
Created by Zsolt Voroshazi, PhD
voroshazi.zsolt@virt.uni-pannon.hu

EFOP-3.4.3-16-2016-00009

A felsőfokú oktatás minőségének és hozzáférhetőségének
együttes javítása a Pannon Egyetemen

Updated: 20 Nov. 2020.

EMBEDDED SYSTEM
DEVELOPMENT

(MISAM154R)

5. VIVADO – EMBEDDED SYSTEM
Adding GPIO peripherals to BSB from IP Catalog

1. Introduction – Embedded Systems

2. FPGAs, Digilent ZyBo development platform

3. Embedded System - Firmware development environment (Xilinx Vivado – „EDK”

Embedded Development)

4. Embedded System - Software development environment (Xilinx VITIS – „SDK”)

5. Embedded Base System Build (and Board Bring-Up)

6. Adding GPIO Peripherals (from IP database) to BSB

7. Adding Custom (=own) Peripherals to BSB

8. Development, testing and debugging of software applications – Xilinx VITIS (SDK)

9. Design and Development of Complex IP cores and applications (e.g. camera/video/

audio controllers)

Topics covered

3

• Make sure that the path of the Vivado/VITIS project to be

created does NOT contain accented letters or "White-space"

characters!

• Have permissions on the drive you are working on:

– If possible, DO NOT work on a network drive!

• The name of the project and source files should NOT start with

a number, but they can contain a number! (due to VHDL)

• Use case-sensitive letters consistently within a source file and

a project!

• If possible, the name of the project directory, project and

source file(s) should be different and refer to their function for

easier identification of possible error messages.

Important notes & Tips

4

XILINX VIVADO DESIGN SUITE
Adding IP cores to the Embedded Base System

• Vivado – Block Designer

– Add IP (Intellectual Property) cores to the

formerly elaborated block design (Embedded Base

System) from the IP Catalog,

– Parameterize IP blocks, set connections, interfaces,

address, and external ports (modify .XDC if

needed),

• VITIS - SDK

– Customize compiler settings,

– Creating a software application (from pre-defined

template)

Task

6

• Create a new project based on previous laboratory (04.) by

using the Xilinx Vivado (IPI) embedded system designer,

– LAB01 project → Save as… → LAB02_A

• Select and add GPIO peripherals to the base system

• Parameterize and connect them, make external ports

• Overview of the created project,

– Implementation and Bitstream generation (.BIT) is now necessary,

because PL side will also be configured!

• Create peripheral „TestApp” software application(s) running on

ARM by using the Xilinx VITIS environment (~SDK),

• Verify the operation of the completed embedded system and

software application test on Digilent ZyBo.

Main steps to solve the task

7

XILINX VIVADO DESIGN SUITE
LAB02_A. PUSH BUTTONS, DIP SWITCHES (GPIOs)

PS side:

• ARM hard-processor (Core0)

• Internal OnChip-RAM controller

• UART1 (serial) interface

• External DDR3 memory controller

• Global Timer

Test system to be implemented

9

ARM

Cortex-A9_0

AXI

Interconnect

Block

DDR3

Memory

Controller

AXI

Interconnect

Block

AXI-BRAM Controller

Memory

GPIO

UART 1RS232

AXI4 AXI4

AXI4-
Lite

AXI4-
Lite

AXI4-
Lite

GPIO

LED_IP

AXI4-
Lite

BRAM

M_AXI_GP0

M_AXI_G
P1

PS

PL

Timer

No IPs will be added on the PL (FPGA) side yet, so only the

PS side will be configured!

LED

Push-Buttons

DIP Switches

PL (FPGA)

• (A) LAB02_A: GPIO inputs

– PBSs: Push Button (nyomógomb kezelő)

– DIPs: Switches (kapcsoló kezelő)

• (B) LAB02_B: GPIO outputs

– Custom LED controller

A

B

• Start Vivado

– Start menu → Programs → Xilinx Design Tools → Vivado 2020.1

• Open the previous project! (LAB01)

– File → Project → Open… / Open Recent…

– <projectdir>/LAB01/<system_name>.xpr → Open

• File → Project → Save As… → LAB02_A

– (This will save former project LAB01 as LAB02_A)

Project – Open / Save as…

10

• Open Design Sources → system.bd blokk design (double click)

– Open Processing_system7_0

• PS-PL configuration:

– > General → Enable Clock Resets:

enable FCLK_RESET0_N

– > AXI Non Secure Enablement: GP Master AXI interface

enable M_AXI_GP0 port!

