
ln formation Representation 

One definition of a computer is a black box that manipulates information. First, 
information is entered into the computer. Then some f m  of processing is 
applied to the input information. Finally. the result is output to the user. In order 
to make any sort of evaluation of the computer or the proposed manipulation, 
some knowledge is required of the methods used for information storage and 
transfer. The purpose of this chapter is to examine the methods used for represent- 
ing information. This includes not only numeric information, but also textual 
information, address representation, error coding information, boolean values, and 
status information. Each of these types of information is useful, and each type 
will be used by the computer at the appropriate time for a specific function. First, 
let us examine number representation, both integer and floating point, to deter- 
mine the capabilities and limitations of available types of number systems. In 
addition, we will examine some of the difficulties i n d u c e d  by numeric manipu- 
lation. Then we will move on to representation of status information, boolean 
information, and addresses. Finally we will consider the problems associated with 
integrating all of these types of information into the same system. 

2.1. Integer Number Systems: Bounded Usefulness 

Representation of information within a computer, and in most communication 
methods associated with computers, relies on the concept of a "bit." We will con- 
sider a bit to be a variable capable of assuming one of two distinct values. For 
numbers, these values are considered ones and zeros. Other interpretations are 
possible: true and false, asserted and unasserted, and so on. Collections of bits 
form numbers; each bit position doubles the possible representations of the sys- 
tem. Thus. the number of bits available for representation determines the number 
of representable values. For N bits, there are 2N possible representations. Table 
2.1 summarizes the number of representable values for popular computer sizes. 



Table 2.1. Number of Representable Values. 

Number of Number of 
Bits Represenrohle Values Machines. Uses 

4 16 4004, control 
8 256 8080,6800, control, communicafion 

16 65.536 PDPI 1,8086,32020 
32 4.29 X 109 lBM 370, 68020. VAXII/IIO 
48 1.41 x 10" Unisys 
64 1.84 x 1019 Cray. E E E  (dp) 

The number of bits used in a particular format identifies the total number of 
representable values, but does not directly speciiy the range of those values. The 
assumptions made about the representations actually identify the range and useful- 
ness of the system. The simplest assumption is to let the binary numbers 
represent unsigned integers. If this is the case. then the range of representable 
numbers is from 0 to 2N - 1. These numbers are equally spaced. with a value of 1 
between each representation. The system is a positional system, in every respect 
like the base 10 system with which we are familiar. Each bit position k has asso- 
ciated with it a value of 2'. and the value represented by the collection of bits is 
represented by: 

where bi is the one or zero in position i .  Thus, in unsigned binary the pattern 
101101 means l x 2 ' + 0 ~ 2 ~ +  I x ~ ~ +  1 ~ 2 ~ + O x 2 ' +  l x  2' =4SI0. 

While the unsigned integer representation is simple and easily manipulated, 
negative numbers cannot be represented. Hence, other integer systems are more 
often used for information representation. Perhaps the most widely utilized sys- 
tem is the two's complement system. Here, the 2N representable values ran e f from -(2N-t) to 2N-' - 1. To negate a value, the value is subtracted from 2 . 
Table 2.2 gives a few of the 256 values of an 8-bit two's complement system. 
This representation has also a positional nature, and the value of a panicular 
representation is given by: 

Thus, in two's complement representation, the pattern 101101 means 
- 1 ~ 2 ~ + 0 ~ 2 ~ + 1 ~ 2 ~ + 1 ~ 2 ~ + 0 ~ 2 ~ + 1 ~ 2 ~ = - 1 9 .  One thing to note here is 
that, even though the most significant bit is not defined as a sign bit, it can be 
considered such. The reason for this is that, if the most significant bit is set. then 
the value will be negative, since the most significant bit canies more weight than 
all of the other bits combined. 

Example 2.1: Finding values in two's complement number system: What is 
the bit representation of 87t0 in an 8-bit two's complement number system? 

There are a variety of algorithms for converting between bases; it is 
not our intention to promote one or another. And since this number is a 
positive number within the representable values of the system. the various 
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Table 2.2. 8-Bit Two's Complement Representations. 
Bir Pattern Value Note 

01 11 11 11 127 Largest representable value. 
01111110 126 
OlllllOl 125 

... .'. 
000000 10 2 Note that leading zero indicates 
0000000 1 1 positive number. 
00000000 0 Unique representation of zero. 
11111111 -1 Minus one is always all ones. 
11111110 -2 Note that leading one indicates 
l l l l l l O l  -3 negative number. 

... ... 
10000010 -126 
1OOOOOO1 -127 
1OOOOOOO -128 Smallest (most negative) representable value. 

bit positions can each be checked to ascertain that the desired bit pattern is 
01010111. 

What is the bit representation of -7610 in an 8-bit two's complement 
number system? 

Again, the solution begins by finding the bit pattern for 7610, which is 
0 1001 100. To negate this, the number is then subtracted from 28: 

It is not necessaly to do these calculations in binary: 

The representation 101 10100 is equivalent (in unsigned binary) to 180. 
Also note that negalive numbers are negated to positive numbers in exactly 
the same way: 

What is the representation of the negative of 110101 lo2? 
Base two: 

Base 10: 

The answer 42 converts to 00101010, as above. 

The last portion of the example demonstrates the method utilized by many 
people to anive at the correct bit representation for negating a two's complement 
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number: complement all of the bits and add 1, which is h e  same as complement 
and increment. This also demonstrates the method for subtracting one number 
from another: the number to be subtracted is complen~ented and fed into one input 
of an adder, the other number forms the other adder input, and the carry in of the 
adder is asserted. The result is that a complement and increment have been per- 
formed on the number to be negated, and the result out of the adder will be the 
desired value. 

