to modify this option set for your specific application. Options that you do not
modify retain their default values.

opt = genfisOptions(clusteringType,Name,Value) creates an option set with
options specified by one or more Name,Value pair arguments.

Examples

Specify Options for FIS Generation

Create a default option set for the grid partitioning generation method.

opt = genfisOptions('GridPartition');

Modify the options using dot notation. For example, specify 3 membership functions for
the first input and 4 membership functions for the second input.

opt.NumMembershipFunctions = [3 4];

You can also specify options when creating the option set. For example, create an option
set for FCM clustering using 4 clusters.
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opt2 = genfisOptions('FCMClustering','NumClusters',4);

Input Arguments
clusteringType — Clustering method
'GridPartition' | 'SubtractiveClustering' | 'FCMClustering'

Clustering method for defining membership functions and fuzzy rules, specified as one of
the following:

• 'GridPartition' — Generate input membership functions by uniformly partitioning
the input variable ranges, and create a single-output Sugeno fuzzy system. The fuzzy
rule base contains one rule for each input membership function combination.

• 'SubtractiveClustering' — Generate a Sugeno fuzzy system using membership
functions and rules derived from data clusters found using subtractive clustering of
input and output data. For more information on subtractive clustering, see subclust.

• 'FCMClustering' — Generate a fuzzy system using membership function and rules
derived from data clusters found using FCM clustering of input and output data. For
more information on FCM clustering, see fcm.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'InputMembershipFunctionType','trimf' sets triangular input
membership functions for the grid partitioning algorithm.

Grid Partitioning Options

NumMembershipFunctions — Number of input membership functions
2 (default) | integer greater than 1 | vector of integers greater than 1

Number of input membership functions for each input variable, specified as the comma-
separated pair consisting of 'NumMembershipFunctions' and one of the following:

• Integer greater than 1 — Specify the same number of membership functions for all
inputs.
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• Vector of integer greater than 1 with length equal to the number of inputs — Specify a
different number of membership functions for each input.

InputMembershipFunctionType — Input membership function type
'gbellmf' (default) | 'gaussmf' | 'trimf' | 'trapmf' | character vector | string
array | ...

Input membership function type, specified as the comma-separated pair consisting of
'InputMembershipFunctionType' and one of the following:

• Character vector or string — Specify one of the following membership function types
for all inputs.

Membership
function type

Description For more information

'gbellmf' Generalized bell-shaped
membership function

gbellmf

'gaussmf' Gaussian membership function gaussmf
'gauss2mf' Gaussian combination

membership function
gauss2mf

'trimf' Triangular membership
function

trimf

'trapmf' Trapezoidal membership
function

trapmf

'sigmf' Sigmoidal membership
function

sigmf

'dsigmf' Difference between two
sigmoidal membership
functions

dsigmf

'psigmf' Product of two sigmoidal
membership functions

psigmf

'zmf' Z-shaped membership function zmf
'pimf' Pi-shaped membership function pimf
'smf' S-shaped membership function smf
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Membership
function type

Description For more information

Character vector
or string

Name of a custom membership
function in the current working
folder or on the MATLAB path

“Build Fuzzy Systems Using
Custom Functions” on page 2-
50

• Character array or string array — Specify a different membership function type for
each input. For example, specify different membership functions for a three-input
system:

["gbellmf","gaussmf","trimf"]

OutputMembershipFunctionType — Output membership function type
'linear' (default) | 'constant'

Output membership function type for a single-output Sugeno system, specified as the
comma-separated pair consisting of 'OutputMembershipFunctionType' and one of
the following:

• 'linear' — The output of each rule is a linear function of the input variables, scaled
by the antecedent result value.

• 'constant' — The output of each rule is a constant, scaled by the antecedent result
value.

Subtractive Clustering Options

ClusterInfluenceRange — Range of influence of the cluster center
0.5 (default) | scalar value in the range [0, 1] | vector

Range of influence of the cluster center for each input and output assuming the data falls
within a unit hyperbox, specified as the comma-separated pair consisting of
'ClusterInfluenceRange' one of the following:

• Scalar value in the range [0 1] — Use the same influence range for all inputs and
outputs.

• Vector — Use different influence ranges for each input and output.

Specifying a smaller range of influence usually creates more and smaller data clusters,
producing more fuzzy rules.

DataScale — Data scale factors
'auto' (default) | 2-by-N array
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Data scale factors for normalizing input and output data into a unit hyperbox, specified as
the comma-separated pair consisting of 'DataScale' and a 2-by-N array, where N is the
total number of inputs and outputs. Each column of DataScale specifies the minimum
value in the first row and the maximum value in the second row for the corresponding
input or output data set.

When DataScale is 'auto', the genfis command uses the actual minimum and
maximum values in the data to be clustered.

SquashFactor — Squash factor
1.25 (default) | positive scalar

Squash factor for scaling the range of influence of cluster centers, specified as the
comma-separated pair consisting of 'SquashFactor' and a positive scalar. A smaller
squash factor reduces the potential for outlying points to be considered as part of a
cluster, which usually creates more and smaller data clusters.

AcceptRatio — Acceptance ratio
0.5 (default) | scalar value in the range [0, 1]

Acceptance ratio, defined as a fraction of the potential of the first cluster center, above
which another data point is accepted as a cluster center, specified as the comma-
separated pair consisting of 'AcceptRatio' and a scalar value in the range [0, 1]. The
acceptance ratio must be greater than the rejection ratio.

RejectRatio — Rejection ratio
0.15 (default) | scalar value in the range [0, 1]

Rejection ratio, defined as a fraction of the potential of the first cluster center, below
which another data point is rejected as a cluster center, specified as the comma-separated
pair consisting of 'RejectRatio' and a scalar value in the range [0, 1]. The rejection
ratio must be less than acceptance ratio.

Verbose — Information display flag
false (default) | true

Information display flag indicating whether to display progress information during
clustering, specified as the comma-separated pair consisting of 'Verbose' and one of
the following:

• false — Do not display progress information.
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• true — Display progress information.

CustomClusterCenters — Custom cluster centers
[] (default) | C-by-N array

Custom cluster centers, specified the comma-separated pair consisting of
'CustomClusterCenters' and as a C-by-N array, where C is the number of clusters
and N is the total number of inputs and outputs.

FCM Clustering Options

FISType — Fuzzy inference system type
'sugeno' (default) | 'mamdani'

Fuzzy inference system type, specified as the comma-separated pair consisting of
'FISType' and one of the following:

• 'sugeno' — Sugeno-type fuzzy system
• 'mamdani' — Mamdani-type fuzzy system

For more information on the types of fuzzy inference systems, see “Types of Fuzzy
Inference Systems” on page 2-2.

NumClusters — Number of clusters
'auto' | integer greater than 1

Number of clusters to create, specified as the comma-separated pair consisting of
'NumClusters' and 'auto' or an integer greater than 1. When NumClusters is
'auto', the genfis command estimates the number of clusters using subtractive
clustering with a cluster influence range of 0.5.

NumClusters determines the number of rules and membership functions in the
generated FIS.

Exponent — Exponent for the fuzzy partition matrix
2.0 (default) | scalar greater than 1.0

Exponent for the fuzzy partition matrix, specified as the comma-separated pair consisting
of 'Exponent' and a scalar greater than 1.0. This option controls the amount of fuzzy
overlap between clusters, with larger values indicating a greater degree of overlap.

If your data set is wide with significant overlap between potential clusters, then the
calculated cluster centers can be very close to each other. In this case, each data point
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has approximately the same degree of membership in all clusters. To improve your
clustering results, decrease this value, which limits the amount of fuzzy overlap during
clustering.

For an example of fuzzy overlap adjustment, see “Adjust Fuzzy Overlap in Fuzzy C-Means
Clustering” on page 4-8.

MaxNumIteration — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxNumIteration' and a positive integer.

MinImprovement — Minimum improvement in objective function
1e-5 (default) | positive scalar

Minimum improvement in objective function between two consecutive iterations,
specified as the comma-separated pair consisting of 'MinImprovement' and a positive
scalar.

Verbose — Information display flag
true (default) | false

Information display flag indicating whether to display the objective function value after
each iteration, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

• true — Display objective function.
• false — Do not display objective function.

Output Arguments
opt — Option set for genfis command
genfisOptions option set

Option set for genfis command, returned as a genfisOptions option set. The options
in the option set depend on the specified clusteringType.
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See Also
fcm | genfis | subclust

Introduced in R2017a
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gensurf
Generate fuzzy inference system output surface

Syntax
gensurf(fis)
gensurf(fis,options)
[X,Y,Z] = gensurf( ___ )

Description
gensurf(fis) generates the output surface for the fuzzy inference system, fis, plotting
the first output variable against the first two input variables. For fuzzy systems with more
than two inputs, the remaining input variables use the midpoints of their respective
ranges as reference values.

gensurf(fis,options) generates the output surface using the specified options. To
generate a surface using different inputs or outputs, or to specify nondefault plotting
options, use this syntax.

[X,Y,Z] = gensurf( ___ ) returns the variables that define the output surface for any
of the previous syntaxes and suppresses the surface plot.

Examples

Generate FIS Output Surface

Load a fuzzy inference system.

fis = readfis('tipper');

This fuzzy system has two inputs and one output.

Generate the output surface for the system.
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gensurf(fis)

Generate FIS Output Surface for Second Output

Load a fuzzy inference system with two inputs and two outputs.

fis = readfis('mam22.fis');

Create a surface generation option set, specifying the second output as the output to plot.
By default, this output is plotted against the first two input variables.

opt = gensurfOptions('OutputIndex',2);
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Plot the surface, using the specified option set.

gensurf(fis,opt)

Specify Reference Inputs for Surface Plot

Load a fuzzy inference system with four inputs and one output.

fis = readfis('slbb.fis');

Create a default gensurfOptions option set.
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opt = gensurfOptions;

Specify plotting options to:

• Plot the output against the second and third input variable.
• Use 20 grid points for both inputs.
• Fix the first and fourth inputs at -0.5 and 0.1 respectively. Set the reference values

for the second and third inputs to NaN.

opt.InputIndex = [2 3];
opt.NumGridPoints = 20;
opt.ReferenceInputs = [-0.5 NaN NaN 0.1];

Plot the output surface.

gensurf(fis,opt)
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Return Surface Values and Suppress Plot

Load a fuzzy inference system.

fis = readfis('tipper');

Generate the output surface, returning the surface data.

[X,Y,Z] = gensurf(fis);

The output values, Z, are the FIS output evaluated at the corresponding X and Y grid
points.
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Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

options — Surface generation options
gensurfOptions option set

Surface generation options, specified as a gensurfOptions option set.

Output Arguments
X — Grid values for first input variable
array | column vector

Grid values for first input variable, returned as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second
inputs, respectively; that is options.NumGridPoints = [N M]. Each column of X
contains one grid point value, repeated for every row.

• P-element column vector, where P is the number of grid points specified for a single
input variable; that is options.NumGridPoints = P. Each element of contains one
grid point value. This case applies when fis has only one input variable.

Y — Grid values for second input variable
array | []

Grid values for second input variable, returned as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second
inputs respectively; that is options.NumGridPoints = [N M]. Each row of Y
contains one grid point value, repeated for every column.

• [] when you specify only one input variable; that is, if you specify
options.InputIndex as an integer.
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Z — Surface output values
array | vector

Surface output values for the output variable of fis specified by
options.OutputIndex, returned as one of the following:

• M-by-N array, where N and M are the number of grid points for the first and second
inputs respectively; that is options.NumGridPoints = [N M]. Each element of Z is
the value of the FIS output, evaluated at the corresponding X and Y input values. For
example, for a two-input system:

Z(i,j) = evalfis([X(i,j) Y(i,j)],fis);

• P-element column vector, where P is the number of grid points specified for a single
input variable; that is options.NumGridPoints = P. Each element of Z is the value
of the FIS output evaluated at the corresponding X input value.

When computing the value of Z, gensurf sets the values of any inputs not specified by
options.InputIndex to their corresponding reference values, as specified in
options.ReferenceInputs.

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.
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See Also
evalfis | gensurfOptions | surfview

Introduced before R2006a
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gensurfOptions
Option set for gensurf command

Syntax
opt = gensurfOptions
opt = gensurfOptions(Name,Value)

Description
opt = gensurfOptions creates a default option set for generating a fuzzy inference
system output surface using gensurf. Use dot notation to modify this option set for your
specific application. Any options that you do not modify retain their default values.

opt = gensurfOptions(Name,Value) creates an option set with options specified by
one or more Name,Value pair arguments.

Examples

Specify Options for Generating Output Surface

Create a default gensurfOptions option set.

opt = gensurfOptions;

Specify options using dot notation. For example, for a two-input, three-output fuzzy
system, specify options to:

• Plot the surface for the second output against the values of the first and third inputs.
• Specify a reference value of 0.25 for the second input variable.

opt.OutputIndex = 2;
opt.InputIndex = [1 3];
opt.ReferenceInputs = [NaN 0.25 NaN];
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Any values you do not specify remain at their default values.

You can also specify one or more options when creating the option set. For example,
create an option set, specifying 25 grid points for both plotted input variables:

opt2 = gensurfOptions('NumGridPoints',25);

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'InputIndex',[2 3] plots the output against the second and third input
variables using a 3-D surface plot.

InputIndex — Indices of input variables
'auto' (default) | positive integer less than or equal to the number of inputs | two-
element vector of positive integers

Indices of input variables to plot the output against, specified as the comma-separated
pair consisting of 'InputIndex' and one of the following:

• Positive integer less than or equal to the number of inputs — Plot the output against a
single input using a 2-D plot.

• Two-element vector of positive integers — Plot the output against two input variables
using a 3-D surface plot.

When InputIndex is 'auto', gensurf uses the first two input variables by default.

OutputIndex — Index of output variable
'auto' (default) | positive integer less than or equal to the number of outputs

Index of output variable to plot, specified as the comma-separated pair consisting of
'OutputIndex' and a positive integer less than or equal to the number of outputs.

When OutputIndex is 'auto', gensurf uses the first output variable by default.
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NumGridPoints — Number of grid points to plot
15 (default) | integer greater than 1 | two-element vector of integers greater than 1

Number of grid points to plot, specified as the comma-separated pair consisting of
'NumGridPoints' and one of the following:

• Integer greater than 1 — Specify the number of grid points when using a single input
variable, or the same number of grid points for both inputs when using two inputs
variables.

• Two-element vector of integers greater than 1 — Specify a different number of grid
points for each input variable.

If you specify InputIndex as an integer and NumGridPoints as a vector, then gensurf
uses the first element of NumGridPoints as the number of grid points for the specified
input variable.

To plot a smoother surface, increase the number of grid points.

ReferenceInputs — Reference values for input variables
'auto' (default) | vector

Reference values for input variables not shown in the surface plot, specified as the
comma-separated pair consisting of 'ReferenceInputs' and a vector with length equal
to the number of FIS inputs. Specify NaN for the inputs specified in InputIndex.

When ReferenceInputs is 'auto', gensurf uses the midpoint of the range of each
unused variable as a reference value.

NumSamplePoints — Number of sample points
101 (default) | integer greater than 1

Number of sample points to use when evaluating membership functions over the output
variable range, specified as the comma-separated pair consisting of
'NumSamplePoints' and an integer greater than 1. For more information on
membership function evaluation, see evalfis.

Note NumSamplePoints is not used by Sugeno-type systems.

8 Functions — Alphabetical List

8-152



Output Arguments
opt — Option set for gensurf command
gensurfOptions option set

Option set for gensurf command, returned as a gensurfOptions option set.

See Also
evalfis | gensurf

Introduced in R2017a
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getfis
(To be removed) Get fuzzy system properties

Note getfis will be removed in a future release. Access fuzzy inference system
properties using dot notation instead. For more information, see “Compatibility
Considerations”.

Syntax
getfis(sys)

fisInfo = getfis(sys)
fisInfo = getfis(sys,fisProperty)

varInfo = getfis(sys,varType,varIndex)
varInfo = getfis(sys,varType,varIndex,varProperty)

mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex)
mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex,mfProperty)

Description
getfis(sys) prints the properties of the specified fuzzy inference system, sys, to the
Command Window.

fisInfo = getfis(sys) returns the properties of the specified fuzzy inference system.

fisInfo = getfis(sys,fisProperty) returns the value of the specified property of
the fuzzy inference system.

varInfo = getfis(sys,varType,varIndex) returns the properties of the specified
input or output variable of a fuzzy inference system.

varInfo = getfis(sys,varType,varIndex,varProperty) returns the value of the
specified variable property.
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mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex) returns the properties
of the specified membership function of an input or output variable.

mfInfo = getfis(sys,varType,varIndex,'mf',mfIndex,mfProperty) returns
the value of the specified membership function property.

Examples

Display Properties of Fuzzy Inference System

Load a fuzzy inference system.

sys = readfis('tipper');

Display the system properties.

getfis(sys)

      Name      = tipper
      Type      = mamdani
      NumInputs = 2
      InLabels  = 
            service
            food
      NumOutputs = 1
      OutLabels = 
            tip
      NumRules = 3
      AndMethod = min
      OrMethod = max
      ImpMethod = min
      AggMethod = max
      DefuzzMethod = centroid

Obtain Fuzzy Inference System Properties

Load fuzzy system.

sys = readfis('tipper');
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Obtain the system properties.

prop = getfis(sys);

To obtain the value of a given property, specify the property name. For example, obtain
the type of the fuzzy system.

type = getfis(sys,'type');

Obtain Variable Properties

Load fuzzy system.

sys = readfis('tipper');

Obtain the properties of the first input variable.

prop = getfis(sys,'input',1);

To obtain the value of a given property, specify the property name. For example, obtain
the range of the output variable.

range = getfis(sys,'output',1,'range');

Obtain Membership Function Properties

Load fuzzy system.

sys = readfis('tipper');

For the second input variable, obtain the properties of its first membership function.

prop = getfis(sys,'input',2,'mf',1);

To obtain the value of a given property, specify the property name. For example, obtain
the parameters of the second membership function of the output variable.
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params = getfis(sys,'output',1,'mf',2,'params');

Input Arguments
sys — Fuzzy inference system
FIS structure

Fuzzy inference system, specified as an FIS structure.

fisProperty — Fuzzy inference system property
'name' | 'type' | 'numInputs' | 'numOutputs' | ...

Fuzzy inference system property, specified as one of the following:

• 'name' — FIS name
• 'type' — FIS type
• 'numInputs' — Number of inputs
• 'numOutputs'— Number of outputs
• 'numRules' — Number of fuzzy rules.
• 'andMethod' — And method
• 'orMethod' — Or method
• 'defuzzMethod' — Defuzzification method
• 'impMethod' — Implication method
• 'aggMethod' — Aggregation method
• 'ruleList' — List of fuzzy rules

varType — Variable type
'input' | 'output'

Variable type, specified as either 'input' or 'output', for input and output variables,
respectively.

varIndex — Variable index
positive integer

Variable index, specified as a positive integer.
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varProperty — Variable property
'name' | 'range' | 'nummfs'

Variable property, specified as one of the following:

• 'name' — Variable name
• 'range' — Variable value range
• 'nummfs' — Number of membership functions

mfIndex — Membership function index
positive integer

Membership function index, specified as a positive integer.

mfProperty — Membership function property
'name' | 'type' | 'params'

Membership function property, specified as one of the following:

• 'name' — Membership function name
• 'type' — Membership function type
• 'params' — Membership function parameters

For more information on membership functions, see “Membership Functions” on page 1-
14.

Output Arguments
fisInfo — Fuzzy inference system information
structure | character vector | nonnegative integer | array

Fuzzy inference system information, returned as a structure, character vector,
nonnegative integer, or array, depending on the value of fisProperty.

If you do not specify fisProperty, then fisInfo is returned as a structure with the
following fields.
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Field Description
name FIS name, returned as a character vector.
type FIS type, returned as a character vector.
andMethod AND fuzzy operator method, returned as a character vector.
orMethod OR fuzzy operator method, returned as a character vector.
defuzzMethod Defuzzification method, returned as a character vector.
impMethod Implication method, returned as a character vector.
aggMethod Aggregation method, returned as a character vector.
input Input variable information, returned as a structure or structure

array. Each input variable structure contains the following fields:

• name — Variable name
• range — Variable range
• mf — Membership function names

output Output variable information, returned as a structure or structure
array. Each output variable structure contains the following fields:

• name — Variable name
• range — Variable range
• mf — Membership function names

rule Fuzzy rule list, returned as a structure or structure array. Each rule
structure contains the following fields:

• antecedent — Input membership function indices
• consequent — Output membership function indices
• weight — Rule weight
• connection — Fuzzy operator: 1 (AND), 2 (OR)

Otherwise, the value of fisInfo depends on the value of fisProperty according to the
following table.

fisProperty fisInfo
'name' FIS name, returned as a character vector.
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fisProperty fisInfo
'type' FIS type, returned as one of the following:

• 'mamdani' — Mamdani-type fuzzy system
• 'sugeno' — Sugeno-type fuzzy system

'numinputs' Number of input variables, returned as a nonnegative integer.
'numiutputs' Number of output variables, returned as a nonnegative integer.
'numrules' Number of fuzzy rules, returned as a nonnegative integer.
'andmethod' AND fuzzy operator method, returned as one of the following:

• 'min' — Minimum of fuzzified input values
• 'prod' — Product of fuzzified input values
• Character vector — Name of a custom AND function in the

current working folder or on the MATLAB path
'ormethod' OR fuzzy operator method, returned as one of the following:

• 'max' — Maximum of fuzzified input values
• 'probor' — Probabilistic OR of fuzzified input values
• Character vector — Name of a custom OR function in the current

working folder or on the MATLAB path
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fisProperty fisInfo
'defuzzmethod' Defuzzification method for computing crisp output values, returned

as one of the following for Mamdani systems:

• 'centroid' — Centroid of the area under the output fuzzy set
• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is

maximum
• 'lom' — Largest value for which the output fuzzy set is

maximum
• 'som' — Smallest value for which the output fuzzy set is

maximum

For Sugeno systems, specify the defuzzification method as one of
the following:

• 'wtaver' — Weighted average of all rule outputs
• 'wtsum' — Weighted sum of all rule outputs

The defuzzification method can also be returned as a character
vector that contains the name of a custom defuzzification function in
the current working folder or on the MATLAB path.

'impmethod' Implication method for computing consequent fuzzy set, returned as
one of the following:

• 'min' — Truncate the consequent membership function at the
antecedent result value.

• 'prod' — Scale the consequent membership function by the
antecedent result value.

• Character vector — Name of a custom implication function in the
current working folder or on the MATLAB path
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fisProperty fisInfo
'aggmethod' Aggregation method for combining rule consequents, returned as

one of the following:

• 'max' — Maximum of consequent fuzzy sets
• 'sum' — Sum of consequent fuzzy sets
• 'probor' — Probabilistic OR of consequent fuzzy sets
• Character vector — Name of a custom aggregation function in

the current working folder or on the MATLAB path.
'rulelist' Fuzzy rule list, returned as an array. For each fuzzy rule, the rule

list contains one row with the following columns:

• Nu columns of input membership function indices, where Nu is
the number of inputs. If a given variable is not included in a rule,
the corresponding column entry is 0. Negative values indicate a
NOT operation.

• Ny columns of output membership function indices, where Ny is
the number of outputs. If a given variable is not included in a
rule, the corresponding column entry is 0. Negative values
indicate a NOT operation.

• Rule weight
• Fuzzy operator: 1 (AND), 2 (OR)

varInfo — Variable information
structure | character vector | nonnegative integer | row vector of length 2

Variable information, returned as a structure, nonnegative integer, character vector, or
row vector, depending on the value of varProperty.

If you do not specify varProperty, then varInfo is returned as a structure with the
following fields.

Field Description
Name Variable name, returned as a character vector.
NumMFs Number of membership functions, returned as a nonnegative

integer.
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Field Description
mf1, mf2, ..., mfN Membership function names, returned as character vectors.

mfInfo contains one field for each membership function.
range Variable range, returned as a row vector of length 2.

Otherwise, the value of varInfo depends on the value of varProperty according to the
following table.

varProperty varInfo
'name' Variable name, returned as a character vector.
'nummfs' Number of membership functions, returned as a nonnegative

integer.
'range' Variable range, returned as a row vector of length 2.

mfInfo — Membership function information
structure | character vector | row vector

Membership function information, returned as a structure, character vector, or row
vector, depending on the value of mfProperty.

If you do not specify mfProperty, then mfInfo is returned as a structure with the
following fields.

Field Description
Name Membership function name, returned as a character vector.
Type Membership function type, returned as a character vector.
params Membership function parameters, returned as a row vector.

Otherwise, the value of mfInfo depends on the value of mfProperty according to the
following table.

mfProperty mfInfo
'name' Membership function name, returned as a character vector.
'type' Membership function type, returned as a character vector.
'params' Membership function parameters, returned as a row vector.
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For more information on membership function, see “Membership Functions” on page 1-
14.

Compatibility Considerations

getfis will be removed
Not recommended starting in R2018b

getfis will be removed in a future release. Access fuzzy inference system properties
using dot notation instead. There are differences between these approaches that require
updates to your code.

