5

Shared Memory Multiprocessors

The most prevalent form of parallel architectureis the multiprocessor of small to
moderate scale that providesaglobal physical address space and symmetric accessto
al of main memory from any processor, often called a symmetric multiprocessor or
SMP. Every processor hasits own cache, and all the processors and memory modules
attach to the same interconnect, which is usually a shared bus. SMPs dominate the
server market and are becoming more common on the desktop. They are aso impor-
tant building blocks for larger-scalesystems. The efficient sharing of resources, such
as memory and processors, makes these machines attractive as "throughput
engines' for multiple sequential jobs with varying memory and CPU requirements.
The ability to accessall shared data efficiently from any of the processors using ordi-
nary loads and stores, together with the automatic movement and replication of
shared data in the local caches, makes them attractive for parallel programming.
These features are aso very useful for the operating system, whose different pro-
cessesshare data structures and can easily run on different processors.

From the viewpoint of the layers of the communication architecture in
Figure 5.1, the shared address space programming model is supported directly by
hardware. User processes can read and write shared virtual addresses, and these
operations are realized by individual loads and stores of shared physical addresses.
In fact, the relationship between the programming model and the hardware opera-
tion is so close that they both are often referred to simply as "shared memory." A
message-passing programming model can be supported by an intervening software
layer —typicdly arun-time library —that treats large portions of the shared address
space as private to each process and manages some portions explicitly as per-process
message buffers. A send/receive operation pair is realized by copying data between
these buffers. The operating system need not be involved since address translation
and protection on the shared buffers is provided by the hardware. For portability,
most message-passing programming interfaces have indeed been implemented on
popular SMPs. In fact, such implementations often deliver higher message-passing
performance than traditional, distributed-memory message-passing sysems—as
long as contention for the shared bus and memory does not become a bottleneck—
largely because of the lack of operating system involvement in communication. The
operating system is still used for input/output and multiprogramming support.

Sinceall communication and local computation generates memory accessesin a
shared address space, from a system architect's perspective the key high-level design



270 CHAPTER 5 Shared Memary Multiprocessors

Messege passing Programming models
a ||ll;%m Multiprogramming Communication abstraction
- Userlsystemboundary

Hardware/software boundary

Communication hardweare
Frydc communication medium

FIGURE 5.1 Layers of abstractionof the communication architecturefor bus-based SMPs. A
shared address space 1s supported directly in hardware, while message passing 1s supported in software

issue is the organization o the extended memory hierarchy In general, memory
hierarchies in multiprocessors fall primarily into four categories, as shown in
Figure 5.2, which correspond loosely to the scale d the multiprocessor being con-
sidered. The first three are symmetric multiprocessors (all of main memory is
equally far away from all processors), while thefourthisnot.

In the shared cache approach (Figure 5.2{al), theinterconnect islocated between
the processors and a shared first-level cache, which in turn connects to a shared
main memory subsystem. Both the cache and the main memory system may be
interleaved to increase available bandwidth. This approach has been used for con-
necting very small numbers of processors (2~8). In the mid-1980s, it wasa common
technique for connecting a couple of processors on a board; today, it is a possible
strategy for a multi processor-on-a-chip, where a small number of processors on the
same chip sharean on-chip first-level cache. However,it appliesonly at avery small
scale, both because the interconnect between the processors and the shared first-
level cache is on the critical path that determines the latency of cache access and
because the shared cache must deliver tremendous bandwidth to the multiple pro-
cessors accessingit simultaneously.

In the bus-based shared memory approach (Figure 5 2[b}), the interconnect is a
shared bus located between the processor'spnvate caches (or cachehierarchies) and
the shared main memory subsystem This approach has been widely used for small-
to medium-scale multiprocessors consisting of up to 20 or 30 processors It isthe :
dominant form of parallel machine sold today, and considerable design effort has
been invested 1 essentially all modern microprocessors to support "cache-coherent”
shared memory configurations For example, the Intel Pentium Pro processor can
attach to a coherent shared bus without any glue logic, and low-cost bus-based .
machines that use these processors have greatly increased the popularity of this
approach The scaling limit for these machines comes primarily due to bandwidth
limitations of the shared bus and memory system

The last two approaches are intended to be scalable to many processing nodes
The dancehall approach aso placesthe Interconnect between the caches and mail
memory, but the interconnect is now ascalablepoint-to-point network rather thand
bus, and memory 1s divided mto many logical modules that connect to logically



Shared Memory Multiprocessors 271

Switch G
[ ]
| 1 1 1

(lqterlleaveid
First-leve s e o o s
I I - | y I
(Interleaved) I I
Main mamay
Mem 1/0 devices
(8)Shaed cade (b) Bushesad shered meamay
Mem $ e o o Mem 5
‘ Interconnection NEwark l
1 1
] 1 Interconnection netwark
Mem Mem
() Danogrll (d) Distributed-memory

- HGURE 5.2 Common extended memory hierarchies found in multiprocessors

ferent pointsin the interconnect (Figure 5.2{c]). Thisapproachissymmetric—all of
main memory is uniformly far away from al processors— but itslimitationisthat all
of memory isindeedfar away from all processors. Especially in large systems, sev-
eral "hops" or switches in the interconnect must be traversed to reach any memory
module from any processor. The fourth approach, distributed-memory, is not sym-
metric. A scalable interconnect is located between processing nodes, but each node
has its own local portion of the global main memory to which it has faster access
(Figure 5.2[d]). By exploiting locality in the distribution of data, most cache misses
may besatisfied in the local memory and may not haveto traverse the network. This
design is most attractive for scalable multiprocessors, and several chapters are
devoted to the topic later in the book. Of course, it is also possible to combine mul-
tiple approaches into a single machine design—for example, a distributed-memory
machine whose individual nodes are bus-based SMPs or a machine in which proces-
sors share a cache at alevel of the hierarchy other than the first level.

In all cases, caches play an essential rolein reducing the average data access time
as seen by the processor and in reducing the bandwidth requirement each processor



272 cHAPTER 5 Shared Mamary Mulnprocessors

places on the shared Interconnect and memory system The bandwidth requirement
1s reduced because the data accesses issued by a processor that are satisfied mn the
cache do not have to appear on the Interconnect In all but the shared cache
approach, each processor has at least onelevel d 1ts cache hierarchy that 1s pnvate
This raises a critical chalenge—namely, that o cache coherence The problem anses
when copiesd the same memory block are present in the cachesof one or more pro-
cessors, if a processor writes to and hence modifies that memory block, then, unless
special action 1s taken, the other processors will continue to access the old, stale
copy o theblock that 1s in their caches

Currently, most small-scale multiprocessors use a shared bus Interconnect with
per-processor caches and a centralized main memory, whereas scal able systems use
physically distributed main memory The dancehall and shared cache approaches are
employedin relatively specific setungs Specific organizattons may changeas technol-
ogy evolves However, besides being the most popular, the bus-based and distributed-
memory organizations also illustrate the two fundamental approaches to solving the
cache coherence problem, dependmg on the nature o the Interconnect one for the
case whereany transaction placed on the Interconnect 1s visible to all processors (like
a bus) and the other where the Interconnect is decentrahzed and a point-to-point
transactton is visible only to the processorsat 1ts endpoints This chapter focuseson
the logical design of protocols that exploit the fundamental properties of a bus to
solve the cache coherence problem The next chapter expands on the design issues
associated with realizing these cache coherence techniques 1 hardware The basic
design o scalable distributed-memory mult~processorswill be addressed m
Chapter 7, followed by coverage o the issues specific to scalable cache coherence in
Chapters8and 9

Section 5 1 descnbes the cache coherence problem for shared memory architec-
tures i detail and descnbes the simplest example of what are called snooping cache
coherence protocols Coherence is not only a key hardware design concept but 1s a
necessary part of our intulhve notion of the abstraction of memory. However, paral-
lel software often makes stronger assumptions than coherence about how memory
behaves Section 52 extends the discussion of ordenng begun i Chapter 1 and
introduces the concept of memory consistency, which defines the semantics of
shared address space This 1ssue has become increasingly Important in computer
architecture and compiler design, alarge fraction of the referencemanuals for most
recent mstruction set architectures 1s devoted to the memory consistency model
Once the abstractions and concepts are defined, Section 53 presents the design
space for more reahstic snoopmg protocols and shows how they satisfy the condi-
tions for coherence aswell as for a useful consistency model. It describes the opera-
don of commonly used protocols at thelogical state transition level. The techniques
used for the quantitative evaluation of several design trade-offsat thislevel areillus-
trated in Section 5.4, using aspects o the methodol ogy for workload-driven evalua-
tion from Chapter 4.

The latter portions of the chapter examine the implications that cache-coherent
shared memory architectures have for the software that runs on them. Section 5.5
examines how the low-level synchronization operations make use of the available



5.1 CacheCoherence 273

hardware primitives on cache-coherent multiprocessors and how algorithms for
locks and barriers can be tailored to use the machine efficiently. Section 5.6 dis-
cusses the implications for parallel programming in general, and in particular, it
discusses how temporal and spatial data locality may be exploited to reduce cache
misses and trafficon the shared bus.

CACHE COHERENCE

Think for a moment about your intuitive model of what a memory should do. It
should provide a set of locations that hold values, and when alocasion isread it
should return thelatest valuewritten to that location. Thisis the fundamental prop-
erty of the memory abstraction that we rely on in sequential programs, in which we
use memory to communicate a value from a point in a programwhereit is computed
to other points whereit is used. Werely on the same property o a memory system
when using a shared address space to communicate databetween threads or
processes running on one processor. A read returns the latest value written to the
location regardlessd which processwroteit. Caching does not interfere because all
processes see the memory through the same cache hierarchy. We would like to rely
on the same property when the two processesrun on different processors that share
a memory. That is, we would like the results of a program that uses multiple pro-
cesses to be no different when the processes run on different physical processors
than when they run (interleaved or multiprogrammed) on the same physical proces-
sor. However, when two processessee the shared memory through different caches,
adanger exists that one may see the new valuein its cache while the other still sees
the old value.

5.1.1 The Cache Coherence Problem

The cache coherence problem in multiprocessors is both pervasiveand performance
critical. It isillustrated in Example5.1.

EXAMPLE 5.1 Figure 53 shows three processors with caches connected via a bus to
shared main memory. A sequence of accessesto location u is made by the proces-
sors. First, processor Py reads 4 from main memory, bringing a copy into its cache.
Then processor Pz reads u from main memory, bringing a copy into its cache. Then
processor Py writes location u changingits value from 5to 7. With a write-through
cache, this will cause the main memory location to be updated; however, when
processor P4 reads location u again (action 4}, it will unfortunately read the stale
value 5 from its own cache instead of the correct value 7 from main memory. This is
a cache coherence problem. What happens if the caches are write back instead of
write through?

Answer The situation is even worse with write-back caches. P3’s write would merely
set the dirty (or modified) bit associated with the cache block holding location u
and would not update main memory right away. Only when this cache block is
subsequently replaced from P3's cache would its contents be written back to main
memory. Thus, not only will Py read the stale value, but when processor P, reads



274 CcHAPTER 5 Shared Mamory Multiprocessors

Memory

HAGURE 5.3 Example cache coherence problem. The figure shows three processors
with caches connected by a busto main memory. u isalocation in memory whose contents
are being reed and written by the processors. The sequence in which reads and writesare
done is indicated by the number listed insde the drdes placed next to the arc. it iseasy to
see that unless specid action is taken when P3 updatesthe value d v to 7, Pt will subse-
quently continueto reed the stale value out d its cache, and P, will dso read a stale vdue
outd man memory.

location u (action 5), it will missin itscache and read the stale value  5from main
memory instead of 7. Findly, if multiple processorswrite distinct valuesto location
u in their write-back caches, the final value that will reach main memory will be
determined by the order in which the cache blocks containing u are replaced and
will have nothing to do with the order in whichthe writesto u occur. B

Clearly, the behavior described in Example 5.1 violates our intuitive notion of
what a memory should do. In fact, cache coherence problems arise even in uni-
processors when VO operations occur. Most VO transfers are performed by direct
memory access (DMA) devices that move data between memory and the peripheral
component without involving the processor. When the DMA device writes to a
location in main memory, unless special action is taken, the processor may continue
to see the old value if that location was previously present in its cache. With write-
back caches, a DMA device may read astale valuefor alocation from main memory
because the latest value for that location is in the processor's cache. Since /O
operations are much less frequent than memory operations, several coarse solutions
have been adopted in uniprocessors. For example, segments of memory space used
for YO may be marked as “uncacheable” (i.e., they do not enter the processor
cache), or the processor may always use uncached load and store operations for
locations used to communicate with I/O devices. For YO devices that transfer large
blocks of data at a time, such as disks, operating system support is often enlisted to
ensure coherence. In many systems, the pages of memory from/to which the datais



5.1 Cache Coherence 275

to be transferred are flushed by the operating system from the processor's cache
before the /0 is alowed to proceed. In still other systems, al /O traffic is made to
flow through the processor cache hierarchy, thus maintaining coherence. This, o
course, pollutes the cache hierarchy with data that may not be o immediateinterest
to the processor. Fortunately, the techniques and support used to solve the multi-
processor cache coherence problem aso solve the /O coherence problem. Essen-
tialy all microprocessors today provide support for multiprocessor cache coherence.