One of the extremely attractive features of the two's complement system is 
its circular nature. This is graphically demonstrated in Figure 2.1 for a Cbit two's 
complement system. The numbers are arranged around a circle from 1000 to 
01 11. As can be seen from the figure, progressing from one point to the next, or 
from one number to the next is accomplished by simply increasing or decreasing 
the values by one. When this happens at the 01 11 to 1000 border, the number 
changes from a positive to a negative value. The net result is a discontinuity in 
the desired numeric sequence. The name given to this discontinuity is an 
overflow - we have exceeded our ability to represent information in the number 
system. The same thing will happen if you specify successively more negative 
numbers: decrementing 1001 to 1000 works fine, but decrementing 1000 results in 
0111, which is a positive number. We have again crossed the discontinuity boun- 
dary, and exceeded our ability to represent information in the number system. 
When an arithmetic operation causes this to occur, many computers will respond 
by setting an "overflow bit." This bit can be included as one of the several bits 
making up the status word of a processor; these bits will be further described in 
the next chapter. In addition, the benefit of the circular nature of the two's com- 
plement system will be further discussed after consideration of a fractional 
representation of information. 

The numbers to this point have been described as integers, which is the 
correct interpretation only if we make the proper assumptions concerning the 
placement of the radix point of the system. Unless otherwise stated, we naturally 
assume that the radix point is located directly to the right of the least significant 
bit. With this assumption the patterns do indeed represent integers, and all of the 

Figure 2.1. Graphical Representation of the Circular 
Nature of Two's Complement Numbers. 
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statements made concerning integer manipulation apply. However, if we assume 
that the radix point is located at some point other than to the right of the least 
significant bit position, then the range and granularity of the representable values 
changes. 

The placement of the radix point (we are used to base 10, where it is the 
decimal point) is a matter of definition; no piece of hardware is installed on circuit 
boards to identify the location of the radix point. The radix point is established to 
satisfy the needs for which the processing element is utilized. If the information 
to be represented contains fractional values, then assumption of a radix point 
establishes a fixed point system that is so adjusted that it can cover the necessary 
range. Addition and subtraction operations for this type of a system are exactly 
the same as integer operations. However, for multiplication and division, care 
must be taken to assure that the radix point is in the correct place after an opera- 
tion, and that the correct bits are saved. For example, multiplication of two 16-bit 
numbers, regardless of the placement of a radix point, results in a 32-bit number. 
However, if the result of the multiplication of two 16-bit numbers is to be stored 
in a 16-bit number, then there are limits to the size of the number. In the case of 
a fixed point system, the correct bits must be selected so that the assumptions 
made about the radix point of the multiplier and multiplicand are also true for the 
result. 

A fixed point, noninteger system is also a positional system, just like the 
positional systems already described. The only difference is that the position of 
the radix point introduces a new factor into the equation. Let p represent the loca- 
tion of the radix point; this is the number of bit positions to the left of the least 
significant digit (bit) where the assumed radix point is found. Thus, the value of 
p for an integer system would be zero. Then the equation for the value of a two's 
complement fixed point number would be given by: 

This gives the user the flexibility to choose a system that will fulfill the needs of a 
specific project. That is, a designer can determine the smallest value required to 
meet the needs of the system, and select a number system accordingly. Therefore, 
one of the characteristic values of a number system that will help determine its 
usefulness is the difference (in absolute value) between adjacent numeric 
representations. We will call this difference Ar. Note that Ar for all integer sys- 
tems is 1; Ar for fixed point systems will be 2*. 

A simple example of this is a 5-digit decimal number system for representa- 
tion of monetary values. If p is equal to 0, then the system can represent values 
from $0 to $99999, and Ar has a value of $1. Thus, any value less than a dollar 
cannot be represented in the system. If the system designer needs to represent 
cents as well as dollars, then p can be assumed to have a value of 2. The five 
digits can then represent values from $0.00 to $999.99, and Ar has a value of 
$0.01. Both systems have the same number of representable values, but the range 
and the Ar differ with the use of the system and the assumed value for p. 

Example 2.2: Fixed point number system: Consider a fixed point 16-bit 
two's complement system with a value of p equal to 8. What is the smallest 
representable number? What is the largest representable number? What is 
the Ar? We know that addition and subtraction will not have any effect on 
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the position of the radix point, but what is the correct procedure for select- 
ing the bits to retain after a multiplication? 

The smallest representable number can be defined to be either the 
smallest absolute value that can be represented or the most negative number. 
The smallest absolute value for this system is zero; the next smallest abso- 
lute value is represented by the bit pattem 00000000.M)o0001. This has 
the value of 2*, which is just 3.9 x The most negative representable 
number has the bit pattern 10000000.00000000, this has the value of -2'. 
which is -128. The Ar for this system is the same as the smallest represtnt- 
able value, 2*. To ascertain the effect that n~rrltiplication has upon the 
radix point, notice what happens when we multiply two of these numbers: 
the least significant bit will represent 2-16, while the most significant bit 
will be 214. Thus, to get a properly aligned value when the process is over, 
the 31-bit result must be right shiftcd 8 bits, and then the next 16 bits form 
the desired result. Note that this dictates that the multiplication of the two 
input numbers has a maximum value if the number of bits saved as a result 
is to be the same as the number of bits used for the inputs. If the number of 
bits required to represent the value of the result exceeds 16, then an 
overflow has occurred. 