• Clock configuration:

– PL Fabric Clocks: enable FCLK_CLK0 (100 MHz IO_PLL)

Modify Zynq PS settings

11

GP0 GP1

• Examine, that the previosly enabled ports:

– GP0 AXI Master interface,

– FCLK_CLK0 PL-side clock,

– FCLK_RESET0_N reset port are visible now?

– What do you think about their functionality?

Zynq PS – Block diagram

12

?

• Adding new IP cores – possible ways:

a) Block Diagram View → Add IP OR

b) Open IP Catalog → Select IP → Double click – Add IP to Block Design

• Add 2 PL side AXI_GPIO peripherals to the processor system

Adding and connecting AXI GPIO
peripherals to the PL-side

13

2x
1x DIP
1x PB

2

1

4

5

3

• For each IP modul (e.g. AXI_GPIO) the

following should be set:

– a.) interface connection between the IP modul

and bus system (AXI),

– b.) mapping IP modul to the PS address space

(Base-High Addresses),

– c.) assigning I/O ports of IP modules to external

ports,

– d.) finally, assigning external ports to physical

FPGA pins (.XDC editing) – I/O planning.

Adding and connecting AXI GPIO
peripherals to the PL-side (cont.)

14

AXI GPIO_0 as DIP switches (DIP) and AXI_GPIO_1 as push

buttons (PB).

Adding GPIOs – Block Diagram view

15

Set AXI_GPIO peripheral - Dip switches

16

1

2

3

4

Set AXI_GPIO peripheral - Push buttons

17

1

2

3

4

Renaming AXI GPIO peripherals

18

1

2

Connecting AXI GPIOs (autorouter)

19

1

2

3
4

Block Design – Analyzis

20

?

?

Analyze the parameters of AXI peripheral interface:

• How many slave-, and master interfaces does it have?

Analyzis – Processing_system7_axi_periph

21

1

2

3

Analyzis – Rst_Processing_system7 (Reset)

22

Analyze the parameters of AXI reset generator:

• How many low-/and high assertion reset signals does it have?

• Block Design → select „Address Editor” tab

• Map „unmapped” GPIO IP peripherals into the

memory address space (automatically or manually)

Set memory addresses – AXI GPIO

23

1

2

* Address ranges must be limited to 2 ^ n in size and
must not overlap!

The dip and pb GPIO instances must be connected to the physical FPGA pins of the

(dip) switches and (pb) pushbuttons on the ZyBo platform:

1. The data ports of GPIO instances must also be connected to external FPGA pins,

2. We also define the names of the external ports (e.g. ending in _pin),

3. In the <system> .XDC file the proper FPGA pin must be specified.

Making external ports – AXI GPIO

24

1

2

3

4

• Update the Block Design:

– Regenerate Layout

– Validate Design (DRC)

– Flow Navigator → Run Synthesis

• Open Synthesized Design, OK

• At the final step, the FPGA I/O pins must also be

assigned to the two external ports

(dip_pin and pb_pin, respectively)!

– Layout menu → I/O Planning layout view

Block Design – Layout synthesis

25

Block Design – Full view

26

I/O Planning – Pin assignment

27

Implementation and Bitstream
generation

28

• Flow Navigator menu → Run Implementation

– It can filters out possible wrong assignments / errors,

– Warning messages are allowed (the design can be

implemented),

– Some floating wires are also allowed (e.g. Peripheral Reset,

etc.).

– While Vivado is working you can check out the

synthesis/implementation reports!

Finally, run the Bitstream generation:

• Flow Navigator → Generate Bitstream

• What is the physical package pin value of the push

buttons (pb)?
– R18 = pb_pin_tri_i[0]

– P16 = pb_pin_tri_i[1]

– V16 = pb_pin_tri_i[2]

– Y16 = pb_pin_tri_i[3]

• What is the physical package pin value of the dip

switches (dip):
– G15 = dip_pin_tri_i[0]

– P15 = dip_pin_tri_i[1]

– W13 = dip_pin_tri_i[2]

– T16 = dip_pin_tri_i[3]

• What are their directions?

