
Created by Zsolt Voroshazi, PhD
voroshazi.zsolt@virt.uni-pannon.hu

EFOP-3.4.3-16-2016-00009

A felsőfokú oktatás minőségének és hozzáférhetőségének
együttes javítása a Pannon Egyetemen

Updated: 25. Sept. 2020.

EMBEDDED SYSTEM
DEVELOPMENT

(MISAM154R)

• In the fall semester of 2010/11 „Design Methods with Programmable Logic Devices

(VHDL)” was started, meeting the actual industry requirements in the course of Electrical
Engineering BSc, which provides an introduction to VHDL-based design of FPGA-based
digital networks.

• The subject called „FPGA-based Embedded Systems” was launched from the fall
semester of 2011/12. It is a compulsory laboratory for Electrical Engineering BSc and
from the fall semester of 2014/15, both courses started also in BSc in Computer Science.
From fall semester of 2018/19 „Embedded System Development” was introduced also in
Computer Science MSc course.

• During these lab exercises students must work together in small groups to solve the
assigned tasks and implement by using Digilent Zybo FPGA platforms, thus encouraging
them to meet real expectations: methodology for collaborative design, development and
testing.

• Based on my 15 years of educational experience and student feedbacks, as well as the
interest and needs of the industrial partners, a niche presentation has been now
prepared based on internationally applied literature. Some parts of this presentation are
based on Xilinx Vivado Embedded System Design Flow - Professor Workshop and
Teaching Materials and Xilinx Vivado Embedded Linux on the ARM/MicroBlaze
Processors.

EDUCATIONAL AIMS

2

1. Introduction – Embedded Systems

2. FPGAs, Digilent ZyBo development platform

3. Embedded System - Firmware development environment (Xilinx Vivado – „EDK”
Embedded Development)

4. Embedded System - Software development environment (Xilinx VITIS – „SDK”)

5. Embedded Base System Build (and Board Bring-Up)

6. Adding Peripherals (from IP database) to BSB

7. Adding Custom (=own) Peripherals to BSB

8. Development, testing and debugging of software applications – Xilinx VITIS (SDK)

9. Design and Development of Complex IP cores and applications (e.g. camera/video/
audio controllers)

Topics covered in this semester

3

• Fodor Attila, Dr. Vörösházi Zsolt: Beágyazott rendszerek
és programozható logikai alkatrészek (TÁMOP 4.1.2)
tutorial (2011) – in hungarian
 http://www.tankonyvtar.hu/hu/tartalom/tamop425/0008_fodorvoroshazi/Fodor_Voroshazi_Beagy_0903.pdf

(Recommended chapters : 1. Beágyazott rendszerek, 2.9 Buszok, beágyazott

processzorok)

• Xilinx Teaching Materials
 https://www.xilinx.com/support/university/course-materials.html

• Digilent ZyBo FPGA board data sheets:

– Digilent ZyBo HW platform:
 https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/

– Digilent PMOD peripheral modules:
 https://store.digilentinc.com/pmod-modules-connectors/

References

4

• XILINX official website:

 http://www.xilinx.com

• EE Journal – Electronic Engineering:

 http://www.eejournal.com/design/embedded

• EE Times - News:

 http://www.eetimes.com/design/embedded

Further references

5

1. INTRODUCTION
Embedded Systems

• Introduction – What does Embedded System mean?

• FPGA/APSoC – Field Programmable Gate Arrays
/ All Programmable System-on-a-Chips?

What are we going to use?

• Hardware: Digilent ZyBo platform

• Software:

– Xilinx VITIS - Unified Software Development Kit
(2020.1)

• Integrated Embedded + Software Dev. Kits

• Xilinx Vivado Design Suite (version 2020.1) development
tools

OVERVIEW

7

• An „Embedded System” is a combination of (computer)
hardware- and software components that perform a given
function, a specific (control) task, as opposed to general
purpose computer systems.

• Embedded systems includes computer tools which can be
integrated with application-oriented target devices
(ASIC/ASSP, FPGA/APSOC, CPU/MCU, MPU, DSP, GPU, etc.) or
complex application systems (even at OS level). Moreover
they can operate autonomously (without manual

intervention).
– „Programmable” (in our case „reconfigurable”) embedded systems

have a programming interface that usually requires specific
software/firmware development strategies and techniques.

Embedded Systems = HW + FW + SW (OS)

Embedded Systems

8

• Automotive Applications: Embedded Electronic Controllers
– Safety-critical: Central Electronic Controller (ECU), Engine Control, Brake

Assist, Transmission, Anti-lock Braking Control (ABS), Traction Control
(ESP) Airbag, ADAS - Vehicle On-Board Devices

– Passenger-oriented (comfort) systems: entertainment,
seat / mirror control, etc.