Update Code

This table shows some typical usages of getfis for accessing fuzzy inference system
properties and how to update your code to use dot notation instead.

If your code has this form: Use this code instead:
get(fis,'andmethod') fis.AndMethod
getfis(fis,'input',1) fis.Inputs(1)
getfis(fis,'input',1,'name') fis.Inputs(1).Name
getfis(fis,'input',2,'mf',1) fis.Inputs(2).MembershipFunctions(1)
getfis(fis,'input',2,'mf',1,...
       params)

fis.Inputs(2).MembershipFunctions(1).Parameters

Previously, fuzzy inference systems were represented as structures. Now, fuzzy inference
systems are represented as objects. Fuzzy inference system object properties have
different names than the corresponding structure fields. For more information on fuzzy
inference system objects, see mamfis and sugfis.

See Also
setfis | showfis

Introduced before R2006a
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getTunableValues
Obtain values of tunable parameters from fuzzy inference system

Syntax
paramvals = getTunableValues(fis,paramset)

Description
paramvals = getTunableValues(fis,paramset) returns tunable parameter values
of the fuzzy system fis using paramset. The values are specified as a numeric row
vector.

Examples

Obtain Values of Tunable Parameters from FIS

Create a fuzzy inference system, and define the tunable parameter settings of inputs,
outputs, and rules.

fis = mamfis('NumInputs',2,'NumOutputs',1);
[in,out,rule] = getTunableSettings(fis);

Obtain tunable parameter values of the inputs, outputs, and rules of the fuzzy inference
system.

paramVals = getTunableValues(fis,[in;out;rule]);

Input Arguments
fis — Fuzzy system
mamfis object | sugfis object | fistree object
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Fuzzy system, specified as a mamfis, sugfis, or fistree object. The fuzzy system can
be a fuzzy inference system or network of interconnected fuzzy inference systems. It is
created using mamfis, sugfis, genfis, or fistree.

paramset — Tunable parameter settings
array

Tunable parameter settings, specified as an array of input, output, and rule parameter
settings in the input FIS. To obtain these parameter settings, use getTunableSettings
with the input FIS. paramset can be the input parameter, the output parameter, the rule
parameter, or some combination of these parameters as an array. The contents of the
array depend on which parameters you would like to obtain values for.

See Also
getTunableSettings | mamfis | setTunableValues | sugfis | tunefis

Introduced in R2019a
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getFISCodeGenerationData
Create homogeneous fuzzy inference system structure

To generate code for evaluating a fuzzy inference system using MATLAB Coder, you must
convert your fuzzy inference system object into a homogeneous structure using
getFISCodeGenerationData.

Syntax
fisOut = getFISCodeGenerationData(fisIn)

Description
fisOut = getFISCodeGenerationData(fisIn) converts a fuzzy inference system
fisIn into a homogeneous structure fisOut. fisIn can be a FIS object or the name of
a .fis file.

Examples

Convert FIS Object into Homogeneous Structure

Create a fuzzy inference system. For this example, load a fuzzy system from a file.

fisObject = readfis('tipper');

Convert the resulting mamfis object into a homogeneous structure.

fisStructure = getFISCodeGenerationData(fisObject);

In this structure, if a field is a structure array, all the elements of that array are the same
size. For example, consider the elements of input variable array fisStructure.input.

fisStructure.input(1)

ans = struct with fields:
              name: 'service'
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    origNameLength: 7
             range: [0 10]
                mf: [1x3 struct]
         origNumMF: 3

fisStructure.input(2)

ans = struct with fields:
              name: 'food   '
    origNameLength: 4
             range: [0 10]
                mf: [1x3 struct]
         origNumMF: 2

The name fields are character vectors of the same length. Also, even though the second
input variable has only two membership functions, the mf fields both contain three
membership function structures. The original number of membership functions for a
given input variable is stored in the origNumMF field.

Load Fuzzy Inference System from File into Homogenous Structure

Load the fuzzy inference system saved in the file tipper.fis into a homogeneous
structure.

fis = getFISCodeGenerationData('tipper.fis');

Input Arguments
fisIn — Input fuzzy inference system
mamfis object | sugfis object | string | character vector

Input fuzzy inference system, specified as one of the following:

• mamfis or sugfis object. getFISCodeGenerationData supports fuzzy inference
system objects for simulation only.
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• String or character vector specifying a .fis file in the current working folder or on
the MATLAB path. getFISCodeGenerationData supports fuzzy inference system file
names for both simulation and code generation.

When getFISCodeGenerationData loads a fuzzy system that uses custom functions, it
writes additional files to the current folder to support code generation for the custom
functions.

Output Arguments
fisOut — Output fuzzy inference system
homogeneous structure

Output fuzzy inference system, returned as a homogeneous structure. In the
homogeneous structure, if a field is a structure array, all the elements of that array are
the same size. For example, in the input variable array fisOut.input:

• Names of all the variables are character vectors of the same length.
• Lengths of the membership function arrays for all variables are the same.

For any character vectors or structure arrays that are padded to increase their lengths,
the original lengths of these elements are saved within the structure.

The fisOut structure is different than the structure created using convertToStruct.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• getFISCodeGenerationData supports fuzzy inference system objects for simulation
only. To generate code for getFISCodeGenerationData, specify the input fuzzy
inference system using a file name.
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• It is good practice to not use getFISCodeGenerationData within a MATLAB
Function block. This function is a utility function for generating code for evaluating a
fuzzy inference system using MATLAB Coder.

See Also
evalfis | evalfisOptions | mamfis | sugfis

Introduced in R2018b
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getTunableSettings
Obtain tunable settings from fuzzy inference system

Syntax
in = getTunableSettings(fis)
[~,out] = getTunableSettings(fis)
[~,~,rule] = getTunableSettings(fis)
[in,out,rule] = getTunableSettings(fis)

Description
in = getTunableSettings(fis) returns tunable settings of input variables of the
fuzzy system fis.

[~,out] = getTunableSettings(fis) returns tunable settings of output variables of
the fuzzy system fis.

[~,~,rule] = getTunableSettings(fis) returns tunable settings of rules of the
fuzzy system fis.

[in,out,rule] = getTunableSettings(fis) returns tunable settings of inputs,
outputs, and rules of the fuzzy system fis.

Examples

Obtain Tunable Settings from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];
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Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(tree)

in = 
  4x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

out = 
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

rule = 
  18x1 RuleSettings array with properties:

    Index
    Antecedent
    Consequent
    FISName

You can use dot notation to specify tunable settings.

For the first membership function of input 1:

• do not tune parameter 1,
• set the minimum ranges of the last two parameters to 0,
• and set the maximum ranges of the last two parameters to 1.
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in(1).MembershipFunctions(1).Parameters.Free(1) = false;
in(1).MembershipFunctions(1).Parameters.Minimum(2:end) = 0;
in(1).MembershipFunctions(1).Parameters.Maximum(2:end) = 1;

For the first rule:

• set input 1 membership function index non-tunable,
• allow NOT logic for input 2 membership function index,
• and do not ignore output 1 membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Antecedent.AllowNot(2) = true;
rule(1).Consequent.AllowEmpty(1) = false;

Input Arguments
fis — Fuzzy system
mamfis object | sugfis object | fistree object

Fuzzy system, specified as a mamfis, sugfis, or fistree object. The fuzzy system can
be a fuzzy inference system or network of interconnected fuzzy inference systems. It is
created using mamfis, sugfis, genfis, or fistree.

Output Arguments
in — Tunable settings of input variables
VariableSettings object

Tunable settings of input variables, specified as a VariableSettings object. Each
membership function contains its own VariableSettings object, each of which consists
of the properties Type, VariableName, MembershipFunctions, and FISName.
MembershipFunctions are specified as MembershipFunctionSettings objects that
contain further tunable settings for each membership function, as NumericParameters
objects.

out — Tunable settings of output variables
VariableSettings object
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Tunable settings of output variables, specified as a VariableSettings object. These
settings are similar to those of the input variables.

rule — Tunable settings of rules
RuleSettings object

Tunable settings of rules, specified as a RuleSettings object. Each rule contains its own
RuleSettings object, each of which consists of the properties Index, Antecedent,
Consequent, and FISName. Antecedent and Consequent are specified as
ClauseParameters objects.

See Also
RuleSettings | VariableSettings | getTunableValues | mamfis |
setTunableValues | sugfis | tunefis

Introduced in R2019a
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mam2sug
(To be removed) Transform Mamdani fuzzy inference system into Sugeno fuzzy inference
system

Note mam2sug will be removed in a future release. Use convertToSugeno instead. For
more information, see “Compatibility Considerations”.

Syntax
sugFIS = mam2sug(mamFIS)

Description
sugFIS = mam2sug(mamFIS) transforms a Mamdani fuzzy inference system into a
Sugeno fuzzy inference system.

Examples

Transform Mamdani FIS into Sugeno FIS

Load a Mamdani fuzzy inference system.

mam_fismat = readfis('mam22.fis');

Convert this system to a Sugeno fuzzy inference system.

sug_fismat = mam2sug(mam_fismat);

Plot the output surfaces for both fuzzy systems.

subplot(2,2,1)
gensurf(mam_fismat)
title('Mamdani system (Output 1)')
subplot(2,2,2)
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gensurf(sug_fismat)
title('Sugeno system (Output 1)')
subplot(2,2,3)
gensurf(mam_fismat,gensurfOptions('OutputIndex',2))
title('Mamdani system (Output 2)')
subplot(2,2,4)
gensurf(sug_fismat,gensurfOptions('OutputIndex',2))
title('Sugeno system (Output 2)')
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The output surfaces for both systems are similar.

Input Arguments
mamFIS — Mamdani fuzzy inference system
structure

Mamdani fuzzy inference system, specified as a structure. Construct mamFIS at the
command line or using the Fuzzy Logic Designer. For more information, see “Build Fuzzy
Systems at the Command Line” on page 2-38 and “Build Fuzzy Systems Using Fuzzy
Logic Designer” on page 2-14.

Output Arguments
sugFIS — Sugeno fuzzy inference system
structure

Sugeno fuzzy inference system, returned as a structure. sugFIS:

• Has constant output membership functions, whose values correspond to the centroids
of the output membership functions in mamFIS

• Uses the weighted-average defuzzification method
• Uses the product implication method
• Uses the sum aggregation method

The remaining properties of sugFIS, including the input membership functions and rule
definitions remain unchanged from mamFIS.

Tips
• If you have a functioning Mamdani fuzzy inference system, consider using mam2sug to

convert to a more computationally efficient Sugeno structure to improve performance.
• If sugFIS has a single output variable and you have appropriate measured input/

output training data, you can tune the membership function parameters of sugFIS
using anfis.
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Compatibility Considerations

mam2sug will be removed
Not recommended starting in R2018b

mam2sug will be removed in a future release. Use convertToSugeno instead. To update
your code, change the function name from mam2sug to convertToSugeno. The syntaxes
are equivalent.

See Also
Fuzzy Logic Designer | convertToSugeno

Topics
“What Is Mamdani-Type Fuzzy Inference?” on page 2-4
“What Is Sugeno-Type Fuzzy Inference?” on page 2-5
“Build Fuzzy Systems at the Command Line” on page 2-38
“Build Fuzzy Systems Using Fuzzy Logic Designer” on page 2-14

Introduced before R2006a
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mf2mf
(To be removed) Translate parameters between membership functions

Note mf2mf will be removed in a future release. Convert membership functions using dot
notation on fismf objects instead. For more information, see “Compatibility
Considerations”.

Syntax
outParams = mf2mf(inParams,inType,outType) 

Description
This function translates any built-in membership function type into another, in terms of its
parameter set. In principle, mf2mf mimics the symmetry points for both the new and old
membership functions.

Note Occasionally this translation results in lost information, so that if the output
parameters are translated back into the original membership function type, the
transformed membership function does not look the same as it did originally.

The input arguments for mf2mf are as follows:

• inParams — Parameters of the membership function you are transforming from,
specified as a row vector.

• inType — Type of membership function you are transforming from.
• outType — Type of membership function you are transforming to.

You can specify inType and outType as any of the following membership functions
types:
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Membership
function type

Description For more information

'gbellmf' Generalized bell-shaped
membership function

gbellmf

'gaussmf' Gaussian membership function gaussmf
'gauss2mf' Gaussian combination

membership function
gauss2mf

'trimf' Triangular membership function trimf
'trapmf' Trapezoidal membership function trapmf
'sigmf Sigmoidal membership function sigmf
'dsigmf Difference between two sigmoidal

membership functions
dsigmf

'psigmf Product of two sigmoidal
membership functions

psigmf

'zmf' Z-shaped membership function zmf
'pimf' Pi-shaped membership function pimf
'smf' S-shaped membership function smf

Examples

Translate Parameters Between Membership Functions

x = 0:0.1:5;
mf1 = [1 2 3];
mf2 = mf2mf(mf1,'gbellmf','trimf');
plot(x,gbellmf(x,mf1),x,trimf(x,mf2))
legend('Generalized bell-shaped','Triangle-shaped','Location','South')
ylim([-0.05 1.05])
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Compatibility Considerations

mf2mf will be removed
Not recommended starting in R2018b

mf2mf will be removed in a future release. Convert membership functions using dot
notation on fismf objects instead. There are differences between these approaches that
require updates to your code.
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Update Code

Previously, to change the type of a membership function in a fuzzy inference system, you
converted the parameters using mf2mf.

fis = readfis('tipper');
oldType = fis.input(1).mf(1).type;
oldParams = fis.input(1).mf(1).params;
fis.input(1).mf(1).type = newType;
fis.input(1).mf(1).params = mf2mf(oldParams,oldType,newType);

Now, when you change the type of membership function, the parameters are converted
automatically.

fis = readfis('tipper');
fis.Inputs(1).MembershipFunctions(1).Type = newType;

Previously, membership functions were represented as structures within a fuzzy inference
system structure. Now, membership functions are represented as fismf objects within
mamfis and sugfis objects. For more information on fuzzy inference system objects, see
mamfis and sugfis.

See Also
dsigmf | evalmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf |
trapmf | trapmf | trimf | trimf | zmf

Topics
“Membership Functions” on page 1-14
“The Membership Function Editor” on page 2-22

Introduced before R2006a
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mfedit
Open Membership Function Editor

Syntax
mfedit(fileName)

mfedit(fis) 

mfedit
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Description

mfedit(fileName) generates a membership function editor that allows you to inspect
and modify all the membership functions for the FIS stored in the file, fileName. Specify
fileName as a character vector or string with or without the .fis extension.

mfedit(fis) operates on a mamfis or sugfis object, fis.

mfedit opens the membership function editor with no FIS loaded.
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For each membership function you can change the name, the type, and the parameters.
Eleven built-in membership functions are provided for you to choose from, although of
course you can always create your own specialized versions. Refer to “The Membership
Function Editor” on page 2-22 for more information about how to use mfedit.

Select the icon for the variable on the upper left side of the diagram (under FIS
Variables) to display its associated membership functions in the plot region. Select
membership functions by clicking once on them or their labels.

Menu Items
In the Membership Function Editor, there is a menu bar that allows you to open related
UI tools, open and save systems, and so on. The File menu for the Membership Function
Editor is the same as the one found in the Fuzzy Logic Designer.

• Under Edit, select:

Undo to undo the most recent change.

Add MFs to add membership functions to the current variable.

Add Custom MF to add a customized membership function to the current variable.

Remove Selected MF to delete the current membership function.

Remove All MFs to delete all membership functions of the current variable.

FIS properties to open the Fuzzy Logic Designer.

Rules to invoke the Rule Editor.
• Under View, select:

Rules to invoke the Rule Viewer.

Surface to invoke the Surface Viewer.

Membership Function Pop-up Menu
There are 11 built-in membership functions to choose from, and you also have the option
of installing a customized membership function.
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Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
Apps
Fuzzy Logic Designer

Functions
addMF | plotmf | ruleedit | ruleview | surfview

Topics
“Membership Functions” on page 1-14
“The Membership Function Editor” on page 2-22

Introduced before R2006a
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newfis
(To be removed) Create new fuzzy inference system

Note newfis will be removed in a future release. Use mamfis or sugfis instead. For
more information, see “Compatibility Considerations”.

Syntax
fis = newfis(name)
fis = newfis(name,Name,Value)

Description
fis = newfis(name) returns a default Mamdani fuzzy inference system with the
specified name.

fis = newfis(name,Name,Value) returns a fuzzy inference system with properties
specified using one or more Name,Value pair arguments.

Examples

Create Fuzzy Inference System

Create a default Mamdani fuzzy inference system with the name, 'fis'.

sys = newfis('fis')

sys = struct with fields:
            name: 'fis'
            type: 'mamdani'
       andMethod: 'min'
        orMethod: 'max'
    defuzzMethod: 'centroid'
       impMethod: 'min'
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       aggMethod: 'max'
           input: []
          output: []
            rule: []

Create Sugeno Fuzzy Inference System

Create a default Sugeno fuzzy inference system with the name, 'fis'.

sys = newfis('fis','FISType','sugeno')

sys = struct with fields:
            name: 'fis'
            type: 'sugeno'
       andMethod: 'prod'
        orMethod: 'probor'
    defuzzMethod: 'wtaver'
       impMethod: 'prod'
       aggMethod: 'sum'
           input: []
          output: []
            rule: []

Specify Implication Methods for New Fuzzy Inference System

Create a Mamdani fuzzy inference system that uses 'bisector' defuzzification and
'prod' implication.

sys = newfis('fis','DefuzzificationMethod','bisector',...
                   'ImplicationMethod','prod');

Input Arguments
name — Fuzzy inference system name
character vector | string

Fuzzy inference system name, specified as a character vector or string.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'OrMethod','probor' configures the fuzzy OR operator as a probabilistic OR
function.

FISType — Fuzzy inference system type
'mamdani' (default) | 'sugeno'

Fuzzy inference system type, specified as one of the following:

• 'mamdani' — Mamdani-type fuzzy system
• 'sugeno' — Sugeno-type fuzzy system

For more information on the types of fuzzy inference systems, see “Types of Fuzzy
Inference Systems” on page 2-2.

AndMethod — AND fuzzy operator method
'min' | 'prod' | character vector | string

AND fuzzy operator method, specified as one of the following:

• 'min' — Minimum of fuzzified input values. This method is the default when FISType
is 'mamdani'.

• 'prod' — Product of fuzzified input values. This method is the default when FISType
is 'sugeno'.

• Character vector or string — Name of a custom AND function in the current working
folder or on the MATLAB path. For more information on using custom functions, see
“Build Fuzzy Systems Using Custom Functions” on page 2-50.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

OrMethod — OR fuzzy operator method
'max' | 'probor' | character vector | string

OR fuzzy operator method, specified as one of the following:
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• 'max' — Maximum of fuzzified input values. This method is the default when
FISType is 'mamdani'.

• 'probor' — Probabilistic OR of fuzzified input values. For more information, see
probor. This method is the default when FISType is 'sugeno'.

• Character vector or string — Name of a custom OR function in the current working
folder or on the MATLAB path. For more information on using custom functions, see
“Build Fuzzy Systems Using Custom Functions” on page 2-50.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

ImplicationMethod — Implication method
'min' | 'prod' | character vector | string

Implication method for computing consequent fuzzy set, specified as one of the following:

• 'min' — Truncate the consequent membership function at the antecedent result
value. This method is the default when FISType is 'mamdani'.

• 'prod' — Scale the consequent membership function by the antecedent result value.
This method is the default when FISType is 'sugeno'.

• Character vector or string — Name of a custom implication function in the current
working folder or on the MATLAB path. For more information on using custom
functions, see “Build Fuzzy Systems Using Custom Functions” on page 2-50.

Note No matter what implication method you specify, Sugeno systems always use
'prod' aggregation.

For more information on implication and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

AggregationMethod — Aggregation method
'max' | 'sum' | character vector | string

Aggregation method for combining rule consequents, specified as one of the following:

• 'max' — Maximum of consequent fuzzy sets. This method is the default when
FISType is 'mamdani'.

• 'sum' — Sum of consequent fuzzy sets. This method is the default when FISType is
'sugeno'.
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• 'probor' — Probabilistic OR of consequent fuzzy sets. For more information, see
probor.

• Character vector or string — Name of a custom aggregation function in the current
working folder or on the MATLAB path. For more information on using custom
functions, see “Build Fuzzy Systems Using Custom Functions” on page 2-50.

Note No matter what aggregation method you specify, Sugeno systems always use
'sum' aggregation.

For more information on aggregation and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

DefuzzificationMethod — Defuzzification method
'centroid' | 'bisector' | 'mom' | 'lom' | 'som' | 'wtaver' | 'wtsum' | character
vector | string

Defuzzification method for computing crisp output values.

If FISType is 'mamdani', specify the defuzzification method as one of the following:

• 'centroid' — Centroid of the area under the output fuzzy set. This method is the
default for Mamdani systems.

• 'bisector' — Bisector of the area under the output fuzzy set
• 'mom' — Mean of the values for which the output fuzzy set is maximum
• 'lom' — Largest value for which the output fuzzy set is maximum
• 'som' — Smallest value for which the output fuzzy set is maximum

If FISType is 'sugeno', specify the defuzzification method as one of the following:

• 'wtaver' — Weighted average of all rule outputs. This method is the default for
Sugeno systems.

• 'wtsum' — Weighted sum of all rule outputs

You can also specify the defuzzification method using a character vector or string that
contains the name of a custom function in the current working folder or on the MATLAB
path. For more information on using custom functions, see “Build Fuzzy Systems Using
Custom Functions” on page 2-50.
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For more information on defuzzification and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

Output Arguments
fis — Fuzzy inference system
FIS structure

Fuzzy inference system with the specified name, returned as an FIS structure. The fuzzy
system is configured using the specified Name,Value pair arguments.

fis has no input variables, output variables, or rules. To add variables or rules to fis,
use addvar or addRule. You can also edit the fuzzy system using Fuzzy Logic
Designer.

Compatibility Considerations

newfis will be removed
Not recommended starting in R2018b

newfis will be removed in a future release. Use mamfis or sugfis instead. There are
differences between these functions that require updates to your code.

To create a Mamdani or Sugeno FIS, use mamfis or sugfis, respectively.

Update Code

This table shows some typical usages of newfis for creating fuzzy systems and how to
update your code to use mamfis or sugfis instead.

If your code has this form: Use this code instead:
fis = newfis(name) fis = mamfis('Name',name)
fis = newfis(name,'FISType','mamdani')fis = mamfis('Name',name)
fis = newfis(name,'FISType','sugeno') fis = sugfis('Name',name)
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If your code has this form: Use this code instead:
fis = newfis(name,...
             'FISType','mamdani',...
             'AndMethod','prod')

fis = mamfis('Name',name,...
             'AndMethod','prod')

fis = newfis(name,...
             'FISType','sugeno',...
             'OrMethod','probor')

fis = sugfis('Name',name,...
             'OrMethod','probor')

See Also
mamfis | readfis | sugfis | writeFIS

Topics
“Foundations of Fuzzy Logic” on page 1-10
“Fuzzy Inference Process” on page 1-28

Introduced before R2006a
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parsrule
(To be removed) Parse fuzzy rules

Note parsrule will be removed in a future release. Use addRule instead. For more
information, see “Compatibility Considerations”.

Syntax
outFIS = parsrule(inFIS,ruleList)
outFIS = parsrule(inFIS,ruleList,Name,Value)

Description
outFIS = parsrule(inFIS,ruleList) returns a fuzzy inference system, outFIS,
that is equivalent to the input fuzzy system, inFIS. but with fuzzy rules replaced by the
rules specified in ruleList.

outFIS = parsrule(inFIS,ruleList,Name,Value) parses the rules in ruleList
using options specified by one or more Name,Value pair arguments.

Examples

Add Rules to Fuzzy Inference System

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify if-then rules using the default 'verbose' format.
rule1 = "If service is poor or food is rancid then tip is cheap";
rule2 = "If service is excellent and food is not rancid then tip is generous";
rules = [rule1 rule2];

Add the rules to the FIS.
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fis2 = parsrule(fis,rules);

fis2 is equivalent to fis, except that the rule base is replaced with the specified rules.

Add Rules Using Symbolic Expressions

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify the following rules using symbols:

• If service is poor or food is rancid then tip is cheap.
• If service is excellent and food is not rancid then tip is generous.

rule1 = "service==poor | food==rancid => tip=cheap";
rule2 = "service==excellent & food~=rancid => tip=generous";
rules = [rule1 rule2];

Add the rules to the FIS using the 'symbolic' format.

fis2 = parsrule(fis,rules,'Format','symbolic');

Add Rules Using Membership Function Indices

Load fuzzy inference system (FIS).

fis = readfis('mam22.fis');

Specify the following rules using membership function indices:

• If angle is small and velocity is big, then force is negBig and force2 is
posBig2.