A fixed point system is often used in applications like digital signal process- 
ing (DSP), where the values are scaled as they enter the system, and the intermedi- 
ate values are sufficiently represented by the number of bits in the system. The 
Fujitsu 8764 DSP chip uses a 16-bit value with p equal to 14, while some com- 
ponents, such as the AMD29517, are set up for a 16-bit system with p equal to 15. 
If p is equal to 15 then all representable values (except for -1.0) have an absolute 
value less than one, and the system scales easily. These systems utilize integer 
arithmetic units, which are faster and require fewer devices than their floating 
point counterparts. 

Some applications, such as the digital signal processing applications men- 
tioned above, are able to take full advantage of the circular nature of the two's 
complement number system. These applications have a characteristic, inherent in 
the application itself, that will permit the number system to cross the overflow 
boundary without causing a disruption in the overall flow of instructions and data. 
For example, one of the frequently used digital signal processing algorithms is a 
finite impulse response (FIR) filter function. It can be shown that certain FIR 
filters will always result in a value within the ability of the number system to 
represent information; hence, intermediate overflows in the addition process can 
be ignored. 

The two's complement number system is the most widely used integer sys- 
tem in machines, but it is not the only one. Another method used in some 
machines is the one's complement system. Mathematically, the one's comple- 
ment of an N-bit number with value V is defined as 2N - 1 - V. The 2N - 1 por- 
tion of the equation is merely N one's, and subtracting V from a pattem of all 1's 
results in zeros where the ones were, and ones where the zeros were. Hence, the 
negative of a number is formed by complementing all of the bits in the number. 
Therefore, to negate any number, all that is required is to invert every bit position, 
which is a very fast operation. The range covered by this method is from 2N-2 
- 1 to -(2N-2 - I), which is just one different from the range of the two's comple- 
ment number system. However, some "features" of this system limit its useful- 
ness in digital systems. Unlike the other systems discussed above, this system 
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does not follow a positional notation methodology. The bits have different 
significance depending on the sign of the number. Also, this system has two legal 
representations for the number zero, both of which must be checked by any opera- 
tion that tests for zero. Finally, treaiment of the cany in this system is different 
from other systems, because of its "end-around" feature. The proof of this feature 
will be left as an exercise, but the effect can be seen from the following example: 

Example 2.3: One's complement arithmetic: Consider a 6-bit one's comple- 
ment system. Represent 15. -15. 13. and -13 in this system. Then perform 
the following additions: 15 + 13, 15 + (-13), 13 + (-13). and 13 + (-15). 

The numbers are derived in a simple fashion: 

Decimal One's 
Value Complement Comment 

Now for the additions: 

Positive numbers same as two's complement. 
Complement bits to negate. 
Positive numbers same as two's complement. 
Complement bits to negate. 

This proceeds just like the two's 
complement version. 

No cany out: number is correct, and 
the result is as we expect. 

The addition is done in the normal 
fashion, but 
the result of one is incorrect; 
however, the presence of a carry says we 
should add that as a 1 in the LSB 

which gives the expected result. 

This time we will add a positive number 
to its negative (which is just complement) 

and end up with all ones -a valid zero. 
Here the positive number is smaller 
than the negative number, so result 
is negative; no cany - the value is correct. 

Note that, in all of the above cases, the carry out can be added to the 
intermediate result (hence the name of end-around carry) to produce the 
correct final result. 

The one's con~plement nulnlrr syslcln c ~ r  be uwri in many of the 
same ways that other systems can be used, but care must be. taken to operate 
within the constraints that it imposes. 

Another system utilized to represent numbers is the excess system. Here an 
excess is purposely added to the value to be represented, and the resulting bit pat- 
tern is stored or used as required. One of the most prevalent uses of excess codes 
is to store exponents in floating point numbers. If we let S represent the value that 
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will be stored or otherwise utilized. V the true value of the number, and E the 
excess, then the relationship between them is defined as: 

In operations utilizing this type of representation care must be taken to be sure 
that the result is within the desired range. That is, if two numbers are added 
together, the following will happen: 

To  obtain the correct result [(VI + V 2 )  + El ,  a value equal to E must be removed 
from the calculated result. In some systems, where E is a power of 2, this is a 
simple operation. However, in other systems the operation can become more 
complicated. 

Example 2.4: Number representation in excess codes: What is the represen- 
tation of +3710 in an 8-bit excess 128 code? What is the representation of 
-23,, in an 8-bit excess 128 code? What is the sum of the two numbers, in 
the 8-bit excess 128 code? 

An 8-bit unsigned number can represent values between 0 and 255. 
The excess representation can then represent values from -128 to +127. 

This is the excess. 
The value to be represented. 
The representation of 37,, in excess 128 code. 
This is the excess. 
The value to be represented. 
The representation of -23,, in excess 128 code. 
This is +37 in excess 128. 
This is -23 in excess 128. 
Note the carry out 'in this operation. 270 is too 
big to represent in 8 bits; to correct for the 
2 x E that is in this sum, subtract 128. 

In binary, is this add or subtract? 
This is the representation of 14, the correct result. 
in excess 128. 

Another use for the excess code is in representing decimal numbers. A 4 bit 
integer representation can assume values between 0 and 15. If we limit ourselves 
to decimal nu~nbcrs, the desired values are 0 to 9. These are represented in excess 
3 by the numbers 3 to 12. One of the beneficial effects of this type of representa- 
tion is that, when two numbers are added together by a 4-bit binary adder, if the 
addition of those d c ~ i ~ ~ l n l  values would have resulted in a carry ou':, then there 
will be a carry out of the binary adder. Note that if D l  and D 2  are decimal 
numbers represented by V I  = D l  + 3  and V 2 = D 2 + 3 ,  then V I  + V 2  = 
D I + D2 + 6. Then if the sum of D I and D2 would result in a value greater than 
9, which would cause a carry in a decimal adder, V I  + V 2  would cause a carry in 
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a binary adder. Note also that the resulting value (Dl  +D2 + 6) must have 3 
removed from it before it is the valid representation in excess 3 for the resulting 
number, assuming that no carry out resulted. If a carry out did result, then the 4- 
bit representation is actually the correct value, since the excess is 6, and there are 
6 unused representations in the 4-bit scheme. This code can be very useful for 
systems that work with 4-bit quantities. 