In multiprocessors, reading and writing of shared variables by different proces-
sors is expected to be a frequent event since it is the way that multiple processes
belonging to a parallel application communicate with each other. Therefore, we do
not want to disallow caching of shared data or to invoke the operating system on all
shared references. Rather, cache coherence needs to be addressed as a basic hardware
designissue; for example, stale cached copies o ashared location (like the copy of u
in Py’s cache in Example 5.1) must be eliminated when the location is modified,
either by invalidating them or updating them with the new value. In fact, the operat-
ing system itself benefitsgreatly from transparent, hardware-supported coherence d
its data structures. 3

Before we explore techniques to provide coherence, it is useful to define the
coherence property more precisely Our intuitive notion that “each read should
return the last value written to that location” is problematic for parallel architecture
because "last" may not be well defined. Two different processors might write to the
same location at the same instant, or one processor may read so soon after another
writes that, due to the speed of light and other factors, thereisn't time to propagate
the invalidation or update to the reader. Even in the sequential case, "last" is not a
chronological or physical notion but refers to latest in program order. For now, we
can think o program order within a process as the order in which memory opera-
tions occur in the machine language program. The subtleties of program order are
elaborated further in Section 5.2. The challenge in the parallel case is that, while
program order is defined for the operations within each individual process, in order
to define the semantics o a coherent memory system we need to make sense of the
collection o program orders.

Let us first review the definitions of some terms in the context of uniprocessor
memory systems so that we can extend the definitions for multiprocessors. By
memory operation,we mean asingle read (load), write (store), or read-modify-write
access to a memory location. Instructions that perform multiple reads and writes,
such as those that appear i n many complex instruction sets, can be viewed as broken
down into multiple memory operations, and the order in which these memory oper-
ations are executed is specified by theinstruction. These memory operations within
an instruction are assumed to execute atomically with respect to each other in the
specified order; that is; all aspects of one appear to execute before any aspect of the
next. A memory operation issueswhen it |leaves the processor'sinternal environment
and is presented to the memory system, which includes the caches, write buffers,
bus, and memory modules. A very important point for ordering is that the only way
the processor observes the state of the memory system is by issuing memory opera-
tions (e.g., reads); thus, for a memory operation to be performed with respect to the



276 cHAPTER 5 Shared Memory Multiprocessors

processor means that it appears to have taken place, as far as the processor can tell
from the memory operations it issues. In particular, awrite operation issaid to per-
form with respect to the processor when a subsequent read by the processor returns
the value produced by either that write or a later write. A read operation is said to
perform with respect to the processor when subsequent writesissued by the proces-
sor cannot affect the value returned by the read. Notice that in neither case do we
specify that the physical location in the memory chip has been accessed or that spe-
cific bits of hardware have changed their values. Also, "subsequent” is well defined
in the sequential case since reads and writes are ordered by the program order.

The same definitions for memory operations issuing and performing with respect
to a processor apply in the parallel case; we can simply replace "the processor” with
"aprocessor” in the definitions. The problem is that "subsequent” and "last" are not
yet well defined since we do not have one program order; rather, we have separate
program orders for every process, and these program orders interact when accessing
the memory system. One way to sharpen our idea of a coherent memory systemisto
picture what would happen if there were a single shared memory and no caches.
Every write and every read to a memory location would accessthe physical location
at main memory. The operation would be performed with respect to all processorsat
this point and would therefore besaid to complete. Thus, the memory would impose
aserial order on all the read and write operations from all processors to thelocation.
Moreover, the reads and writes to the location from any individual processor should
be in program order within this overall serial order. In this case, then, the main
memory location provides a natural point in the hardware to determine the order
acrossprocesses of operations to that location. We have no reason to believe that the
memory system should interleave accessesfrom different processorsin a particular
way, so any interleaving that preservesthe individual program orders is reasonable.
We do assume some basic fairness; eventually, the operations from each processor
should be performed. Our intuitive notion o "last" can be viewed as most recent in
a hypothetical serial order that maintains these properties, and "subsequent” can be
defined similarly Since this serial order must be consistent, it isimportant that all
processors see the writes to alocation in the same order (if they bother tolook, i.e.,
to read thelocation).

The appearance of such atotal, serial order on operations to alocation iswhat we
expect from any coherent memory system. Of course, the total order need not actu-
aly be constructed at any given point in the machine while executing the program.
Particularly in a system with caches, we do not want main memory to see all the
memory operations, and we want to avoid serialization whenever possible. We just
need to make sure that the program behavesas if some serial order was enforced.

More formally, we say that a multiprocessor memory system is coherent if the
results of any execution of a program are such that, for each location, it is possibleto
construct a hypothetical serial order of al operations to the location {i.e., put ail
reads/writes issued by all processesinto a total order) that is consistent with the
results of the execution and inwhich

1. operations issued by any particular processoccur in the order in which they
wereissued to the memory system by that process, and



51.2

5.1 Cache Coharence 277

2. thevaluereturned by each read operation is thevaluewritten by the last write
to that location in the serial order.

Two properties are implicit in the definition of coherence: write propagation
means that writes become visible to other processes; write serialization means that
all writes to alocation (from the same or different processes) are seen in the same
order by all processes. For example, write serialization meansthat if read operations
by processP; to alocation see the value produced by writew! (from P,, say) before
the value produced by write w2 (from P5, say), then reads by another process P4 (or
P, or P3) aso should not be able to see w2 beforew!| . Thereis no need for an analo-
gous concept o read serialization since the effectsd readsare not visibleto any pro-
cess but the one issuing the read.

The results of a program can be viewed as the values returned by the read opera-
tionsinit, perhaps augmented with an implicit set o readsto al locations at the end
o the program. From the results, we cannot determine the order in which opera-
tions were actually executed by the machine or exactly when bits changed, only the
order in which they appear to execute. Fortunately, thisis all that matters since this
is al that processors can detect. This concept will become even more important
when we discuss memory consistency models.

Cache Coherence through Bus Snooping

Having defined the memory coherence property, let us examine techniques to solve
the cache coherence problem. For instance, in Figure 5.3, how do we ensure that Py
and P, see the value that P5 wrote? In fact, asimple and elegant solution to cache
coherence arises from the very nature of a bus. The busisasingle set o wires con-
necting several devices, each of which can observe every bus transaction, for exam-
ple, every read or write on the shared bus. When a processor issues arequest to its
cache, the cache controller examines the state of the cacheand takessuitable action,
which may include generating bus transactions to access memory. Coherenceis
maintained by having all cache controllers "snoop" on the bus and monitor the
transactions, asillustrated in Figure 5.4 (Goodman 1983). A snooping cache con-
troller may take action if a bus transaction is relevant to it—that is, if it involves a
memory block of which it hasacopy inits cache. Thus, P, may take an action, such
asinvalidating or updating its copy of the location, if it sees the write from P5. In
fact, since theallocation and replacement o datain cachesis managed at the granu-
larity of acache block (usually several wordslong) and cachemissesfetch ablock of
data, most often coherence is maintained at the granularity o a cache block as well.
In other words, either an entire cacheblock isin valid state in the cache or none of it
is. Thus, a cache block is the granularity o alocation in the cache, o data transfer
between caches, and of coherence.

The key properties of a bus that support coherence are the following. First, all
transactions that appear on the bus are visible to al cache controllers. Second, they
arevisibleto all controllersin thesame order (the order in which they appear on the
bus). A coherence protocol must guarantee that all the "necessary" transactions in



278 CHAPTER 5 Shared Memory Multiprocessors

0 Bus snoop G

/
8 N e o o s
1 ’ -
- [ |-
 — | Y
e l Cache—njemory
Mem ‘ \ VO devices transaction

FIGURE 54 A snooping cache-coherent multiprocessor. Multiple processors with
private caches are placed on a shared bus. Each processor's cache controller continuoudy
"snoops"’ on the bus watching for revant transaction and updates its state suitably to
keep its locd cache coherent. The gray arrows show the transaction being placed on the
bus and accepted by man memory, as in a uniprocessor system. The bladk arrow indicates
the snoop.

fact appear on the bus, in response to memory operations, and that the controllers
take the appropriate actions when they see arelevant transaction.

The simplest illustration of maintaining coherence is a system that has single-
level write-through caches. It isbasically the approach followed by the first commer-
cia bus-based SMPs in the mid-1980s. In this case, every write operation causes a
write transaction to appear on the bus, so every cache controller observes every
write (thus providing write propagation). If a snooping cache has a copy of the
block, it either invalidates or updatesits copy. Protocols that invalidate cached cop-
ies (other than the writer's copy) on a write are called invaidation-based protocols,
whereas those that update other cached copies are called update-based protocols. In
either case, the next time the processor with the copy accesses the block, it will see
the most recent value, either through a miss or because the updated valueisin its
cache. Main memory always has valid data, so the cache need not take any action
when it observes aread on the bus. Example 5.2 illustrates how the coherence prob-
lemin Figure 5.3is solved with write-through caches.

EXAMPLE5.2 Consider the scenano presented in Figure 5.3. Assuming write-through
caches, show how the bus may be used to provide coherence using an invalidation-

based protocol

Answer When processor P3 writes 7 to location u, P3's cache controller generates a
bus transaction to update memory. Observing this bus transaction as relevant and
as a write transaction, P4's cache controller invalidates its own copy of the block
containing u The main memory controller will update the value it has stored for
location u to 7 Subsequent readsto u from processorsPy and P, (actions 4 and 5)
will both muss in their private caches and get the correct value of 7 from the main
memory B



5.1 CaheCoharence 279

The check to determine if a bus transaction isrelevant to a cacheis essentially the
same tag match that is performed for a request from the processor. The action taken
may involveinvalidating or updating the contentsor state of that cache block and/or
supplying thelatest valuefor that block from the cache to the bus.

A snoopy cache coherence protocol ties together two basic facets of computer
architecture that arealso found in uniprocessors: bus transactions and the state tran-
sition diagram associated with a cache block. Recall that the first component — the
bus transaction—consists o three phases: arbitration, command/address, and data.
In the arbitration phase, devicesthat desire to initiate a transaction assert their bus
request, and the bus arbiter selects one of these and responds by asserting its grant
signal. Upon grant, the selected device places the command, for example, read or
write, and the associated address on the bus command and addresslines. All devices
observethe address and, in a uniprocessor, one of them recognizesthat it is respon-
sible for the particular address. For a read transaction, the address phase is followed
by data transfer. Write transactions vary from bus to bus according to whether the
data is transferred during or after the address phase. For most buses, a responding
device can assert a wait signal to hold off the data transfer until it is ready Thiswait
signal is different from the other bus signals because it is a wired-OR across all the
processors; that is, it isalogical 1 if any device assertsit. Theinitiator does not need
to know which responding deviceis participating i n the transfer, only that there is
oneand whether it is ready. :

The second basic facet of computer architecture leveraged by a cache coherence
protocol is that each block in a uniprocessor cache has a state associated with it,
along with the tag and data, which indicates the disposition of the block, (e.g.,
invalid, valid, dirty). The cache policy is defined by the cache block state transition
diagram, which is a finite state machine specifying how the disposition o a block
changes. Transitions for a cache block occur upon access to that block or to an
address that maps to the same cacheline as that block. (We refer to a cache block as
the actual data, and aline as the fixed storage in the hardware cache, in exact anal-
ogy with a pageand a page framein main memory.) While only blocks that are actu-
aly in cache lines have hardware state information, logically, all blocks that are not
resident in the cache can beviewed asbeing in either aspecial "not present” state or
in the "invalid state. In a uniprocessor system, for a write-through, write-no-
allocate cache (Hennessy and Patterson 1996), only two states are required: valid
and invalid. Initidly, all the blocks are invalid. When a processor read operation
misses, a bus transaction is generated to load the block from memory and the block
is marked valid. Writes generate a bus transaction to update memory, and they also
update the cache block if it is present in the valid state. Writes do not change the
state d the block. If ablock is replaced, it may be marked invalid until the memory
providesthe new block, whereupon it becomesvalid. A write-back cache requires an
additional state per cacheline, indicating a "dirty" or modified block.