• If angle is not small and velocity is small, then force is posSmall and force2
is negSmall2.

rule1 = "1 2, 1 4 (1) : 1";
rule2 = "-1 1, 3 2 (1) : 1";
rules = [rule1 rule2];

Add rules to FIS using the 'indexed' format.

 parsrule

8-195



fis2 = parsrule(fis,rules,'Format','indexed');

Add Rules Using French Language

Load a fuzzy inference system (FIS).

fis = readfis('tipper');

Specify if-then rules using French keywords.
rule1 = "Si service est poor ou food est rancid alors tip est cheap";
rule2 = "Si service est excellent et food n''est_pas rancid alors tip est generous";
rules = [rule1 rule2];

Add the rules to the FIS.

fis2 = parsrule(fis,rules,'Language','francais');

Add Single Rule to Fuzzy Inference System

Load a fuzzy inference system (FIS).

a = readfis('tipper');

Add a rule to the FIS.

ruleTxt = 'If service is poor then tip is cheap';
a2 = parsrule(a,ruleTxt,'verbose');

Input Arguments
inFIS — Fuzzy inference system
FIS structure

Input fuzzy inference system, specified as an FIS structure. parsrule does not modify
inFIS.

ruleList — Fuzzy rules
character array | string array | character vector | string
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Fuzzy rules, specified as one of the following:

• Character array where each row corresponds to a rule. For example:
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';
rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

• String array, where each element corresponds to a rule. For example:
ruleList = ["If service is poor or food is rancid then tip is cheap";
            "If service is good then tip is average";
            "If service is excellent or food is delicious then tip is generous"];

• Character vector or string to specify a single rule.

You can change the rule format and language using the Format and Language options.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Format','symbolic' sets the rule format to symbolic expressions.

Format — Rule format
'verbose' (default) | 'symbolic' | 'indexed'

Rule format, specified as the comma-separated pair consisting 'Format' and one of the
following:

• 'verbose' — Use linguistic expressions.

'If service is poor or food is rancid then tip is cheap 1'

Specify the rule weight at the end of the rule text. If you omit the weight, a default
value of 1 is used.

You can specify the rule language using the Language option.
• 'symbolic' — Use language-neutral symbolic expressions.

'service==poor | food==rancid => tip=cheap 1'

Specify symbolic expressions using the following symbols.
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Rule Component Symbol
AND &
OR |
IS (in antecedent) ==
IS (in consequent) =
IS NOT ~=
Implication (then) =>

Specify the rule weight at the end of the rule text. If you omit the weight, a default
value of 1 is used.

• 'indexed' — Use input and output membership function (MF) indices.

Specify indexed rules in the following format:
'<input MFs>, <output MFs>, (<weight>) : <logical operator - 1(AND), 2(OR)>'

For example:

'1 1, 1 (1) : 2'

To indicate NOT operations for input and output membership functions, use negative
indices. For example, to specify “not the second membership function,” use -2.

To indicate a don’t care condition for an input or output membership function, use 0.

Language — Rule language
'english' (default) | 'francais' | 'deutsch'

Rule language for 'verbose' format, specified as one of the following:

• 'english' — Specify rules in English.

'If service is poor or food is rancid then tip is cheap'
• 'francais' — Specify rules in French.

'Si service est poor ou food est rancid alors tip est cheap'
• 'deutsch' — Specify rules in German.

'Wenn service ist poor oder food ist rancid dann tip ist cheap'

The software parses the rules in ruleList using the following keywords.
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Rule Component English French German
Start of antecedent if si wenn
AND and et und
OR or ou oder
Start of consequent
(implication)

then alors dann

IS is est ist
IS NOT is not n''est_pas ist nicht

Output Arguments
outFIS — Output fuzzy inference system
FIS structure

Fuzzy inference system, returned as an FIS structure. outFIS is the same as inFIS,
except that the rule list contains only the rules specified in ruleList.

Compatibility Considerations

parsrule will be removed
Not recommended starting in R2018b

parsrule will be removed in a future release. Use addRule instead.

Update Code

If you previously added rules using linguistic or symbolic expressions with parsrule, you
can specify rules using the same expressions with addrule. addRule automatically
detects the format of the strings or character vectors in your rule list. Therefore, it is no
longer necessary to specify the rule format. To add a rule list using addRule, use the
following command:

fis = addRule(fis,rules);

Previously, you could add rules using indexed expressions with parsrule.
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rule1 = "1 2, 1 4 (1) : 1";
rule2 = "-1 1, 3 2 (1) : 1";
rules = [rule1 rule2];
fis = parsrule(fis,rules,'Format','indexed');

Now, specify these rules using arrays of indices.

rule1 = [1 2 1 4 1 1];
rule2 = [-1 1 3 2 1 1];
rules = [rule1; rule2];
fis = addRule(fis,rules);

If you previously specified rules using the 'Lanuage' name-value pair argument with
parsrule, this functionality has been removed and there is no replacement. Specify your
rules using addRule a different rule format.

Previously, parsrule replaced the entire rule list in your fuzzy system. addRule appends
your specified rules to the rule list.

See Also
addRule | ruleedit | showrule

Introduced before R2006a
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pimf
Pi-shaped membership function

This function computes fuzzy membership values using a spline-based pi-shaped
membership function. You can also compute this membership function using a fismf
object. For more information, see “fismf Object” on page 8-203.

This membership function is related to the smf and zmf membership functions.

Syntax
y = pimf(x,params)

Description
y = pimf(x,params) returns fuzzy membership values computed using a spline-based
pi-shaped membership function. This membership function is the product of an smf
functions and a zmf function, and is given by:

f (x; a, b, c, d) =

0, x ≤ a

2 x− a
b− a

2
, a ≤ x ≤ a + b

2

1−2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

1, b ≤ x ≤ c

1 − 2 x− c
d− c

2
,    c ≤ x ≤ c + d

2

   2 x− d
d− c

2
,      c + d

2 ≤ x ≤ d

          0,                     x ≥ d

To specify the a, b, c, and d parameters, use params.

Membership values are computed for each input value in x.
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Examples

Pi-Shaped Membership Function

x = 0:0.1:10;
y = pimf(x,[1 4 5 10]);
plot(x,y)
xlabel('pimf, P = [1 4 5 10]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b c d]. Parameters a and d
define the feet of the membership function, and b and c define its shoulders.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the pimf membership
function.

mf = fismf("pimf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of pimf, respectively.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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plotfis
Display fuzzy inference system

Syntax
plotfis(fis)

Description
plotfis(fis) displays a high-level diagram of a fuzzy inference system (FIS). The
center of the display shows the name, type, and rule count for the FIS. The input variables
with associated membership functions are displayed to the right, and the outputs with
their associated membership functions are displayed on the left.

Examples

Display Fuzzy Inference System
Create a fuzzy inference system (FIS). For this example, read the FIS from the
tipper.fis file.

fis = readfis('tipper');

Display the fuzzy system.

plotfis(fis)
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Display Tree of Fuzzy Inference Systems
Create a fistree object from a pair of fuzzy inference systems.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con1 = ["fis1/output1" "fis2/input1"];
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con2 = ["fis1/input1" "fis1/input2"];
tree = fistree([fis1 fis2],[con1; con2]);

Display the tree of fuzzy inference systems.

plotfis(tree)

FIS Names:
    fis1
    fis2

Connections:
    From            To
    ------------    -----------
    fis1/output1    fis2/input1
    fis1/input1     fis1/input2

Inputs:
    fis1/input1
    fis2/input2

Outputs:
    fis2/output1

For a fistree object, this function shows a description of the system in the Command
Window instead of a figure.

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object | fistree object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system
• fistree object — tree of interconnected fuzzy inference systems
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Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
evalmf | fistree | mamfis | plotmf | readfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced before R2006a
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plotmf
Plot membership functions for input or output variable

Syntax
plotmf(fis,variableType,variableIndex)
plotmf( ___ ,numPoints)

[xOut,yOut] = plotmf( ___ )

Description
plotmf(fis,variableType,variableIndex) plots the membership functions for an
input or output variable in the fuzzy inference system fis.

plotmf( ___ ,numPoints) specifies the number of data points to plot for each
membership function.

[xOut,yOut] = plotmf( ___ ) returns the x-axis and y-axis data for the membership
functions without plotting them.

Examples

Plot Membership Functions for Input Variable

Create a fuzzy inference system.

fis = readfis('tipper');

Plot the membership functions for the first input variable.

plotmf(fis,'input',1)
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Specify Number of Points for Membership Function Plot

Create a fuzzy inference system.

fis = readfis('tipper');

Plot the membership functions for the first output variable using 101 data points for each
membership function.

plotmf(fis,'output',1,101)
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Obtain Membership Function Plot Data

Create a fuzzy inference system.

fis = readfis('tipper');

Obtain the x-axis and y-axis data for the membership functions of the second input
variable.

[xOut,yOut] = plotmf(fis,'input',2);

You can then, for example, plot a single membership function using this data.
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plot(xOut(:,2),yOut(:,2))
xlabel('food')
ylabel('delicious membership')

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object. Construct fis at the
command line or using the Fuzzy Logic Designer. For more information, see “Build
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Fuzzy Systems at the Command Line” on page 2-38 and “Build Fuzzy Systems Using
Fuzzy Logic Designer” on page 2-14.

plotmf does not support plotting output membership functions of Sugeno systems.

variableType — Variable type
'input' | 'output'

Variable type, specified as one of the following:

• 'input' — Input variable
• 'output' — Output variable

variableIndex — Variable index
positive integer

Variable index, specified as a positive integer. If variableType is:

• 'input', then variableIndex must be less than or equal to the number of input
variables in fis

• 'output', then variableIndex must be less than or equal to the number of output
variables in fis

numPoints — Number of data points to plot
181 (default) | positive integer

Number of data points to plot, specified as a positive integer.

Output Arguments
xOut — Plot x-axis data
array

Plot x-axis data, returned as a numPoints-by-NMF array, where NMF is the number of
membership functions for the variable specified by variableType and variableIndex.

yOut — Plot y-axis data
array

Plot y-axis data, returned as a numPoints-by-NMF array, where NMF is the number of
membership functions for the variable specified by variableType and variableIndex.
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Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
Functions
evalmf | plotfis

Introduced before R2006a
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probor
Probabilistic OR

Syntax
y = probor(x) 

Description
y = probor(x) returns the probabilistic OR (also known as the algebraic sum) of the
columns of x. if x has two rows such that x = [a; b], then y = a + b - ab. If x has
only one row, then y = x.

Examples

Probabilistic OR

x = 0:0.1:10;
y1 = gaussmf(x,[0.5 4]);
y2 = gaussmf(x,[2 7]);
yy = probor([y1;y2]);
plot(x,[y1;y2;yy])
legend('y1','y2','yy')
ylim([-0.05 1.05])
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See Also
Introduced before R2006a
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psigmf
Product of two sigmoidal membership functions

This function computes fuzzy membership values using the product of two sigmoidal
membership functions. You can also compute this membership function using a fismf
object. For more information, see “fismf Object” on page 8-219.

This membership function is related to the sigmf and dsigmf membership functions.

Syntax
y = psigmf(x,params)

Description
y = psigmf(x,params) returns fuzzy membership values computed using the product
of two sigmoidal membership functions. Each sigmoidal function is given by:

f x; a, c = 1
1 + e−a(x− c)

To specify the a and c parameters for each sigmoidal function, use params.

Membership values are computed for each input value in x.

Examples

Product of Two Sigmoidal Membership Functions

x = 0:0.1:10;
y = psigmf(x,[2 3 -5 8]);
plot(x,y)
xlabel('psigmf, P = [2 3 -5 8]')
ylim([-0.05 1.05])

 psigmf

8-217



Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four
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Membership function parameters, specified as the vector [a1 c1 a2 c2]. Here, a1 and c1 are
the parameters of the first sigmoidal function, and a2 and c2 are the parameters of the
second sigmoidal function.

For each sigmoidal function, to open the function to the left or right, specify a negative or
positive value for a, respectively. The magnitude of a defines the width of the transition
area, and parameter c defines the center of the transition area.

To define a unimodal membership function with a maximum value of 1, specify opposite
signs for a1 and a2, and select c values far enough apart to allow for both transition areas
to reach 1.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the psigmf membership
function.

mf = fismf("psigmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of psigmf, respectively.

 psigmf

8-219



Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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readfis
Load fuzzy inference system from file

You can load a fuzzy inference system (FIS) from a .fis file using the readfis function.
To save a FIS to a file, use the writeFIS function.

Note Do not manually edit the contents of a .fis file. Doing so can produce unexpected
results when loading the file using readfis.

Syntax
fis = readfis(fileName)
fis = readfis

Description
fis = readfis(fileName) reads a FIS from the file specified by fileName.

fis = readfis opens a dialog box for selecting and opening loading a .fis file.

Examples

Load Fuzzy Inference System from File

Load the fuzzy system stored in the file tipper.fis.

fis = readfis('tipper')

fis = 
  mamfis with properties:

                       Name: "tipper"
                  AndMethod: "min"
                   OrMethod: "max"
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          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x2 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x3 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Input Arguments
fileName — File name
string | character vector

File name specified as a string or character vector with or without the .fis extension.
This file must be in the current working directory or on the MATLAB path.

Output Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b
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Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
writeFIS

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced before R2006a
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removeInput
Remove input variable from fuzzy inference system

Syntax
fisOut = removeInput(fisIn,inputName)

Description
fisOut = removeInput(fisIn,inputName) removes the input variable with the
name inputName from fuzzy inference system fisIn and returns the resulting fuzzy
system in fisOut.

Examples

Remove Input Variable from Fuzzy Inference System

Load fuzzy system.

fis = readfis("tipper");

View the input variables of fis.

fis.Inputs

ans = 
  1x2 fisvar array with properties:

    Name
    Range
    MembershipFunctions

  Details:
           Name        Range     MembershipFunctions
         _________    _______    ___________________
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    1    "service"    0    10        [1x3 fismf]    
    2    "food"       0    10        [1x2 fismf]    

View the rules of fis.

fis.Rules

ans = 
  1x3 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                                Description                        
         __________________________________________________________

    1    "service==poor | food==rancid => tip=cheap (1)"           
    2    "service==good => tip=average (1)"                        
    3    "service==excellent | food==delicious => tip=generous (1)"

Remove the service input variable.

fis = removeInput(fis,"service");

View the updated input variables.

fis.Inputs

ans = 
  fisvar with properties:

                   Name: "food"
                  Range: [0 10]
    MembershipFunctions: [1x2 fismf]

View the updated rules.

fis.Rules
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ans = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                      Description             
         _____________________________________

    1    "food==rancid => tip=cheap (1)"      
    2    "food==delicious => tip=generous (1)"

service has been removed from the variables and rules of fis.

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

inputName — Input variable name
string | character vector

Input variable name, specified as a string or character vector.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. fisOut has the same
properties as fisIn except:
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• The input variable with the specified name is removed.
• The specified input variable is removed from any fuzzy rules. If a rule has only the
specified input variable in its antecedent, then the entire rule is removed. If a rule has
more than one input variable in its antecedent, then the specified input variable is
removed from the antecedent.

See Also
addInput | fisvar | mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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removeMF
Remove membership function from fuzzy variable

Syntax
fisOut = removeMF(fisIn,varName,mfName)
fisOut = removeMF(fisIn,varName,mfName,'VariableType',varType)

varOut = removeMF(varIn,varName,mfName)

Description
fisOut = removeMF(fisIn,varName,mfName) removes the membership function
mfName from the input or output variable varName in the fuzzy inference system fisIn
and returns the resulting fuzzy system in fisOut. To use this syntax, varName must be a
unique variable name within fisIn.

fisOut = removeMF(fisIn,varName,mfName,'VariableType',varType)
removes the membership function from either an input or output variable as specified by
varType. Use this syntax when your FIS has an input variable with the same name as an
output variable.

varOut = removeMF(varIn,varName,mfName) removes the membership function
mfName from the fuzzy variable varIn and returns the resulting fuzzy variable in
varOut.

Examples

Remove Membership Function from Fuzzy Inference System

Create a Mamdani fuzzy inference system with two inputs and one output. By default,
when you specify the number of inputs and outputs, mamfis adds three membership
functions to each variable.
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fis = mamfis('NumInputs',3,'NumOutputs',1)

fis = 
  mamfis with properties:

                       Name: "fis"
                  AndMethod: "min"
                   OrMethod: "max"
          ImplicationMethod: "min"
          AggregationMethod: "max"
      DefuzzificationMethod: "centroid"
                     Inputs: [1x3 fisvar]
                    Outputs: [1x1 fisvar]
                      Rules: [1x27 fisrule]
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Name the variables. For this example, give the second input variable and the output
variable the same name.

fis.Inputs(1).Name = "speed";
fis.Inputs(2).Name = "throttle";
fis.Inputs(3).Name = "distance";
fis.Outputs(1).Name = "throttle";

View the membership functions for the first input variable.

plotmf(fis,"input",1)
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Remove the second membership function, mf2, from the first input variable.

fis = removeMF(fis,"speed","mf2");

View the membership functions again. The specified membership function has been
removed.

plotmf(fis,"input",1)
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If your system has an input variable with the same name as an output variable, you must
specify the variable type when removing a membership function. For example, remove the
mf3 membership function from the output variable.

fis = removeMF(fis,"throttle","mf3",'VariableType',"output");

View the membership functions of the output variable.

plotmf(fis,"output",1)
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Remove Membership Function from Fuzzy Variable

Create a fuzzy variable with a specified range and add three membership functions

var = fisvar([0 10]);
var = addMF(var,"trimf",[0 2.5 5],"Name","small");
var = addMF(var,"trimf",[2.5 5 7.5],"Name","medium");
var = addMF(var,"trimf",[5 7.5 10],"Name","large");

View the membership functions.

var.MembershipFunctions
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ans = 
  1x3 fismf array with properties:

    Name
    Type
    Parameters

  Details:
           Name       Type         Parameters    
         ________    _______    _________________

    1    "small"     "trimf"      0    2.5      5
    2    "medium"    "trimf"    2.5      5    7.5
    3    "large"     "trimf"      5    7.5     10

Remove the medium membership function from the variable.

var = removeMF(var,"medium");

Verify that the membership was removed.

var.MembershipFunctions

ans = 
  1x2 fismf array with properties:

    Name
    Type
    Parameters

  Details:
          Name       Type        Parameters   
         _______    _______    _______________

    1    "small"    "trimf"    0    2.5      5
    2    "large"    "trimf"    5    7.5     10

Input Arguments
fisIn — Input fuzzy inference system
mamfis object | sugfis object
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Fuzzy inference system, specified as a mamfis or sugfis object.

varName — Variable name
string | character vector

Variable name, specified as a string or character vector. You can specify the name of
either an input or output variable in your FIS.

mfName — Membership function name
string | character vector

Membership function name, specified as a string or character vector.

varType — Variable type
string | character vector

Variable type, specified as one of the following:

• "input" — Input variable
• "output" — Output variable

If your system has an input variable with the same name as an output variable, specify
which variable to remove the membership function from using varType.

varIn — Fuzzy variable
fisvar object

Fuzzy variable, specified as a fisvar object.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, returned as a mamfis or sugfis object. fisOut has the same
properties as fisIn except:

• The membership function with the specified name is removed from the specified
variable.

• The specified membership function is removed from any fuzzy rules. If a rule has only
the specified membership function in its antecedent, then the entire rule is removed. If
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a rule has more than one membership function in its antecedent, then the specified
membership function is removed from the antecedent.

varOut — Fuzzy variable
fisvar object

Fuzzy variable, returned as a fisvar object. varOut has the same properties as varIn
except the membership function with the specified name is removed.

See Also
addMF | fisvar | mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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removeOutput
Remove output variable from fuzzy inference system

Syntax
fisOut = removeOutput(fisIn,outputName)

Description
fisOut = removeOutput(fisIn,outputName) removes the output variable with the
name outputName from fuzzy inference system fisIn and returns the resulting fuzzy
system in fisOut.

Examples

Remove Output Variable from Fuzzy Inference System

Load fuzzy system.

fis = readfis("mam22");

View the output variables of fis.

fis.Outputs

ans = 
  1x2 fisvar array with properties:

    Name
    Range
    MembershipFunctions

  Details:
           Name       Range      MembershipFunctions
         ________    ________    ___________________
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    1    "force"     -5     5        [1x4 fismf]    
    2    "force2"    -5     5        [1x4 fismf]    

View the rules of fis.

fis.Rules

ans = 
  1x4 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                                      Description                              
         ______________________________________________________________________

    1    "angle==small & velocity==small => force=negBig, force2=posBig2 (1)"  
    2    "angle==small & velocity==big => force=negSmall, force2=posSmall2 (1)"
    3    "angle==big & velocity==small => force=posSmall, force2=negSmall2 (1)"
    4    "angle==big & velocity==big => force=posBig, force2=negBig2 (1)"      

Remove the forceBig output variable.

fis = removeOutput(fis,"force2");

View the updated output variables.

fis.Outputs

ans = 
  fisvar with properties:

                   Name: "force"
                  Range: [-5 5]
    MembershipFunctions: [1x4 fismf]

View the updated rules.
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fis.Rules

ans = 
  1x4 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                             Description                     
         ____________________________________________________

    1    "angle==small & velocity==small => force=negBig (1)"
    2    "angle==small & velocity==big => force=negSmall (1)"
    3    "angle==big & velocity==small => force=posSmall (1)"
    4    "angle==big & velocity==big => force=posBig (1)"    

force2 has been removed from the variables and rules of fis.

Input Arguments
fisIn — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

outputName — Output variable name
string | character vector

Output variable name, specified as a string or character vector.

Output Arguments
fisOut — Fuzzy inference system
mamfis object | sugfis object
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Fuzzy inference system, returned as a mamfis or sugfis object. fisOut has the same
properties as fisIn except:

• The input variable with the specified name is removed.
• The specified input variable is removed from any fuzzy rules. If a rule has only the
specified input variable in its antecedent, then the entire rule is removed. If a rule has
more than one input variable in its antecedent, then the specified input variable is
removed from the antecedent.

See Also
addOutput | fisvar | mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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rmmf
(To be removed) Remove membership function from fuzzy inference system

Note rmmf will be removed in a future release. Use removeMF instead. For more
information, see “Compatibility Considerations”.

Syntax
fis = rmmf(fis,varType,varIndex,'mf',mfIndex) 

Description
fis = rmmf(fis,varType,varIndex,'mf',mfIndex) removes the membership
function, mfIndex, of variable type varType, of index varIndex, from the fuzzy
inference system associated with the workspace FIS structure, fis:

• Specify varType as either 'input' or 'output'.
• varIndex is an integer for the index of the variable. This index represents the order

in which the variables are listed.
• mfIndex is an integer for the index of the membership function. This index represents

the order in which the membership functions are listed.

Examples

Remove Membership Function From Variable

Create fuzzy inference system.

fis = newfis('mysys');

Add an input variable with a single membership function to the system.
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fis = addvar(fis,'input','temperature',[0 100]);
fis = addmf(fis,'input',1,'cold','trimf',[0 30 60]);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'temperature'
    NumMFs: 1
       mf1: 'cold'
     range: [0 100]

Remove the membership function. To do so, remove membership function 1 from input 1.

fis = rmmf(fis,'input',1,'mf',1);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'temperature'
    NumMFs: 0
     range: [0 100]

The variable now has no membership function.

Compatibility Considerations

rmmf will be removed
Not recommended starting in R2018b

rmmf will be removed in a future release. Use removeMF instead. There are differences
between these functions that require updates to your code.

Update Code

The following table shows some typical usages of rmmf and how to update your code to
use removeMF instead. Previously, you specified the index of the variable from which you
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wanted to remove the membership function and the index of the membership function
that you wanted to remove. Now, to remove a membership function, specify the variable
name and the membership function name.

If your code has this form: Use this code instead:
fis = rmmf(fis,'input',1,'mf',1) fis = removeMF(fis,"service","poor")
fis = rmmf(fis,'output',1,'mf',1) fis = removeMF(fis,"tip","cheap")

See Also
addMF | addRule | addvar | plotmf | removeMF | rmvar

Topics
“Membership Functions” on page 1-14
“The Membership Function Editor” on page 2-22

Introduced before R2006a
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rmvar
(To be removed) Remove variables from fuzzy inference system

Note rmvar will be removed in a future release. Use removeInput or removeOutput
instead. For more information, see “Compatibility Considerations”.

Syntax
fis = rmvar(fis,varType,varIndex)
[fis,errorStr] = rmvar(fis,varType,varIndex)

Description
fis = rmvar(fis,varType,varIndex) removes the variable varType, of index
varIndex, from the fuzzy inference system associated with the workspace FIS structure,
fis:

• SpecifyvarType as either 'input' or 'output'.
• varIndex is an integer for the index of the variable. This index represents the order

in which the variables are listed.

[fis,errorStr] = rmvar(fis,varType,varIndex) returns any error messages to
the character vector, errorStr.

This command automatically alters the rule list to keep its size consistent with the current
number of variables. You must delete from the FIS any rule that contains a variable you
want to remove, before removing it. You cannot remove a fuzzy variable currently in use
in the rule list.