• Aerospace and defense applications
– Flight control systems (on-board navigation, GPS receiver),

engine control, autopilot

– Defense systems, radar systems, radio systems, missile control systems

• Medical equipment:
– Medical Imaging, Signal Monitoring (PET, MRI, CT)

• Network / Telecommunication Systems (LTE/5G)

• IoT: Intelligent or smart systems

• WSN: Wireless Sensor Networks (motes)

• Robotics

• Household appliances, or. consumer electronics

Application fields

9

• Dedicated function
– Support a well-defined (application specific) function(s)

• Strict requirements
– Low Cost

– Economy – preferably made of minimal parts

– Speed – preferably fast operation

– Power – Low dissipation

• Real-time operation and system response
– continuous monitoring of the environment without manual

intervention (if possible)

• Co-Design, Co-Simulation, Co-Verification of hardware and
software components

General requirements

10

• Time: The embedded system should start processing a task within a
specified time (after its occurrence).

• Safety: Control of a system that handles an event without causing
any damage to human health or material (in case of malfunction).

• Along this philosophy, two classes of embedded systems can be
defined:
– Real-time system (or time critical): where compliance with time

requirements is the most important consideration,

– Safety-Critical System (no time critical): where security features are more
important than meeting time requirements.

– Note: In reality, it is not easy to group embedded systems into these two

classes, because there may be real-time systems that have some of the

features of security-critical systems (mixed). Standards and laws govern

which applications require the use of a security critical system (eg. ADAS ISO

26262).

Basic requirements

11

Based on strict requirements, two types of real-
time systems can be distinguished:

• hard real-time system: there are strict

requirements and critical processes must be
processed within a specified time,

• soft real-time system: requirements are less

strict; critical processes are processed with
only higher priority.

Real-time embedded systems

12

• Process scheduling and managing resources optimally are also
critical for (real-time) operating systems (OS / RTOS).

• Since every system communicates with its environment through
some kind of peripherals, it is important to manage the
peripherals in a way that meets the requirements of the real-time
system: to comply with the response time, the sequence of
instructions handling the event must be executed. Running the
instruction sequence requires resources that must be provided to
the OS in order to assign them to time-critical processes.

• The following levels of processor scheduling can be distinguished:

– Long-term or work scheduling,

– Medium-term scheduling, and

– Short-term scheduling.

Scheduling (of processes)

13

The OS (kernel) contains a scheduler.

• The task of long-term scheduling is to determine which of the pending
workloads to start running from a mass storage, and when the job is
complete, and when select a new job to start. Therefore, the algorithm for
long-term scheduling should rarely run.

• Medium-term scheduling has called for the elimination of intermittent load

fluctuations to avoid timeouts for higher loads. The medium-term scheduling
algorithm solves this by suspending certain (non-time-critical) processes and
then reactivating as a function of system load. When a process is suspended,
the process is stored in the mass storage, and the OS can take away resources
from the process, which only returns to the suspended process when the
process is reactivated.

• The task of short-term scheduling is to select which ready-to-run process will
get the processor time. The algorithm that performs short-term scheduling
runs frequently and quickly, so the OS always keeps the scheduler code in
memory.

Levels/Terms of scheduling

14

The following basic concepts regarding scheduling and programs can be
defined:

• Task: Individual subtask.

• Job: Small, regularly performed subtasks.

• Process: The smallest executable program unit, a particular
scheduling entity that is treated by the OS as a standalone program.
It has its own (protected) memory space, which is inaccessible by
other processes. Tasks can be implemented by processes.

• Thread: A scheduling entity without its own memory space, threads

belonging to the same parent process work on the same memory
space.

• Kernel: An essential component of the OS that provides task
management, scheduling, and communication between tasks. The
kernel code is made up of hardware-dependent device (HAL –
Hardware Abstraction Layers) and hardware-independent layers.

Scheduling – further definitions

15

• Passive (Dormant): A passive (dormant) state
that may represent a suspended state before-, or
during the initialization.

• Ready to run: Indicates the Ready state. The
priority level of the task is important, as well as
the priority level of the currently running task,
which is used by the scheduler to decide
whether to launch the task.

• Running: The task is currently running.

• Delayed: This condition occurs when the task is
forced to wait for some time interval. Usually
occurs after a timer service call is made.

• Waiting: The task is waiting for a specific event.
(This is usually some kind of I/O peripheral
operation.)
Interrupted: The task has been interrupted or
the interrupt handling routine is interrupting the
process (IRQ, INT).