– All „IN” as INput direction

Q & A 1.)

29

Layout Edutor – Floorplanning

30

1

2

3

XILINX VIVADO DESIGN SUITE
LAB02_A. ANALYZING BLOCK DIAGRAM AND RIPORTS

• Question 1.) (buses, internal signals)

– Which IP peripheral instance(s) are associated with the

clock named processing_system7_0_FCLK_CLK0?

– What is its frequency?

– Which IP peripheral instance(s) are connected to the AXI

Lite bus interface?

• Question 2.) (addresses)

– Outline a full memory space / map of the system by

specifying instance names!

• Question 3.) (resource utilization)

– How many resources are utilized on the PL/FPGA side?

Analyzing Block Diagram

32

• Question 1.) Solution

– Which IP peripheral instance(s) are associated with the clock named

processing_system7_0_FCLK_CLK0 ?

• processing_system7 (feedback)

• rst_processing_system7

• dip

• pb

• ps7_axi_periph

– Clock processing_system7_0_FCLK_CLK0 is:

• 100 MHz! (Just check it: ZynqPS → Clock Configuration → PL Fabric Clock)

– Which IP peripheral instance(s) are

connected to the AXI Lite bus interface?

• processing_system7

• dip

• pb

Analyzing Block Diagram (cont.)

33

• Question 2.) Solution
– memory space: Block Diagram → Address Editor or VITIS .XSA

Analyzing Block Diagram (cont.)

34

Unused

DDR_RAM
512M

dip

pb

PS-7 side
peripherals

(UART, USB, GPIO, ENET,

SDIO)

0x0010_0000–0x1fff_ffff

0x4120_0000-0x4120_FFFF

0x4122_0000–0xE000_0FFF

ARM-side
controllers

(TIMER, DMA,
PMU, SCU, GIC,

WDT …)

0xE010_0FFF-0xFFFF_FFFF

0x2000_0000–0x411f_ffff

0x4121_0000-0x4121_FFFF

0xE000_1000 - ….

Low memory

addresses

High memory

addresses

PL-side

peripherals

• Question 3.) Solution
– How many resources are utilized on the PL/FPGA side?

• Reports tab → Report Utilization (vagy Project Summary)

Analyzing Block Diagram (cont.)

35

+----------------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------------------+------+-------+-----------+-------+
Slice LUTs	566	0	17600	3.22
LUT as Logic	504	0	17600	2.86
LUT as Memory	62	0	6000	1.03
LUT as Distributed RAM	0	0		
LUT as Shift Register	62	0		
Slice Registers	815	0	35200	2.32
Register as Flip Flop	815	0	35200	2.32
Register as Latch	0	0	35200	0.00
F7 Muxes	0	0	8800	0.00
F8 Muxes	0	0	4400	0.00
+----------------------------+------+-------+-----------+-------+

• File → Export → Export Hardware…

VIVADO Export HW → VITIS (~SDK)

36

1

2

VIVADO Export HW → VITIS (cont.)

37

Select „Include bitstream” option as output:

2

1

Export HW → VITIS (cont.)

38

Set XSA* file name and export directory path:

*Xilinx® Support Archive: new hw descriptor format since VITIS 2020.x (see the next slide)

1

2

3

USING XILINX VITIS
LAB02_A. Creating a software test application

1. Creating a Vivado project, then Export HW → VITIS,

2. Creating a new application or an application generated from

a C/C ++ template (e.g. TestApp peripheral test):

a. Importing .XSA

b. Generating and compiling an application project containing a

platform and a domain inside (~BSP: Board Support Package),

c. Generating a Linker Script (specifying memory sections, .LD),

d. Writing / generating and compiling the SW application

3. Setup a Serial terminal/Console (USB-serial port),

4. Connecting and setup a JTAG-USB programmer,

– Configuring the FPGA (.BIT if PL-side existing)

5. Creating a ‘Debug Configuration’ for hardware debugging

6. Debug (insert breakpoints, stepping, run, etc.)

VITIS – General steps of application
development

40

√

Starting VITIS

41

• Set workspace directory properly (lab02_a):

– Recommended to use vitis_workspace as a

subdirectory in your lab folder. Then Launch...