Examples
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Remove Membership Function From Variable

Create fuzzy inference system.

fis = newfis('mysys');

Add an input variable with a single membership function to the system.

fis = addvar(fis,'input','temperature',[0 100]);
fis = addmf(fis,'input',1,'cold','trimf',[0 30 60]);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'temperature'
    NumMFs: 1
       mf1: 'cold'
     range: [0 100]

Remove the membership function. To do so, remove membership function 1 from input 1.

fis = rmmf(fis,'input',1,'mf',1);

View the variable properties.

getfis(fis,'input',1)

ans = struct with fields:
      Name: 'temperature'
    NumMFs: 0
     range: [0 100]

The variable now has no membership function.

Compatibility Considerations

rmvar will be removed
Not recommended starting in R2018b

8 Functions — Alphabetical List

8-244



rmvar will be removed in a future release. Use removeInput or removeOutput instead.
There are differences between these functions that require updates to your code.

To remove input or output variables from a fuzzy system, use removeInput or
removeOutput, respectively.

Update Code

This table shows some typical usages of rmvar and how to update your code to use
removeInput or removeOutput instead. Previously, you specified the index of the
variable that you wanted to remove. Now, to remove a variable, specify the variable name.

If your code has this form: Use this code instead:
fis = rmvar(fis,'input',1) fis = removeInput(fis,"service")
fis = rmvar(fis,'output',1) fis = removeOutput(fis,"tip")

Previously, you had to delete any rules from your fuzzy system that contained the variable
you wanted to remove. removeInput and removeOutput automatically remove these
variables from the rule set of your fuzzy system.

See Also
addMF | addRule | addvar | removeInput | removeOutput | rmmf

Introduced before R2006a
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ruleedit
Open Rule Editor

Syntax
ruleedit(fileName)

ruleedit(fis)

Description
ruleedit(fileName) opens the Rule Editor for the FIS stored in the file, fileName.
Specify fileName as a character vector or string with or without the .fis extension. You
can use the Rule Editor to view or modify the rules of an FIS.

To use this editor to create rules, you must first define all of the input and output
variables you want to use with the FIS Editor. You can create the rules using the drop-
down and check box choices for input and output variables, connections, and weights.
Refer to “The Rule Editor” on page 2-30 for more information about how to use
ruleedit.

ruleedit(fis) operates on a mamfis or sugfis object, fis.

Menu Items
In the Rule Editor, there is a menu bar that allows you to open related UI tools, open and
save systems, and so on. The File menu for the Rule Editor is the same as the one found
Fuzzy Logic Designer:

• Use the following Edit menu item:

Undo to undo the most recent change.

FIS properties to open the Fuzzy Logic Designer.

Membership functions to invoke the Membership Function Editor.
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• Use the following View menu items:

Rules to invoke the Rule Viewer.

Surface to invoke the Surface Viewer.
• Use the Options menu items:

Language to select the language: English, Deutsch, and Francais

Format to select the format:

Verbose uses the words "if," "then," "AND," "OR," and so on to create actual
sentences.

Symbolic substitutes some symbols for the words used in the verbose mode. For
example, “if A AND B then C" becomes "A & B => C."

Indexed mirrors how the rule is stored in the FIS object.

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

 ruleedit

8-247



See Also
Apps
Fuzzy Logic Designer

Functions
addRule | mfedit | ruleview | showrule | surfview

Topics
“The Rule Editor” on page 2-30

Introduced before R2006a
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ruleview
Open Rule Viewer

Syntax
ruleview(fis)
ruleview(fileName)
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Description

ruleview(fis) opens the Rule Viewer for the fuzzy inference system, fis. Specify fis
as a mamfis or sugfis object. The Rule Viewer is used to view the entire implication
process from beginning to end. You can move around the line indices that correspond to
the inputs and then watch the system readjust and compute the new output. Refer to “The
Rule Viewer” on page 2-33 for more information about how to use ruleview.
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ruleview(fileName) depicts the fuzzy inference diagram for the fuzzy inference
system stored in file fileName. Specify fileName as a character vector or string with or
without the .fis extension.

Menu Items
In the Rule Viewer, there is a menu bar that allows you to open related UI tools, open and
save systems, and so on. The File menu for the Rule Viewer is the same as the one found
in the Fuzzy Logic Designer.

• Use the Edit menu items:

Undo to undo the most recent action

FIS properties to open the Fuzzy Logic Designer

Membership functions to invoke the Membership Function Editor

Rules to invoke the Rule Editor
• Use the View menu item:

Surface to invoke the Surface Viewer
• Use the Options menu item:

Format to set the format in which the rule appears: Verbose, Symbolic, or Indexed.

If you click on the rule numbers on the left side of the fuzzy inference diagram, the rule
associated with that number appears in the status bar at the bottom of the Rule Viewer.

Compatibility Considerations
Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:
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• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
Apps
Fuzzy Logic Designer

Functions
addRule | mfedit | ruleedit | showrule | surfview

Topics
“The Rule Viewer” on page 2-33

Introduced before R2006a

8 Functions — Alphabetical List

8-252



setfis
(To be removed) Set fuzzy system properties

Note setfis will be removed in a future release. Set fuzzy inference system properties
using dot notation instead. For more information, see “Compatibility Considerations”.

Syntax
fis = setfis(fis,fisPropName,fisPropVal)

fis = setfis(fis,varType,varIndex,varPropName,varPropVal)

fis = setfis(fis,varType,varIndex,'mf',mfIndex,mfPropName,mfPropVal)

Description
The command setfis can be called with three, five, or seven input arguments,
depending on whether you want to set a property of the entire FIS structure, for a
particular variable belonging to that FIS structure, or for a particular membership
function belonging to one of those variables. The arguments are:

• fis — FIS structure in the MATLAB workspace.
• varType — Variable type, specified as either 'input' or 'output'.
• varIndex — Variable index, specified as a positive integer.
• mfIndex — Membership function index, specified as a positive integer.
• fisPropName — FIS property you want to set, specified as one of the following:

• 'name'
• 'type'
• 'andmethod'
• 'ormethod'
• 'impmethod'

 setfis

8-253



• 'aggmethod'
• 'defuzzmethod'

• fisPropVal — New value of the FIS property you want to set, specified as a
character vector or string.

• varPropName — Variable property you want to set, specified as either 'name' or
'range'.

• varPropVal — New value of the variable property you want to set, specified as a
character vector or string (for 'name'), or a two-element row vector (for 'range').

• mfPropName — Membership function property you want to set, specified as either
'name', 'type', or 'params'.

• mfPropVal — New value of the membership function property you want to set,
specified as a character vector or string (for 'name' or 'type'), or a numerical row
vector (for 'params').

Examples

Set Fuzzy Inference System Properties

Load a fuzzy inference system.

fis = readfis('tipper');

Set the defuzzification method to the bisector method.

fis = setfis(fis,'defuzzmethod','bisector');

View the defuzzification method of the updated FIS.

getfis(fis,'defuzzmethod')

ans = 
'bisector'

Set Variable Properties in FIS

Load fuzzy inference system.
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fis = readfis('tipper');

Set the name of the first input variable to 'help'.

fis = setfis(fis,'input',1,'name','help');

View the name of the variable in the updated system.

getfis(fis,'input',1,'name')

ans = 
'help'

Set Membership Function Properties in FIS

Load a fuzzy inference system.

fis = readfis('tipper');

Change the type of the second membership function of the first input variable to a
triangular membership function.

fis = setfis(fis,'input',1,'mf',2,'type','trimf');

When changing the type of a membership function, you must also set the parameters
accordingly. To convert the original Gaussian membership function parameters to
triangular membership function parameters, use the mf2mf command.

gaussParams = getfis(fis,'input',1,'mf',2,'params');
triParams = mf2mf(gaussParams,'gaussmf','trimf');

Set the membership function parameters to the converted values.

fis = setfis(fis,'input',1,'mf',2,'params',triParams);

View the updated membership function properties.

getfis(fis,'input',1,'mf',2)

ans = struct with fields:
      Name: 'good'
      Type: 'trimf'
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    params: [1.4680 5 8.5320]

Compatibility Considerations

setfis will be removed
Not recommended starting in R2018b

setfis will be removed in a future release. Set fuzzy inference system properties using
dot notation instead. There are differences between these approaches that require
updates to your code.

Update Code

This table shows some typical usages of setfis for setting fuzzy inference system
properties and how to update your code to use dot notation instead.

If your code has this form: Use this code instead:
fis = setfis(fis,'andmethod','prod') fis.AndMethod = 'prod'
fis = setfis(fis,'input',1,...
             'name','service')

fis.Inputs(1).Name = "service"

fis = setfis(fis,'input',2,...
             'mf',1,...
             params,[5 10 15])

fis.Inputs(2).MembershipFunctions(1).Parameters = ...
     [5 10 15]

Previously, fuzzy inference systems were represented as structures. Now, fuzzy inference
systems are represented as objects. Fuzzy inference system object properties have
different names than the corresponding structure fields. For more information on fuzzy
inference system objects, see mamfis and sugfis.

See Also
getfis

Introduced before R2006a
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setTunable
Set specified parameter settings as tunable or nontunable

Syntax
paramset = setTunable(paramset,boolflag)

Description
paramset = setTunable(paramset,boolflag) sets paramset as tunable or
nontunable using boolflag.

Examples

Specify Tunability of a Parameter Setting

Create a fuzzy inference system, and define the tunable parameter settings of inputs,
outputs, and rules.

fis = mamfis("NumInputs",2,"NumOutputs",2);
[in,out,rule] = getTunableSettings(fis);

Specify a parameter setting, and set its tunability.

Set the first input of the FIS as nontunable.

in(1) = setTunable(in(1),false);

You can set individual membership functions as nontunable. For example, set the first
membership function of output 1 as nontunable.

out(1).MembershipFunctions(1) = setTunable(out(1).MembershipFunctions(1),false);

You can also specify multiple parameter settings. Set the first two rules as nontunable.
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rule(1:2) = setTunable(rule(1:2),false);

Input Arguments
paramset — Tunable parameter settings
array

Tunable parameter settings, specified as an array of input, output, and rule parameter
settings of a fuzzy system. To obtain these parameter settings, use
getTunableSettings with the input FIS. paramset can be the input parameter, the
output parameter, the rule parameter, or some combination of these parameters as an
array. The contents of the array depend on which parameters you would like to set.

boolflag — Fuzzy system tunability
true or 1 | false or 0

Fuzzy system tunability, specified as a numeric or logical 1 (true) or 0 (false). If true,
paramset can be used for tuning parameters of a fuzzy system.

See Also
getTunableSettings | mamfis | sugfis | tunefis

Introduced in R2019a
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setTunableValues
Specify tunable parameter values of a fuzzy inference system

Syntax
fis = setTunableValues(fis,paramset,paramvals)
fis = setTunableValues( ___ ,'IgnoreInvalidParameters',ignoreInvalid)

Description
fis = setTunableValues(fis,paramset,paramvals) sets the tunable parameter
values of fis to the new values in paramvals using paramset.

fis = setTunableValues( ___ ,'IgnoreInvalidParameters',ignoreInvalid)
sets a flag for ignoring invalid parameters values.

Examples

Specify Tunable Parameter Values of a FIS

Create a fuzzy inference system and define the tunable parameter settings of inputs,
outputs, and rules.

fis = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
[in,out,rule] = getTunableSettings(fis);

Obtain tunable parameter values of the inputs, outputs, and rules of the fuzzy inference
system.

paramVals = getTunableValues(fis,[in;out;rule]);

Redefine some of the values and update the tunable parameter values of the FIS.

paramVals(1:3) = [0 0 1];
fis = setTunableValues(fis,[in;out;rule],paramVals);
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Input Arguments
fis — Fuzzy system
mamfis object | sugfis object | fistree object

Fuzzy system, specified as a mamfis, sugfis, or fistree object. The fuzzy system can
be a fuzzy inference system or network of interconnected fuzzy inference systems. It is
created using mamfis, sugfis, genfis, or fistree.

paramset — Tunable parameter settings
array

Tunable parameter settings, specified as an array of input, output, and rule parameter
settings in the input FIS. To obtain these parameter settings, use getTunableSettings
with the input FIS. paramset can be the input parameter, the output parameter, the rule
parameter, or some combination of these parameters as an array. The contents of the
array depend on which parameters you would like to set.

paramvals — Tunable parameter values
array

Tunable parameter values, specified as a numeric array. These are the updated tunable
parameter values of fis. Use getTunableValues to obtain the full array of tunable
parameter values. Then, specify the values in the array that you would like to change.

ignoreInvalid — Flag to ignore invalid parameters
array

Flag to ignore invalid parameters, specified as either true or false. If true, invalid
paramvals are replaced with the existing parameter values of a fuzzy system.

See Also
getTunableSettings | getTunableValues | mamfis | sugfis | tunefis

Introduced in R2019a
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showfis
(To be removed) Display annotated Fuzzy Inference System

Note showfis will be removed in a future release. View the properties of your FIS
directly instead. For more information, see “Compatibility Considerations”.

Syntax
showfis(fismat) 

Description
showfis(fismat) prints a version of the MATLAB workspace variable FIS, fismat,
allowing you to see the significance and contents of each field of the structure.

Examples
a = readfis('tipper');
showfis(a)

Returns:

1.  Name             tipper
2.  Type             mamdani
3.  Inputs/Outputs   [2 1]
4.  NumInputMFs      [3 2]
5.  NumOutputMFs     3
6.  NumRules         3
7.  AndMethod        min
8.  OrMethod         max
9.  ImpMethod        min
10. AggMethod        max
11. DefuzzMethod     centroid
12. InLabels         service
13.                  food   
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14. OutLabels        tip
15. InRange          [0 10]
16.                  [0 10]
17. OutRange         [0 30]
18. InMFLabels       poor     
19.                  good     
20.                  excellent
21.                  rancid   
22.                  delicious
23. OutMFLabels      cheap   
24.                  average 
25.                  generous
26. InMFTypes        gaussmf
27.                  gaussmf
28.                  gaussmf
29.                  trapmf 
30.                  trapmf 
31. OutMFTypes       trimf
32.                  trimf
33.                  trimf
34. InMFParams       [1.5 0 0 0] 
35.                  [1.5 5 0 0] 
36.                  [1.5 10 0 0]
37.                  [0 0 1 3]   
38.                  [7 9 10 10] 
39. OutMFParams      [0 5 10 0]  
40.                  [10 15 20 0]
41.                  [20 25 30 0]
42. Rule Antecedent  [1 1]
43.                  [2 0]
44.                  [3 2]
42. Rule Consequent  1
43.                  2
44.                  3
42. Rule Weight      1
43.                  1
44.                  1
42. Rule Connection  2
43.                  1
44.                  2
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Compatibility Considerations

showfis will be removed
Not recommended starting in R2018b

showfis will be removed in a future release. View the properties of your FIS directly
instead.

Previously, you could view the properties of your fuzzy system, myFIS, using the showfis
function.

showfis(myFIS)

Now, you can view the properties directly instead.

myFIS

To view additional FIS properties, use dot notation. For example, view information about
the membership functions of the first input variable.

myFIS.Inputs(1).MembershipFunctions

For more information on fuzzy inference systems and their properties, see mamfis and
sugfis.

See Also
getfis

Introduced before R2006a
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showrule
Display fuzzy inference system rules

Syntax
showrule(fis)
showrule(fis,Name,Value)

Description
showrule(fis) displays the rules in the fuzzy inference system, fis.

showrule(fis,Name,Value) displays rules using options specified by one or more
Name,Value pair arguments.

Examples

Display All Rules for a Fuzzy Inference System

Load fuzzy inference system.

fis = readfis('tipper');

Display rules using linguistic expressions.

showrule(fis)

ans = 3x78 char array
    '1. If (service is poor) or (food is rancid) then (tip is cheap) (1)           '
    '2. If (service is good) then (tip is average) (1)                             '
    '3. If (service is excellent) or (food is delicious) then (tip is generous) (1)'

Display rules using symbolic expressions.
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showrule(fis,'Format','symbolic')

ans = 3x65 char array
    '1. (service==poor) | (food==rancid) => (tip=cheap) (1)           '
    '2. (service==good) => (tip=average) (1)                          '
    '3. (service==excellent) | (food==delicious) => (tip=generous) (1)'

Display rules using membership function indices.

showrule(fis,'Format','indexed')

ans = 3x15 char array
    '1 1, 1 (1) : 2 '
    '2 0, 2 (1) : 1 '
    '3 2, 3 (1) : 2 '

Select Fuzzy Rules to Display

Load fuzzy inference system.

fis = readfis('tipper');

Display the first and third rules.

showrule(fis,'RuleIndex',[1 3])

ans = 2x78 char array
    '1. If (service is poor) or (food is rancid) then (tip is cheap) (1)           '
    '3. If (service is excellent) or (food is delicious) then (tip is generous) (1)'

Display Fuzzy Rules in German Language

Load fuzzy inference system.

fis = readfis('tipper');

Display the rules in German using the 'deutsch' language.
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showrule(fis,'Language','deutsch')

ans = 3x85 char array
    '1. Wenn (service ist poor) oder (food ist rancid) dann (tip ist cheap) (1)           '
    '2. Wenn (service ist good) dann (tip ist average) (1)                                '
    '3. Wenn (service ist excellent) oder (food ist delicious) dann (tip ist generous) (1)'

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Format','symbolic' sets the rule display format to use language-neutral
symbolic expressions.

RuleIndex — Rules to display
positive integer | vector of positive integers

Rules to display, specified as the comma-separated pair consisting of 'RuleIndex' and
one of the following:

• Positive integer — Index of a single rule to display
• Vector of positive integers — Indices of multiple rules to display

The default vector includes the indices for all the rules in fis.

Format — Rule format
'verbose' (default) | 'symbolic' | 'indexed'
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Rule format, specified as the comma-separated pair consisting of 'Format' and one of
the following:

• 'verbose' — Use linguistic expressions.

'If (service is poor) or (food is rancid) then (tip is cheap) (1)'

The rule weight is displayed in parentheses at the end of the rule.

You can specify the rule language using the Language option.
• 'symbolic' — Use language-neutral symbolic expressions.

'(service==poor) | (food==rancid) => (tip=cheap) (1)'

The symbolic rules use the following symbols.

Rule Component Symbol
AND &
OR |
IS (in antecedent) ==
IS (in consequent) =
IS NOT ~=
Implication (then) =>

The rule weight is displayed in parentheses at the end of the rule.
• 'indexed' — Use input and output membership function (MF) indices and integer

representation of fuzzy operators.

The indexed rules display in the following format:
'<input MFs>, <output MFs>, (<weight>) : <logical operator - 1 (AND), 2 (OR)>'

For example:

'1 1, 1 (1) : 2'

To indicate NOT operations for input and output membership functions, the software
uses negative indices. For example, to indicate “not the second membership function,”
the software uses -2.
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To indicate a don’t care condition for an input or output membership function, the
software uses 0.

Language — Rule language
'english' (default) | 'francais' | 'deutsch'

Rule language for 'verbose' format, specified as the comma-separated pair consisting
of 'Language' and one of the following:

• 'english' — Display rules in English.

'If (service is poor) or (food is rancid) then (tip is cheap) (1)'

• 'francais' — Display rules in French.

'Si (service est poor) ou (food est rancid) alors (tip est cheap) (1)'

• 'deutsch' — Display rules in German.

'Wenn (service ist poor) oder (food ist rancid) dann (tip ist cheap) (1)'

The software displays the FIS rules using the following keywords.

Rule Component English French German
Start of antecedent if si wenn
AND and et und
OR or ou oder
Start of consequent
(implication)

then alors dann

IS is est ist
IS NOT is not n''est_pas ist nicht

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b
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Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
addRule | ruleedit

Introduced before R2006a
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sigmf
Sigmoidal membership function

This function computes fuzzy membership values using the difference between two
sigmoidal membership functions. You can also compute this membership function using a
fismf object. For more information, see “fismf Object” on page 8-272.

This membership function is related to the dsigmf and psigmf membership functions.

Syntax
y = dsigmf(x,params)

Description
y = dsigmf(x,params) returns fuzzy membership values computed using the
sigmoidal membership function given by:

f x; a, c = 1
1 + e−a(x− c)

To specify the a and c parameters, use params.

Membership values are computed for each input value in x.

Examples

Sigmoidal Membership Function

x = 0:0.1:10;
y = sigmf(x,[2 4]);
plot(x,y)
xlabel('sigmf, P = [2 4]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length four

Membership function parameters, specified as the vector [a c]. To open the membership
function to the left or right, specify a negative or positive value for a, respectively. The
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magnitude of a defines the width of the transition area, and c defines the center of the
transition area.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the sigmf membership
function.

mf = fismf("igmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of sigmf, respectively.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf
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Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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smf
S-shaped membership function

This function computes fuzzy membership values using a spline-based S-shaped
membership function. You can also compute this membership function using a fismf
object. For more information, see “fismf Object” on page 8-276.

This membership function is related to the zmf and pimf membership functions.

Syntax
y = smf(x,params)

Description
y = smf(x,params) returns fuzzy membership values computed using the spline-based
S-shaped membership function given by:

f (x; a, b) =

0, x ≤ a

2 x− a
b− a

2
, a ≤ x ≤ a + b

2

1−2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

1, x ≥ b

To specify the a and b parameters, use params.

Membership values are computed for each input value in x.

Examples
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S-Shaped Membership Function
x = 0:0.1:10;
y = smf(x,[1 8]);
plot(x,y)
xlabel('smf, P = [1 8]')
ylim([-0.05 1.05])

Input Arguments
x — Input values
scalar | vector
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Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b]. Parameter a defines the
foot of the membership function, and b defines its shoulder.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the smf membership
function.

mf = fismf("smf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of smf, respectively.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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subclust
Find cluster centers using subtractive clustering

Syntax
centers = subclust(data,clusterInfluenceRange)
centers = subclust(data,clusterInfluenceRange,Name,Value)
[centers,sigma] = subclust( ___ )

Description
centers = subclust(data,clusterInfluenceRange) clusters input data using
subtractive clustering with the specified cluster influence range, and returns the
computed cluster centers. The subtractive clustering algorithm on page 8-283 estimates
the number of clusters in the input data.

centers = subclust(data,clusterInfluenceRange,Name,Value) clusters data
using algorithm options specified by one or more Name,Value pair arguments.

[centers,sigma] = subclust( ___ ) returns the sigma values specifying the range
of influence of a cluster center in each of the data dimensions.

Examples

Find Cluster Centers Using Subtractive Clustering

Load data set.

load clusterdemo.dat

Find cluster centers using the same range of influence for all dimensions.

C = subclust(clusterdemo,0.6);

Each row of C contains one cluster center.
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C

C = 3×3

    0.5779    0.2355    0.5133
    0.7797    0.8191    0.1801
    0.1959    0.6228    0.8363

Specify Bounds for Subtractive Clustering

Load data set.

load clusterdemo.dat

Define minimum and maximum normalization bounds for each data dimension. Use the
same bounds for each dimension.

dataScale = [-0.2 -0.2 -0.2;
              1.2  1.2  1.2];

Find cluster centers.

C = subclust(clusterdemo,0.5,'DataScale',dataScale);

Specify Options for Subtractive Clustering

Load data set.

load clusterdemo.dat

Specify the following clustering options:

• Squash factor of 2.0 - Only find clusters that are far from each other.
• Accept ratio 0.8 - Only accept data points with a strong potential for being cluster

centers.
• Reject ratio of 0.7 - Reject data points if they do not have a strong potential for being

cluster centers.
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• Verbosity flag of 0 - Do not print progress information to the command window.

options = [2.0 0.8 0.7 0];

Find cluster centers, using a different range of influence for each dimension and the
specified options.

C = subclust(clusterdemo,[0.5 0.25 0.3],'Options',options);

Obtain Cluster Influence Range for Each Data Dimension

Load data set.

load clusterdemo.dat

Cluster data, returning cluster sigma values, S.

[C,S] = subclust(clusterdemo,0.5);

Cluster sigma values indicate the range of influence of the computed cluster centers in
each data dimension.

Input Arguments
data — Data set to be clustered
M-by-N array

Data to be clustered, specified as an M-by-N array, where M is the number of data points
and N is the number of data dimensions.

clusterInfluenceRange — Range of influence of the cluster center
scalar value in the range [0, 1] | vector

Range of influence of the cluster center for each input and output assuming the data falls
within a unit hyperbox, specified as the comma-separated pair consisting of
'ClusterInfluenceRange' one of the following:

• Scalar value in the range [0 1] — Use the same influence range for all inputs and
outputs.
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• Vector — Use different influence ranges for each input and output.

Specifying a smaller range of influence usually creates more and smaller data clusters,
producing more fuzzy rules.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DataScale','auto'sets the normalizing factors for the input and output
signals using the minimum and maximum values in the data set to be clustered.

DataScale — Data scale factors
'auto' (default) | 2-by-N array

Data scale factors for normalizing input and output data into a unit hyperbox, specified as
the comma-separated pair consisting of 'DataScale' and a 2-by-N array, where N is the
total number of inputs and outputs. Each column of DataScale specifies the minimum
value in the first row and the maximum value in the second row for the corresponding
input or output data set.