In a multiprocessor system, a block has a state in each cache, and these cache
states change according to the state transition diagram. Thus, we can think o a
block's cachestate as being avector o p states instead d asinglestate, wherepisthe
number o caches. The cache state is manipulated by aset of p distributed finitestate



280 crHartEr 5 Shared Mamory Multiprocessors

machines, implemented by the cache controllers. The state machine or state transi-
tion diagram that governsthe state changesis the same for all blocks and all caches,
but the current state of ablock in differentcachesisdifferent.Asbefore, if ablock is
not present in a cachewe can assumeit to bein aspecia "not present” state or even
in theinvalid state.

In asnooping cache coherence scheme, each cache controller receivestwo sets of
inputs: the processor issues memory requests, and the bus snooper informs about
bus transactions from other caches. In response to either, the controller may update
the state of the appropriate block in the cache according to the current state and the
state transition diagram. It may also take an action. For example, it responds to the
processor with the requested data, potentially generating new bus transactions to
obtain the data. It responds to bus transactions by updating its state and sometimes
intervenes in completing the transaction. Thus, a snooping protocal is a distributed
algorichm represented by a collection of cooperating finite state machines. It is spec-
ified by the following components:

the set of states associated with memory blocksin thelocal caches

the state transition diagram, which takes as inputs the current state and the
processor request or observed bus transaction and produces as output the next
state for the cache block

m the actions associated with each state transition, which are determined in part

by the set of feasible actions defined by the bus, the cache, and the processor
design
The different state machines for ablock are coordinated by bus transactions.

A simple invalidation-based protocol for a coherent write-through, write-no-
alocate cache is described by the state transition diagram in Figure5.5. Asin the
uniprocessor case, each cache block has only two states: invalid (I) and vaid (V)
(the "not present” state is assumed to be the same as invalid). The transitions are
marked with the input that causes the transition and the output that is generated
with the transition. For example, when a controller sees a read from its processor
missin the cache, a BusRd transaction is generated, and upon completion o this
transaction the block transitions up to thevalid state. Whenever the controller seesa
processor write to alocation, a bus transaction is generated that updates that loca-
tion in main memory with no change of state. The key enhancement to the unipro-
cessor state diagram is that when the bus snooper seesawrite transaction on the bus
for amemory block that is cached localy, the controller sets the cache state for that
block to invalid, thereby effectively discarding its copy. (Figure 5.5 shows this bus-
induced transition with a dashed arc.) By extension, if any processor generates a
write for a block that is cached by any of the others, al o the others will invalidate
their copies. Thus, multiple smultaneous readers of a block may coexist without
generating bus transactions or invalidations, but a write will eliminate all other
cached copies.

To see how this simple write-through invalidation protocol provides coherence,
we need to show that for any execution under the protocol atotal order on the mem-



5.1 CacheCoherence 281

PrRd/— Prwi/Buswr

PrRd/BusRd i BuswWr/—

PrWIr/BuswWr —  Processor-initiated transactions

- - - Bus-snooper-initiated transactions

FIGURE 5.5 Snoopy coherence for-a multiprocessor with write-through, write-
no-allocate caches. There are two states, vdid (V) and invdid || with intuitive semantics.
The notation A/B (e.g., PrRd/BusRd) meansif A isobserved, then transaction B is generated.
Fam the processor side, the requestscan be reed (PrRd) or write (Prwr). Fram the bus side,
the cache controller mey observe/generate transactions bus reed (BusRd) or bus write
(Buswr).

ory operations for alocation can be constructed that satisfies the program order and
write serialization conditions. Let us assumefor the present discussion that both bus
transactions and the memory operations are atomic. That is, only one transaction is
in progresson the busat a time: once a request is placed on the bus, all phases of the
transaction, including the data response, complete before any other request from any
processor is allowed accessto the bus (such a bus with atomic transactions is called
an atomic bus). Also, a processor waits until its previous memory operation is com-
plete before issuing another memory operation. With single-level caches, it is aso
natural to assume that invalidations are applied to the caches, and hence the write
completes during the bus transaction itself. (These assumptions will be continued
throughout this chapter and will be relaxed when we look at protocol implementa-
tionsin more detail and study high-performance designswith greater concurrency in
Chapter 6.) Finaly, we may assumethat the memory handles writes and readsin the
order in which they are presented by the bus.

In the write-through protocol, all writes appear on the bus. Since only one bus
transaction isin progressat a time, in any execution all writes to alocation are seri-
alized (consistently) by the order in which they appear on the shared bus, called the
bus order. Since each snooping cache controller performs theinvalidation during the
bus transaction, invalidations are performed by all cache controllersin bus order.



282 cHAPTER 5 Shared Mamory Multiprocessors

Processors "see" writes through read operations, so for write serialization we
must ensure that readsfrom all processors see the writes in the serialized bus order.
However, reads to alocation are not completely serialized since read hits may be per-
formed independently and concurrently in their caches without generating bus
transactions. To see how reads may beinserted in the serial order of writes, consider
the following scenario. A read that goes on the bus (a read miss) is serialized by the
bus along with the writes; it will therefore obtain the value written by the most
recent write to thelocation in bus order. The only memory operations that do not go
on thebus areread hits. In this case, the value read wasplaced i n the cache by either
the most recent write to that location by the same processor or by its most recent
read miss (in program order). Since both these sources d the value appear on the
bus, read hits also see the values produced in the consistent bus order. Thus, under
this protocol, bus order together with program order provide enough constraints to
satisfy the demands o coherence.

More generally, we can construct a (hypothetical) total order that satisfiescoher-
ence by observing the following partial orders imposed by the protocol:

e A memory operation M, issubsequent to a memory operatlon M; if the opera-
tions areissued by the same processor and M, follows M, in program order

m A read operation is subsequent to a write operation W if the read generates a
bus transaction that follows that for W

® A wnte operation issubsequent to aread or write operation M if M generates a
bus transaction and the bus transactlon for the wnte followsthat for M

® A write operation issubsequent to a read operation if the read does not gener-
ate a bus transactlon (is a hit) and is not already separated from the write by
another bus transactlon.

Any serial order that preservesthe resulting partial order iscoherent. The "subse-
quent” ordering relationship is transitive. An illustration o the resulting partia
order is depicted in Figure5.6. where the bus transactions associated with writes
segment the individual program orders. The partial order does not constrain the
ordering o read bus transactions from different processors that occur between two
write transactions, though the bus will likely establish a particular order. In fact, any
interleaving o read operations in the segment between two writes is a valid serial
order, aslong asit obeys program order.

Of course, the problem with this simple write-through approach is that every
store instruction goes to memory, which is why most modern microprocessors use
write-back caches (at least at the level closest to the bus). This problem is exacer-
bated in the multiprocessor setting, since every store from every processor consumes
precious bandwidth on the shared bus, resulting in poor scaability, as illustrated by
Example5.3.

EXAMPLE 5.3 Consider a superscalar RISC processor issuing two instructions per cycle
running at 200 MHz Suppose the average CPI (clocks per instruction) for this pro-
cessor is 1, 15% of al instructions are stores, and each store writes 8 bytes of data.
How many processors will a 1-GB/s bus be able to support without becoming satu-
rated?



5.2 Memory Consistency 283

FIGURE 5.6  Partial order of memory operations for an execution with the write-
through invalidation protocol. Write bus transactions define a globd sequence o
events between which individua processorsreed locationsin program order. The execution
is consistent with any total order obtained by interleaving the processor orderswithin each
segment.

Answer A single processor will generate 30 million stores per second (0.15 stores per
instruction x 1 instruction per cyclex 1,000,000/200 cycles per second), so the total
write-through bandwidth is 240 MB of data per second per processor. Even ig-
noring address and other information and ignoring read misses a 1-GB/s bus will
therefore support only about four processors. ®

For most applications, awrite-back cache would absorb the vast majority of the
writes. However, if writes do not go to memory, they do not generate bus transac-
tions, and itisno longer clear how the other cacheswill observe these modifications
and ensure write propagation. Also, when writes to different caches are allowed to
occur concurrently, no obvious ordering mechanism exists to sequence the writes.
We will need somewhat more sophisticated cache coherence protocols to make the
"critical" events visible to the other caches and to ensure write serialization.

The space of protocols for write-back cachesis quite large. Beforewe examine it,
let us step back to the more general ordering issue aluded to in the introduction to
this chapter and examine the semantics of a shared address space as determined by
the memory consistency model.

MEMORY CONSISTENCY

Coherence, on which we have focused so far, is essential if information is to be
transferred between processors by one writing to alocation that the other reads.
Eventually, the value written will become visible to the reader —indeedto all read-
ers. However, coherence says nothing about when the write will become visible.
Oftenin writing a parallel program, we want to ensure that a read returns the value
of a particular write; that is, we want to establish an order between awrite and a
read. Typically, we use some form of event synchronization to convey this depen-
dence, and we use more than one memory location.



284 CcHAPTER 3 Shared Memary Multiprocessors

Consider, for example, the code fragments executed by processors Py and P; in
Figure 5 7, which wesaw when discussing pomt-to-pomt event synchronization ina
shared address space m Chapter 2 It ts clear that the programmer intends for pro-
cessP, to spin idly until the valueof the shared variable f 1 ag changes to 1 and then
to pnnt the value of variable A as1, since the value of A was updated before that of
flag by process P, In this case, we use accessesto another location (flag) to pre-
serveadesired order of d~fferenprocesses accessesto thesame location (2) In par-
ticular, we assume that the wnite of A becomes visible to P, beforethe wnite to fl ag
and that the read of f | ag by P, that breaks it out of its while loop completes before
itsread of A (a pnnt operatton is essentially aread) These program orders within
P, and Py’s accessesto d~fferentocations are not implied by coherence, which, for
example, only requires that the new value for A eventually become visible to process
P,, Not necessarily before the new value of £1ag 1s observed

The programmer might try to avoid this 1ssue by using abarrier or other explicit
event synchronization, a shown in Figure 58 We expect the value of A to be
printed as 1 since A was set to 1 before the barrier Even this approach has two
potential problems, however First, we are adding assumptions to the meaning of the
barrier not only do processeswait at the barrier until all of them have amved, they
also wart until al wntes issued prior to the barrier have become visible to the other
processors Second, a barner s often built using reads and writes to ordinary shared
vanables (e g, b1 n the figure) rather than with specialized hardware support In
this case, as far asthe machine is concerned, it seesonly accessesto d~fferenshared
vanables i the compiled code, not a special barner operation Coherence does not
say anything at all about the order among these accesses

Clearly, we expect more from a memory system than to “return the last value
written" for each location To estabhsh order among accessesto the same location
(say, A) by dtfferent processes, we sometimes expect amemory system to respect the
order of reads and wntes to dtfferent locations (a and flag or A and b1) issued by
the same process Coherence says nothmg about the order m which writes to differ-
ent locations become visible Similarly, 1t says nothing about the order m which the
reads issued to d~fferentocations by P, are performed with respect to P; Thus,
coherence does not in itself prevent an answer of 0 from being pnnted by either
example, which 1s certainly not what the programmer had in mind

In other situanons, the programmer'smtention may not be so clear Consider the
example n Figure 59 The accesses made by process Py are ordinary wntes, and A
and B are not used as flags or synchronization variables Should we intuitively
expect that if the value prmted for B 1s 2, then the value printed for A 1s 1? Whatever
the answer, the two print statements read d~fferenfocations and coherence says
nothing about the order 1n which the wntes by Py become visible to P, This exam-
ple 1s m fact a fragment from Dekker's algorithm (Tanenbaum and Woodhull 1997)
to determine which of two processesarnves first at acritical point asastep in ensur-
mg mutual exclusion The algorithm relies on writes to distinct |ocattons by a pro-
cess becoming visible to other processes m the order m which they appear n the



5.2 Memory Consistency 285

P P2
/*Assume initial valued Aand flag is0*/
A= 1; while (flag == 0); /*spinidly*/
flag = 1; print A

FIGURE 5.7 Requirements of event synchronization through flags. The figure
shows two processors concurrently executing two distinct code fragments. Far program-
mer intuition to be maintained, it must be the case that the printed valued A is 1. The
intuition isthat becaused program order, if f | ag =1 is visbleto process P,, then it must
a0 bethe casethat A = 1isvishleto P,.

P P,
/*Assume initial valued Ais 0%/

A= 1; ..
_ - - BARRIER(b1)- - - - - - BARRIER(b1)- - - - - - -

print A

FIGURE 5.8 Maintaining order among accesses to a location using explicit syn-
chronization through barriers. As in Hgure5.7, the programmer expects the vaue
printed for A to be 1 since pasing the barrier should imply that the writed A by Py has
dready completed and is thereforevisbleto P;.