Example 2.5: BCD excess 3 system: Consider a system that works with 3- 
digit decimal numbers, and it stores the digits in excess 3 format. What is 
the representation of 573? What is the representation of 142? Add the two 
numbers, and give the correct result in excess 3 format. 

The numbers are handled on a digit-by-digit basis, with the excess 
being included with each digit: 

Decimal B i ~ r v  

This is the excess. 
And the number to be represented. 
The excess 3 representation. 
This is the excess. 
This is the number to be represented. 

' 

The excess 3 representation. 
Do the addition in decimal and in 
binary. Correct as needed to 
make output correct. 

Carry out of second set of 4 bits indicates 
that the most significant digit should be 
incremented by one. Also indicates that 
this value is conect as it stands (since 2 x 
E = 6 and the carry out indicates that the 
number overflowed into the next digit) so 
we need to add 3. Therefore, the MSD 
needs to be incremented by one and decre- 
mented by 3; the middle digit needs to 
have 3 added; and the LSD needs to be de- 
cremented by 3. 

Which is the correct excess 3 
representation for 715,,. 

The excess representation for decimal numbers does have some useful 
characteristics, but usually this information is represented in the more natural 
binary coded decimal format (BCD). This code is listed in Table 2.3. Here, the 
numbers 0-9 are represented by the equivalent binary representations 0000 to 
1001. Thus, 4 bits are used for each decimal number. To represent all of the 
decimal numbers from 0 to 9910, 8 bits would be required. The smallest number 
(zero) would be represented as 00000000; the largest would be 1001 1001. But we 
already know thatwith 8 bits we should be able to represent 256 values; why are 
we limited to 100 values with BCD? The other representations (1010 to 11 11) are 
not used with BCD, which does not fully utilize all of the representable values. 
Thus, a BCD system is capable of different representations. 
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The above representations point out some very important char?.cteristics of 
the representation of information with bit patterns: 

Table 2.3. Binary Coded Decimal 

For a representatiowof N bits, 2N different values can be represented. This is 
true whether the information represented is numerical in nature, an address, or 
any other information, such as an instruction. 
The meaning associated with a bit pattern depends on the assumptions made. 
The assumptions about bit meaning will impact on the design of the hardware 
that manipulates the bits. Note that a one's complement adder is a different 
piece of hardware than a two's complement adder. 
The Ar for each representation is the same for the entire range of representable 
values. 
The assumption of a radix point will allow representation of fractional values. 
Note that the assumption of a radix point does'not impact on the addition pro- 
cess; however, multiplication and division must account for shifts in the radix 
point due to an increased number of bits in the result. 
The choice of a coding method is based on available hardware, the desired 
range of values, and other system goals. 

(RCD) 

Bir Pattern 

0000 
OOO1 
0010 
001 1 
0100 
0101 
01 10 
0111 
1OOO 
lo01 
1010 
1011 
1 I00 
1101 
11 10 
1111 

Regardless of the mechanisms chosen for information representation, the 
resulting collection of bits must be represented and communicated. Internal to a 
machine, the data is just that: a collection of bits in a register, in a memory loca- 
tion, or on a bus. But how humans see and remember or communicate this infor- 
mation is not usually in bit panem format. We generally gtoup bits together and 
utilize a different base to represent them; the most common systems are octal and 
hexadecimal. These representations will be utilized as appropriate throughout this 
book. 

Representations. 
Vahe 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Not valid 
Not valid 
Not valid 
Not valid 
Not valid 
Not valid 

Example 2.6: Alternate representations for bit patterns: Represent -157,,, 
and +25,47710 in binary, octal, and hexadecimal. Do this for the 16-bit 
two's complement representation and a 16-bit excess 32,768 representation. 
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+I57 = OOOOOOOOlOO11101 The binary representation. to 16 bits. 
-157 = 1111111101100011 To negate, complement and increment. 

= 1 11 1 11 1 101 100 01 1 Group in groups of 3 for octal. 
= 177543 

= 1 11 1 1 11 l 01 10 001 1 Group in groups of 4 for hexadecimal. 
= FF63 

25.477 = 01 10001 1 IOOOO101 the binary representation. to 16 bits. 
= 0 I I0 001 110 000 I01 Group in groups of 3 for octal. 
= 061605 

= 01 10 001 1 1000 0101 Group in groups of 4 for hexadecimal. 
= 6385 

Excess 32.768 

Excess code for -157. 
Group for octal. 
Compare with two's complement. 
Group for hexadecimal. 
Compare with two's complement. 
Excess code for 25477. 
Group for octal. 
Compare with two's complement. 
Group for hexadecimal. 
Compare with two's complement. 

.2. Fioating Point Number Systems: Coding for Range 

The previous section pointed out the fact that for an N-bit number, there are 2N 
different representable values. If we assume an integer interpretation to the bit 
pattern, then we have a numerical range of 2N. Throughout this range & is equal 
to one. The coding mechanism (two's complement, one's complement, excess 
code, etc.) identifies the low point and the high point of that range. If we assume 
a radix point within the word, then the range is smaller; however, now we have 
the ability to represent fractional values. Many problems require the ability to 
represent information of a much greater or smaller magnitude than possible with 
fixed point systems, and for these problems we need a different type of infonna- 
tion representation system. We are familiar with the use of scientific notation to 
represent large numbers, such as Avogadro's number (6.022 x loz3), or small 
numbers, such as the mass of a proton (1.673 x g). This same scheme is 
used t o  represent large and small numbers in computers, and has the name of a 
floating point number system (FPNS). This type of number system does not 
expand the quantity of representable values; rather, it modifies the way in which 
the 2N values is interpreted. 