When DataScale is 'auto', the genfis command uses the actual minimum and
maximum values in the data to be clustered.

Options — Clustering options
vector

Clustering options, specified as the comma-separated pair consisting of 'Options' and a
vector with the following elements:

Options(1) — Squash factor
1.25 (default) | positive scalar

Squash factor for scaling the range of influence of cluster centers, specified as a positive
scalar. A smaller squash factor reduces the potential for outlying points to be considered
as part of a cluster, which usually creates more and smaller data clusters.

Options(2) — Acceptance ratio
0.5 (default) | scalar value in the range [0, 1]
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Acceptance ratio, defined as a fraction of the potential of the first cluster center, above
which another data point is accepted as a cluster center, specified as a scalar value in the
range [0, 1]. The acceptance ratio must be greater than the rejection ratio.

Options(3) — Rejection ratio
0.15 (default) | scalar value in the range [0, 1]

Rejection ratio, defined as a fraction of the potential of the first cluster center, below
which another data point is rejected as a cluster center, specified as a scalar value in the
range [0, 1]. The rejection ratio must be less than acceptance ratio.

Options(4) — Information display flag
false (default) | true

Information display flag indicating whether to display progress information during
clustering, specified as one of the following:

• false — Do not display progress information.
• true — Display progress information.

Output Arguments
centers — Cluster centers
J-by-N array

Cluster centers, returned as a J-by-N array, where J is the number of clusters and N is the
number of data dimensions.

sigma — Range of influence of cluster centers
N-element row vector

Range of influence of cluster centers for each data dimension, returned as an N-element
row vector. All cluster centers have the same set of sigma values.

Tips
• To generate a fuzzy inference system using subtractive clustering, use the genfis

command. For example, suppose you cluster your data using the following syntax:
C = subclust(data,clusterInfluenceRange,'DataScale',dataScale,'Options',options);
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where the first M columns of data correspond to input variables, and the remaining
columns correspond to output variables.

You can generate a fuzzy system using the same training data and subtractive
clustering configuration. To do so:

1 Configure clustering options.

opt = genfisOptions('SubtractiveClustering');
opt.ClusterInfluenceRange = clusterInfluenceRange;
opt.DataScale = dataScale;
opt.SquashFactor = options(1);
opt.AcceptRatio = options(2);
opt.RejectRatio = options(3);
opt.Verbose = options(4);

2 Extract input and output variable data.

inputData = data(:,1:M);
outputData = data(:,M+1:end);

3 Generate FIS structure.

fis = genfis(inputData,outputData,opt);

The fuzzy system, fis, contains one fuzzy rule for each cluster, and each input and
output variable has one membership function per cluster. You can generate only
Sugeno fuzzy systems using subtractive clustering. For more information, see genfis
and genfisOptions.

Algorithms
Subtractive clustering assumes that each data point is a potential cluster center. The
algorithm does the following:

1 Calculate the likelihood that each data point would define a cluster center, based on
the density of surrounding data points.

2 Choose the data point with the highest potential to be the first cluster center.
3 Remove all data points near the first cluster center. The vicinity is determined using

clusterInfluenceRange.
4 Choose the remaining point with the highest potential as the next cluster center.
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5 Repeat steps 3 and 4 until all the data is within the influence range of a cluster
center.

The subtractive clustering method is an extension of the mountain clustering method
proposed in [2].

References
[1] Chiu, S., "Fuzzy Model Identification Based on Cluster Estimation," Journal of

Intelligent & Fuzzy Systems, Vol. 2, No. 3, Sept. 1994.

[2] Yager, R. and D. Filev, "Generation of Fuzzy Rules by Mountain Clustering," Journal of
Intelligent & Fuzzy Systems, Vol. 2, No. 3, pp. 209-219, 1994.

See Also
genfis

Topics
“Fuzzy Clustering” on page 4-2
“Model Suburban Commuting Using Subtractive Clustering” on page 4-22

Introduced before R2006a
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surfview
Open Surface Viewer

Syntax
surfview(fis)

surfview(fileName)
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Description

The Surface Viewer is a graphical interface that lets you examine the output surface of an
FIS for any one or two inputs. You can examine an FIS that is:

• Stored in a file using surfview(fileName), where fileName is a character vector
or string with or without the .fis extension.
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• In the MATLAB workspace using surfview(fis), where fis is a mamfis or sugfis
object.

Because it does not alter the fuzzy system or its associated FIS object in any way, Surface
Viewer is a read-only editor. Using the drop-down menus, you select the two input
variables you want assigned to the two input axes (X and Y), as well the output variable
you want assigned to the output (or Z) axis.

By default, the surface plot updates automatically when you change the input or output
variable selections or the number of grid points. To disable automatic plot updates, in the
Options menu, clear the Always evaluate option. When this option is disabled, to update
the plot, click Evaluate.

If you want to create a smoother plot, use the Plot points field to specify the number of
points on which the membership functions are evaluated in the input or output range.
This field defaults to the minimum number of plot plots, 101. If you specify fewer plot
points, the field value automatically resets to 101. When you specify the number of plot
points, the surface plot automatically updates.

By clicking on the plot axes and dragging the mouse, you can manipulate the surface so
that you can view it from different angles.

If there are more than two inputs to your system, you must supply the constant values
associated with any unspecified inputs in the reference input section.

Refer to “The Surface Viewer” on page 2-35 for more information about how to use
surfview.

Menu Items
In the Surface Viewer, there is a menu bar that allows you to open related UI tools, open
and save systems, and so on. The Surface Viewer uses the same File menu as the one on
the Fuzzy Logic Designer:

• Use the Edit menu items:

Undo to undo the most recent action

FIS properties to open the Fuzzy Logic Designer

Membership functions to invoke the Membership Function Editor
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Rules... to invoke the Rule Editor
• Use the View menu item:

Rules to invoke the Rule Viewer
• Use the Options menu items:

Plot to choose among eight different kinds of plot styles.

Color Map to choose among several different color schemes.

Always evaluate to automatically evaluate and plot a new surface every time you
make a change that affects the plot, such as changing the number of grid points. This
option is selected by default. To clear this option, select it once more.

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
Apps
Fuzzy Logic Designer
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Functions
gensurf | mfedit | ruleedit | ruleview

Topics
“The Surface Viewer” on page 2-35

Introduced before R2006a
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trapmf
Trapezoidal membership function

This function computes fuzzy membership values using a trapezoidal membership
function. You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-292.

This membership function is related to the trimf membership function.

Syntax
y = trapmf(x,params)

Description
y = trapmf(x,params) returns fuzzy membership values computed using the following
trapezoidal membership function:

f x; a, b, c, d =

0, x ≤ a
x− a
b− a , a ≤ x ≤ b

1, b ≤ x ≤ c
d− x
d− c , c ≤ x ≤ d

0, d ≤ x

or, more compactly:

f x; a, b, c, d = max min x− a
b− a , 1, d− x

d− c , o

To specify the parameters, a, b, c, and d, use params.

Membership values are computed for each input value in x.
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Examples

Trapezoid-Shaped Membership Function

x = 0:0.1:10;
y = trapmf(x,[1 5 7 8]);
plot(x,y)
xlabel('trapmf, P = [1 5 7 8]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b c d]. Parameters b and c
define the shoulders of the membership function, and a and d define its feet.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the trapmf membership
function.

mf = fismf("trapmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of trapmf, respectively.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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trimf
Triangular membership function

This function computes fuzzy membership values using a triangular membership function.
You can also compute this membership function using a fismf object. For more
information, see “fismf Object” on page 8-296.

This membership function is related to the trapmf membership function.

Syntax
y = trimf(x,params)

Description
y = trimf(x,params) returns fuzzy membership values computed using the following
triangular membership function:

f x; a, b, c =

0, x ≤ a
x− a
b− a , a ≤ x ≤ b

c− x
c− b , b ≤ x ≤ c

0, c ≤ x

or, more compactly:

f x; a, b, c = max min x− a
b− a , c− x

c− b , o

To specify the parameters, a, b, and c, use params.

Membership values are computed for each input value in x.
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Examples

Triangle-Shaped Membership Function

x = 0:0.1:10;
y = trimf(x,[3 6 8]);
plot(x,y)
xlabel('trimf, P = [3 6 8]')
ylim([-0.05 1.05])
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Input Arguments
x — Input values
scalar | vector

Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length three

Membership function parameters, specified as the vector [a b c]. Parameters a and c
define the feet of the membership function, and b defines its peak.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the trimf membership
function.

mf = fismf("trimf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of trimf, respectively.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a
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tunefis
Tune fuzzy inference system or tree of fuzzy inference systems

Syntax
fisout = tunefis(fisin,paramset,in,out)
fisout = tunefis(fisin,paramset,in,out,options)
fisout = tunefis(fisin,paramset,custcostfcn,options)
[fisout,optoutputs] = tunefis( ___ )

Description
fisout = tunefis(fisin,paramset,in,out) tunes the fuzzy system fisin using
parameters identified by paramset and the training data specified by in and out.

fisout = tunefis(fisin,paramset,in,out,options) tunes the fuzzy system with
additional options from the object options created using tunefisOptions.

fisout = tunefis(fisin,paramset,custcostfcn,options) tunes the fuzzy
system using custcostfcn, a function handle to a custom cost function.

[fisout,optoutputs] = tunefis( ___ ) tunes the fuzzy system and returns an
additional output optoutputs with information about tuning algorithm.

Examples

Tune a Fuzzy Inference System

Create the initial fuzzy inference system using genfis.

x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
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options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

Tune the membership function parameters with "anfis".

fisout = tunefis(fisin,[in;out],x,y,tunefisOptions("Method","anfis"));

ANFIS info: 
    Number of nodes: 24
    Number of linear parameters: 10
    Number of nonlinear parameters: 15
    Total number of parameters: 25
    Number of training data pairs: 101
    Number of checking data pairs: 0
    Number of fuzzy rules: 5

Start training ANFIS ...

   1      0.0694086
   2      0.0680259
   3      0.066663
   4      0.0653198
   5      0.0639961
Step size increases to 0.011000 after epoch 5.
   6      0.0626917
   7      0.0612787
   8      0.0598881
   9      0.0585193
Step size increases to 0.012100 after epoch 9.
  10      0.0571712

Designated epoch number reached --> ANFIS training completed at epoch 10.

Minimal training RMSE = 0.057171

Tune Specific Parameter Setting of Fuzzy Inference System

Create the initial fuzzy inference system using genfis.
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x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);            

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

Tune the rule parameter only. In this example, the pattern search method is used.

fisout = tunefis(fisin,rule,x,y,tunefisOptions("Method","patternsearch"));

Iter     Func-count       f(x)      MeshSize     Method
    0           1       0.346649             1      
    1          19       0.346649           0.5     Refine Mesh
    2          37       0.346649          0.25     Refine Mesh
    3          55       0.346649         0.125     Refine Mesh
    4          73       0.346649        0.0625     Refine Mesh
    5          91       0.346649       0.03125     Refine Mesh
    6         109       0.346649       0.01563     Refine Mesh
    7         127       0.346649      0.007813     Refine Mesh
    8         145       0.346649      0.003906     Refine Mesh
    9         163       0.346649      0.001953     Refine Mesh
   10         181       0.346649     0.0009766     Refine Mesh
   11         199       0.346649     0.0004883     Refine Mesh
   12         217       0.346649     0.0002441     Refine Mesh
   13         235       0.346649     0.0001221     Refine Mesh
   14         253       0.346649     6.104e-05     Refine Mesh
   15         271       0.346649     3.052e-05     Refine Mesh
   16         289       0.346649     1.526e-05     Refine Mesh
   17         307       0.346649     7.629e-06     Refine Mesh
   18         325       0.346649     3.815e-06     Refine Mesh
   19         343       0.346649     1.907e-06     Refine Mesh
   20         361       0.346649     9.537e-07     Refine Mesh
Optimization terminated: mesh size less than options.MeshTolerance.

Tune a Fuzzy Inference System with Custom Parameter Settings

Create the initial fuzzy inference system using genfis.
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x = (0:0.1:10)';
y = sin(2*x)./exp(x/5);
options = genfisOptions('GridPartition');
options.NumMembershipFunctions = 5;
fisin = genfis(x,y,options);

Obtain the tunable settings of inputs, outputs, and rules of the fuzzy inference system.

[in,out,rule] = getTunableSettings(fisin);

You can tune with custom parameter settings using setTunable or dot notation.

Do not tune input 1.

in(1) = setTunable(in(1),false);

For output 1:

• do not tune membership functions 1 and 2,
• do not tune membership function 3,
• set the minimum parameter range of membership function 4 to -2,
• and set the maximum parameter range of membership function 5 to 2.

out(1).MembershipFunctions(1:2) = setTunable(out(1).MembershipFunctions(1:2),false);
out(1).MembershipFunctions(3).Parameters.Free = false;
out(1).MembershipFunctions(4).Parameters.Minimum = -2;
out(1).MembershipFunctions(5).Parameters.Maximum = 2;

For the rule settings,

• do not tune rules 1 and 2,
• set the antecedent of rule 3 to non-tunable,
• allow NOT logic in the antecedent of rule 4,
• and do not ignore any outputs in rule 3.

rule(1:2) = setTunable(rule(1:2),false);
rule(3).Antecedent.Free = false;
rule(4).Antecedent.AllowNot = true;
rule(3).Consequent.AllowEmpty = false;

Set the maximum number of iterations to 20 and tune the fuzzy inference system.

 tunefis
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opt = tunefisOptions("Method","particleswarm");
opt.MethodOptions.MaxIterations = 20;
fisout = tunefis(fisin,[in;out;rule],x,y,opt);

                                 Best            Mean     Stall
Iteration     f-count            f(x)            f(x)    Iterations
    0              90          0.3265           1.857        0
    1             180          0.3265           4.172        0
    2             270          0.3265           3.065        1
    3             360          0.3265           3.839        2
    4             450          0.3265           3.386        3
    5             540          0.3265           3.249        4
    6             630          0.3265           3.311        5
    7             720          0.3265           2.901        6
    8             810          0.3265           2.868        7
    9             900          0.3181            2.71        0
   10             990          0.3181           2.068        1
   11            1080          0.3181           2.692        2
   12            1170          0.3165           2.146        0
   13            1260          0.3165           1.869        1
   14            1350          0.3165           2.364        2
   15            1440          0.3165            2.07        0
   16            1530          0.3164           1.678        0
   17            1620          0.2978           1.592        0
   18            1710          0.2977           1.847        0
   19            1800          0.2954           1.666        0
   20            1890          0.2947           1.608        0
Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.

Input Arguments
fisin — Fuzzy system
mamfis object | sugfis object | fistree object

Fuzzy system, specified as a mamfis, sugfis, or fistree object. The fuzzy system can
be a fuzzy inference system or network of interconnected fuzzy inference systems. It is
created using mamfis, sugfis, genfis, or fistree.

paramset — Tunable parameter settings
array
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Tunable parameter settings, specified as an array of input, output, and rule parameter
settings of the input fuzzy system fisin. To obtain these parameter settings, use
getTunableSettings with the input fuzzy system fisin. paramset can be the input
parameter, the output parameter, the rule parameter, or some combination of these
parameters as an array. The contents of the array depend on which parameters you would
like to tune.

in — Input training data
matrix

Input training data, specified as an m-by-n matrix, where m is the total number of input
datasets and n is the number of inputs. The number of input and output datasets must be
the same.

out — Output training data
matrix

Output training data, specified as an m-by-n matrix, where m is the total number of
output datasets and n is the number of outputs. The number of input and output datasets
must be the same.

options — FIS tuning options
tunefisOptions option set

FIS tuning options, specified as a tunefisOptions object. You can specify the tuning
algorithm method and other options for the tuning process.

custcostfcn — custom cost functions
function handle

Custom cost function, specified as a function handle. The custom cost function evaluates
fisout to calculate its cost with respect to an evaluation criterion, such as input/output
data. custcostfcn must accept at least one input argument for fisout and returns a
cost value. You can provide an anonymous function handle to attach additional data for
cost calculation, as described in this example:

function fitness = custcost(cost,trainingData)
  ...
end
custcostfcn = @(fis)custcost(fis,trainingData);
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Output Arguments
fisout — Fuzzy system
mamfis object | sugfis object | fistree object

Fuzzy system, specified as a mamfis, sugfis, or fistree object. The fuzzy system can
be a fuzzy inference system or network of interconnected fuzzy inference systems. It is
created using mamfis, sugfis, genfis, or fistree. fisout is the tuned FIS.

optoutputs — Tuning algorithm summary
structure

Tuning algorithm summary, specified as a structure containing the following fields:

• tuningOutputs
• errorMessage

tuningOutputs is a structure with information about the tuning algorithm method
specified by tunefisOptions in the options input argument. The specific outputs
differ for each tuning algorithm. See the specific tuning method for details about its
outputs:

• 'ga' — genetic algorithm
• 'particleswarm' — particle swarm
• 'patternsearch' — pattern search
• 'simulannealbnd' — simulated annealing algorithm
• 'anfis' — adaptive neuro-fuzzy

errorMessage is the message generated when updating fisin with new parameter
values.

See Also
fistree | getTunableSettings | mamfis | sugfis | tunefisOptions

Introduced in R2019a
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update
Update fuzzy rule using fuzzy inference system

Syntax
ruleOut = update(ruleIn,fis)

Description
ruleOut = update(ruleIn,fis) updates the fuzzy rule ruleIn using the information
in fuzzy inference system fis and returns the resulting fuzzy rule in ruleOut.

Examples

Create Fuzzy Rule Using Text Description

Create a fuzzy rule using a verbose text description.

rule = fisrule("if service is poor and food is delicious then tip is average (1)");

Alternatively, you can specify the same rule using a symbolic text description.

rule = fisrule("service==poor & food==delicious => tip=average")

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (1)"
     Antecedent: []
     Consequent: []
         Weight: 1
     Connection: 1

Before using rule with a fuzzy system, update the rule Antecedent and Consequent
properties using the update function.

 update
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fis = readfis("tipper");
rule = update(rule,fis)

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (1)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 1
     Connection: 1

Create Fuzzy Rule Using Numeric Description

Create a fuzzy rule using a numeric description. Specify that the rule has two input
variables.

rule = fisrule([1 2 2 0.5 1],2)

rule = 
  fisrule with properties:

    Description: "input1==mf1 & input2==mf2 => output1=mf2 (0.5)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 0.5000
     Connection: 1

Before using rule with a fuzzy system, update the rule Description property using the
update function.

fis = readfis("tipper");
rule = update(rule,fis)

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (0.5)"
     Antecedent: [1 2]
     Consequent: 2
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         Weight: 0.5000
     Connection: 1

Input Arguments
ruleIn — Fuzzy rule
fisrule object | array of fisrule objects

Fuzzy rule, specified as a fisrule object or an array of fisrule objects. If ruleIn was
created using a:

• Text description, its Antecedent and Consequent properties are updated using the
input and output membership function indices in fis that correspond to the
membership function names in the Description property of ruleIn

• Numeric description, its Description property is updated using the input and output
membership function names in fis that correspond to the membership function
indices in the Antecedent and Consequent properties of ruleIn

If you specify ruleIn as an array of fisrule objects, then all of the rules are updated
accordingly.

fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as a mamfis or sugfis object.

Output Arguments
ruleOut — Fuzzy rule
fisrule object | array of fisrule objects

Fuzzy rule, returned as a fisrule object or an array of fisrule objects.

See Also
fisrule | mamfis | sugfis
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Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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writeFIS
Save fuzzy inference system to file

You can save a fuzzy inference system (FIS) in a .fis file using the writeFIS function.
To load the saved file, use the readfis function.

Note Do not manually edit the contents of a .fis file. Doing so can produce unexpected
results when loading the file using readfis.

Syntax
writeFIS(fis,fileName)

writeFIS(fis)
writeFIS(fis,fileName,"dialog")

Description
writeFIS(fis,fileName) saves the fuzzy inference system fis to the current working
folder using file name fileName.

writeFIS(fis) opens a dialog box for saving a FIS. In this dialog box, specify the name
and location of the .fis file.

writeFIS(fis,fileName,"dialog") opens a dialog box for saving a FIS, setting the
name of the file in the dialog box to fileName. In the dialog box, specify the location for
the file.

Examples

Save Fuzzy Inference System to File

Create a fuzzy inference system, and add an input variable with membership functions.

 writeFIS
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fis = mamfis('Name','tipper');
fis = addInput(fis,[0 10],'Name','service');
fis = addMF(fis,'service','gaussmf',[1.5 0],'Name','poor');
fis = addMF(fis,'service','gaussmf',[1.5 5],'Name','good');
fis = addMF(fis,'service','gaussmf',[1.5 10],'Name','excellent');

Save the fuzzy system in the current working folder in the file myFile.fis.

writeFIS(fis,'myFile');

Input Arguments
fis — Fuzzy inference system
mamfis object | sugfis object

Fuzzy inference system, specified as one of the following:

• mamfis object — Mamdani fuzzy inference system
• sugfis object — Sugeno fuzzy inference system

fileName — File name
string | character vector

File name specified as a string or character vector. If you do not specify the .fis
extension in the file name, writeFIS adds the extension.

Compatibility Considerations

writefis is now writeFIS
Behavior changed in R2018b

writefis is now writeFIS. To update your code, change the function name from
writefis to writeFIS. The syntaxes are equivalent.

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b
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Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields.
• Objects store text data as strings rather than as character vectors.

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

See Also
readfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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zmf
Z-shaped membership function

This function computes fuzzy membership values using a spline-based Z-shaped
membership function. You can also compute this membership function using a fismf
object. For more information, see “fismf Object” on page 8-314.

This membership function is related to the smf and pimf membership functions.

Syntax
y = zmf(x,params)

Description
y = zmf(x,params) returns fuzzy membership values computed using the spline-based
Z-shaped membership function given by:

f x; a, b =

1, x ≤ a

1 − 2 x− a
b− a

2
, a ≤ x ≤ a + b

2

2 x− b
b− a

2
, a + b

2 ≤ x ≤ b

0, x ≥ b

To specify the a and b parameters, use params.

Membership values are computed for each input value in x.

Examples
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Z-Shaped Membership Function
x = 0:0.1:10;
y = zmf(x,[3 7]);
plot(x,y)
xlabel('zmf, P = [3 7]')
ylim([-0.05 1.05])

Input Arguments
x — Input values
scalar | vector
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Input values for which to compute membership values, specified as a scalar or vector.

params — Membership function parameters
vector of length two

Membership function parameters, specified as the vector [a b]. Parameter a defines the
shoulder of the membership function, and b defines its foot.

Output Arguments
y — Membership value
scalar | vector

Membership value returned as a scalar or a vector. The dimensions of y match the
dimensions of x. Each element of y is the membership value computed for the
corresponding element of x.

Alternative Functionality

fismf Object
You can create and evaluate a fismf object that implements the zmf membership
function.

mf = fismf("zmf",P);
Y = evalmf(mf,X);

Here, X, P, and Y correspond to the x, params, and y arguments of zmf, respectively.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
dsigmf | gauss2mf | gaussmf | gbellmf | pimf | psigmf | sigmf | smf | trapmf |
trimf | zmf

Topics
“Membership Functions” on page 1-14

Introduced before R2006a

 zmf

8-315





Objects — Alphabetical List

9



ClauseParameters
Parameter settings for rule clauses

Description
A ClauseParameters object is created using the getTunableSettings function with a
mamfis, sugfis, or fistree object. When the third output is specified,
getTunableSettings returns clause parameter settings within the rule parameter
settings.

Creation
Create a ClauseParameters object using getTunableSettings with three outputs.
The Antecedent and Consequent properties of the third output are specified as
ClauseParameters objects.

Properties
Free — Clause parameter values available for tuning
true or 1 | false or 0

Clause parameter values available for tuning, specified as a numeric or logical 1 (true)
or 0 (false).

AllowNot — Whether to allow NOT logic in rule clauses
true or 1 | false or 0

Whether to allow NOT logic in rule clauses, specified as a numeric or logical 1 (true) or
0 (false).

AllowEmpty — Whether to allow ignoring inputs and outputs in rule clauses
true or 1 | false or 0

Whether to allow ignoring inputs and outputs in rule clauses, specified as a numeric or
logical 1 (true) or 0 (false).
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Examples

Obtain Tunable Settings of Rules from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of rules of the fuzzy inference system.

[~,~,rule] = getTunableSettings(tree)

rule = 
  18x1 RuleSettings array with properties:

    Index
    Antecedent
    Consequent
    FISName

You can use dot notation to specify the tunable settings of rules.

For the first rule, do not tune input 1 membership function index and do not ignore output
1 membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Consequent.AllowEmpty(1) = false;

For the second rule, allow NOT logic for input 2 membership function index.

rule(2).Antecedent.AllowNot(2) = true;

See Also
RuleSettings | VariableSettings | getTunableSettings
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evalfisOptions
Option set for evalfis function

Description
Use an evalfisOptions object to specify options for the evalfis function.