Py P2
/* Assumeinitial valuesof A and B are 0*/
(la) A= 1; (2a) print B;
(1b) B = 2; (2b) print 3;

FIGURE 5.9 Order among accesses without synchronization. Here it is less clear
what a programmer should expect since neither aflag nor any other explicit event synchro-
nization is used.

program. Clearly, we need something more than coherence to give a shared address
space a clear semantics, that is, an ordering model that programmers can use to rea-
son about the possible results and hence the correctness of their programs.

A memory consistency model for ashared address space specifiesconstraints on the
order in which memory operations must appear to be performed (i.e., to become vis-
ible to the processors) with respect to one another. Thisincludes operations to the
same locations or to different locations and by the same process or different pro-
cesses, so in thissense memory consistency subsumes coherence.



286 CHAPTER 5 Shared Memory Multiprocessors

521

Sequential Consistency

In the discussion in Chapter 1 of fundamental design 1ssues for a communication
architecture, Section 1 4 described informally a desirable ordering model for a
shared address space the reasoning that allows a multithreaded program to work
under any possible interleaving on a umprocessor should hold when some of the
threads run in parallel on different processors The ordenng o data accesseswithin
aprocesswas therefore the program order, and that across processes wassome inter-
leaving of the program orders That 1s, the multiprocessor caseshould not be able to
cause values to become visible to processesin the shared address space 1 a manner
that no sequential interleaving of accesses from different processes can generate
This mtwitsive model was formalized by Lamport as sequential consistency (SC),
which 1s defined as follows (Lamport 1979) !

A multiprocessor issequentially consistent if theresult of any executionisthesame asif the
operationsd all the processors were executed in some sequentid order, and the oper-
aionsd esch individua processor occur in this sequencein the order specified by its
program

Figure 5.10 depicts the abstraction of memory provided to programmers by a
sequentially consistent system (Adve and Gharachorloo 1996). It is similar to the
machine model we used to introduce coherence, though now it applies to multiple
memory locations. Multiple processesappear to share a singlelogical memory, even
though in the real machine main memory may bedistributed across multiple proces-
sors, each with their own private cachesand buffers. Every process appears to issue
and complete memory operations one at a time and atomically in program order;
that is, amemory operation doesnot appear to be issued until the previous one from
that process has completed. In addition, the common memory appears to service
theserequests one at a time in an interleaved manner according to an arbitrary (hut
hopefully fair) schedule. Memory operations appear atomicin thisinterleaved order;
that is, it should appear globally (to all processes) asif one operation in the consis-
tent interleaved order executes and compl etes before the next one begins.

As with coherence, it is not important in what order memory operations actually
issue or even complete. What matters for sequential consistency is that they appear
to complete in a manner that satisfies the constraints just described. In the example
in Figure5.9, under SC the result (0, 2) for (A, B) would not be allowed—preserv-
ing our intuition—since it would then appear that the writes o A and B by process
P; executed out of program order. However, the memory operations may actually
execute and completein the order 1b, | a, 2b, 2a. It does not matter that they actu-
ally complete out of program order since the results of the execution (1, 2) are the
same as if the operations were executed and completed in program order. On the
other hand, the actual execution order Ib, 2a, 2b, | a would not be sequentially
consistent since it would produce the result (0, 2), which is not allowed under SC.
Other examplesillustrating the intuitiveness of sequential consistency can be found

. Two closely related concepts i software systems are setializability (Papadimitriou 1979) for concurrent

updates to a database and linearizability (Herlihy and Wing 1987) for concurrent objects.



5.2 Memory Consistency 287

Processors

issuing memory
references as

per program order

The "switch" is randomly
<« dter esch mamay
reference

My

FIGURE 5.10 Programmer's abstraction of the memory subsystem under the
sequential consistency model. The modd completely hides the underlying concurrency
in the memory system hardware (e.qg., the possible existenced distributed main memory,
the presenced cachesand write buffers) from the programmer.

in Exercise 5.6. Note that SC does not obviate the need for synchronization. The rea-
son is that SC allows operations from different processesto beinterleaved arbitrarily
and does so at the granularity o individual instructions. Synchronization is needed
if wewant to preserve atomicity (mutual exclusion) across multiple memory opera-
tions from a process or if we want to enforce constraints on the interleaving across
processes.

The term "program order" also bears some elaboration. Intuitively, program order
for a processissimply the order in which statements appear according to the source
code that the process executes; more specificaly, it is the order in which memory
operations occur in the assembly code that results from astraightforward translation
o source statements one by one to machine instructions. This is not necessarily the
order in which an optimizing compiler presents memory operations to the hardware
since the compiler may reorder memory operations (within certain constraints, such
as preserving dependences to the same location). The programmer hasin mind the
order of statements in the source program, but the processor sees only the order o
the machineinstructions. In fact, thereisa"program order" at each o theinterfaces
in the parallel computer architecture— particularlythe programming model inter-
face seen by the programmer and the hardware/software interface—and ordering
models may be defined at each. Since the programmer reasonswith the source pro-
gram, it makes sense t6 use this to define program order when discussing memory
consistency models; that is, we will be concerned with the consistency model pre-
sented by thelanguageand the underlying system to the programmer.

Implementing SC requires that the system (software and hardware) preserve the
intuitive constraints defined previously. There are redlly two constraints. Thefirstis
the program order requirement: memory operations o a process must appear to



288 CHAPTER 5 Shared Memory Multiprocessors

become visble—to itself and others—in program order. The second constraint
guarantees that the total order or theinterleaving across processesis consistent for
al processes by requiring that the operations appear atomic. That is, it should
appear that one operation is completed with respect to all processes before the next
onein the total order isissued (regardless of which process issues it). The tricky
part of thissecond requirement is making writes appear atomic, especially in asys-
tem with multiple copies o a memory word that need to be informed on a write.
The write atomicity requirement, included i n the preceding definition of sequential
consistency, implies that the position in the total order at which awrite appears to
perform should be the same with respect to all processors. It ensures that nothing a
processor does after it has seen the new value produced by a write (e.g., another
writethat it issues) becomesvisible to other processes before they too have seen the
new value for that write. In effect, the write atomicity required by SC extends the
write serialization required by coherence: while write serialization says that writes
to the same location should appear to all processors to have occurred in the same
order, write atomicity says that all writes (to any location) should appear to al pro-
cessors to have occurred in the same order. Example 5.4 showswhy write atomicity
isimportant.

EXAMPLE 5.4 Consider the three processes in Figure 5.11. Show how not preserving
write atomicity violatessequential consistency.

Answer SinceP, waits until A becomes1 and then sets 8 to 1, and since P3 waits until
B becomes 1 and only then reads the value of A, from transitivity we would infer
that P5 should find the value of A to be 1. If P, isallowed to go on past the read of
A and write B before it is guaranteed that P3 2hasseen the new value of A, then P3
may read the new value of B but read the old vaue o A (e.g., from its cache),
violating our sequentially consistent intuition. W

More formally, each process's program order imposes a partial order on the set of
all operations; that is, it imposesan ordering on thesubset of the operations that are
issued by that process. An interleaving d the operations from different processes
defines a total order on the set of all operations. Since the exact interleaving is not
defined by SC, interleaving the partia (program) orders for different processes may
yield a large number of possible total orders. The following definitions therefore
apply:

m Sequentially consistent execution. An execution of a program is said to be se-
quentially consistent if the results it produces are the same as those produced
by any one o the possible total orders (interleavings) as defined earlier. That
is, a total order or interleaving of program orders from processesshould exist
that yields the same result as the actual execution.

w Sequentialy consistent system. A system is sequentially consistent if any possi-
ble execution on that system i s sequentially consistent.



522

5.2 Memory Consistency 289

Py P2 P3
Asl; ———————mwhile (A==0);
B=1; ;V\hl le {(B==0) ;
print A

FIGURE 5.11 Exampleillustrating the importanceof write atomicity for sequen-
tial consistency

Sufficient Conditionsfor Preserving Sequential Consistency

Having discussed the definitions and high-level requirements, let us see how a mul-
tiprocessor implementation can be made to sausfy SC It is possibleto defineaset of
sufficient conditions that will guarantee sequential consistency in amultiproces-
sor — whether bus-based or distributed, cache-coherent or not The following set,
adapted fromits original form (Dubois, Scheurich, and Bnggs 1986, Scheunch and
Dubois1987), 1s relatively simple

1. Every processissues memory operationsin program order.

2. After a write operation is issued, the issuing process waits for the write to
complete beforeissuing its next operation.

3. After aread operation isissued, the issuing processwaitsfor the read to com-
plete, and for the writewhose valueis being returned by the read to complete,
before issuing its next operation. That is, if the write whose value is being
returned has performed with respect to this processor (as it must have if its
value is being returned), then the processor should wait until the write has
performed with respect to all processors.

The third conditioniswhat ensures write atomicity and is quite demanding. It is
not asimplelocal constraint becausethe read must wait until thelogically preceding
write has become globally visible. Note that these are sufficient, rather than neces-
sary, conditions. Sequential consistency can be preserved with less serialization in
many situations, asweshall see.

With program order defined in terms of the source program, it isimportant that
the compiler should not change the order & memory operations that it presents to
the hardware (processor). Otherwise, sequential consistency from the programmer's
perspective may be compromised even before the hardware gets involved. Unfortu-
nately, many of the optimizations that are commonly employed in both compilers
and processors violate these sufficient conditions. For example, compilers routinely
reorder accesses to different locations within a process, so a processor may in fact
issue accesses out o the program order seen by the programmer. Explicitly parallel
programs use uniprocessor compilers, which are concerned only about preserving
dependences to the same location. Advanced compiler optimizations that greatly
improve performance—such as common subexpression elimination, constant



290 CHAPTER 5 Shared Meamory Multiprocessors

propagation, register allocation, and loop transformations like loop splitting, loop
reversal, and blocking (Wolfe 1989) —can change the order in which different loca-
tions are accessed or can even eliminate memory operations.2 In practice, to con-
strain these compiler optimizations, multithreaded and parallel programs annotate
variablesor memory referencesthat are used to preserve orders. A particularly strin-
gent exampleis the use of thevol ati | e qualifierin avariable declaration, which
prevents the variable from being register allocated or any memory operation on the
variablefrom being reordered with respect to operations beforeor after itin program
order. Example5.5illustrates theseissues.

EXAMVPLE 55 How would reordering the memory operations in Figure 57 affect
semantics in a sequential program (only one of the processes running), in a parallel
program running on a multiprocessor, and in a threaded program in which the two
processes are interleaved on the same processor? How would you solve the problem?

Answer The compiler may reorder the writes to A and fl ag with no impact on a
sequential program. However, this can violate our intuition for both parallel
programs and concurrent (or multithreaded) uniprocessor programs. In the latter
case, a context switch can happen between the two reordered writes, so the
process switched in may see the update to f | ag without seeing the update to A
Similar violations of intuition occur if the compiler reorders the reads of f | ag and
A. For many compilers, we can avoid these reorderings by declaring the variable
flag to be of type vol atil einteger instead of just i nt eger. Other solutions
are also possible and are discussed in Chapter 9. W

Even if the compiler preserves program order, modem processors use sophisti-
cated mechanisms like write buffers, interleaved memory, pipelining, and out-of-
order execution techniques (Hennessy and Patterson 1996). These allow memory
operations from a process to issue, execute, and/or complete out of program order.
Like compiler optimizations, these architectural optimizations work for sequential
programs because the appearance of program order in these programs requires that
dependences be preserved only among accesses to the same memory location, as
shown in Figure5.12. The problem in parallel programs is that the out-of-order
processing of operations to differentshared variablesby a process can be detected by
other processes.

Preserving the sufficient conditions for SC in multiprocessors is quite a strong
requirement since it limits compiler reordering and out-of-order processing tech-
niques. Several weaker consistency models have been proposed and techniques have
been devel oped to satisfy SC while relaxing the sufficient conditions. We will exam-
ine these approaches in the context of scalable shared address space machines in
Chapter 9. For the purposes of this chapter, we assume the compiler does not reor-
der memory operations, so the program order that the processor seesis the same as

2. Notethat register allocation, performed by modem compilers to eliminate memory operations, can affect
coherence itself, not just memory consistency For the flag synchronization examplein Figure 5.7, if the
compiler were to register-alocate the f1ag variable for process P,, the process could end up spinning
forever: the cache coherence hardware updates or invalidates only the memory and the caches, not the
registers of the machme, so the write propagation property of coherence is violated.