T o  specify a floating point number, seven different pieces of information are 
necessary: base of the system, sign, magnitude, and base of the mantissa, and the 
sign, magnitude, and base of the exponent. We will first look at scientific nota- 
tion, which is used to identify these pieces, and then examine methods used in 
computers to do the same things. The numbers in scientific notation above have 
the following format: 

Chap .  2: Information Representation 



(Sign) Mantissa x ~ a s e ~ ~ ~ ~ " ~ ~ ~  

The "base" in the above equation is the radix of the system. For "normal" 
scientific numbers this radix is 10, because that is the base of the number system 
with which we are most familiar. Most computers do arithmetic in a binary 
fashion, so this choice would not be advantageous for a computer. The radix of 
the system is a constant that is decided at the time the system is defined, and it 
has a direct bkaring on the range of values that the system can represent, as we 
shall see. The value used for the radix is not stored in the computer, but forms 
part of the definition of the number system. We will denote the radix of the sys- 
tem as rb. 

The radix of the system also applies to the mantissa. The mantissa is used 
to identify the significant digits of a value. In practice, we may use mantissas 
with few digits or many digits. 111 a machin? rc.prw=n!:l:ion, the number of digits 
used for mantissa representation is the same for all numbers (of the same type, 
i.e., single precision or double precision). One of the characteristics of the float- 
ing point number is the number of digits used to represent the mantissa. This 
number will be ide~tified simply as m. Thus, for a specific floating point number 
system, each mantissa will consist of m base rb digits. Let us designate the value 
of a mantissa as VM. In the consideration of the range of the system, we will need 
to know the maximum and minimum allowable values for the mantissa, which we 
will designate as VMHAX and VMMIN. 

The location of the value of a floating point number on the real number line 
will be determined by the exponent. If the exponent is a large positive number, 
then the value of the floating point number is very large. If the exponent is zero 
then the value of the floating point number is just the value of the mantissa. If the 
exponent is a large negative number, then the value of the floating point number 
is very small. Determining the value of the exponent requires information con- 
cerning the sign, the radix. and the number of digits in the representation. We 
will let the radix of the exponent be designated by re. Like the radix of the sys- 
tem, the choice of re is made at design time, and is part of the number definition. 
For the scientific number examples above, rb = re = 10, but in most computers, 
re = 2. 

The number of digits in the exponent specifies the maximum size of the 
exponent, which, in conjunction with the radix of the system, identifies the range 
of the number system. We will designate this number (the number of digits in the 
exponent) with the letter e. Note that the exponent will contain e base re digits, 
and that, like the mantissa, r, and e are decisions made at the time the number 
system is defined. 

The sign of the exponent also needs to be identified. For our scientific 
examples, this was directly identified by the presence or absence of the minus 
sign. It is possil~lc to do the same for exponcnts stored in floating point numbers 
in computers: identify a bit that is a sign bit for the exponent, and let the exponent 
be stored in sign-magnitude format. However, most computers use not this 
method, but rather a coding technique to represent positive and negative values. 
The method most often used is the excess code technique, although other methods 
could be used as well. We will examine the reason for excess codes in the 
exponent a little later. Whatever the coding scheme chosen, each of the allowable 
representations for the exponent results in a unique value for the exponent. Let 
the value of the exponent be represented as VE. As with the mantissa, we will 
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need t o  know the maximum and minimum representable values of the exponent. 
We will designate these as VEM,, and VEM,,. 

The sign of the number itself must also be known. In the scientific 
representation above it is identified explicitly by a sign. This sign-magnitude 
mechanism is also the most prevalent mechanism for the storage of floating point 
numbers in computers. However, this information may be coded into the number 
by any of the coding schemes which allow for positive and negative representa- 
tions. 

The final piece of information we need is the placement of the radix point. 
In scientific notation, we explicitly designate the location of the radix point. 
However, in the machine we will need to make provisions for identifying the 
location of the radix point, or make appropriate assumptions about the system at 
design time. As with the fractional systems discussed above, let p  designate the 
location of the radix point with respect to the least significant digit. This p  will 
be used in determining the value of the mantissa, since, for an unsigned mantissa. 

where the mantissa is composed of N r, digits labeled dN-' to d o  So, the value! 
of the floating point number. VmN,  is given by 

The location of the radix point of the mantissa is directly connected to the 
value of the exponent. Consider the following representations for the number 
32,768 10. 

Each of the representations is a correct number in scientific notation, and the loca- 
tion of the decimal point is reflected in the value of the exponent. If the location 
of the radix point within the word is allowed to vary from number to number, 
then provisions must be made to record p and use that information in all of the 
calculations. This could be confusing and cumbersome, so in most systems an 
assumption is made concerning the location of the radix point (that is, the value of 
p )  to minimize the amount of stored information and to make the arithmetic 
easier. The process of representing all of the numbers such that the mantissas all 
have the same value for p is called normalization. This process also identifies the 
allowable mantissa values. The assumption that we will make for our examples is 
that p = M, and that the leftmost digit of the mantissa is nonzero. This means that 
the mantissa is a fraction that can have values between Ilrb and almost 1. 
Specifically, the maximum value is VM- = O.dn1d,,, dm ... to the length of the 
mantissa, where dh, = rb - 1; this number is very close to one (1 - r i N ,  for N 
digits). And the minimum mantissa value is VMMIN = 0.100 ... = l / r b .  The va!ue 
of this number varies with each rb. Thus, the only legal values for the mantissas 
vary from VMMIH to VMMAX, and the numbers represented by the FPNS must be 
obtained by combining a member of this set of mantissas and one of the available 
exponents. This leads to the following observations concerning nonzero values in 
a normalized floating point number system: 
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Maximum representable value = VFPNM,, = VMNAX x rbVcu.. 