Creation

Syntax
opt = evalfisOptions
opt = evalfisOptions(Name,Value)

Description
opt = evalfisOptions creates an option set for the evalfis function with default
options. To modify the properties of this option set, use dot notation.

opt = evalfisOptions(Name,Value) sets properties using name-value pairs. For
example, evalfisOptions('NumSamplePoints',51) creates an option set and sets
the number of output fuzzy set samples to 51. You can specify multiple name-value pairs.
Enclose each property name in single quotes.

Properties
NumSamplePoints — Number of sample points in output fuzzy sets
101 (default) | integer greater than 1

Number of sample points in output fuzzy sets, specified as an integer greater than 1.

To reduce memory usage while evaluating a Mamdani FIS, specify fewer samples. Doing
so sacrifices the accuracy of the defuzzified output value.

 evalfisOptions
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Reducing the number of samples can make the output area for defuzzification zero. In this
case, the defuzzified output value is the midpoint of the output variable range.

Note evalfis ignores this property when evaluating a Sugeno FIS.

OutOfRangeInputValueMessage — Diagnostic message behavior when an input
is out of range
"warning" (default) | "error" | "none"

Diagnostic message behavior when an input is out of range, specified as one of the
following:

• "warning" — Report the diagnostic message as a warning.
• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When an input value is out of range, corresponding rules in the fuzzy system can have
unexpected firing strengths.

NoRuleFiredMessage — Diagnostic message behavior when no rules fire
"warning" (default) | "error" | "none"

Diagnostic message behavior when no rules fire, specified as one of the following:

• "warning" — Report the diagnostic message as a warning.
• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When NoRuleFiredMessage is "warning" or "none" and no rules fire for a given
output, the defuzzified output value is set to its mean range value.

EmptyOutputFuzzySetMessage — Diagnostic message behavior when an output
fuzzy set is empty
"warning" (default) | "error" | "none"

Diagnostic message behavior when an output fuzzy set is empty, specified as one of the
following:

• "warning" — Report the diagnostic message as a warning.
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• "error" — Report the diagnostic message as an error.
• "none" — Do not report the diagnostic message.

When EmptyOutputFuzzySetMessage is "warning" or "none" and an output fuzzy
set is empty, the defuzzified value for the corresponding output is set to its mean range
value.

This diagnostic message applies only to Mamdani systems.

Object Functions
evalfis Evaluate fuzzy inference system

Examples

Create Option Set for Evaluating FIS

Create option set object, specifying the number of sample points for output fuzzy sets.

options = evalfisOptions('NumSamplePoints',51)

options = 
  EvalFISOptions with properties:

                NumSamplePoints: 51
    OutOfRangeInputValueMessage: "warning"
             NoRuleFiredMessage: "warning"
     EmptyOutputFuzzySetMessage: "warning"

Alternatively, create a default option set, and configure properties using dot notation.

options = evalfisOptions;
options.NumSamplePoints = 51;

 evalfisOptions
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When used for code generation, an evalfisOptions object stores its
OutOfRangeInputValueMessage, NoRuleFiredMessage, and
EmptyOutputFuzzySetMessage properties as character vectors rather than strings.

• When evaluating a fuzzy inference system in Simulink, it is recommended to not use
evalfis or evalfisOptions within a MATLAB Function. Instead, evaluate your
fuzzy inference system using the Fuzzy Logic Controller block.

See Also
Functions
evalfis

Introduced in R2018a
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fismf
Fuzzy membership function

Description
Use fismf objects to represent fuzzy membership functions. For each input and output
variable in a fuzzy inference system (FIS), one or more membership functions define the
possible linguistic sets for that variable. For more information on membership functions,
see “Foundations of Fuzzy Logic” on page 1-10.

Creation

Syntax
mf = fismf
mf = fismf(type,parameters)
mf = fismf('Name',name)
mf = fismf(type,parameters,'Name',name)

Description
mf = fismf creates a fuzzy membership function (MF) with default type, parameters,
and name. To change the membership function properties, use dot notation.

mf = fismf(type,parameters) sets the Type and Parameters properties.

mf = fismf('Name',name) sets the Name property.

mf = fismf(type,parameters,'Name',name) sets the Type, Parameters, and
Name properties.

 fismf
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Properties
Name — Membership function name
"mf" (default) | string | character vector

Membership function name, specified as a string or character vector.

Type — Membership function type
"trimf" (default) | string | character vector | function handle

Membership function type, specified as a string or character vector that contains the
name of a function in the current working folder or on the MATLAB path. You can also
specify a handle to such a function. When you specify Type, you must also specify
Parameters.

This table describes the values that you can specify for Type.

Membership
Function Type

Description For More Information

"gbellmf" Generalized bell-shaped
membership function

gbellmf

"gaussmf" Gaussian membership function gaussmf
"gauss2mf" Gaussian combination

membership function
gauss2mf

"trimf" Triangular membership function trimf
"trapmf" Trapezoidal membership function trapmf
"sigmf" Sigmoidal membership function sigmf
"dsigmf" Difference between two sigmoidal

membership functions
dsigmf

"psigmf" Product of two sigmoidal
membership functions

psigmf

"zmf" Z-shaped membership function zmf
"pimf" Pi-shaped membership function pimf
"smf" S-shaped membership function smf
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Membership
Function Type

Description For More Information

"constant" Constant membership function
for Sugeno output membership
functions

“What Is Sugeno-Type Fuzzy
Inference?” on page 2-5

"linear" Linear membership function for
Sugeno output membership
functions

String or
character vector

Name of a custom membership
function in the current working
folder or on the MATLAB path.
Custom output membership
functions are not supported for
Sugeno systems.

“Build Fuzzy Systems Using
Custom Functions” on page 2-50

Function handle Handle to a custom membership
function in the current working
folder or on the MATLAB path.
Custom output membership
functions are not supported for
Sugeno systems.

Note When you change Type using dot notation, the values in Parameters are
automatically converted for the new membership function type.

Parameters — Membership function parameters
[0 0.5 1] (default) | vector

Membership function parameters, specified as a vector. The length of the parameter
vector depends on the membership function type. When you specify Parameters, you
must also specify Type.

Object Functions
evalmf Evaluate fuzzy membership function

 fismf
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Examples

Create Membership Function

Create fuzzy membership function with default settings.

mf = fismf;

To modify the membership function settings, use dot notation. For example, specify a
Gaussian membership function with a standard deviation of 2 and a mean of 10.

mf.Type = "gaussmf";
mf.Parameters = [2 10];

Create Membership Function with Specified Parameters

Create a trapezoidal membership function with specified parameters.

mf = fismf("trapmf",[10 15 20 25]);

Create Membership Function with Specified Name

Create a membership function with the name "large".

mf = fismf("Name","large");

See Also
fisrule | fisvar | mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b

9 Objects — Alphabetical List

9-12



fisrule
Fuzzy rule

Description
Use fisrule objects to represent fuzzy if-then rules that relate input membership
function conditions to corresponding output membership functions. The if portion of a
fuzzy rule is the antecedent, which specifies the membership function for each input
variable. The then portion of a fuzzy rule is the consequent, which specifies the
membership function for each output variable. For more information on membership
functions and fuzzy rules, see “Foundations of Fuzzy Logic” on page 1-10.

Creation
To create fuzzy rule objects, use the fisrule function. Using this function, you can
create a single fuzzy rule or a vector of multiple fuzzy rules.

Syntax
rule = fisrule
rule = fisrule(ruleText)
rule = fisrule(ruleValues,numInputs)

Description
rule = fisrule creates a single fuzzy rule with the default description "input1==mf1
=> output1=mf1".

rule = fisrule(ruleText) creates one or more fuzzy rules using the text
descriptions in ruleText.

rule = fisrule(ruleValues,numInputs) creates one or more fuzzy rules using the
numeric rule values in ruleValues. Specify the number of rule input variables using
numInputs.

 fisrule

9-13



Input Arguments
ruleText — Text rule description
string | character vector | string array | character array

Text rule description, specified as one of the following:

• String or character vector specifying a single rule

rule = "If service is poor or food is rancid then tip is cheap";
• String array, where each element corresponds to a rule. For example:

ruleList = ["If service is poor or food is rancid then tip is cheap";
            "If service is good then tip is average";
            "If service is excellent or food is delicious then tip is generous"];

• Character array where each row corresponds to a rule. For example:
rule1 = 'If service is poor or food is rancid then tip is cheap';
rule2 = 'If service is good then tip is average';
rule3 = 'If service is excellent or food is delicious then tip is generous';
ruleList = char(rule1,rule2,rule3);

For each rule, use one of the following rule text formats:

• Verbose — Linguistic expression in the following format, using the IF and THEN
keywords:

"IF <antecedent> THEN <consequent> (<weight>)"

In <antecedent>, specify the membership function for each input variable using the
IS or IS NOT keyword. Connect these conditions using the AND or OR keywords. If a
rule does not use a given input variable, omit it from the antecedent.

In <consequent>, specify the condition for each output variable using the IS or IS
NOT keyword, and separate these conditions using commas. The IS NOT keyword is
not supported for Sugeno outputs. If a rule does not use a given output variable, omit
it from the consequent.

Specify the weight using a positive numerical value.

For example:

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"
• Symbolic — Expression that uses the symbols in the following table instead of

keywords. There is no symbol for the IF keyword.
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Symbol Keyword
== IS (in rule antecedent)
~= IS NOT
& AND
| OR
=> THEN
= IS (in rule consequent)

For example, the following symbolic rule is equivalent to the previous verbose rule.

"A==a & B~=b => X=x, Y~=y (1)"

When you specify a rule using a text description, fisrule sets the Description,
Weight, and Connection properties of the rule based on the description.

ruleValues — Numeric rule description
row vector | numeric array

Numeric rule description, specified as one of the following:

• Row vector to specify a single fuzzy rule
• Array, where each row of ruleValues specifies one rule

For each row, the numeric rule description has M+N+2 columns, where M is the number
of input variables and N is the number of output variables. Each column contains the
following information:

• The first M columns specify input membership function indices and correspond to the
Antecedent property of the rule. To indicate a NOT condition, specify a negative
value. If a rule does not use a given input, set the corresponding index to 0. For each
rule, at least one input membership function index must be nonzero.

• The next N columns specify output membership function indices and correspond to the
Consequent property of the rule. To indicate a NOT condition for Mamdani systems,
specify a negative value. NOT conditions are not supported for Sugeno outputs. If a
rule does not use a given output, set the corresponding index to 0. For each rule, at
least one output membership function index must be nonzero.

• Column M+N+1 specifies the rule weight and corresponds to the Weight property of
the rule.

 fisrule
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• The final column specifies the antecedent fuzzy operator and corresponds to the
Connection property of the rule.

When you specify a rule using ruleVlaues, fisrule sets the Description property
using default variable and membership function names.

numInputs — Number of input variables
positive integer

Number of input variables for the rule, specified as a positive integer. If you specify the
rule description using ruleValues, you must also specify the number of input variables.
fisrule parses the rule antecedent values into the membership function indices for the
input and output variables using numInputs.

Properties
Description — Text rule description
string | character vector

Text rule description, specified as a string or character vector. The rule description is
stored as a symbolic expression no matter how you specify the rule. For example, if you
specify the following verbose rule using ruleText:

"IF A IS a AND B IS NOT b THEN X IS x, Y IS NOT y (1)"

The stored rule is:

"A==a & B~=b => X=x, Y~=y (1)"

For more information on the verbose and symbolic rule formats, see the ruleText input
argument.

When you specify a rule using ruleVlaues, fisrule sets the Description property
using default variable and membership function names. Before using the rule in a fuzzy
system, you must update the description to use the variable and membership function
names from that fuzzy system using the update function.

Antecedent — Rule antecedent
numeric vector

Rule antecedent, specified as a numeric vector of length M, where M is the number of
input variables. Each element of Antecedent contains one of the following values:
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• Positive integer — The index of an input membership function, which represents an IS
condition

• Negative integer — The negative of an input membership function, which represents
an IS NOT condition

• 0 — A don't care condition, which means that the rule does not use the corresponding
input variable

This value is set when you create a fuzzy rule using ruleValues. If you create a fuzzy
rule using ruleText, before using the rule in a fuzzy system, you must populate the
Antecedent property using the update function.

If you update the indices in the rule antecedent using dot notation, the Description
property is not updated to reflect the changes. To update the rule description, use the
update function.

Consequent — Rule consequent
numeric vector

Rule consequent, specified as a numeric vector of length N, where N is the number of
output variables. Each element of Consequent contains one of the following values:

• Positive integer — The index of an output membership function, which represents an
IS condition

• Negative integer — The negative of an output membership function, which represents
an IS NOT condition

• 0 — A don't care condition, which means that the rule does not use the corresponding
output variable

This value is set when you create a fuzzy rule using ruleValues. If you create a fuzzy
rule using ruleText, before using the rule in a fuzzy system, you must populate the
Consequent property using the update function.

If you update the indices in the rule consequent using dot notation, the Description
property is not updated to reflect the changes. To update the rule description, use the
update function.

Weight — Rule weight
1 (default) | positive numeric scalar

Rule weight, specified as a positive numeric scalar in the range [0 1].

 fisrule
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If you update the rule weight using dot notation, the weight value in the Description
property text is also updated.

Connection — Rule antecedent connection
1 | 2

Rule antecedent connection, specified as one of the following:

• 1 — Evaluate rule antecedents using the AND operator.
• 2 — Evaluate rule antecedents using the OR operator.

If you update the rule connection using dot notation, the antecedent operators in the
Description property text are also updated.

Object Functions
update Update fuzzy rule using fuzzy inference system

Examples

Create Fuzzy Rule

Create a default fuzzy rule.

rule = fisrule

rule = 
  fisrule with properties:

    Description: "input1==mf1 => output1=mf1 (1)"
     Antecedent: 1
     Consequent: 1
         Weight: 1
     Connection: 1

To modify the rule properties, use dot notation. For example, specify a rule weight of 0.5.

rule.Weight = 0.5;
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Create Fuzzy Rule Using Text Description

Create a fuzzy rule using a verbose text description.

rule = fisrule("if service is poor and food is delicious then tip is average (1)");

Alternatively, you can specify the same rule using a symbolic text description.

rule = fisrule("service==poor & food==delicious => tip=average")

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (1)"
     Antecedent: []
     Consequent: []
         Weight: 1
     Connection: 1

Before using rule with a fuzzy system, update the rule Antecedent and Consequent
properties using the update function.

fis = readfis("tipper");
rule = update(rule,fis)

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (1)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 1
     Connection: 1

Create Fuzzy Rule Using Numeric Description

Create a fuzzy rule using a numeric description. Specify that the rule has two input
variables.

 fisrule
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rule = fisrule([1 2 2 0.5 1],2)

rule = 
  fisrule with properties:

    Description: "input1==mf1 & input2==mf2 => output1=mf2 (0.5)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 0.5000
     Connection: 1

Before using rule with a fuzzy system, update the rule Description property using the
update function.

fis = readfis("tipper");
rule = update(rule,fis)

rule = 
  fisrule with properties:

    Description: "service==poor & food==delicious => tip=average (0.5)"
     Antecedent: [1 2]
     Consequent: 2
         Weight: 0.5000
     Connection: 1

Create Multiple Fuzzy Rules

Create a string array of text rule descriptions.

rules1 = ["if service is poor or food is rancid then tip is cheap (0.5)"...
          "if service is excellent and food is not rancid then tip is generous (0.75)"];

Create an array of fuzzy rules using these descriptions.

fuzzyRules1 = fisrule(rules1)

fuzzyRules1 = 
  1x2 fisrule array with properties:

    Description
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    Antecedent
    Consequent
    Weight
    Connection

  Details:
                                Description                        
         __________________________________________________________

    1    "service==poor | food==rancid => tip=cheap (0.5)"         
    2    "service==excellent & food~=rancid => tip=generous (0.75)"

Alternatively, you can specify multiple rules using an array of numeric rule descriptions.

rules2 = [1 1 1 0.5 2;
          2 -1 3 0.75 1];
fuzzyRules2 = fisrule(rules2,2)

fuzzyRules2 = 
  1x2 fisrule array with properties:

    Description
    Antecedent
    Consequent
    Weight
    Connection

  Details:
                            Description                   
         _________________________________________________

    1    "input1==mf1 | input2==mf1 => output1=mf1 (0.5)" 
    2    "input1==mf2 & input2~=mf1 => output1=mf3 (0.75)"

See Also
fismf | fisvar | mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

 fisrule
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Introduced in R2018b
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fistree
Network of connected fuzzy inference systems

Description
Use a fistree object to represent a tree of interconnected fuzzy inference systems.

Creation

Syntax
fisTree = fistree(fis,connections)
fisTree = fistree( ___ ,'DisableStructuralChecks',disableChecks)

Description
fisTree = fistree(fis,connections) creates a network of interconnected mamfis
and sugfis objects using the specified connections between them.

fisTree = fistree( ___ ,'DisableStructuralChecks',disableChecks) sets
the DisableStructuralChecks property of the fistree object.

Input Arguments
fis — Fuzzy inference systems
array

Fuzzy inference systems, specified as an array of mamfis and sugfis objects. Each fuzzy
inference system in the fis array must have at least one input and output for fistree
construction. To evaluate a fistree, each fuzzy inference system must have at least one
rule.

connections — Connections between two fuzzy inference systems
string array

 fistree

9-23



Connections between two fuzzy inference systems, specified as a two-dimensional string
array. Each row represents a connection between two FIS objects. Connections are
specified as follows:

1 Output-to-input connections, ["fromFISName/fromFISOutputName"
"toFISName/toFISInputName"]. In this case, output of "fromFISName" is used
as the input of "toFISName". "fromFISName" and "toFISName" must be different.

2 Input-to-input connections, ["fromFISName/fromFISInputName" "toFISName/
toFISInputName"]. In this case, inputs of "fromFISName" and "toFISName" use
the same input values for evaluation. "fromFISName" and "toFISName" can be
same or different.

The following diagram describes different connection types.

Connection ["fis1/x" "fis2/c"] is specified between output "x" of "fis1" and input
"c" of "fis2". Connection ["fis1/a" "fis1/b"] is specified between inputs "a" and "b"
of "fis1". In this diagram, the fistree inputs are "fis1/a" and "fis2/d" and the output is
"fis2/y".
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Connections must satisfy the following conditions:

1 A fistree object must have at least one FIS input without any incoming connection
and one FIS output without any outgoing connection.

2 A FIS input cannot have more than one incoming connection.
3 A FIS output can have more than one outgoing connection.
4 An input and output of the same FIS cannot be connected. In other words, you cannot

create loops between connected FIS objects.
5 Symmetric connections cannot be specified between two inputs, ["fis1/a" "fis1/

b";"fis1/b" "fis1/a"] is not allowed. Either ["fis1/a" "fis1/b"] or
["fis1/b" "fis1/a"] can be specified.

6 Self-input loops are not allowed, ["fis1/a" "fis1/a"] cannot be specified.

Properties
FIS — Fuzzy inference systems
array

This property is read-only.

Fuzzy inference systems, specified as an array of mamfis and sugfis objects. Each fuzzy
inference system in the fis array must have at least one input and output for fistree
construction. To evaluate a fistree, each fuzzy inference system must have at least one
rule.

Connections — Connections between two fuzzy inference systems
string array

Connections between two fuzzy inference systems, specified as a two-dimensional string
array. Each row represents a connection between two FIS objects. Connections are
specified as follows:

1 Output-to-input connections, ["fromFISName/fromFISOutputName"
"toFISName/toFISInputName"]. In this case, output of "fromFISName" is used
as the input of "toFISName". "fromFISName" and "toFISName" must be different.

2 Input-to-input connections, ["fromFISName/fromFISInputName" "toFISName/
toFISInputName"]. In this case, inputs of "fromFISName" and "toFISName" use
the same input values for evaluation. "fromFISName" and "toFISName" can be
same or different.
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Inputs — Inputs to the FIS tree
string array

Inputs to the FIS tree, specified as an array of strings. Inputs are automatically
determined using the specified connections of the fistree object. FIS inputs with no
incoming connections are included in Inputs. Update this property by updating the
connections of the fistree object.

Outputs — Outputs of the FIS tree
string

Outputs of the FIS tree, specified as a string. Outputs are automatically determined
using the specified connections of the fistree object. FIS outputs without any outgoing
connections are included in Outputs. You can update this property after initial
construction of the fistree object. Existing outputs can be removed or new outputs can
be added. Outputs cannot be empty.

DisableStructuralChecks — Flag for disabling structural checks
false (default) | true

Flag for disabling structural checks, inputs, and outputs, specified as either false or
true. Set DisableStructuralChecks to true to disable automatic updates of
connections, inputs, and outputs when a FIS is updated after construction of a fistree
object. Disabling structural checks can produce an unexpected failure in the evalfis
function.

Object Functions
evalfis Evaluate fuzzy inference system
getTunableSettings Obtain tunable settings from fuzzy inference system
getTunableValues Obtain values of tunable parameters from fuzzy inference system
setTunableValues Specify tunable parameter values of a fuzzy inference system

Examples

Create a Tree of Connected Fuzzy Inference Systems

Create a Mamdani fuzzy inference system and a Sugeno fuzzy inference system.
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fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Define the desired connections between the two fuzzy inference systems.

con1 = ["fis1/output1" "fis2/input1"];
con2 = ["fis1/input1" "fis1/input2"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],[con1; con2])

tree = 
  fistree with properties:

                        FIS: [1x2 FuzzyInferenceSystem]
                Connections: [2x2 string]
                     Inputs: [2x1 string]
                    Outputs: "fis2/output1"
    DisableStructuralChecks: 0

    See 'getTunableSettings' method for parameter optimization.

Update Fuzzy Inference Systems in a FIS Tree

Create a FIS tree.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

fisT = fistree([fis1 fis2],[]);

Display the FIS tree configuration.

plotfis(fisT)

FIS Names:
    fis1
    fis2

Connections:
    []
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Inputs:
    fis1/input1
    fis1/input2
    fis2/input1
    fis2/input2

Outputs:
    fis1/output1
    fis2/output1

Add FIS

Add fis3 to fisT.

fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fisT.FIS(end+1) = fis3;

Add connections between fis1, fis2, and fis3.

fisT.Connections = ["fis1/output1" "fis3/input1";"fis2/output1" "fis3/input2"];

Display the updated FIS tree configuration.

plotfis(fisT)

FIS Names:
    fis1
    fis2
    fis3

Connections:
    From            To
    ------------    -----------
    fis1/output1    fis3/input1
    fis2/output1    fis3/input2

Inputs:
    fis1/input1
    fis1/input2
    fis2/input1
    fis2/input2

Outputs:
    fis3/output1
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Remove FIS

Remove fis1 from fisT.

fisT.FIS(1) = [];

Display the updated FIS tree configuration.

plotfis(fisT)

FIS Names:
    fis2
    fis3

Connections:
    From            To
    ------------    -----------
    fis2/output1    fis3/input2

Inputs:
    fis2/input1
    fis2/input2
    fis3/input1

Outputs:
    fis3/output1

Use Same Value for Multiple Inputs of a FIS Tree

Create fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create a connection between input 2 of fis1 and input 1 of fis2.
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con3 = ["fis1/input2" "fis2/input1"];

Create the FIS tree.

fuzzTree = fistree([fis1 fis2 fis3],[con1;con2;con3]);

Display the inputs of the FIS tree.

fuzzTree.Inputs

ans = 3x1 string array
    "fis1/input1"
    "fis1/input2"
    "fis2/input2"

Evaluate the fuzzy tree. Specify values for input 1 of fis1, input 2 of fis1, and input 2 of
fis2. The value for input 2 of fis1 is also sent to input 1 of fis2.

output = evalfis(fuzzTree,[0.8 0.25 0.7]);

Update FIS Tree Outputs

This example shows how to add or remove FIS tree outputs.

Add Outputs

Create fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create the FIS tree.
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fuzzTree = fistree([fis1 fis2 fis3],[con1;con2]);

Display outputs of the FIS tree. By default, the only open FIS output (from fis3) is an
output of the FIS tree.

fuzzTree.Outputs

ans = 
"fis3/output1"

Add the output of fis2 outputs to the tree output list.

fuzzTree.Outputs(end+1) = "fis2/output1";

Display the updated output list of the FIS tree.

fuzzTree.Outputs

ans = 2x1 string array
    "fis3/output1"
    "fis2/output1"

Evaluate the FIS tree. The result contains the outputs from fis3 and fis2.

evalfis(fuzzTree,[0.5 0.2 0.8 0.45])

ans = 1×2

    0.1507    0.1579

Remove Outputs

Remove the first output from the list.

fuzzTree.Outputs(1) = [];

Display the updated output list of the FIS tree.

fuzzTree.Outputs

ans = 
"fis2/output1"

Evaluate the FIS tree again. The result now contains the output of only fis2.
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evalfis(fuzzTree,[0.5 0.2 0.8 0.45])

ans = 0.1579

Create Incremental FIS Tree

This example shows construction of an incremental FIS tree. For more information on the
types of fuzzy tree structures, see “Fuzzy Trees” on page 2-65.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "color";
fis1.Inputs(2).Name = "doors";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(2).Name = "power";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis3.Inputs(2).Name = "autopilot";
fis3.Outputs(1).Name = "predition";

Create a connection between output 1 of fis1 and input 1 of fis2.

con1 = ["fis1/output1" "fis2/input1"];

Create a connection between output 1 of fis2 and input 1 of fis3.

con2 = ["fis2/output1" "fis3/input1"];

Create the FIS tree.

incTree = fistree([fis1 fis2 fis3],[con1;con2]);

Display the inputs of the FIS tree.

incTree.Inputs

ans = 4x1 string array
    "fis1/color"
    "fis1/doors"
    "fis2/power"
    "fis3/autopilot"

Display outputs of the FIS tree.
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incTree.Outputs

ans = 
"fis3/predition"

Create Cascaded FIS Tree

This example shows construction of a cascaded FIS tree. For more information on the
types of fuzzy tree structures, see “Fuzzy Trees” on page 2-65.