5.3 Design Spece for Snooping Protocols 291

Wiite A

Wiite FIGURE 5.12  Preservingthe orders in a sequential
program running on a uniprocessor. Only the orders

Reed A corresponding to the two dependence arcs must be pre-

Red B served. The first two operations can be reordered with-
out a problem, as can the last two or the middle two.

that seen by the programmer. On the hardware side, we assume that the sufficient
conditions must be satisfied. To do this, we need mechanisms for a processor to
detect completion of itswrites so it may proceed past them (completion of readsis
easy; aread completes when the data returns to the processor) and mechanisms to
satisfy the condition that preserves writeatomicity. For all the protocols and systems
considered in this chapter, we see how they satisfy coherence (including write serial-
ization), how they can satisfy sequential consistency (in particular, how write com-
pletion is detected and write atomicity is guaranteed), and what shortcuts can be
taken whilestill satisfying the sufficient conditions.

For bus-based machines, the serialization imposed by transactions appearing on
the shared bus s very useful in ordering memory operations. It is easy to verify that
the two-state write-through invalidation protocol discussed previously actually pro-
vides sequential consistency — not just coherence— quite easily. The key observation
to extend the arguments made for coherence in that system is that writes and read
misses to all locations, not just to individual locations, are serialized in bus order.
When aread obtains the value of awrite, the write is guaranteed to have completed
since it caused a previous bus transaction, thus ensuring write atomicity When a
write is performed with respect to any processor, al previous writes in bus order
have completed.

DESIGN SPACE FOR SNOOPING PROTOCOLS

The beauty of snooping-based cache coherenceis that the entire machinery for sol-
ving a difficult problem boils down to applying a small amount of extrainterpreta-
tion to events that naturally occur in the system. The processor is completely
unchanged. No explicit coherence operations must be inserted in the program. By
extending the requirements on the cache controller and exploiting the properties of
the bus, the reads and writes that are inherent to the program are used implicitly to
keep the caches coherent, and the serialization provided by the bus maintains con-
sistency. Each cache controller observes and interprets the bus transactions gener-
ated by others to maintain its internal state. Our initial design point with write-
through cachesis not very efficient,but we are now ready to study the design space
for snooping protocols that make efficient use of the limited bandwidth of the
shared bus. All of these use write-back caches, allowing processors to write to dif-
ferent blocksin their local caches concurrently without any bus transactions. Thus,



292 CHAPTER 5 Shared Memory Multiprocessors

extra careis required to ensure that enough information is transmitted over the bus
to maintain coherence.

Recall that with a write-back cache on a uniprocessor, a processor write miss
causes the cache to read the entire block from memory, update a word, and retain the
block in modified (or dirty) state so it may be written back to memory on replace-
ment. In a multiprocessor, this modified state is also used by the protocols to indi-
cate exclusive ownership of theblock by acache. In general, acacheissaid to be the
owner of a block if it must supply the data upon a request for that block (Sweazey
and Smith 1986). A cacheis said to have an exclusve copy of ablock if it is theonly
cache with a valid copy of the block (main memory may or may not have a valid
copy). Exclusivity implies that the cache may modify the block without notifying
anyone else. If a cache does not have exclusivity, then it cannot write a new value
into the block before first putting a transaction on the bus to communicate with
others. Thewriter may have the block inits cachein avalid state, but since a trans-
action must be generated, it is called awrite missjust like awrite to a block that is
not present or isinvalid in the cache. If a cache has the block in modified state, then
clearly it is the owner and it has exclusivity (The need to distinguish ownership
from exclusivity will become clear soon.)

On awrite missin an invalidation protocol, a special form of transaction calleda
read exclusiveis used to tell other caches about the impending write and to acquire a
copy of the block with exclusive ownership. This places the block in the cachein
modified state, where it may now be written. Multiple processors cannot write the
same block concurrently since this would lead to inconsistent values. The read-
exclusive bus transactions generated by their writes will be serialized by the bus, so
only one o them can have exclusive ownership of the block at a time. The cache
coherence actions aredriven by thesetwo typesdf transactions: read and read exclu-
sive. Eventually,when a modified block is replaced from the cache, the dataiswrit-
ten back to memory, but this event is not caused by a memory operation to that
block and is amost incidenta to the protocol. A block that is not in modified state
need not be written back upon replacement and can simply be dropped since mem-
ory hasthelatest copy Many protocols have been devised for write-back caches, and
we examine the basic alternatives.

We also consider update-based protocols. Recall that in update-based protocols,
whenever a shared location is written to by a processor, its value is updated in the
caches of all other processors holding that memory hlock.® Thus, when these pro-
cessors subsequently access that block, they can do so from their caches with low
latency, The caches of all other processors are updated with a single bus transac-
tion, thus conserving bandwidth when there are multiple sharers. In contrast, with
invalidation-based protocols, on a write operation the cache state of that memory
block in all other processors' cachesis set to invalid, so those processorswill have to
obtain the block through a miss and hence a bus transaction on their next read.

3. This is a write-broadcast scenario. Read-broadcast designs have aso been investigated, m which the
cachecontaining the modified copy flushes it to the buswhen it sees aread on the bus, at which point all
other copies are updated too.



53.1

5.3 Design Space for Snooping Protocols 293

However, subsequent writes to that block by the same processor do not create fur-
ther traffic on the bus (as they do with an update protocol) until the block is
accessed by another processor. This is attractive when a single processor performs
multiple writes to the same memory block before other processors access the con-
tents o that memory block. The detailed trade-offs are more complex, and they
depend on the workload offered to the machine; they will be illustrated quantita-
tively in Section 5.4. In general, invalidation-based strategies have been found to be
more robust and are therefore provided as the default protocol by most vendors.
Some vendors provide an update protocol as an option to be used for blocks corre-
sponding to selected data structures or pages.

The choices made for the protocol (update versus invalidate) and the caching
strategies directly affect the choice of states, the state transition diagram, and the
associated actions. Substantial flexibility is availableto the computer architect in the
design task at this level. Instead o listing all possible choices, et us consider three
common coherence protocols that will illustrate the design options.

A Three-State (MSI) Write-Back | nvalidation Protocol

Thefirst protocol we consider 1s a basic invalidation-based protocol for write-back
caches. It isvery similar to the protocol that was used in the Silicon Graphics 4D
series multiprocessor machines (Baskett,Jermoluk, and Solomon 1988). The proto-
col uses the three states required for any write-back cache in order to distinguish
valid blocksthat are unmodified (clean) from those that are modified (dirty). Specif-
icaly, the states are modified (M), shared (S), and invalid (1). Invalid has the obvious
meaning. Shared means the block is present in an unmodified state in this cache,
main memory is up-to-date, and zero or more other caches may also have an up-to-
date (shared) copy Modified, aso called dirty, means that only this cache hasa valid
copy of the block, and the copy in main memory is stale. Before a shared or invalid
block can bewritten and placedin the modified state, all the other potential copies
must he invalidated via a read-exclusive bus transaction. This transaction serves to
order the write as well as cause the invalidations and hence ensure that the write
becomesvisibleto others (write propagation).

The processor issues two types of requests: reads (PrRd) and writes (Prwr). The
read or write could be to a memory block that existsin the cache or to one that does
not. In thelatter case, a block currently in the cache will have to be replaced by the
newly requested block, and if the existing block isin the modified state, its contents
will haveto be written back to main memory

We assume that the bus allowsthe following transactions:

Bus Read (BusRd): This transaction is generated by a PrRd that missesin the
cache, and the processor expects a data response as a result. The cache con-
troller puts the address on the bus and asks for a copy that it does not intend
to modify The memory system (possibly another cache) supplies the data.

m Bus Read Exclusive (BusRdX): This transaction is generated by a PrWr to a
block that iseither not in the cache or isin the cache but not in the modified



294 CcHAPTER 5 Shared Mamory Multiprocessors

state. The cache controller puts the address on the bus and asks for an exclu-
sive copy that it intends to modify. The memory system (possibly another
cache) supplies the data. All other caches are invalidated. Once the cache
obtains the exclusive copy, the write can be performed in the cache. The pro-
cessor may require an acknowledgment asa result of this transaction.

Bus Write Back (BusWB): This transaction is generated by a cache controller
on a write back; the processor does not know about it and does not expect a
response. The cache controller puts the address and the contents for the mem-
ory block on the bus. The main memory is updated with the latest contents.

The bus read exclusive (sometimes called read-to-own) is the only new transac-
tion that would not exist except for cache coherence. The new action needed to sup-
port write-back protocolsis that, in addition to changing the state of cached blocks,
a cache controller can intervene in an observed bus transaction and flush the con-
tents of the referenced block from its cache onto the bus rather than allowing the
memory to supply the data. OF course, the cache controller can aso initiate bus
transactions as described above, supply data for write backs, or pick up data sup-
plied by the memory system.

State Transitions

The state transition diagram that governs ablock in each cachein thissnooping pro-
tocol isas shown in Figure5.13. The states are organized so that the closer the state
is to the top, the more tightly the block is bound to that processor. A processor read
to ablock that isinvalid (or not present) causesa BusRd transaction to service the
miss. The newly loaded block s promoted, moved up in the state diagram, from
invalid to the shared state in the requesting cache, whether or not any other cache
holds acopy Any other cacheswith the block in the shared state observe the BusRd
but take no special action, allowing main memory to respond with the data. How-
ever, if a cache has the block in the modified state (there can only be one) and it
observesa BusRd transaction on the bus, then it must get involvedin the transaction
since the copy in main memory isstale. This cache flushes the data onto the bus, in
lieu of memory, and demotes its copy of the block to the shared state (see
Figure 5.13). The memory and the requesting cache both pick up the block. This
can be accomplished either by a direct cache-to-cachetransfer across the bus during
this BusRd transaction or by signaling an error on the BusRd transaction and gener-
ating awrite transaction to update memory. In thelatter case, the original cache will
eventually retry its request and obtain the block from memory. (It isaso possible to
have the flushed data picked up only by the requesting cache but not by memory,
leaving memory still out-of-date, but this requires more states [Sweazey and Smith
19861.)

Writing into an invalid block isawrite miss, which isserviced by first loading the
entire block and then modifying the desired byteswithinit. Thewrite missgenerates
a read-exclusive bus transaction, which causes all other cached copiesaof the block
to beinvalidated, thereby granting the requesting cache exclusive ownership of the



5.3 Dedgn Space for Snooping Protocols 295

\

\ AY
BusRd/Flush |
! \

! \
/ v

Prvr/BusRdX ; \
!
BusRdX/Flush
\ !
BusRdX/— "
\
[
PrRd/BusRd ) /
PrRd/— 1
BusRd/— [
Prwr/BusRdX /
/o,

FIGURE 5.13  Basic three-state invalidation protocol. M, S, and | stand for modified,
shared, and invelid states, respectively. The notation A/8 means that if the controller
observes the event A from the processor side or the bus side, then in addition to the state
change, it generates the bus transaction or action 8. “—* means null action. Trandtions
due to observed bus transactionsare shown in dashed arcs, while those due to locd pro-
cessor actions are shown in bold arcs. f multiple A/B pairs are associated with an arc, it Sm-
py meansthat multiple inputs can cause the same state transition. Far completeness, we
should specify actions from each state corresponding to each ohservable event. If such
transitionsare not shown, it meansthat they are uninteresting and no action needsto be
taken. Replacementsand the write backs they may cause are not shown in the diagram for

smplidty.

block. The block of data returned by the read exclusiveis promoted to the modified
state, and the desired bytes are then written into it. If another cache later requests
exclusive access, then in response to itsBusRdX transaction this block will beinval-
idated (demoted to theinvalid state) after flushing the exclusive copy to the bus.
The most interesting transition occurs when writing into a shared block. As dis-
cussed earlier, thisis treated essentially like a write miss, using a read-exclusive bus
transaction to acquire exclusive ownership; we refer to it asawrite miss throughout
the book. The data that, comes back in the read exclusive can beignored in this case,
unlike when writing to an invalid or not present block, since it is aready in the
cache. In fact, a common optimization to reduce data traffic in bus protocolsis to
introduce a new transaction, called a bus upgrade or BusUpgr, for this situation. A
BusUpgr obtains exclusive ownership just like a BusRdX, by causing other copies to
be invalidated, but it does not cause main memory or any other device to respond
with the data for the block. Regardlessof whether a BusUpgr or a BusRdX is used



296 cHAPTER 5 Shared Memory Multiprocessors

(et us continue to assume BusRdX), the block i n the requesting cache transitions to
the modified state. Additional writes to the block while it is in the modified state
generate no additional bus transactions.