Minimum representable value = VmNMIN = VMHIN x rbvc-. 

Number of legal mantissas = NLMFpN 

Number of representable values = NRVwN 

= Number of legal mantissas 

x Number of legal exponents 

These values help to identify the characteristics of a floating point number system, 
and are useful to determine if the system can be used in a specific application. 

Example 2.7: Chpracteristics of a FPNS: Consider a normalized floating 
point number system which has rb = 10, re = 10, m = 3, e = 2, both 
exponent and number itself stored in signfmagnitude format. What is the 
largest representable fraction? What is the smallest representable fraction? 
What is the largest representable exponent? What is the smallest represent- 
able exponent? What is the largest representable number? What is the 
smallest representable positive nonzero number? How many nonzero 
numbers can be represented in this system? 

From the equations given above, 

Note that this is the most negative exponent. The smallest exponent in 
absolute value is 0, but that exponent does not lead to the smallest 
representable numbers. 
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There are 199 representable exponents: 99 greater than zero, 99 less than 
zero, and zero. At this point we will make an observation concerning the 
number system, but leave the discussion of the problem until a later section. 
The number system can represent very large values, and very small values. 
The question is, can the value 1.00 be added to 10,000? The representation 
of 1.00 is 0.100 x 10'. The representation of 10,000 is 0.100 x 16. ~ u t  
there is no legal representation for 10,001. This points out the fact that the 
Ar is different for each VE.  For the legal representation of 1.00, the Ar is 
11 100. For the representation of 10,000 the Ar is 100. 

The above example provides a very interesting illustration. With five digits 
and two sign bits 358,200 different values can be represented with a normalized 
floating point system. If we assume that one of the sign bits can be interpreted as 
a number with a value of 0 or 1, then an integer number system with the same 
quantity of symbols (i.e., five base 10 digits, a base 2 digit, and a sign) would be 
capable of representing 399,998 values, more than the floating point system. But 
these numbers vary between -199,999 and 199,999. (Note that we are not count- 
ing the representation of zero in either case.) 

The range of the system and the number of representable fractions are both 
affected by the choice of the base of the system. The example given above used 
base 10, but computers don't usually provide that capability. With the base 2 
arithmetic capabilities of the machines, one would assume that the most natural 
base for floating point numbers would be two. However, grouping the bits into 
other base values, such as base 4 or base 8, can expand the range of the system. 
To demonstrate this let us compare two different normalized floating point 
number systems, simplified enough that we can enumerate all of the legal values 
in the systems. 

Both of these systems are representable in six bits. The first system is 
enumerated in Table 2.4. This table identifies how each bit is used in the number 
system. Four bits are used in the mantissa, and two bits for the exponent. With 
the rb = 2 for this system, m = 4. Also, r, = 2, and e = 2. Missing from the 
number system are negative values, both for the exponent and for the number 
itself. Nevertheless, the system demonstrates some important points. First of all, 
the first bit in the mantissa gives no information. In our definition of a normal- 
ized WNS, the first digit to the right of the radix point must be nonzero, and for a 
base 2 system, the only digit left is a one. Hence, this digit adds no information 
to the system. Second, the Ar changes for each value of the exponent: when the 
exponent is 0, the Ar is 1/16; when the exponent is 1, the Ar is 118. The Ar dou- 
bles for successive exponent values. The third observation is that the 32 values 
representable in this system is only half of the 26 = 64 legal combinations of six 
bits. Thus, while an integer system would represent 64 equally spaced values (0 
to 63). the system demonstrated in Table 2.4 represents 32 nonequally spaced 
values from ' 12  to 7'12. 

In contrast to the system of Table 2.4 is another 6-bit normalized floating 
point system shown in Table 2.5. This system is constructed so that the bits are 
grouped into base 4 digits; thus, the permissible values for the first digit are 1. 2, 
and 3, all of which take two bits to represent. However, note that the digit l 4  has 
a leading 0 (I4 = 012). This increases the number of allowable mantissas from 
eight to twelve. Thus, the first bit of the mantissa in this representation is not 
redundant, as it was for the previous system. The Ar for this system varies by a 
factor of four for subsequent exponent values. Note that the Ar for VE = 0 is the 
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Table 2.4. 6-Bit Normalized Floating Point System, Base 2. 

VM base 2 

Smallest fraction = 0.1000, = f 

Largest fraction = 0.1 11 1, = 16 

Smallest number = 0.1000, x 2' = f 

Largest number = 0.1 11 1, x 23 = 7+ 

Number of fractions = 1 x 2 x 2 x 2 = 8 

Number of values = 8 x 4 = 32 

Adapted from David J. Cwke. The Structure of Computers and Compu- 
tations, Tables 3.2 and 3.3 (1978), p. 203. 

, 

same in both systems. Finally, the 64 element capability for a six-bit system is 
more closely approached by the 48 values representable in this system than the 

- - 

previous system. Note that these values range from 114 to 60  - a much greater 
range than the base 2 system. However, also note that this system does not have 
the capability to represent many of the numbers represented in the base 2 system, 
such as 1'1s. 

These examples (6-bit normalized floating point number systems) underline 
the fact that not all floating point number systems are created equal. One N-bit 
floating point representation with its set of values for rb, rn, re, e, and so on, will 
have different characteristics from another N-bit floating point system. The 
designer is left with the task of selecting a representation which will fit the 
required combination of needs. 