Create fuzzy systems fis1, fis2, fis3, and fis4, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "dist_obs";
fis1.Inputs(2).Name = "angle_obs";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(1).Name = "dist_tar";
fis2.Inputs(2).Name = "angle_tar";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis4 = mamfis('Name','fis4','NumInputs',2,'NumOutputs',1);
fis4.Inputs(2).Name = "preheading_robot";
fis4.Outputs(1).Name = "heading_robot";

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create a connection between output 1 of fis3 and input 1 of fis4.

con3 = ["fis3/output1" "fis4/input1"];

Create the FIS tree.

casTree = fistree([fis1 fis2 fis3 fis4],[con1;con2;con3]);

Display the inputs of the FIS tree.

casTree.Inputs
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ans = 5x1 string array
    "fis1/dist_obs"
    "fis1/angle_obs"
    "fis2/dist_tar"
    "fis2/angle_tar"
    "fis4/preheading_robot"

Display the outputs of the FIS tree.

casTree.Outputs

ans = 
"fis4/heading_robot"

Create Aggregated FIS Tree

This example shows construction of an aggregated FIS tree. For more information on the
types of fuzzy tree structures, see “Fuzzy Trees” on page 2-65.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis1.Inputs(1).Name = "dist_obs";
fis1.Inputs(2).Name = "angle_obs";
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);
fis2.Inputs(1).Name = "dist_tar";
fis2.Inputs(2).Name = "angle_tar";
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis3.Outputs(1).Name = "heading_robot";

Create a connection between output 1 of fis1 and input 1 of fis3.

con1 = ["fis1/output1" "fis3/input1"];

Create a connection between output 1 of fis2 and input 2 of fis3.

con2 = ["fis2/output1" "fis3/input2"];

Create the FIS tree.

aggTree = fistree([fis1 fis2 fis3],[con1;con2]);
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Display the inputs of the FIS tree.

aggTree.Inputs

ans = 4x1 string array
    "fis1/dist_obs"
    "fis1/angle_obs"
    "fis2/dist_tar"
    "fis2/angle_tar"

Display the outputs of the FIS tree.

aggTree.Outputs

ans = 
"fis3/heading_robot"

Create and Evaluate Parallel FIS Tree

This example shows construction of a parallel FIS tree. For more information on the types
of fuzzy tree structures, see “Fuzzy Trees” on page 2-65.

Create fuzzy systems fis1, fis2, and fis3, each with two inputs and one input.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = mamfis('Name','fis2','NumInputs',2,'NumOutputs',1);

Create the FIS tree such that all of the FIS ibjects are in parallel; that is, there are no
interconnections and all the FIS outputs are FIS tree outputs.

parTree = fistree([fis1 fis2],[]);

Display the inputs of the FIS tree.

parTree.Inputs

ans = 4x1 string array
    "fis1/input1"
    "fis1/input2"
    "fis2/input1"
    "fis2/input2"
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Display the outputs of the FIS tree.

parTree.Outputs

ans = 2x1 string array
    "fis1/output1"
    "fis2/output1"

Evaluate the FIS tree.

output = evalfis(parTree,[0.1 0.3 0.8 0.4]);

Generate the final output by summing the FIS tree outputs.

finalOutput = sum(output);

See Also
evalfisOptions | mamfis | sugfis | tunefis

Topics
“Fuzzy Trees” on page 2-65

Introduced in R2019a
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fisvar
Fuzzy variable

Description
Use fisvar objects to represent the input and output variables in a fuzzy inference
system (FIS). For more information on creating fuzzy inference systems, see mamfis and
sugfis.

Creation

Syntax
var = fisvar
var = fisvar(range)
var = fisvar('Name',name)
var = fisvar(range,'Name',name)

Description
var = fisvar creates a fuzzy variable with a default name, default range, and no
membership functions. To change the variable properties, use dot notation.

var = fisvar(range) sets the Range property.

var = fisvar('Name',name) sets the Name property.

var = fisvar(range,'Name',name) sets both the Range and Name properties.

Properties
Name — Variable name
"var" (default) | string | character vector
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Variable name, specified as a string or character vector.

Range — Variable range
[0 1] (default) | two-element vector

Variable range, specified as a two-element element vector where the first element is less
than the second element. The first element specifies the lower bound of the range, and
the second element specifies the upper bound of the range.

MembershipFunctions — Membership functions
[] (default) | vector of fismf objects

Membership functions, specified as a vector of fismf objects. To add membership
functions to a fuzzy variable:

• Use the addMF function.
• Create a vector of fismf objects, and assign it to MembershipFunctions.

You can modify the properties of the membership functions using dot notation.

Object Functions
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable

Examples

Create Fuzzy Variable

Create a fuzzy variable with default properties.

var = fisvar;

To modify the properties of a fisvar object, use dot notation. For example, specify the
range of the fuzzy variable to be from -5 to 5.

var.Range = [-5 5];
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Create Fuzzy Variable with Specified Range

Create a fuzzy variable with an input range from -10 to 10.

var = fisvar([-10 10]);

Create Fuzzy Variable with Specified Name

Create a fuzzy variable with the name "speed".

var = fisvar("Name","speed");

See Also
fismf | fisrule | mamfis | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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mamfis
Mamdani fuzzy inference system

Description
Use a mamfis object to represent a Mamdani fuzzy inference system (FIS). For more
information on Mamdani systems, see “What Is Mamdani-Type Fuzzy Inference?” on page
2-4

As an alternative to Mamdani systems, you can create a Sugeno FIS using a sugfis
object. For a comparison of Mamdani and Sugeno systems, see “Comparison of Sugeno
and Mamdani Systems” on page 2-12.

Creation
To create a Mamdani FIS object, use one of the following methods:

• The mamfis function.
• If you have input and output training data (inputData and outputData,

respectively), you can use the genfis function with the FCM clustering method.

opt = genfisOptions('FCMClustering','FISType','mamdani');
fis = genfis(inputData,outputData,opt);

• If you have a .fis file for a Mamdani system, you can use the readfis function.

Syntax
fis = mamfis
fis = mamfis(Name,Value)

Description
fis = mamfis creates a Mamdani FIS with default property values. To modify the
properties of the fuzzy system, use dot notation.

9 Objects — Alphabetical List

9-40



fis = mamfis(Name,Value) specifies FIS configuration information or sets object
properties using name-value pair arguments. You can specify multiple name-value pairs.
Enclose names in quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs'
and a nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated
pair consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of
'NumOutputs' and a nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated
pair consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"
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Membership function type for both input and output variables, specified as the comma-
separated pair consisting of "MFType" and either "trimf" (triangular MF) or
"gaussmf" (Gaussian MF). For each input and output variable, the membership functions
are uniformly distributed over the variable range with approximately 80% overlap in the
MF supports.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of
"AddRules" and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero,
create rules with antecedents that contain all input membership function
combinations. Each rule consequent contains all the output variables and uses the first
membership function of each output.

• "none" — Create a FIS without any rules.

Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.

AndMethod — AND operator method
"min" (default) | "prod" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent,
specified as one of the following:

• "min" — Minimum of fuzzified input values
• "prod" — Product of fuzzified input values
• String or character vector — Name of a custom AND function in the current working

folder or on the MATLAB path
• Function handle — Custom AND function in the current working folder or on the

MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.
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For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

OrMethod — OR operator method
"max" (default) | "probor" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent,
specified as one of the following:

• "max" — Maximum of fuzzified input values.
• "probor" — Probabilistic OR of fuzzified input values. For more information, see

probor.
• String or character vector — Name of a custom OR function in the current working

folder or on the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the

MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

ImplicationMethod — Implication method
"min" (default) | "prod" | string | character vector | function handle

Implication method for computing the consequent fuzzy set, specified as one of the
following:

• "min" — Truncate the consequent membership function at the antecedent result
value.

• "prod" — Scale the consequent membership function by the antecedent result value.
• String or character vector — Name of a custom implication function in the current

working folder or on the MATLAB path.
• Function handle — Custom implication function in the current working folder or on the

MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.
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For more information on implication and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

AggregationMethod — Aggregation method
"max" (default) | "sum" | "probor" | string | character vector | function handle

Aggregation method for combining rule consequents, specified as one of the following:

• "max" — Maximum of consequent fuzzy sets
• "sum" — Sum of consequent fuzzy sets
• "probor" — Probabilistic OR of consequent fuzzy sets. For more information, see

probor.
• String or character vector — Name of a custom aggregation function in the current

working folder or on the MATLAB path
• Function handle — Custom aggregation function in the current working folder or on

the MATLAB path

For more information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.

For more information on aggregation and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

DefuzzificationMethod — Defuzzification method
"centroid" (default) | "bisector" | "mom" | "lom" | "som" | string | character vector |
function handle

Defuzzification method for computing crisp output values from the aggregated output
fuzzy set, specified as one of the following:

• "centroid" — Centroid of the area under the output fuzzy set
• "bisector" — Bisector of the area under the output fuzzy set
• "mom" — Mean of the values for which the output fuzzy set is maximum
• "lom" — Largest value for which the output fuzzy set is maximum
• "som" — Smallest value for which the output fuzzy set is maximum
• String or character vector — Name of a custom defuzzification function in the current

working folder or on the MATLAB path
• Function handle — Custom defuzzification function in the current working folder or on

the MATLAB path
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For more information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.

For more information on defuzzification and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input
variables, use addInput and removeInput, respectively.

You can also create a vector of fisvar objects and assign it to Inputs using dot
notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output
variables, use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot
notation.

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects

FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the
addRule function.

You can also create a vector of fisrule objects and assign it to Rules using dot
notation.

To remove a rule, set the corresponding rule vector element to []. For example, to
remove the tenth rule from the rule list, type:

fis.Rules(10) = [];
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DisableStructuralChecks — Flag for disabling consistency checks
false (default) | true

Flag for disabling consistency checks when property values change, specified as a logical
value.

By default, when you change the value of a property of a mamfis object, the software
verifies whether the new property value is consistent with the other object properties.
These checks can affect performance, particularly when creating and updating fuzzy
systems within loops.

To disable these checks, which results in faster FIS construction, set
DisableSturcturalChecks to true.

Note Disabling structural checks can result in an invalid mamfis object.

To reenable the consistency checks, first verify that the changes you made to the FIS are
consistent and produce a valid mamfis object. Then, set DisableSturcturalChecks to
false. If the mamfis object is invalid, reenabling the consistency checks generates an
error.

Object Functions
addInput Add input variable to fuzzy inference system
removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file

Examples
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Create Mamdani Fuzzy Inference System

Create a Mamdani fuzzy inference system with default property values.

fis = mamfis;

Modify the system properties using dot notation. For example, configure fis to use
centroid defuzzification.

fis.DefuzzificationMethod = "centroid";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system.
For example, create a Mamdani fuzzy system with specified AND and OR methods.

fis = mamfis("AndMethod","prod","OrMethod","probor");

Specify Number of Inputs and Outputs for Mamdani System

Create a Mamdani fuzzy inference system with three inputs and one output.

fis = mamfis("NumInputs",3,"NumOutputs",1);

Alternative Functionality

App
You can interactively create a Mamdani FIS using the Fuzzy Logic Designer app. You
can then export the system to the MATLAB workspace.

See Also
fismf | fisrule | fisvar | sugfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38
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Introduced in R2018b
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MembershipFunctionSettings
Tunable parameter settings of fuzzy membership functions

Description
A MembershipFunctionSettings object is created using the getTunableSettings
function with a mamfis, sugfis, or fistree object. When the first output is specified,
getTunableSettings returns tunable parameter settings of input membership
functions within the input variable parameter settings. When the second output is
specified, getTunableSettings returns tunable parameter settings of output
membership functions within the output variable parameter settings. Specify the settings
of the Parameters property.

Creation
Create a MembershipFunctionSettings object using getTunableSettings with one
or two outputs. The MembershipFunctions property of the first or second output is
specified as a MembershipFunctionSettings object.

Properties
Parameters — Membership function parameter settings
NumericParameters object

Membership function parameter settings, specified as a NumericParameters object.
The membership function parameter settings consist of the properties Minimum,
Maximum, and Free.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable
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Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(tree)

in = 
  4x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

out = 
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.
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in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of output 2, set the maximum parameter range to 1.

out(2).MembershipFunctions(1).Parameters.Maximum = 1;

See Also
NumericParameters | VariableSettings | getTunableSettings

Introduced in R2019a
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NumericParameters
Tunable numeric parameter settings of membership functions

Description
A NumericParameters object is created using the getTunableSettings function with
a mamfis, sugfis, or fistree object. When the first output is specified,
getTunableSettings returns numeric parameter settings of input membership
functions within the input variable parameter settings. When the second output is
specified, getTunableSettings returns numeric parameter settings of output
membership functions within the output variable parameter settings.

Creation
Create a NumericParameters object using getTunableSettings with one or two
outputs. The Parameters property of the MembershipFunctions property of the first
or second output is specified as a NumericParameters object.

Properties
Free — Parameter values available for tuning
true or 1 | false or 0

Parameter values available for tuning, specified as an array of numeric or logical 1 (true)
or 0 (false).

Minimum — Minimum range of parameter values
double

Minimum range of parameter values, specified as an array of integers.

Maximum — Maximum range of parameter values
double

Maximum range of parameter values, specified as an array of integers.
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Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(tree)

in = 
  4x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

out = 
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.
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in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of output 2, set the maximum parameter range to 1.

out(2).MembershipFunctions(1).Parameters.Maximum = 1;

See Also
MembershipFunctionSettings | VariableSettings | getTunableSettings

Introduced in R2019a
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RuleSettings
Tunable parameter settings of fuzzy rules

Description
A RuleSettings object is created using the getTunableSettings function with a
mamfis, sugfis, or fistree object. When the third output is specified,
getTunableSettings returns tunable parameter settings of fuzzy rules. Specify the
settings of the Antecedent and Consequent properties.

Creation
Create a RuleSettings object using getTunableSettings with three outputs.

Properties
FISName — Name of fuzzy inference system
string

This property is read-only.

Name of fuzzy inference system, specified as a string.

Index — Index of rule in fuzzy inference system
double

This property is read-only.

Index of rule in fuzzy inference system, specified as an integer.

Antecedent — Antecedent parameter settings of rule
ClauseParameters object
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Antecedent parameter settings of rule, specified as a ClauseParameters object. Each
antecedent parameter consists of the properties AllowNot, AllowEmpty, and Free. You
can specify these properties.

Consequent — Consequent parameter settings of rule
ClauseParameters object

Consequent parameter settings of rule, specified as a ClauseParameters object. Each
consequent parameter consists of the properties AllowNot, AllowEmpty, and Free. You
can specify these properties.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable

Examples

Obtain Tunable Settings of Rules from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of rules of the fuzzy inference system.

[~,~,rule] = getTunableSettings(tree)

rule = 
  18x1 RuleSettings array with properties:

    Index
    Antecedent
    Consequent
    FISName
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You can use dot notation to specify the tunable settings of rules.

For the first rule, do not tune input 1 membership function index and do not ignore output
1 membership function index.

rule(1).Antecedent.Free(1) = false;
rule(1).Consequent.AllowEmpty(1) = false;

For the second rule, allow NOT logic for input 2 membership function index.

rule(2).Antecedent.AllowNot(2) = true;

See Also
ClauseParameters | VariableSettings | getTunableSettings

Introduced in R2019a
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sugfis
Sugeno fuzzy inference system

Description
Use a sugfis object to represent a Sugeno fuzzy inference system (FIS). For more
information on Sugeno systems, see “What Is Sugeno-Type Fuzzy Inference?” on page 2-5

As an alternative to Sugeno systems, you can create a Mamdani FIS using a mamfis
object. For a comparison of Sugeno and Mamdani systems, see “Comparison of Sugeno
and Mamdani Systems” on page 2-12.

Creation
To create a Sugeno FIS object, use one of the following methods:

• The sugfis function.
• If you have input/output data, you can use the genfis function.
• If you have a .fis file for a Sugeno system, you can use the readfis function.
• Convert an existing Mamdani FIS to a Sugeno FIS using convertToSugeno.

Syntax
fis = sugfis
fis = sugfis(Name,Value)

Description
fis = sugfis creates a Sugeno FIS with default property values. To modify the
properties of the fuzzy system, use dot notation.
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fis = sugfis(Name,Value) specifies FIS configuration information or sets object
properties using name-value pair arguments. You can specify multiple name-value pairs.
Enclose names in quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumInputs',2 configures the fuzzy system to have two input variables

NumInputs — Number of FIS inputs
0 (default) | nonnegative integer

Number of FIS inputs, specified as the comma-separated pair consisting of 'NumInputs'
and a nonnegative integer.

NumInputMFs — Number of membership functions for each FIS input
3 (default) | positive integer

Number of membership functions for each FIS input, specified as the comma-separated
pair consisting of 'NumInputMFs' and a positive integer.

NumOutputs — Number of FIS outputs
0 (default) | nonnegative integer

Number of FIS outputs, specified as the comma-separated pair consisting of
'NumOutputs' and a nonnegative integer.

NumOutputMFs — Number of membership functions for each FIS output
3 (default) | positive integer

Number of membership functions for each FIS output, specified as the comma-separated
pair consisting of 'NumOutputMFs' and a positive integer.

MFType — Membership function type
"trimf" (default) | "gaussmf"
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Membership function type for input variables, specified as the comma-separated pair
consisting of 'MFType' and either "trimf" (triangular MF) or "gaussmf" (Gaussian
MF). For each input variable, the membership functions are uniformly distributed over
the variable range with approximately 80% overlap in the MF supports.

Output membership functions are set to "constant" and uniformly distributed over the
output variable ranges.

AddRules — Flag for automatically adding rules
"allcombinations" (default) | "none"

Flag for automatically adding rules, specified as the comma-separated pair consisting of
"AddRules" and one of the following:

• "allcombinations" — If both NumInputs and NumOutputs are greater than zero,
create rules with antecedents that contain all input membership function
combinations. Each rule consequent contains all the output variables and uses the first
membership function of each output.

• "none" — Create a FIS without any rules.

Properties
Name — FIS name
"fis" (default) | string | character vector

FIS name, specified as a string or character vector.

AndMethod — AND operator method
"prod" (default) | "min" | string | character vector | function handle

AND operator method for combining fuzzified input values in a fuzzy rule antecedent,
specified as one of the following:

• "prod" — Product of fuzzified input values
• "min" — Minimum of fuzzified input values
• String or character vector — Name of a custom AND function in the current working

folder or on the MATLAB path
• Function handle — Custom AND function in the current working folder or on the

MATLAB path

9 Objects — Alphabetical List

9-60



For more information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

OrMethod — OR operator method
"probor" (default) | "max" | string | character vector | function handle

OR operator method for combining fuzzified input values in a fuzzy rule antecedent,
specified as one of the following:

• "probor" — Probabilistic OR of fuzzified input values. For more information, see
probor.

• "max" — Maximum of fuzzified input values.
• String or character vector — Name of a custom OR function in the current working

folder or on the MATLAB path.
• Function handle — Custom OR function in the current working folder or on the

MATLAB path.

For more information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.

For more information on fuzzy operators and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

ImplicationMethod — Implication method
"prod" (default)

Implication method for computing consequent fuzzy set, specified as "prod". Sugeno
systems always use the "prod" implication method, which scales the consequent
membership function by the antecedent result value.

For more information on implication and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

AggregationMethod — Aggregation method
"sum" (default)

Aggregation method for combining rule consequents, specified as "sum". Sugeno systems
always use the "sum" aggregation method, which is the sum of the consequent fuzzy sets.
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For more information on aggregation and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

DefuzzificationMethod — Defuzzification method
"wtaver" (default) | "wtsum"

Defuzzification method for computing crisp output values from the aggregated output
fuzzy set, specified as one of the following:

• "wtaver" — Weighted average of all rule outputs
• "wtsum" — Weighted sum of all rule outputs

For more information on using custom functions, see “Build Fuzzy Systems Using Custom
Functions” on page 2-50.

For more information on defuzzification and the fuzzy inference process, see “Fuzzy
Inference Process” on page 1-28.

Inputs — FIS input variables
vector of fisvar objects

FIS input variables, specified as a vector of fisvar objects. To add and remove input
variables, use addInput and removeInput, respectively. You can modify the properties
of the input variables using dot notation.

You can also create a vector of fisvar objects and assign it to Inputs using dot
notation.

You can add membership functions to input variables using the addMF function.

Outputs — FIS output variables
vector of fisvar objects

FIS output variables, specified as a vector of fisvar objects. To add and remove output
variables, use addOutput and removeOutput, respectively.

You can also create a vector of fisvar objects and assign it to Outputs using dot
notation.

You can add membership functions to output variables using the addMF function.

Rules — FIS rules
vector of fisrule objects
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FIS input variables, specified as a vector of fisrule objects. To add fuzzy rules, use the
addRule function.

You can also create a vector of fisrule objects and assign it to Rules using dot
notation.

To remove a rule, set the corresponding rule vector element to []. For example, to
remove the tenth rule from the rule list, type:

fis.Rules(10) = [];

DisableStructuralChecks — Flag for disabling consistency checks
false (default) | true

Flag for disabling consistency checks when property values change, specified as a logical
value.

By default, when you change the value of a property of a sugfis object, the software
verifies whether the new property value is consistent with the other object properties.
These checks can affect performance, particularly when creating and updating fuzzy
systems within loops.

To disable these checks, which results in faster FIS construction, set
DisableSturcturalChecks to true.

Note Disabling structural checks can result in an invalid sugfis object.

To reenable the consistency checks, first verify that the changes you made to the FIS are
consistent and produce a valid sugfis object. Then, set DisableSturcturalChecks to
false. If the sugfis object is invalid, reenabling the consistency checks generates an
error.

Object Functions
addInput Add input variable to fuzzy inference system
removeInput Remove input variable from fuzzy inference system
addOutput Add output variable to fuzzy inference system
removeOutput Remove output variable from fuzzy inference system
addRule Add rule to fuzzy inference system
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addMF Add membership function to fuzzy variable
removeMF Remove membership function from fuzzy variable
evalfis Evaluate fuzzy inference system
writeFIS Save fuzzy inference system to file

Examples

Create Sugeno Fuzzy Inference System

Create a Sugeno fuzzy inference system with default property values.

fis = sugfis;

Modify the system properties using dot notation. For example, configure fis to use
weighted-sum defuzzification.

fis.DefuzzificationMethod = "wtsum";

Alternatively, you can specify one of more FIS properties when you create a fuzzy system.
For example, create a Sugeno fuzzy system with specified AND and OR methods.

fis = sugfis("AndMethod","min","OrMethod","max");

Specify Number of Inputs and Outputs for Sugeno System

Create a Sugeno fuzzy inference system with three inputs and one output.

fis = sugfis("NumInputs",3,"NumOutputs",1);

Alternative Functionality

App
You can interactively create a Sugeno FIS using the Fuzzy Logic Designer or Neuro-
Fuzzy Designer apps. You can then export the system to the MATLAB workspace.
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See Also
fismf | fisrule | fisvar | mamfis

Topics
“Build Fuzzy Systems at the Command Line” on page 2-38

Introduced in R2018b
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tunefisOptions
Option set for tunefis function

Description
Use a tunefisOptions object to specify options for tuning fuzzy systems. Specify
options such as the optimization method, optimization type, and distance metric for cost
measurement. Then, use this object as an input for the tunefis command.

Creation

Syntax
opt = tunefisOptions
opt = tunefisOptions(Name,Value)

Description
opt = tunefisOptions creates a default option set for tuning a fuzzy system using
tunefis. Use dot notation to modify the properties of this option set for your specific
application.

opt = tunefisOptions(Name,Value) creates an option set with the specified
“Properties” on page 9-66 using name-value pair arguments. You can specify multiple
name-value pairs.

Properties
Method — Tuning algorithm
'ga' (default) | 'particleswarm' | 'patternsearch' | 'simulannealbnd' |
'anfis'

Tuning algorithm, specified as one of the following:

9 Objects — Alphabetical List

9-66



• 'ga' — genetic algorithm
• 'particleswarm' — particle swarm
• 'patternsearch' — pattern search
• 'simulannealbnd' — simulated annealing algorithm
• 'anfis' — adaptive neuro-fuzzy

These tuning algorithms use solvers from the “Global Optimization Toolbox”, except for
'anfis'. The 'MethodOptions' property differs for each algorithm, and corresponds
to the options input argument for the respective solver. If you specify 'MethodOptions'
without specifying algorithm name, then 'Method' is determined based on
'MethodOptions'.