Task status changes

16

There are two main types of scheduling algorithms:

• Cooperative (= non-preemptive): The operating principle and basic idea
is that a given program or process give up the processor when it is
already running or waiting for an I / O operation. This algorithm works
well and efficiently as long as the software is running properly (not
being in an infinite loop) and giving up the processor. However, if one
of the programs / processes does not give up the processor or freezes,
it can reduce the stability of the whole system. Therefore, the
cooperative algorithm should never occur in real-time embedded OS.

• Preemptive: the scheduling algorithm that is part of the OS controls
the running of programs / processes. In case of a preemptive multitask,
the OS can take away/stop the running rights from the processes and
give the running rights to other processes. Real-time OS schedulers are
always preemptive algorithms, so stopping any program or process
does not significantly affect system stability.

Scheduling algorithms

17

Because the tasks run parallel to each other during OS operation, it must
ensure that the same I / O peripheral, resource, or memory area, is not
used commonly by two or more tasks at the same time, as this may
result in malfunctioning of the system.
The following known methods are available:

• Mutex (mutual exclusion) „Locking mechanism” (only the task that
locked it can unlock it)

• Semaphore: "signaling" mechanism (one task signals the other to
finish and take over the resource) ~ 1 bit information

• Event flags: they can exchange multiple bits of information.

• Mailbox: this can be used to transfer a more complex data structure.

• Queue: this is used to transfer content from multiple mailbox arrays.

• Pipe (FIFO): it allows direct, continuous (even streaming)
communication between two tasks.

Communication between tasks

18

There are several types of classification possible:

• General purpose or embedded OS

• Real-time (time-critical) or non-time-critical OS,

• Open source or licensable OS, etc.

General Purpose Processor’s Operating Systems (OS):

• MS-DOS, Linux, Windows, etc.

Real-time Operating Systems (RTOS) for Embedded Processors:

• Linux

• Android

• Micrium uC / OS

• QNX

• RTLinux

• Windriver VxWorks (RT)

• Windows Embedded, IoT, etc.

(Embedded) Operation Systems - EOS

19

• By integration:
– uP / CPU: conventional microprocessors + physically separate memory +

external I/O peripheral chips (chipsets)

– uC / MCU: microcontrollers: integrated on a single chip processor,
memory (usually flash) and some I/O peripherals

• System-on-a-Chip (SoC): A single-chip system

• Small size and cost, low dissipated power

• By instruction set:
– RISC vs. non-RISC (CISC) ISA instruction set architectures

• By memory access of Instruction/Data:
– Von Neumann (Common) vs. Harvard Architectures (Separated)

• Some architecture types include: Intel 8051, ARM, AVR,
MicroChip (PIC), MIPS, IBM PowerPC, x86 (32/64), Sun SPARC,
etc.

Classification of processors

20

• FPGA: Field-Programmable Gate Arrays = A programmable circuit
consisting of general logic and dedicated resources
– e.g. Xilinx Artix-7 series

• SoC: System-on-a-Chip = Entire system on a single chip
– All functions (analog, digital, or RF) are integrated on a single chip, rather

than using many different devices. This is also true for today's MCU, DSP,
ASIC, or FPGA circuits.

• Zynq = „Zinc” as an alloying element. Tightly integrates traditional
FPGA logic (PL) with processor system (PS) => PL + PS integration!

• APSoC (like a Xilinx Zynq): All Programmable SoC, which is
programmable in all its components.

• A Zynq APSoC chip integrates the following two main parts:
– Conventional FPGA Logic (PL) = Artix-7 FPGA Logic,

– Processor system (PS): ARM-Cortex-A9 cores

Clarification of definitions

21

Leading Technologies for Design and Implementation of Embedded
Systems – classification of processign units like:

• (DSP): Digital Signal Processor based systems

• (MCU): Microcontroller Unit based systems

• (ASIC / ASSP): Application Specific (equipment oriented) Integrated
Circuit technology based systems

• (FPGA): Programmable Logic Gate Circuit Technology based systems

• (CPU / MPU / GPU): A microprocessor or graphics processor units

• SoC: System-on-a-Chip: a one-chip system that can integrate the above
technologies together!

Development strategies:

• HW / SW co-design: collaborative design of HW / SW parts

• HW / SW co-verification: collabborative inspection and testing of HW /
SW parts

Technologies and strategies

22

System-On-a-Board vs. System-On-a-Chip

Zynq
APSoC

vs.

23 Reference: http://www.zynqbook.com/

• Asynchronous serial communication interfaces: RS-232, RS-422, RS-
485, etc.

• Synchronous serial communication interfaces: I2C, SPI, etc.