The method of storing numbers in a machine underlines the differences and 
similarities in computer floating point number systems. The information stored 
(or sent, or manipulated, or ... ) is the sign, the exponent, and the mantissa. This 
information is usually grouped in that way: the sign of the number is the most 
significant bit, followed by the exponent, and then the mantissa. This is 
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Table 2.5. 6-Bit Normalized Floating Point System. Base 4. 

VM base 4 

Smallest fraction = 0.104 = 1 

Largest fraction = 0.334 = '1 
16 

Smallest number = 0.10, x 4' = $ 

Largest number = 0.334 x 4) = 60 

Number of fractions = 3 x 4 = 12 

Number of values = 12 x 4 = 48 

Adapted from David J. Cooke, The Structure of Cornput. 
ers and Computatiom, Tables 3.2 and 3.3 (1978). p. 203. 

graphically depicted in Figure 2.2. The information that never changes is not 
stored. Examples of this nonstored information are the radix of the system and 
the radix of the exponent; not so obvious examples of this are the location of the 
radix point and the coding method for storing the exponent. All of these are 
decided at design time, and remain constant for the life of the data. Another piece 
of constant information is the leading "1" for normalized base 2 mantissas. There 
is no reason to store this bit, and so the usual way to store a normalized base 2 
mantissa is shown in Figure 2.2. Only the bits that change are stored, so the most 
significant bit of the mantissa is said to be "hidden" behind the exponent. Some 
manufacturers refer to this as a "hidden bit" technique. The net result is to double 
the number of representable mantissas. 
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Storage Location (register or memory) 

Mantissa 
I I I I I I I  1 1 1 1 1 1 1 1 1 1 1 1 l I I I I I I I  

I 
Sign Bit Exponent Bits' Hidden Bit (if used) Mantissa BitsA 

Figure 2.2. Normalized Floating Point Number Storage. 

Some interesting observations can be made by considering the use of the 
"hidden bit" technique with the system depicted in Table 2.4. If this technique 
were adopted, then the number of legal mantissas would double, as would the 
representable values. Thus, all 64 combinations of bits would form correct float- 
ing point numbers. Note, however, the following: VMMIN remains the same at 1/2, 
and VMMAx is 31/32. The new representable values available by this technique are 
between each of the old values; the overall range is increased only from 7'h to 
7'14. SO although the number of values has doubled, the range of representable 
numbers is basically the same. Finally, none of the values representable is zero; 
the smallest number is 000000, which turns out to be (with the hidden bit coming 
into play), 0.10002 x 2' = 1/2. 

This raises the question: how is the number zero represented? We will 
examine this more closely in the examples to follow, but the general technique is 
to make an assumption concerning the exponent. A common method is to use an 
excess 2'-' code for exponent representation. As the binary representations of 
this code vary from 2' - 1 to 1, the exponents vary from 2'-' - 1 to -(2'-I - 1). 
If the exponent bits are all zero, then the number is assumed to be zero, regardless 
of the values of the bits located in the mantissa field. 

Example 2.8: Characteristics of a base 2 FPNS: Determine the characteris- 
tics, as defined by the above equations, bf the DEC 32-bit normalized float- 
ing point number system. 

This system has an rb of 2, an re of 2, rn = 24 with hidden bit, p = 24, 
e = 8, the exponent is stored in excess 128 code, and the number is stored in 
sign-magnitude form (mantissa is considered positive). So, from the above 
equations: 
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Discussion: This system uses 99.6% of the available bit patterns for legal 
normalized floating point values. However, if the computations are very 
small or very large, then the system will not be able to provide the dynamic 
range needed for the calculations. One of the questions sometimes asked 
about a floating point system is how many significant digits are available. 
This is a subjective measure, since the amount of precision available is a 
function of the number on1 not of the mess  producing the number. That 

I! ' .  is, for any Vr there are Z2L 8.4 x 10 different values. A n u m k  in this 
system represented in base 10 scientific notation would require six digits; 
we say that there are six significant figures. even though a measurement 
represented by those figures may only be accurate to three places. DEC also 
provides a double precision format to increase the amount of precision with 
which calculations can be made. The double precision system is identical 
(rb = re = 2, e = 8, exponent in excess 128 format, sign-magnitude represen- 
tation for the number) except that the number of bits in the mantissa is 
extended from 24 to 56. Thus, the values cover the same sections of the 
real number line, but there are 232 more values to represent the information 
to a greater precision. Thus for a given VE there are 3.6 x 1 0 ' ~  values, or 
about 16 digits of significance. 

The DEC format is prevalent simply because of the large number of DEC 
machines in use today. However, there are other systems available in both 32- 
and 64-bit formats. Another prevalent system is the IBM floating point system, 
which is analyzed in the next example. 

Example 2.9: Characteristics of a base 16 FPNS: Determine the characteris- 
tics of the IBM 32-bit normalized floating point number system. 

This system has an rb of 16, an re of 2, m = 6 hexadecimal digits, p = 
6, e = 7 ,  the exponent is stored in excess 64 code, number is stored in sign- 
magnitude form (mantissa is considered positive). 

This system has a far greater range than the DEC system, but actually has 
7% fewer representable values. Nevertheless in certain applications, this is 
a reasonable system, and is chosen by some system designers. The IBM 
system has a double precision format which, like the DEC format, does not 
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extend the range of the system, but includes 1 6 ~  more values in the same 
basic area of the real number line. 