1

2

OR externally

From Vivado: Tools menu → Launch VITIS IDE

Xilinx VITIS – Create Application

42

Recall the steps of the former LAB01!

1. Create a new application project

– File → New → Application Project…

2. Platform – Create a new platform from HW (XSA)

– Browse… for LAB02 system_wrapper.xsa. Open it.

– Do not select the „Generate boot components”

3. Application project details

– Type „TestApp” as project name

– Type „Zybo_test_system” as system project name

– Select ps7_cortexa9_0 as target ARM core 0

4. Domain: leave settings as default (standalone)

Create Application (cont)

43

1

2

3

4

• x

Example I.) Creating TestApp
application

44

1

2

VITIS GUI – Main window

45

1

2

VITIS – HW platform

46

1

2

3

4

• Software Platform Settings
– Selected OS: standalone vs. freertos_10 (or 3rd Party OS)

– Supported SW libraries (lib)

VITIS – BSP Board Support Package

47.MSS: Microprocessor Software Specification (system.mss)

• What is the IP type and IP version of „dip” and „pb”

instances?

– axi_gpio,

– v2.0

• What is the driver name of them?

– gpio

• Calculate what size they are?

– dip: 0x4120 0000–0x4120 ffff = 64 KByte

– pb: 0x4121 0000–0x4121 ffff = 64 KByte

Q & A 1.)

48

• Add/Create new source (lab2_a.c) to the application

project

Add C/C++ source(s)

49

!
1

2

3

4

5

Download and unpack the archive from

laboratory website:

BER_lab2_a_main_TestApp.zip

TestApp – source code

50BER_lab2_a_main_TestApp.zip

• system_wrapper as HW platform was
exported from Vivado (.xsa, .bit, etc.)

– System_wrapper.bit (FPGA configuration = bitstream)

contains:
– BSP: (OS routines, device drivers, etc.)

• MSS: Microprocessor software/driver descriptor

(system.mss)

• /includes/xparameters.h !!! (all related #define

and address ranges are defined here)

• Zybo_test_system as system_project

contains
– SW: TestApp (SW application)

• \Binaries (executable load file as .elf object file)
• \Includes (factory default headers)

• \Debug

• \Src = collection of .h, .c, .cpp sources (e.g. lab2_a.c)

• .ld = linker script!
• Main() entry point in the helloworld.c file.

VITIS – Project Explorer / Hierarchy

51

• 1. Select Application project (e.g. TestApp)

• 2. Project menu → Build Project… in two steps:

– Build BSP (system_wrapper)

– Build software application (lab2_a.c)

Build project

52

!

1

2

Build project – Result (Console)

53

'Building target: TestApp.elf'

'Invoking: ARM v7 gcc linker'

arm-none-eabi-gcc -mcpu=cortex-a9 -mfpu=vfpv3 -mfloat-abi=hard -Wl,-
build-id=none -specs=Xilinx.spec -Wl,-T -Wl,../src/lscript.ld -
LF:/Vivado_2020.1/lab02_a/vitis_workspace/system_wrapper/export/syste
m_wrapper/sw/system_wrapper/domain_ps7_cortexa9_0/bsplib/lib -o
"TestApp.elf" ./src/lab2_a.o -Wl,--start-group,-lxil,-lgcc,-lc,--
end-group

'Finished building target: TestApp.elf'

' '

'Invoking: ARM v7 Print Size'

arm-none-eabi-size TestApp.elf |tee "TestApp.elf.size"

text data bss dec hex filename

22840 1176 22584 46600 b608 TestApp.elf

'Finished building: TestApp.elf.size'

Decimal size: 46600 byte ~46 KByte . The entire program can be placed both

the internal on-chip RAM 0/1 and the external DDR RAM. (On the PL / FPGA-

side, however, this amount of BRAM memory should be reserved). Therefore,
the executable .elf file was also generated successfully.

1. Connect the USB-serial cable (power+programmer functionality). Please

check:

• JP7 jumper = USB power!

• JP5 jumper = JTAG mode!