A replacement o a block from a cachelogically demotes the block toinvalid (not
present) by removing it from the cache. A replacement therefore causes the state
machines for two blocks to change states in that cache: the one being replaced
changesfrom its current state to invalid, and the one being brought i n changes from
invalid (not present) to its new state. The latter state change cannot take place
before the former, which requires some carein implementation. If the block being
replaced was in modified state, the replacement transition from M to | generates a
write-back transaction. No special action is taken by the other cacheson this trans-
action. If the block being replaced was in shared or invalid state, then it itself does
not cause any transaction on the bus. Replacementsare not shown in the state dia-
gram for simplicity

Note that to specify the protocol completely, for each state we must have out-
going arcs with labels corresponding to all observable events (the inputs from the
processor and bus sides) and must show the actions corresponding to them. Of
course, the actions and state transitions can be null sometimes, and in that case we
may either explicitly specify null actions (see states Sand M in Figure5.13), or we
may simply omit those arcs from the diagram (see state 1). Also, since we treat the
not-present state asinvalid, when a new block is brought into the cache on a miss,
the state transitions are performed as if the previous state of the block wasinvalid.
Example5.6 illustrates how the state transition diagram isinterpreted.

EXAMPLE 5.6 Using the MSI protocol, show the state transitions and bustransactions
for the scenario depicted in Figure5.3.

Answer The resultsare shown in Figure514. H

With write-back protocols, ablock can bewritten many times before the memory
is actually updated. A read may obtain data not from memory but rather from a
writer's cache, and in fact it may be thisread rather than a replacement that causes
memory to be updated. In addition, write hits do not appear on the bus, so the con-
cept of awrite being performed with respect to other processorsis alittle different.
In fact, to say that awriteis being performed means that the write is being “made
visible" A write to ashared or invalid block is made visible by the bus read-exclu-
sive transaction it triggers. The writer will "observe" the data in its cache after this
transaction. The write will be made visible to other processors by the invalidations
that the read exclusive generates, and those processors will experience a cache miss
before actually observing the valuewritten. Write hits to amodified block arevisible
to other processors but again are observed by them only afier a miss through a bus
transaction. Thus, in the MSI protocol, the write to a nonmodified block is per-
formed or made visible when the BusRdX transaction occurs, and the write to a
modified block is made visiblewhen the block is updated in the writer's cache.



-

53 Dedgn Space for Snooping Protocols 297

Processor Action StateinPy Statein P, StateinP; BusAction Data Supplied By

1 p;, reads u s _ - BusRd Memory
2 p; reads u s - s BusRd Memory
3. p; writes u 1 — M BusRAX Memory
4. p, reads u S - S BusRd p, cache
5. p, reads u S s S BusRd Memory

FIGURE 5.14 The three-state invalidation protocol in action for processor transactions
shown in Figure 5.3. The figure showsthe stated the rdlevant memory biock at theend d each pro-
cessor action, the bus transaction generated (if any), and the entity supplying the data

Satisfying Coherence

Since both reads and writes can take place without generating bus transactionsin a
write-back protocal, it is not obvious that it satisfies the conditions for coherence,
much lesssequential consistency Let's examine coherence first. Write propagationis
clear from the preceding discussion, so let us focuson write serialization. The read-
exclusive transaction ensures that the writing cache has the only valid copy when
the block is actually written in the cache, just like a write transaction in the write-
through protocol. It is followed immediately by the corresponding write being per-
formed in the cache before any other bus transactions are handled by that cache
controller, so it is ordered in the same way for al processors (including the writer)
with respect to other bus transactions. The only difference from awrite-through pro-
tocol, with regard to ordering operations to alocation, is that not all writes generate
bus transactions. However, the key here is that between two transactions for that
block that do appear on the bus, only one processor can perform such write hits;
thisis the processor (say, P) that performed the most recent read-exclusive bus
transaction w for the block. In the serialization, this sequence of write hits therefore
appears (in program order) between w and the next bus transaction for that block.
Reads by processor Pwill clearly see them in this order with respect to other writes.
For aread by another processor, thereis at least one bus transaction for that block
that separates the completion o that read from the completion of these write hits.
That bus transaction ensures that that read also sees the writesin the consistent
serial order. Thus, reads by all processors see all writes in the same order.

Satisfying Sequential Consistency

To see how SC issatisfied, let usfirst appeal to the definition itself and see how a
consistent global interleaving o all memory operations may be constructed. As with
write-through caches, the serial arbitration for the busin fact defines atotal order on
bus transactions for all blocks, not just those for asingle block. All cache controllers
observe read and read-exclusive bus transactions in the same order and perform
invalidations in this order. Between consecutive bus transactions, each processor



298 CHAPTER 5 Shared Mamory Multiprocessors

performs a sequence of memory operations (read and write hits) in program order.
Thus, any execution o aprogram definesa natural partial order:

A memory operation M; is subsequent to operation M; if (1) the operations are issued by

the same processor and M; follows }; in program order, or (2) M; generatesabus transac-

tion that followsthe memory operation for M;.

This partial order looks graphically like that of Figure 5.6, except the local sequence
within asegment has writes as well as reads and both read-exclusive and read bus
transactions play important rolesin establishing the orders. Between bus transac-
tions, any interleaving o the sequencesof local operations (hits) from different pro-
cessors leads to a consistent total order. For writes that occur in the same segment
between bus transactions, a processor will observe the writes by other processors
ordered by bus transactions that it generates, and its own writes ordered by program
order.

We can aso see how SCis satisfiedin terms of the sufficient conditions. Write
completion is detected when the read-exclusive bus transaction occurs on the bus
and the write is performed i n the cache. The read completion condition, which pro-
vides write atomicity, is met because a read either (1) causesa bus transaction that
followsthat of the write whose valueis being returned, i n which case the write must
have completed globally before the read; (2) followssuch aread by the same proces-
sor in program order; or (3) followsin program order on the same processor that
performed the write, in which case the processor has aready waited for the write to
complete (become visible) globdly. Thus, al the sufficient conditions are easily
guaranteed. We return to this topic when we discuss implementing protocols in
Chapter 6.

Lower-Leved Design Choices

Toillustrate somedf theimplicit design choicesthat have been madein the protocol,
let us examine more closely the transition from the M state when aBusRd for that
block is observed. In Figure 5.13, we transition to state S and flush the contents of
the memory block to the bus. Although it isimperative that the contents are placed
on the bus, we could instead have transitioned to state |, thus giving up the block
entirely. The choice of going to S versus | reflects the designer's assertion that the
origina processor is more likely to continue reading the block than the new proces-
sor is to write to the memory block. Intuitively, this assertion holds for mostly read
data, which is common in many programs. However, a common casewhere it does
not holdis for aflag or buffer that is used to transfer information back and forth
between processes: one processor writesit, the other readsit and modifiesit, then
thefirst readsit and modifiesit, and so on. Accumulations into a shared counter
exhibit similar migratory behavior across multiple processors. The problem with
betting on read sharing in these casesis that every write has to first generate an
invalidation, thereby increasing its latency. Indeed, the coherence protocol used in
the early Synapse multiprocessor made the alternate choice of going directly from M
to | state on aBusRd, thus betting the migratory pattern would be more frequent.



5.3 Design Spacefor Snooping Protocols 299

Some machines (Sequent Symmetry model B and the MIT Alewife) attempt to adapt
the protocol when such a migratory access pattern is observed (Cox and Fowler
1993; Dahlgren, Dubois, and Stenstrom 1994). These choices can affect the perfor-
mance d the memory system, aswe see later in the chapter.

5.3.2 A Four-State (MES) Write-Back Invalidation Protocol

A concern arises with our MS protocol if we consider a sequential application run-
ning on a multiprocessor. Such multiprogrammed use in fact constitutes the most
common workload on small-scale multiprocessors. When the process reads i n and
modifiesa dataitem, in the MS protocol two bus transactions are generated even
though there are never any sharers. Thefirstisa BusRd that gets the memory block
in s state, and the second isaBusRdX (or BusUpgr) that converts the block from S
to M state. By adding astate that indicates that the block is the only (exclusive) copy
but is not modified and by loading the block in this state, we can save the latter
transaction since the state indicates that no other processor is caching the block.
This new state, called exclusive-cleanor exclusive-unowned (or even simply “exclu-
sive"), indicates an intermediate level of binding between shared and modified. It is
exclusive, so unlike the shared state, the cache can perform awrite and move to the
modified state without further bus transactions; but it does not imply ownership
(memory has a valid copy), so unlike the modified state, the cache need not reply
upon observing arequest for the block. Variantsof this MES protocol are used in
many modern microprocessors, including the Intel Pentium, PowerPC 601, and the
MIPS R4400 used in the Silicon Graphics Challenge multiprocessors. It was first
published by researchers at the University of Illinois at Urbana-Champaign (Papa-
marcos and Patel 1984) and is often referred to as the lllinois protocol (Archibald
and Baer 1986).

The MES protocol thus consists of four states: modified (M) or dirty, exclusive-
clean (E), shared (S), and invalid (1). M and | have the same semantics as before. E,
the exclusive-cleanor exclusivestate, means that only one cache (this cache) has a
copy of theblock andit has not been modified (i.e., the main memory is up-to-date).
$ meansthat potentially two or more processors have this block in their cachein an
unmodified state. The bus transactions and actions needed are very similar to those
for the MS protocol.

State Transitions

When the block isfirst read by a processor, if avalid copy existsin another cache,
then it enters the processor’s cachein the S state, as usual. However, if no other
cache has a copy at the time (for example, in a sequential application), it enters the
cachein the E state. When that block iswritten by the same processor, it can directly
transition from E to M state without generating another bus transaction since no
other cache has a copy If another cache had obtained a copy in the meantime, the
state of the block would have been demoted from E to S by the snooping protocol.



300 CHAPTER 5 Shared Memory Multiprocessors

This protocol placesa new requirement on the physical interconnect of the bus.
An additional signal, called the shared signal (S), must be availableto the controllers
in order to determine on aBusRd if any other cache currently holds the data. During
the address phase of the bus transaction, all caches determine if they contain the
requested block and, if so, assert theshared signal. Thissignal isawired-ORline, so
the controller making the request can observe whether any other processors are
caching the referenced memory block and can thereby decide whether to load a
requested block in the E state or the Sstate.

Figure 5.15 shows a state transition diagram for a MES protocol, still assuming
that the BusUpgr transaction is not used. The notation BusRd(S) means that the bus
read transaction caused the shared signal S to be asserted; BusRd(S) means S was
unasserted. A plain BusRd means that we don't care about the value of S for that
transition. A write to ablock in any state will promote the block to the M state, but
if it wasin the E state, then no bus transaction isrequired. Observing a BusRd will
demote a block from E to Ssince now another cached copy exists. As usual, observ-
ing a BusRd will demote ablock from M to S state and will aso cause the block to be
flushed onto the bus; here too, the block may be picked up only by the requesting
cache and not by main memory, but this may require additional states beyond MES!.
(A fifth, owned state may be added, which indicates that even though other shared
copiesd the block may exist, thiscache [instead o main memory] isresponsible for
supplying the data when it observesa relevant bus transaction. This leads to a five-
state MOES! protocol [Sweazey and Smith 1986].) Notice that it is possible for a
block to bein the Sstate even if no other copies exist since copies may be replaced
(S — 1) without notifying other caches. The arguments for satisfying coherence and
sequential consistency are the same asin the MSI protocol.

Lower-Leve Design Choices

Aninteresting question for bus-based protocolsis who should supply the block for a
BusRd transaction when both the memory and another cache have a copy o it. In
the original (Illinois) version of the MES protocol, the cache rather than main
memory supplied the daa—a technique called cache-to-cachesharing. The argument
for this approach was that caches, being constructed out of SRAM rather than
DRAM, could supply the data more quickly. However, this advantageis not necessar-
ily present in modem bus-based machines, in which intervening in another proces-
sor's cache to obtain data may be more expensive than obtaining the data from main
memory. Cache-to-cache sharing also adds complexity to a bus-based protocol: main
memory must wait until it is certain that no cache will supply the data beforedriving
the bus, and if the data resides in multiple caches, then a selection algorithm is
needed to determine which one will provide the data. On the other hand, this
technique is useful for multiprocessors with physically distributed memory (as we
seein Chapter 8) because thelatency to obtain the datafrom a nearby cache may be
much smaller than that for a faraway memory unit. This effect can be especially
important for machines constructed as a network of SMP nodes because caches



533

5.3 Design Space for Snooping Protocols 301

Prv/BusRdX i N

|

|

I
\

! 1

N }

; Vv BusRdX/Flush

|
Prwr/BusRdX

|

1

i 1
1

BusRd (5) ro

AGURE 5.15 Statetransition diagram for the lllinois MESI protocol. MESI stands
for the modified (dirty), exclusive, shared, and invalid states, respectively. The notation is
the same as that in Figure 5.1 3. The Estate helps reduce bus traffic for sequential programs
where data is not shared. Whenever feasible, the lllinois version of the MESI protocol makes
caches, rather than main memory, supply data for BusRd and BusRdX transactions. Since
multiple processors may have a copy of the memory block in their cache, we need to select
only one to supply the data on the bus. Flush' is true only for that processor; the remaining
processors take their usual action (invalidation or no action). In general, Flush' in a state
diagram indicates that the block is flushed only if cache-to-cachesharing is in use and then
only by the cache that is responsible for supplying the data.

within the requestor's SMP node may supply the data. The Stanford DASH multipro-
cessor (Lenoski etal. ¥993) used such cache-to-cache transfers for this reason.