MethodOptions — Tuning algorithm options
options created using optimoptions

Tuning algorithm options, specified as an option object for the specified tuning algorithm
Method. This property differs for each algorithm and is created using optimoptions. If
MethodOptions is not specified, it is created according to Method. Use dot notation to
modify options in MethodOptions.

OptimizationType — Type of optimization
'tuning' (default) | 'learning'

Type of optimization, specified as one of the following:

• 'tuning'
• 'learning'

When tuning is selected, the existing input, output, and rule parameters are optimized
without learning new rules. When learning is selected, new rules are added based on
NumMaxRules. The anfis algorithm supports only tuning.

NumMaxRules — Maximum number of rules in FIS
inf (default) | integer

Maximum number of rules in FIS after optimization, specified as an integer. The number
of rules in a FIS (after optimization) may be less than 'NumMaxRules' since duplicate
rules with same antecedent values are removed from the rule base. Default value is inf,
which indicates existing rules are used when 'OptimizationType' is 'tuning' and
maximum number of possible rules are used when 'OptimizationType' is
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'learning'. For a fistree object, 'NumMaxRules' indicates that the number of rules
in each FIS of a fistree is less than or equal to the specified value. anfis does not
support rule parameter optimization.

IgnoreInvalidParameters — Invalid parameter use
true (default) | false

Invalid parameter use, specified as either true or false. If true, the tunefis function
ignores invalid parameter values generated in the tuning process. Default value is true.
anfis ignores this parameter value.

DistanceMetric — Type of distance metric
'rmse' (default) | 'norm1 | 'norm2'

Type of distance metric used for cost measurement of the optimized parameter values
with respect to the training data, specified as 'rmse', 'norm1', or 'norm2'. anfis
supports only 'rmse'.

UseParallel — Parallel computation
false (default) | true

Parallel computation, specified as either true or false. If true, tunefis function uses
parallel computation in the optimization process. anfis does not support parallel
optimization.

Examples

Specify Options for FIS Tuning

Create a default option set using the particle swarm tuning algorithm.

opt = tunefisOptions("Method","particleswarm")

opt = 
  tunefisOptions with properties:

                     Method: "particleswarm"
              MethodOptions: [1x1 optim.options.Particleswarm]
           OptimizationType: "tuning"
                NumMaxRules: Inf
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    IgnoreInvalidParameters: 1
             DistanceMetric: "rmse"
                UseParallel: 0

You can modify the options using dot notation. For example, set the maximum number of
iterations to 20.

opt.MethodOptions.MaxIterations = 20;

You can also specify other options when creating the option set. In this example, set the
OptimizationType to "learning" to learn new rules.

opt2 = tunefisOptions("Method","particleswarm","OptimizationType","learning")

opt2 = 
  tunefisOptions with properties:

                     Method: "particleswarm"
              MethodOptions: [1x1 optim.options.Particleswarm]
           OptimizationType: "learning"
                NumMaxRules: Inf
    IgnoreInvalidParameters: 1
             DistanceMetric: "rmse"
                UseParallel: 0

See Also
fistree | getTunableSettings | mamfis | sugfis | tunefis

Introduced in R2019a
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VariableSettings
Tunable parameter settings of fuzzy variables

Description
A VariableSettings object is created using the getTunableSettings function with a
mamfis, sugfis, or fistree object. When the first output is specified,
getTunableSettings returns tunable parameter settings of input variables. When the
second output is specified, getTunableSettings returns tunable parameter settings of
output variables. Specify the settings of the MembershipFunctions property.

Creation
Create a VariableSettings object using getTunableSettings with one or two
outputs.

Properties
FISName — Name of fuzzy inference system
string

This property is read-only.

Name of fuzzy inference system, specified as a string.

Type — Type of variable
"input" | "output"

This property is read-only.

Type of variable, specified as either "input" or "output".

VariableName — Name of variable
string
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This property is read-only.

Name of variable, specified as a string.

MembershipFunctions — Membership function settings
MembershipFunctionSettings object

Membership function settings, specified as a MembershipFunctionSettings objects.
Each membership function consists of the property Parameters, which is specified as a
NumericParameters object. You can specify this property.

Object Functions
setTunable Set specified parameter settings as tunable or nontunable

Examples

Obtain Tunable Settings of Input and Output Variables from FIS

Create two fuzzy inference systems, and define the connection between the two.

fis1 = mamfis('Name','fis1','NumInputs',2,'NumOutputs',1);
fis2 = sugfis('Name','fis2','NumInputs',2,'NumOutputs',1);
con = ["fis1/output1" "fis2/input1"];

Create a tree of fuzzy inference systems.

tree = fistree([fis1 fis2],con);

Obtain the tunable settings of input and output variables of the fuzzy inference system.

[in,out] = getTunableSettings(tree)

in = 
  4x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName
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out = 
  2x1 VariableSettings array with properties:

    Type
    VariableName
    MembershipFunctions
    FISName

You can use dot notation to specify the tunable settings of input and output variables.

For the first membership function of input 1, set the first and third parameters to tunable.

in(1).MembershipFunctions(1).Parameters.Free = [1 0 1];

For the first membership function of input 2, set the minimum parameter range to 0.

in(2).MembershipFunctions(1).Parameters.Minimum = 0;

For the first membership function of output 2, set the maximum parameter range to 1.

out(2).MembershipFunctions(1).Parameters.Maximum = 1;

See Also
MembershipFunctionSettings | RuleSettings | getTunableSettings

Introduced in R2019a
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Diff. Sigmoidal MF
Difference of two sigmoids membership function in Simulink software

Description
The Diff. Sigmoidal MF block implements a membership function in Simulink based on the
difference between two sigmoids. The two sigmoid curves are given by

fk(x) = 1
1 + exp( − ak(x− ck))

where k=1,2. The parameters a1and a2 control the slopes of the left and right curves. The
parameters c1 and c2 control the points of inflection for the left and right curves. The
parameters a1 and a2 should be positive.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
dsigmf

Introduced before R2006a
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Fuzzy Logic Controller
Evaluate fuzzy inference system
Library: Fuzzy Logic Toolbox

Description
The Fuzzy Logic Controller block implements a fuzzy inference system (FIS) in Simulink.
You specify the FIS to evaluate using the FIS name parameter.

For more information on fuzzy inference, see “Fuzzy Inference Process” on page 1-28.

To display the fuzzy inference process in the Rule Viewer during simulation, use the Fuzzy
Logic Controller with Ruleviewer block.

Ports

Input
in — Input signal
scalar | vector

For a single-input fuzzy inference system, the input is a scalar signal. For a multi-input
fuzzy system, combine the inputs into a vector signal using blocks such as:

• Mux
• Vector Concatenate
• Bus Creator
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Output
out — Defuzzified output signal
scalar | vector

For a single-output fuzzy inference system, the output is a scalar signal. For a multi-
output fuzzy system, the output is a vector signal. To split system outputs into scalar
signals, use the Demux block.

fi — Fuzzified input values
matrix

Fuzzified input values, obtained by evaluating the input membership functions of each
rule at the current input values.

fi is an NR-by-NU matrix signal, where NR is the number of FIS rules and NU is the
number of FIS inputs. Element (i,j) of fi is the value of the input membership function for
the jth input in the ith rule.

For more information on fuzzifying input values, see “Fuzzify Inputs” on page 1-29.

Dependencies

To enable this port, select the Fuzzified inputs (fi) parameter.

rfs — Rule firing strengths
column vector

Rule firing strengths, obtained by evaluating the antecedent of each rule; that is, applying
the fuzzy operator to the values of the fuzzified inputs.

rfs is a column vector signal of length NR, where element i is the firing strength of the
ith rule.

For more information on applying fuzzy operators, see “Apply Fuzzy Operator” on page 1-
30.

Dependencies

To enable this port, select the Rule firing strengths (rfs) parameter.

ro — Rule outputs
matrix
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Rule outputs, obtained by applying the rule firing strengths to the output membership
functions using the implication method specified in the FIS.

For a Mamdani system, each rule output is a fuzzy set. In this case, ro is an NS-by-(NRNY)
matrix signal. Here NS is the number of sample points used for evaluating output variable
ranges, and NY is the number of output variables. Each column of ro contains the output
fuzzy set for one rule. The first NR columns contain the rule outputs for the first output
variable, the next NR columns correspond to the second output variable, and so on.

For a Sugeno system, each rule output is a scalar value. In this case, ro is an NR-by-NY
matrix signal. Element (j,k) of ro is the value of the kth output variable for the jth rule.

For more information on fuzzy implication, see “Apply Implication Method” on page 1-31
and “What Is Sugeno-Type Fuzzy Inference?” on page 2-5

Dependencies

• To enable this port, select the Rule outputs (ro) parameter.
• To specify NS, use the Number of samples for output discretization parameter.

ao — Aggregated output
matrix | row vector

Aggregate output for each output variable, obtained by combining the corresponding
outputs from all the rules using the aggregation method specified in the FIS.

For a Mamdani system, the aggregate result for each output variable is a fuzzy set. In this
case, ao is as an NS-by-NY matrix signal. Each column of ao contains the aggregate fuzzy
set for one output variable.

For a Sugeno system, the aggregate result for each output variable is a scalar value. In
this case, ao is a row vector signal of length NY, where element k is the aggregate result
for the kth output variable.

For more information on fuzzy aggregation, see “Aggregate All Outputs” on page 1-31 and
“What Is Sugeno-Type Fuzzy Inference?” on page 2-5

Dependencies

• To enable this port, select the Aggregated outputs (ao) parameter.
• To specify NS, use the Number of samples for output discretization parameter.
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Parameters
General
FIS name — Fuzzy inference system
mamfisobject | sugfisobject | file name

Fuzzy inference system to evaluate, specified as one of the following:

• mamfis or sugfis object — Specify the name of a FIS object in the MATLAB
workspace.

To create a fuzzy inference system, you can:

• Use the Fuzzy Logic Designer app. For an example, see “Build Fuzzy Systems
Using Fuzzy Logic Designer” on page 2-14.

• Automatically generate the FIS object using the genfis command.
• Build the system at the command line. For an example, see “Build Fuzzy Systems at

the Command Line” on page 2-38.
• File name — Specify the name of a .fis file in the current working folder or on the

MATLAB path. Including the file extension in the file name is optional.

To save a fuzzy inference system to a .fis file:

• In Fuzzy Logic Designer or Neuro-Fuzzy Designer, select File > Export > To
File.

• At the command line, use writeFIS.

Number of samples for output discretization — Number of points in output
fuzzy sets
101 (default) | integer greater than 1

Number of samples for discretizing the range of output variables, specified as an integer
greater than 1. This value corresponds to the number of points in the output fuzzy set for
each rule.

To reduce memory usage while evaluating a Mamdani FIS, specify a lower number of
samples. Doing so sacrifices the accuracy of the defuzzified output value. Specifying a low
number of samples can make the output area for defuzzification zero. In this case, the
defuzzified output value is the midpoint of the output variable range.
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Note The block ignores this parameter when evaluating a Sugeno FIS.

Data type — Signal data type
double (default) | single | fixed-point | expression

Signal data type, specified as one of the following:

• double — Double-precision signals
• single — Single-precision signals
• fixdt(1,16,0) — Fixed-point signals with binary point scaling
• fixdt(1,16,2^0,0) — Fixed-point signals with slope and bias scaling
• Expression — Expression that evaluates to one of these data types

For fixed-point data types, you can configure the signedness, word length, and scaling
parameters using the Data Type Assistant. For more information, see “Specifying a
Fixed-Point Data Type” (Simulink).

Fuzzified inputs (fi) — Enable fi output port
off (default) | on

Enable output port for accessing intermediate fuzzified input data.

Rule firing strengths (rfs) — Enable rfs output port
off (default) | on

Enable output port for accessing intermediate rule firing strength data.

Rule outputs (ro) — Enable ro output port
off (default) | on

Enable output port for accessing intermediate rule output data.

Aggregated outputs (ao) — Enable ao output port
off (default) | on

Enable output port for accessing intermediate aggregate output data.

Simulate using — Simulation mode
Interpreted execution (default) | Code generation

Simulation mode, specified as one of the following:
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• Interpreted execution — Simulate fuzzy systems using precompiled MEX files for
single and double data types. Using this option reduces the initial compilation time
of the model.

• Code generation — Simulate fuzzy system without precompiled MEX files. Use this
option when simulating fuzzy systems for code generation applications.

For fixed-point data types, the Fuzzy Logic Controller block always simulates using Code
generation mode.

Diagnostics
Out of range input value — Diagnostic message behavior when an input is
out of range
warning (default) | error | none

Diagnostic message behavior when an input is out of range, specified as one of the
following:

• warning — Report the diagnostic message as a warning.
• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.

When an input value is out of range, corresponding rules in the fuzzy system can have
unexpected firing strengths.

Dependencies

• Diagnostic messages are provided only when the Simulate using parameter is
Interpreted execution.

No rule fired — Diagnostic message behavior when no rules fire
warning (default) | error | none

Diagnostic message behavior when no rules fire for a given output variable, specified as
one of the following:

• warning — Report the diagnostic message as a warning.
• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.
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When No rule fired is warning or none and no rules fire for a given output, the
defuzzified output value is set to its mean range value.

Dependencies

• Diagnostic messages are provided only when the Simulate using parameter is
Interpreted execution.

Empty output fuzzy set — Diagnostic message behavior when an output fuzzy
set is empty
warning (default) | error | none

Diagnostic message behavior when an output fuzzy set is empty, specified as one of the
following:

• warning — Report the diagnostic message as a warning.
• error — Report the diagnostic message as an error.
• none — Do not report the diagnostic message.

When Empty output fuzzy set is warning or none and an output fuzzy set is empty, the
defuzzified value for the corresponding output is set to its mean range value.

Dependencies

• This diagnostic message applies to Mamdani systems only.
• Diagnostic messages are provided only when the Simulate using parameter is

Interpreted execution.

Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
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• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Convert floating-point algorithms to fixed point using Fixed-Point Designer™.

See Also
Blocks
Fuzzy Logic Controller with Ruleviewer

Apps
Fuzzy Logic Designer | Neuro-Fuzzy Designer

Functions
evalfis | genfis | mamfis | readfis | sugfis | writeFIS

Topics
“Fuzzy Inference Process” on page 1-28

10 Blocks — Alphabetical List

10-10



“Simulate Fuzzy Inference Systems in Simulink” on page 5-2

Introduced before R2006a
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Fuzzy Logic Controller with Ruleviewer
Evaluate fuzzy inference system and view rules
Library: Fuzzy Logic Toolbox

Description
The Fuzzy Logic Controller with Ruleviewer block implements a fuzzy inference system
(FIS) in Simulink and displays the fuzzy inference process in the Rule Viewer during the
simulation. You specify the FIS to evaluate using the FIS matrix parameter. To change
the time between Rule Viewer updates, specify the Refresh rate in seconds.

For more information on fuzzy inference, see “Fuzzy Inference Process” on page 1-28.

The Fuzzy Logic Controller with Ruleviewer block does not support all the features
supported by the Fuzzy Logic Controller block. The Fuzzy Logic Controller with
Ruleviewer block:

• Only supports double-precision data.
• Uses 101 points for discretizing output variable ranges.
• Only supports Interpreted execution simulation mode.
• Does not have additional output ports for accessing intermediate fuzzy inference

results.

Ports
Input
Port_1(In1) — Input signal
scalar | vector

For a single-input fuzzy inference system, the input is a scalar. For a multi-input fuzzy
system, combine the inputs into a vector signal using blocks such as:
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• Mux
• Vector Concatenate
• Bus Creator

Output
Port_1(Out1) — Defuzzified output signal
scalar | vector

For a single-output fuzzy inference system, the output is a scalar. For a multi-output fuzzy
system, the output is a vector. To split system outputs into scalar signals, use the Demux
block.

Parameters
FIS matrix — Fuzzy inference system
mamfisobject | sugfisobject

Fuzzy inference system to evaluate, specified as a mamfis or sugfis object. Specify the
name of a FIS object in the MATLAB workspace.

To create a fuzzy inference system, you can:

• Use the Fuzzy Logic Designer app. For an example, see “Build Fuzzy Systems Using
Fuzzy Logic Designer” on page 2-14.

• Automatically generate the FIS object using the genfis command.
• Build the system at the command line. For an example, see “Build Fuzzy Systems at

the Command Line” on page 2-38.

Refresh rate — Time between rule viewer updates
scalar

Time between rule viewer updates in seconds, specified as a scalar. During simulation,
the Rule Viewer display updates at the specified rate to show the inference process for
the latest input signal values.
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Compatibility Considerations

Support for representing fuzzy inference systems as
structures will be removed
Not recommended starting in R2018b

Support for representing fuzzy inference systems as structures will be removed in a
future release. Use mamfis and sugfis objects instead. There are differences between
these representations that require updates to your code. These differences include:

• Object property names that differ from the corresponding structure fields
• Objects that store text data as strings rather than as character vectors

Also, all Fuzzy Logic Toolbox functions that accepted or returned fuzzy inference systems
as structures now accept and return either mamfis or sugfis objects.

To convert existing fuzzy inference system structures to objects, use the convertfis
function.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Generating code using the Fuzzy Logic Controller with Ruleviewer block produces the
same code as using the Fuzzy Logic Controller block. However, the Fuzzy Logic
Controller with Ruleviewer block does not support:

• Generating code for single-point or fixed-point data.
• Changing the number of samples for discretizing the output variable range.
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See Also
Blocks
Fuzzy Logic Controller

Apps
Fuzzy Logic Designer | Neuro-Fuzzy Designer

Functions
evalfis | mamfis | readfis | sugfis

Topics
“Fuzzy Inference Process” on page 1-28
“Simulate Fuzzy Inference Systems in Simulink” on page 5-2

Introduced before R2006a
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Gaussian MF
Gaussian membership function in Simulink software

Description
The Gaussian MF block implements a membership function in Simulink based on a
symmetric Gaussian. The Gaussian curve is given by:

f x = exp −0.5(x− c)2

σ2  

where c is the mean and σ is the standard deviation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
gaussmf

Introduced before R2006a
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Gaussian2 MF
Combination of two Gaussian membership functions in Simulink software

Description
The Gaussian2 MF block implements a membership function based on a combination of
two Gaussian functions. The two Gaussian functions are given by:

 fk x = exp
−0.5(x− ck)2

σk2

where k=1,2. The parameters c1 and σ1 are the mean and standard deviation defining the
left-most curve. The parameters c2 and σ2 are the mean and standard deviation defining
the right-most curve.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
gauss2mf

Introduced before R2006a
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Generalized Bell MF
Generalized bell membership function in Simulink software

Description
The Generalized Bell MF block implements a membership function in Simulink based on a
generalized bell-shaped curve. The generalized bell-shaped curve is given by

f x = 1
1 + x− c

a
2b

where the parameters a and b vary the width of the curve and the parameter c locates the
center of the curve. The parameter b should be positive.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
gbellmf

Introduced before R2006a
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Pi-shaped MF
Pi-shaped membership function in Simulink software

Description
The Pi-shaped MF block implements a membership function in Simulink based on a
spline-based curve, so named because of its Π shape. The parameters a and d locate the
left and right base points or "feet" of the curve. The parameters b and c set the left and
right top point or "shoulders" of the curve.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
pimf

Introduced before R2006a
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Probabilistic OR
Probabilistic OR function in Simulink software

Description
The Probabilistic OR block outputs the probabilistic OR value for the vector signal input,
based on

y = 1 − prod 1 − x

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Probabilistic Rule Agg

Functions
probor

Introduced before R2006a
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Probabilistic Rule Agg
Probabilistic OR function, rule aggregation method

Description
The Probabilistic Rule Agg block outputs the element-wise(.*) probabilistic OR value of
the two inputs based on

y = 1 − prod 1 − a; b

The two inputs, a and b, are row vectors.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Probabilistic OR

Functions
probor

Introduced before R2006a
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Prod. Sigmoidal MF
Product of two sigmoid membership functions in Simulink software

Description
The Prod. Sigmoidal MF block implements a membership function based on the product
of two sigmoidal curves. The two sigmoidal curves are given by

fk x = 1
1 + exp −ak x− ck

where k=1,2 The parameters a1 and a2 control the slopes of the left and right curves. The
parameters c1 and c2 control the points of inflection for the left and right curves.
Parameters a1 and a2 should be positive and negative respectively.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
psigmf

Introduced before R2006a
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S-shaped MF
S-shaped membership function in Simulink software

Description
The S-shaped MF block implements an S-shaped membership function in Simulink. Going
from left to right the function increases from 0 to 1. The parameters a and b locate the
left and right extremes of the sloped portion of the curve.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
smf

Introduced before R2006a
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Sigmoidal MF
Sigmoidal membership function in Simulink software

Description
The Sigmoidal MF block implements a sigmoidal membership function given by

f x = 1
1 + exp( − a(x− c))

When the sign of a is positive the curve increases from left to right. Conversely, when the
sign of a is negative the curve decreases from left to right. The parameter c sets the point
of inflection of the curve.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
sigmf

Introduced before R2006a
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Trapezoidal MF
Trapezoidal membership function in Simulink software

Description
The Trapezoidal MF block implements a trapezoidal-shaped membership function. The
parameters a and d set the left and right "feet," or base points, of the trapezoid. The
parameters b and c set the "shoulders," or top of the trapezoid.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
trapmf

Introduced before R2006a
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Triangular MF
Triangular membership function in Simulink software

Description
The Triangular MF block implements a triangular-shaped membership function. The
parameters a and c set the left and right “feet,” or base points, of the triangle. The
parameter b sets the location of the triangle peak.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
trimf

Introduced before R2006a
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Z-shaped MF
Z-shaped membership function in Simulink software

Description
The Z-shaped MF block implements a Z-shaped membership function. Going from left to
right the function decreases from 1 to 0. The parameters a and b locate the left and right
extremes of the sloped portion of the curve.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
zmf

Introduced before R2006a

 Z-shaped MF
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See Also

More About
• “What Is Fuzzy Logic?” on page 1-3
• “Foundations of Fuzzy Logic” on page 1-10
• “Fuzzy Inference Process” on page 1-28
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Glossary

A
Adaptive neuro-fuzzy inference system (ANFIS)

Technique for automatically tuning Sugeno-type inference systems based on training data.

Aggregation

Combination of the consequents of each rule in a Mamdani fuzzy inference system in
preparation for defuzzification.

Antecedent

Initial (or "if") part of a fuzzy rule.

C
Consequent

Final (or "then") part of a fuzzy rule.

D
Defuzzification

Process of transforming a fuzzy output of a fuzzy inference system into a crisp output.

Degree of fulfillment

See firing strength

Degree of membership

Output of a membership function, this value is always limited to between 0 and 1. Also
known as a membership value or membership grade.
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F
Firing strength

Degree to which the antecedent part of a fuzzy rule is satisfied. The firing strength may
be the result of an AND or an OR operation, and it shapes the output function for the rule.
Also known as degree of fulfillment.

Fuzzification

Process of generating membership values for a fuzzy variable using membership
functions.

Fuzzy c-means clustering

Data clustering technique wherein each data point belongs to a cluster to a degree
specified by a membership grade.

Fuzzy inference system (FIS)

Overall name for a system that uses fuzzy reasoning to map an input space to an output
space.

Fuzzy operators

AND, OR, and NOT operators. These are also known as logical connectives.

Fuzzy set

Set that can contain elements with only a partial degree of membership.

Fuzzy singleton

Fuzzy set with a membership function that is unity at a one particular point and zero
everywhere else.

I
Implication

Process of shaping the fuzzy set in the consequent based on the results of the antecedent
in a Mamdani-type FIS.
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M
Mamdani-type inference

A type of fuzzy inference in which the fuzzy sets from the consequent of each rule are
combined through the aggregation operator and the resulting fuzzy set is defuzzified to
yield the output of the system.

Membership function (MF)

Function that specifies the degree to which a given input belongs to a set or is related to
a concept.

S
Singleton output function

Output function that is given by a spike at a single number rather than a continuous
curve. In the Fuzzy Logic Toolbox software, it is only supported as part of a zero-order
Sugeno model.

Subtractive clustering

Technique for automatically generating fuzzy inference systems by detecting clusters in
input-output training data.

Sugeno-type inference

Type of fuzzy inference in which the consequent of each rule is a linear combination of
the inputs. The output is a weighted linear combination of the consequents.

T
T-conorm

Two-input function that describes a superset of fuzzy union (OR) operators, including
maximum, algebraic sum, and any of several parameterized T-conorms. Also known as S-
norm.
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T-norm

Two-input function that describes a superset of fuzzy intersection (AND) operators,
including minimum, algebraic product, and any of several parameterized T-norms.

See Also

More About
• “What Is Fuzzy Logic?” on page 1-3
• “Foundations of Fuzzy Logic” on page 1-10
• “Fuzzy Inference Process” on page 1-28
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