2. Now Power ON the ZyBo platform

Embedded system and software test
verification

54

ZyBo – Xilinx USB programming
cable

VCC3V3 – red VREF (6)
GND – black GND (5)

TCK-JTAG – yellow TCK (4)
TDO-FX2 – lilac – TDO (3)
TDI-JTAG – white TDI (2)

TMS-JTAG – green TMS (1)

1

6

!
1

2

3

• Select the application (TestApp) in the Project Explorer

Creating Debug Configuration

55

!
1

2

3

• Select „Single Application Debug (GDB)” option

– New configuration

Create a new GDB configuration

56

1

2

3

Lunching Debugger

57

1 2

3

Set Debug-serial port (VITIS terminal)

58

1

2

• Terminal: BaudRate / Data bits according

to the settings of PS UART or / AXI_UART IP
modul!

• Port: COM[XY] – setting according to WINDOWS

→ „Device Manager” → Ports (COM &LPT)

TestApp – Verification result

59

What do you experience?

LITTLE ENDIAN!

TestApp – Verification result

60

1

2

3

4

• IMPORTANT! At the end of the HW debug, the running debug configuration

must be Terminated and Removed!

Terminate Debug process

61

1

2

• Check compiler settings:

– Right click on TestApp → C/C++ Build Settings

Compiler settings

62

1
2

3

• Xilinx menu → Generate Linker Script (lscript.ld) → RAM0

Linker Script generation (Basic)

63

!

1

2
3

4

1. File → New → Application Project …

2. Select system_wrapper.xsa as platform

3. Add „Peripheral_test” as application

project name

• + Create a new system project (leave Peripheral

Test_system by default)

• Select ps7_cortexa9_0 ARM core-0

4. Leave domain settings as default

5. Templates: select „Peripheral Test”. FINISH.

Example II.) Peripheral Test

64

1. Build the built-in Peripheral Test application (.elf)

2. Lunch the proper Debug configuration (GDB) for hardware

debugging

3. Setup the VITIS serial terminal/Console (USB-serial port),

4. Connecting and setup a JTAG-USB programmer,

– Configuring the FPGA (.BIT if PL-side existing)

5. Debug procedure (insert breakpoints, stepping, run, etc.)

– Watching variables and examine memory monitor !

6. At the end of debug procedure do not forget to Terminate

and Remove the actual Debug configuration (GDB)!

7. That’s all :D

Example II.) Build and Debug

65

• What is the size of the Peripheral_test application?

– ~82 Kbyte

• Generate the linker script to RAM1

(ps7_ram1) address space! What do you

experience?

– Linking ERROR. Why?

Example II.) Questions & Answers

66

'Invoking: ARM v7 Print Size'
arm-none-eabi-size Peripheral_test.elf |tee
"Peripheral_test.elf.size"

text data bss dec hexfilename
46796 1992 33440 82228

14134Peripheral_test.elf
'Finished building: Peripheral_test.elf.size'

Connected to COM18 at 115200
---Entering main---
Running ScuGicSelfTestExample() for ps7_scugic_0...

ScuGicSelfTestExample PASSED
ScuGic Interrupt Setup PASSED

Running GpioInputExample() for dip...
GpioInputExample PASSED. Read data:0xD

Running GpioInputExample() for pb...
GpioInputExample PASSED. Read data:0x4

Running DcfgSelfTestExample() for ps7_dev_cfg_0...
DcfgSelfTestExample PASSED
……
---Exiting main---

HW debugging steps – Peripheral_test

67

1. Create a new Debug Configuration (GDB) for Peripheral_test

2. Lunch Debugger

3. Set-up Debug-serial port (VITIS terminal)

4. HW debug – Peripheral_test

5. Examine results – serial logs

6. Terminate and remove debug process!

• To the ARM-AXI base system created in the previous (4. –

LAB01), we added two PL-side AXI GPIO peripherals from the

Vivado IP catalog.

• Peripherals were properly configured and connected to the

external I/O pins of the FPGA.

• We examined both the Block Diagram and the report files.

• The DIP switches (4) and PB pushbuttons (4) on the ZyBo card

have been assigned to the pin assignments.

• Finally, we verified the completed embedded system

(HW+FW) and the correct operation of the SW application

(TestApp, and Peripheral Test) in VITIS unified environment.

LAB02 – Summary

68

THANK YOU FOR
YOUR KIND
ATTENTION!

EFOP-3.4.3-16-2016-00009

A felsőfokú oktatás minőségének és hozzáférhetőségének

együttes javítása a Pannon Egyetemen

• x

s

70