A Four-State (Dragon) Write-Back Update Protocol

Letusnow examine abasic update-based protocol for write-back caches. This proto-
colwas first proposed by researchers at Xerox PARC for their Dragon multiprocessor
system (McCreight 1984; Thacker, Stewart, and Satterthwaite 1988), and an



302 cHAPTER 5 Shared Mamory Multiprocessors

enhanced version of 1t 1s used 1n the Sun SparcServer multiprocessors (Catanzaro
1997)

The Dragon protocol consists of four states. exclusive-clean (E), shared-clean
(Sc), shared-modified (Sm), and modified (M) Exclusive-clean (or exclusive) has
the same meaning and the same mouvation as before only one cache (this cache)
has a copy o the block, and it has not been modified (i e, the mam memory isup-
to-date) Shared-clean means that potentially two or mole caches (including this
one) have this block, and main memory may or may not be up-to-date Shared-
modified means that potentially two or more caches have this block, main memory 1s
not up-to-date, and it isthis cache's responsibility to update the mamn memory at the
time this block 1s replaced from the cache (1 e, this cache is the owner) A block
may bein Sm state n only one cacheat atime However,1t 1s quite possible that one
cache has the block 1n Sn state, while othershaveit m Scstate Or it may be that no
cache has 1t in Sm state, but some haveit m Sc state This 1s why, when a cache has
the block in Sc state, memory may or may not be up-to-date, 1t depends on whether
some other cache hasit in Sm state M signifies exclusive ownership as before the
block 1s modified (dirty) and present in this cache alone, main memory is stale, and
1t 1s this cache's responsibility to supply the data and to update mam memory on
replacement Note that there is no explicit invalid () state as m the previous proto-
cols This is because Dragon is an update-based protocol, the protocol awayskeeps
the blocksin the cache up-to-date, so 1t isalways okay to use the data present m the
cacheif the tag match succeeds However, if ablock 1s not present in acacheat all, it
can beimagined in aspecial invalid or not-present state.”

The processor requests, bus transactions, and actions for the Dragon protocol are
similar to the Illinois MES protocol. The processor is still assumed to issue only
read (PrRd) and write (PrWr) requests. However, since we do not have an invalid
state, to specify actions on a tag mismatch we add two more request types: processor
read miss (PrRdMiss) and write miss (PriwrMiss). As for bus transactions, we have
bus read (BusRd), bus write back (BusWB), and a new transaction called bus update
(BusUpd). The BusRd and BusWB transactions have the usua semantics. The
BusUpd transaction takes the specificword (or bytes) written by the processor and
broadcastsit on the bus so that all other processors' caches can update themselves.
By broadcasting only the contents of the specific modified word rather than the
whole cache block, it is hoped that the bus bandwidth is more efficiently utilized.
(See Exercise 5.4 for reasons why this may not alwaysbe the case.) Asin the MES
protocol, to support the E state, ashared signal (S) isavailableto the cache control-
ler. Finally, the only new capability needed is for the cache controller to update a
localy cached memory block (labeled an Update action) with the contents that are
being broadcast on the bus by a relevant BusUpd transaction.

4. Logicdly, there 1s another state a well, but it 1s rather crude and is used to bootstrap the protocol. A
"miss mode" bit is provided with each cache line to force a miss when that block is accessed. Initializa-
tion software reads data intO every line in the cache with the miss mode hit turned on to ensure that the
processor will miss thefirst time it referencesa block that maps to that line. After this first miss, the miss
mode bit is turned off and the cache operates normally.



5.3 Design Spece for Shooping Protocols 303

PrRd/i—

PrRd/— BusUpd/Update

BusRd/—

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S)

Prwr/BusUpd(S)

Prwr/BusUpd(S)

BusUpd/Update

BusRd/Flush

PrwvrMiss/(BusRd(S); BusUpd) PrWrMiss/BusRd(S)

Prwr/BusUpd(S)

PrRd/—
Prwr/BusUpd(S)
BusRd/Flush

PrRd/—
Prwr/i—

FIGURE 5.16 State transition diagram for the Dragon update protocol. The four states are
exdusve (E), shared-clean (Sc),shared-modified (Sm), and modified (M). There is no invdid (| state
becausethe update protocol always kegps blocksin the cache up-to-date.

State Transitions

Figure 5.16 shows the state transition diagram for the Dragon update protocol. To
take a processor-centric view, we can explain the diagram in terms of actions taken
when acache incursaread miss, awrite (hit or miss), or a replacement (no action is
ever taken on aread hit).

m Read miss: A BusRd transaction is generated. Depending on the status of the
shared signal (S), the block isloaded in the E or Sc state in the local cache. If
theblock isin M or Sm statesin one d the other caches, that cache asserts the
shared signal and supplies the latest data for that block on the bus, and the
block is loaded in the local cachein c state. If the other cache had it in state
M, it changesitsstate to Sm. If theblock isin Sc state in other caches, memory
supplies thedata, and it isloaded in Scstate. If no other cache has a copy, then
the shared line remains unasserted, the data is supplied by the main memory,
and the block isloaded in thelocal cachein E state.

m Write If theblockisin the M statein thelocal cache, then no action needs to
be taken. If the block isin the E state in the local cache, then it changes to M
state and again no further action is needed. If the block isin Sc or Sm state,



304 CcHAPTER 5 Shared Meamory Multiprocessors

however, aBusUpd transaction is generated. If any other caches havea copy of
the data, they assert the shared signal, update the corresponding bytesin their
cached copies, and change their slate to Sc if necessary. The local cache also
updates its copy o the block and changes its state to Sm if necessary. Main
memory is not updated. If no other cache has a copy o the data, the shared
signal remains unasserted, the local copy is updated, and the state is changed
to M. Findly, if on awrite the block is not present in the cache, the write is
treated simply as a read-miss transaction followed by a write transaction.
Thus, first aBusRd is generated. 1f the block is aso found in other caches, a
BusUpd is generated, and the block is loaded localy in the Sm state; other-
wise, the block isloaded locally i n the M state.

Replacement: On a replacement (arcs not shown in the figure), the block is
written back to memory using a bus transaction only if it isin the M or Sm
state. If it isin the Sc state, then either some other cache hasit in Sm state or
none does, in which caseit isalready valid in main memory.

Example5.7 illustrates the transitions for afamiliar scenario.

EXAMPLE 5.7 Using the Dragon update protocol, show the state transitions and bus
transactions for the scenario depicted in Figure 5.3.

Answer The results are shown in Figure 5.17. We can see that, whereas for processor
actions 3 and 4 only one word is transferred on the bus in the update protocol, the
whole memory block is transferred twice in the invalidation-based protocol. Of
course, it is easy to construct scenarios in which the invalidation protocol does
much better than the update protocol, and we discuss the detailed trade-offs in
Section5.4. M

Lower-Level Design Choices

Again, many implicit design choices have been made in this protocol. For example,
itisfeasible to eliminate the shared-modified state. In fact, the update protocol used
in the DEC Firefly multiprocessor does exactly that. The rationale is that every time
the BusUpd transaction occurs, main memory can also update its contents along
with the other caches holding that block; therefore, shared clean suffices, and a
shared-modified state is not needed. The Dragon protocol is instead based on the
assumption that the SRAM cachesare much quicker to update than the DRAM main
memory, so it isinappropriate to wait for main memory to be updated on al BusUpd
transactions. Another subtle choice relates to the action taken on cache replace-
ments. When a shared-clean block is replaced, should other caches be informed of
that replacement via a bus transaction so that if only one cache remainswith a copy
o thememory block, it can changeits state to exclusiveor modified? The advantage
of doing this would be that the bus transaction upon the replacement might not be
in the critical path of a memory operation, whereas the later bus transaction that it
saves might be.

Sinceall writesappear on the busin an update protocol, writeserialization, write
completion detection, and write atomicity are all quite straightforward with asimple



5.4 Assesing Protocol Design Tradeoffs 305

Processor Action Statein Py StateinP, StateinP3 Bus Action Data Supplied By

Py
Py
P3
Py
P2

I NEAN O

reads u
reads u
wites u
reads u
reads u

E - — BusRd Menory
sc - Sc BusRd Menory
Sc — Sm BusUpd p; cache
Sc - Sm nul | -

Sc Sc Sm BusRd p; cache

FIGURE 5.17 The Dragon update protocol in action for the processor actions shown in
Figure 5.3. The figureshows the state d the rlevant memory block at the end o each processor
action, the bus transaction generated (if any), and the entity supplying the data.

atomic bus, a lot like they were in the write-through case. However, with both
invalidation- and update-based protocols, we must address many subtle implemen-
tation issues and race conditions, even with an atomic bus and a single-level cache.
We discuss this next level d protocol and hardware design in Chapter 6, as well as
more realistic scenarios with pipelined buses, multilevel cache hierarchies, and
hardware techniques that can reorder the completion d memory operations. None-
theless, we can quantify many protocol trade-offsevenat the state diagram level that
we have been considering so far.

ASSESSING PROTOCOL DESIGN TRADE-OFFS

Likeany other complex system, the design o a multiprocessor requires many inter-
related decisions to be made. Even when a processor has been picked, we must
decide on the maximum number of processors to be supported by the system, vari-
ous parameters of the cache hierarchy (e.g., number o levelsin the hierarchy, and
for each level the cachesize, associativity, block size, and whether the cacheiswrite
through or write back), the design of the bus (e.g., width of the data and address
buses, the bus protocoal), the design of the memory system (e.g., interleaved memory
banks or not, width of memory banks, sized internal buffers), and the design o the
VO subsystem. Many of theissuesaresimilar to those in uniprocessors (Smith 1982)
but accentuated. For example, awrite-through cache standing before the bus may be
apoor choicefor multiprocessors because the bus bandwidth isshared by many pro-
cessors, and memory may need to be more greatly interleaved becauseit services
cache misses from multiple processors. Greater cache associativity may aso be use-
ful in reducing conflict misses that generate bus traffic.

The cache coherence protocol is a crucial new design issue for a multiprocessor.
It includes protocol class (invalidation or update), protocol states and actions, and
lower-level implementation trade-offs. Protocol decisionsinteract with all the other
design issues. On the one hand, the protocol influences the extent to which the
latency and bandwidth characteristics of system components are stressed; on the
other, the performance characteristics aswell as the organization of the memory and
communication architecture influence the choice of protocols. As discussed in



306 cHAPTER 5 Shared Memory Multiprocessors

541

Chapter 4, these design decisions need to be evaluated relative to the behavior of
real programs. Such evaluation was very common in the late 1980s, albeit using an
immature set of parallel programs as workloads (Archibald and Baer 1986; Agarwal
and Gupta 1988; Eggersand Katz 1988, 1989a, 1989b).

Making design decisions in real systems is part art and part science. The art
draws on the past experience, intuition, and aesthetics of the designers, and the sci-
ence is based in workload-driven evaluation. The goals are usually to meet a cost-
performance target and to have a balanced system, so that no individual resource is
a performance bottleneck yet each resource has only minimal excess capacity. This
section illustrates some key protocol trade-offs by putting the workload-driven
evaluation methodology from Chapter 4 into action.

M ethodology

The basic strategy is as follows. The workload i s executed on asimulator of a multi-
processor architecture, as described in Chapter 4. By observing the state transitions
encountered in the simulator, we can determine the frequency of various events
such as cache missesand bus transactions. We can then evaluate the effect of proto-
col choicesin terms o other design parameters such as latency and bandwidth
requirements.