• Universal Serial bus: USB

• Multimedia cards: (SD) Smart Cards, (CF) Compact Flash etc.

• Network: Ethernet (1GbE / 10 GbE / 100 GbE)

• Industrial Networks or „Field-bus” protokold: CAN, LIN, PROFIBUS, IO-
LINK etc.

• Timer-schedulers: PLL(s), Timers, Counters, Watchdog timers (WDT)

• General Purpose I/Os - GPIOs: LEDs, push-buttons, dip switches, LCD
displays, etc.

• Analog/Digital – Digital/Analog (ADC/DAC) converters

• Debug ports: JTAG, ISP, ICSP, BDM, DP9, etc.

Typical I/O peripherals

24

Main design steps for FPGA-base embedded systems:

• FPGA hardware (firmware) design
– Selecting Embeddable / embedded processor:

• Licensable Soft-core: PicoBlaze / MicroBlaze™ / ARM-M0-3 (Xilinx);
Nios II™ (Altera),

• Licensable Hard-core: IBM PowerPC® (Xilinx), ARM® (Xilinx / Altera),…

• Open source processor cores: e.g. www.opencores.org

– Selecting Programmable Peripherals (see topics from Development

platforms or Embedded Peripherals),

– Generate device drivers and SW libraries

• BSP: Board Support Packages = Domains

– Application Development:

• Software routines (API),

• Interrupt handling routines,

• Operating systems, real-time operating system

FPGA-based embedded systems

25

DIGILENT ZYBO + PMOD
Short introduction about development hardwares

ZYBO™ Zynq FPGA/APSoC development kit

• Xilinx Zynq-7000 (Z-7010)

– 650 MHz dual ARM Cortex-A9 cores (PS)

– 8-channel DMA controller (PS)

– 1G Ethernet, I2C, SPI, USB-OTG controller (PS)

– Artix-7 FPGA logic (PL)

– 28K logic cell, 240 Kbyte BRAM, 80 DSP multiplier (PL)

– 12-bits, 1MSPS XADC (PL)

• 512 Mbyte DDR3 x32-bit (databus), 1050Mbps throughput

• Tri-mode 10/100/1000 Ethernet PHY

• HDMI port: Dual role (source/sink)

• VGA port: 16-bit

• uSD card: storing OS file system

• OTG USB 2.0 (host and device)

• Audio codec

• 128Mbit x Serial Flash/QSPI (storing configuration)

• JTAG-USB programmability, UART-USB controller

• GPIO: 4+1 LED, 4+2 push buttons, 4 dip switches

• 4+2 PMOD connector (+A/D)

Digilent ZyBo development platform

27 Webpage: https://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/

• Digilent Peripheral modules (PMOD), further
expandability:
– character LCD, OLED, 7segLEG

– GPS, WiFi, Bluetooth,

– Ethernet IF, USB-UART, RS232

– Joystick, Rotary Enc., Switches,

– SD Card, Serial Flash,

– A/D, D/A converters, H-bridges

– Accelerometer, Gyroscope,

– Temperature sensor, ...stb.

OR

– „3rd party” solutions, development and adaptation of custom-
designed expansion/ add-on cards.

Expandability - PMODs

 Webpage: https://store.digilentinc.com/pmod-modules-connectors/ 28

DEVELOPMENT TOOLS
Xilinx Vivado / VITIS 2020.1

• Xilinx VITIS – Unified software platform

Development tools

• Comprehensive VITIS core development
kit to seamlessly build
accelerated/embedded applications

• Rich set of hardware-accelerated open-
source libraries optimized for Xilinx
hardware platforms

• Plug-in domain-specific development
environments enabling development
directly in familiar, higher-level
frameworks

• A growing ecosystem of hardware-
accelerated partner libraries and pre-
built applications

• VITIS Target Platform:

– Xilinx embedded devices, operating
system, boot loader and drivers,
root file system.

– Predefined target platforms /or
own Xilinx based platforms (defined

by Vivado Design Suite)

30

• Creation of embedded system using
Xilinx Series-7, or Xilinx Zynq®
SoC/MPSoC devices,

– ARM Cortex-A9/A53/A57/A72 hard
processor cores

– MicroBlaze™ soft processor cores, and

– ARM Cortex-M1/M3 micro controllers
(soft cores)

• Includes open source operating systems
and bare metal drivers,

• Multiple runtimes and Multi-OS
environments,

• Compilers, debuggers, and profiling
tools.

Embedded Software Infrastructure

31

THANK YOU FOR
YOUR KIND
ATTENTION!

EFOP-3.4.3-16-2016-00009

A felsőfokú oktatás minőségének és hozzáférhetőségének

együttes javítása a Pannon Egyetemen