Choosing parameters according to the methodology of Chapter 4, this section
first establishes the basic state transition characteristics generated by theset of appli-
cations for the four-state Illinois MESI protocol. It then illustrates how to use these
frequency measurements to obtain a preliminary quantitative analysisdof the design
trade-offs raised by the example protocols above, such as the use d the exclusive
state in the MES protocol and the use of BusUpgr rather than BusRdX transactions
for theS— M transition. This section alsoillustrates more traditional design issues,
such as how the cache block sze—the granularity of both coherence and communi-
cation—impacts the latency and bandwidth needs o the applications. To under-
stand this effect, we classify cache missesinto categoriessuch as cold, capacity, and
sharing misses, examine the effect o block size on each category, and explain the
resultsin light of application characteristics. Finaly, this understanding of the appli-
cations is used to illustrate the trade-offs between invalidation-based and update-
based protocols, again in light of latency and bandwidth implications.

The analysisin thissection isbased on thefrequency of variousimportant events,
not on the absolute times taken or, therefore, the performance. This approach is
common in studies of cache architecture because the results transcend particular
system implementations and technol ogy assumptions. However, it should be viewed
as only a preliminary analysissince many detailed factors that might affect the per-
formance trade-offs in real systems are abstracted away. For example, measuring
state transitions providesameans of calculating missrates and bus traffic, but realis-
tic valuesfor latency, overhead, and occupancy are needed to translate the rates into
the actual bandwidth requirements imposed on the system. To obtain an estimate of
bandwidth requirements, we may artificially assume that every reference takes a
fixed number of cycles to complete. However, the bandwidth requirements them-



54.2

5.4 AssssingProtocol Design Trade-offs 307

selves do not translate into performance directly but only indirectly by increasing
the cost of misses due to contention. Contention is very difficult to estimate because
it depends on the timing parameters used and on the burstiness of the traffic, which
is not captured by the frequency measurements. Contention, timing, and hence per-
formance are also affected by lower-level interactions with hardware structures (like
queues and buffers) and policies.

The simulations used i n this section do not model contention. Instead, they use a
simple PRAM cost model: all memory operations are assumed to complete in the
same amount of time (here asingle cycle) regardless o whether they hit or missin
the cache. There are three main reasons for this. First, the focusis on understanding
inherent protocol behavior and trade-offsin terms of event frequencies, not so much
on performance. Second, since we are experimenting with different cache block sizes
and organizations, wewould like the interleaving o referencesfrom application pro-
cesseson the simulator to be the same regardless o these choices; that is, all proto-
cols and block sizes should see the same trace o references. With the execution-
driven rather than trace-driven simulation we use, thisisonly possibleif we make the
cost of every memory operation the samein thesimulations. Otherwise, if areference
misseswith asmall cacheblock but hits with alarger one, for example, then it will be
delayed by different amounts in the interleaving in thetwo cases. It would therefore
be difficult to determine which effects are inherently due to the protocol and which
are due to the particular parameter values chosen. Third, realistic simulations that
model contention take much more time. The disadvantage d using this simple model
even to measure frequenciesis that the timing model may affect some of the frequen-
cieswe observe; however, this effectissmall for the applications we study.

The illustrative workloads we use are the six paralel programs (from the
SPLASH-2 suite) and one multiprogrammed workload described in Chapters 3 and
4. The paralel programs run in batch mode with exclusive access to the machine
and do not include operating system activity in the simulations, whereas the multi-
programmed workload includes operating system activity The number of applica-
tions used is relatively small, but the applications are primarily for illustration as
discussed in Chapter 4; the emphasis here is on choosing programs that represent
important classes of computation and with widely varying characteristics. The fre-
quencies of basic operations for the applications appear in Table 4.1. We now study
them in more detail to assessdesign trade-offsin cache coherency protocols.

Bandwidth Requirement under the MESI Protocol

We begin by using the default 1-MB, single-level caches per processor, as discussed
in Chapter 4. These are large enough to hold the important working sets for the
default problem sizes, which is arealistic scenario for all applications. We use four-
way set associativity (with LRU replacement) to reduce conflict missesand a 64-byte
cache block size for realism. Driving the workloads through a cache simulator that
models the lllinois MESI protocol generates the state transition frequencies shown
in Table5.1. The data is presented as the number of state transitions of a particular
type per 1,000 referencesissued by the processors. Notein the table that a new state,



308 CHAPTER 5 Shared Memory Multiprocessors

ate:T ranﬁiﬁ@mépééﬁ?ﬁbb‘ Data Me n

Barnes-Hut NP o]

"~ 0.0011 0.0362 0.0035
| 0.0201 0 0.0001 0.1856 0.0010
5 ¢ 0 0000 0.0000 0.0153 0.0002 0.0010
s 0.0029 0.2130 0 97.1712 0.1253
M 0.0013 0.0010 0 0.1277  902.782
Ly NP 0 0 0.0000 0.6593 0.0011
| 0.0000 0 0 0.0002 0.0003
- 0.0000 0 0.4454 0.0004 0.2164
= 0.0339 0.0001 0 302.702 0.0000
M 0.0001 0.0007 0 0.2164  697.129
Ocean NP 0 0 1.2484 0.9565 1.6787
| 0.6362 0 0 1.8676 0.0015
E E 0.2040 0 14.0040 0.0240 0.9955
= 0.4175 2.4994 0 134716 22392
M 2.6259 0.0015 0 2.2996  843.565
Radiosity NP 0 0 0.0068 0.2581 0.0354
[ 0.0262 0 0 0.5766 0.0324
g E 0 0.0003 0.0241 0.0001 0.0060
= s 0.0092 0.7264 0 162.569 0.2768
M 0.0219 0.0305 0 03125  839.507
Radix NP 0 0 0.004746 3524705 11.41111
| 0.130988 O 0 1108079  4.57868
5 E 0.000759  0.002848  0.080301 0 0.00019
S 0.029804  1.120988 O 178.1932 0.817818
M 0044232 1153127 O 403157 802.282

continued



54 Assessing Protocol Design Trade-offs 309

ata ‘émd'Yﬁ*ié'fEféﬁCes.;ésUéd"by" the Applic

Raytrace NP 0 0 1.3358 1.5486 0.0026
| 0.0242 0 0.0000 0.3403 0.0000
E 0.8663 0 29.0187 0.3639 0.0175
s 1.3181 0.3740 0 310.949 0.2898
M 0.0559 0.0001 0 02970  661.011
Multiprog NP0 ) 01675 0.5253 0.1843
User Data l 0.2619 0 0.0007 0.0072 0.0013
References £
s ¢ 0.0729 0.0008  11.6629 0.0221 0.0680
s 03062 0.2787 0 2146523 0.2570
M 02134 0.1196 0 03732  772.7819
Multiprog NP 0 0 32709 15.7722 0
User | 0 0 0 0 )
Instruction £
References < E 1.3029 0 46,7898 1.8961 0
s 169032 0 0 981.2618 0
M 0 0 0 0 0
Multiprog NP0 0 1.0241 1.7209 4.0793
Kernel Data | 1.3950 0 0.0079 1.1495 0.1153
References £
s E 0.5511 0.0063  55.7680 0.0999 03352
s 1.2740 2.0514 0 393.5066 1.7800
M 3.1827 0.3551 0 20732 542.4318
Multiprog N 0 0 2.1799 26.5124 0
Kernel
Instruction € ! 0 0 0 0 0
References o E 0.8829 0 5.2156 1.2223 0
[N
S 246963 0 0 1,075.2158 0
M 0 0 0 0 0

The data assumes 16 processors (except for Multiprog, which is for 8 processors), 1-MB four-way set-
associative caches, 64-byte cache bldcks, and the lllinois MESI coherence protocol.



310 CHAPTER 5 Shared Memory Multiprocessors

NP (not present), isintroduced. This addition helps clarify transitions where, on a
cache miss, one block is replaced (creating a transition from onedf |, E, S, or M to
NP) and anew block isbrought in (creating a transition from NPto oneof I, E, S, or
M). Thesum o state transitions can be greater than 1,000 even though we are pre-
senting averages per 1,000 referencesbecause some references cause multiple state
transitions. For example, a write miss can cause two transitions in the local proces-
sor's cache (e.g., S — NP for the old block and NP — M for the incoming block), in
addition to transitions in other cachesdue to invalidations (I/E/S/M — |). Thisstate
transition frequency datais very useful for answering "what if* questions. Example
5.8 shows how we can determine the bandwidth requirement these workloads
would'place on the memory system.

EXAMPLE 5.8 Suppose that the integer-intensive applications run at a sustained 200
MIPS per processor and the floating-point-intensive applications at 200 MFLOPS per
processor. Assuming that cache block transfers move 64 bytes on the data bus lines
and that each bus transaction involves 6 bytes of command and address on the
address lines, what is the traffic generated per processor?

Answer The first step is to calculate the amount of traffic per instruction. We
determine what bus action is taken for each of the possible state transitions and
therefore how much traffic is associated with each transaction. For example, an M
—> NP transition indicates that, due to a miss, a modified cache block needs to be
written back. Similarly, an S — M transition indicates that an upgrade request must
be issued on the bus. Flushing a modified block response to a bus transaction (e.g.,
the M — S or M — | transition) leads to a BusWB transaction as well. The bus
transactions for all possible transitions are shown in Table 5.2. All transactions
generate 6 bytes of address bus traffic and 64 bytes of data traffic, except BusUpgr,
which only generates address traffic. We can now compute the traffic generated.
Using Table 5.2, we can convert the state transitions per 1,000 memory references
in Table 5.1 to bus transactions per 1,000 memory references and convert this to
address and data traffic by multiplying by the traffic per transaction. Then, using
the frequency of memory accesses in Table 41, we can convert this to traffic per
instruction. Finally, multiplying by the assumed processing rate, we get the address
and data bandwidth requirement for each application. The result of this
calculation is shown by the ieftmost bar for each application in Figure 5.18.> W

5. For the Multiprog workload, to speed up the simulations, a 32-KB instruction cache is used as a filter
before passing the instruction references to the 1-MB unified insuucuon and data cache. The state transi-
tion frequencies for the instruction references are computed based only on those references that missed
in the L; instruction cache. Thisfiltering does not affect how we compute data traffic, but it means that
instruction trafficiscomputed differently. In addition, for Multiprog we present dataseparately for kernel
instructions, kernel data references, user instructions, and user data references. A given reference may
produce transitions of multiple types for user and kernel data. For example, if a kernel instruction miss
causes amodified user data block to bewritten back, then we will have one transition for kernel instruc~
tions from NP —> E/S and another transition for the user data reference category from M — NP.



5.4 Assessing Protocol Design Trade-offs 311

* Table’5.2 Bus Aﬁ!;ibl‘iﬁ"fbrréépdnding to State Transitions in lllinois MES] Protocol .

From

To

M

NP — — BusRd ~  BusRd BusRdX
| _ — BusRd BusRd BusRdX
E —_ - _ — —

S _ — Nat possible — BusUpgr

M BuswB BuswB Nat possible BuswB —

543

The calculation in the preceding example gives the average bandwidth require-
ment under the assumption that the bus bandwidth is enough to alow the proces-
sors to execute at full speed. (In practice, bandwidth limitations may slow
processors and events down, which in turn would lead to lower traffic per unit
time.) This calculation provides a useful basis for sizing the number of processors
that a system can support without saturating the bus. For example, on a machine
such as the SGI Challengewith 1.2 GB/s of data bandwidth, the bus provides suffi-
cient average bandwidth to support 16 processors on al the applications other than
Radix for these problem sizes. A typical rule of thumb might be to leave 50%" head-
room" to alow for burstiness of data transfers. If the Ocean and Multiprog work-
loads were also excluded, the bus could support up to 32 processors. If the
bandwidth is not sufficient to support the application, the application will slow
down. Thus, we would expect the speedup curve for Radix to flatten out quite
quickly as the number of processorsgrows. In general, amultiprocessor is used for a
variety of workloads, many with low per-processor bandwidth requirements, so the
designer will choose to support configurations o a size that would overcommit the
bus on the most demanding applications.

Impact of Protocol Optimizations

Gwen this base design point, we can evaluate protocol trade-offs under common
machine parameter assumptions, asillustrated in Example5 9.

EXAMPLE 5.9 We have described two invalidation protocols in this chapter—the

basic three-state MS! protocol and the lllinois MESI protocol. The key difference is
that the MESI protocol includes the existence of the exclusive state. How large is
the bandwidth savings due to the E state?

Answer The main advantage of the E state is that no traffic need be generated

when going from E — M. A three-state protocol would have to generate a BusUpgr
transaction to acquire exclusive ownership for the memory block. To compute
bandwidth savings, all we have to do is put a BusUpgr for the E — M transition in
Table 5.2 and recompute the traffic as before. The middle bar in Figure 5.18 shows
the resulting bandwidth requirements. H