One of the disappointing features of a normalized floating point system is 
that there is a large discontinuity when the values of the numbers approach zero. 
This is depicted graphically in Figure 2.3, which shows the smallest representable 
values of the DEC floating point system. The problem is, with the stipulation that 
the first digit to the right of the radix point be nonzero, the first representable 
value away from zero is disproportionately large. This is one of the problems 
addressed by the IEEE floating point system, which is the object of the next exam- 
ple. 

Example P.10: Churacreristics of IEEE FPNS: Determine the characteristics, 
as defined by the above equations, of the IEEE 32-bit and 64-bit normalized 
floating point number systems. 

First, the 32-bit system: This system has an rb of 2, an re of 2, m = 
24 with hidden bit, but here p = 23; e = 8, the exponent is stored in excess 
127 code, and the number is stored in sign-magnitude form (mantissa is 
considered positive). The effect of p being 23 while m is 24 is that rather 
than range from 1/2 to almost 1, as in the DEC system, these mantissas 
range from 1 to almost 2. Another difference is that the exponent VE = 255 
is special. That is, when the exponent is 255, special values are possible, 
such as infinity. So, the system has the following characteristics for normal- 
ized numbers: 

Ar = 7.0 x 
between values 

IEEE 
Floatm Point 
a r %hes 
z&f)olnear~~ 

JI a*......*... 

....ma. +- Ar =2.938 x loa9 between zero and smallest representable value ...... - ......... ........... .... 
Zero / . I  -YE=-127- I - YE=-125---+I 

Figure 2.3. Values of the DEC Normalized Floating Point System Near Zero. 
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Discussion: Notice that the largest representable number in this system is 
twice as large as the VFPNMx of the DEC system. The reason for this is that 
the VELIAX of both systems is the same (127), but the VMMAX of till: LEEE SYS- 

tem is -2, while the VMMAX of the DEC system is -1. At the other end of the 
normalized numbers, the smallest value (VFpNMu,) representable by the lEEE 
system is four times as large as the VmNHIN of the DEC system. One of the 
reasons the system is organized the way it is concerns the representation of 
zcrn, and the use of un~iorrnalized numbers. The previous representations 
assumed that the number was zero if the exponent bits were all zero. The 
IEEE floating point system has a provision that lets the number become 
unnormalized as it approaches zero. That is, when the exponent bits are all 
zero, then the bits in the mantissa field continue to be significant, and the 
exponent remains at a -126. This allows the number to approach zero in a 
linear fashion, as opposed to the discontinuity depicted in Figure 2.3. There 
are two representations for zero: when all bits (excluding sign bit) are zero, 
the value of the number is zero. The use of unnormalized representations 
extends the range of the system down to loA5. The number of significant 
digits here is basically the same as the systems already discussed. 

When VE is 255, the system allows for representation of some specific 
information: 

The formal number system specification should be consulted for a complete 
explanation of the definition and use of the system. As shown above, the 
single precision system is very similar in many respects with the DEC sys- 
tem. However, the IEEE system changes the number of bits in the exponent 
for the double precision representation. 

For the 64-bit representation, rb = re = 2 as before, but m = 53, p = 
52, e = 11, and the exponent is stored in excess 1,023 format. With these 
modifications, the chiuacteristics of the number system change somewhat. 
The VMMN is still 1.0, and the VMMAx gets closer to two (2 - 2?). But: 

Chop. 2: Information Representation 



The double precision system provides 15 significant digits, and has a range 
much larger than either the DEC or IBM double precision formats. 

The floating point number systems already mentioned are the ones that are 
most accessible for the majority of computer users. This is especially true in that 
the newer machines are utilizing chip sets that conform to the IEEE standard. This 
is true of the: 

68020, which is the processor in many of the Sun computers. 

80386, which is in the Sequent systems and many other computer systems. 

32332, which is in the Encore systems and other computers. 

MIPS R2000, which is used in many engineering workstations. 

In addition, many chip sets (see the AMD29C327, the ADP2100, etc.) are available 
for users to implement machines of their own design, utilizing the IEEE floating 
P J I I I ~  format. And thc DLC and IBM machines continue to be extremely prevalent 
throughout the computing community. 

We will mention one more floating point system, that utilized by the Cray 
machines. This 64-bit format is utilized a great deal for scientific computing. 

Example 2.11: Cray FPNS: Consider the Cray 64-bit floating point format. 
This system has an rb of 2, an re of 2, m = 48, p = 48, e = 15, number is 
stored in sign-magnitude form (mantissa is considered positive). The 
exponent is stored in excess 16,384 format. With an exponent so large, 
Cray does not use the full range, but rather uses the uppermost (and also, 
the most negative) portions to identify underflow and overflow. This infor- 
mation is then stored in the number itself. The effect is to have a maximum 
positive exponent of 8,191, and a maximum negative exponent of -8,192. 
This gives rise to the following set of numbers: 

This system has an extremely large range, and carries about 14 significant 
figures. The effect is to have a number system capable of extremely large 
and extremely small numbers, and sufficient significance for almost all 
necessary computations. Compare this system, for example, with the 64-bit 
IEEE format, which does not have the extreme range, but does carry over 15 
digits of significance. 

The information in this section points out the fact that not all floating point 
number systems are created equal. Each of the designers of the various systems 
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has been influenced by a different set of real or perceived requirements in the 
choices made. Table 2.6 identifies a number of machines and the floating point 
choices made for them. We should add here that many manufacturers support 
floating point formats (as a special option) which go beyond those we have 
identified here. Some 128-bit and 256-bit formats allow calculations with 
extremely large and small numbers. However, the principles of data representa- 
tion are the same, and an understanding of the principles discussed here will apply 
to the larger numbers. 

As we have seen, a variety of floating point formats have been utilized in 
the design of different computer systems. One of the problems that arises is the 
exchange of data from one system to another: the bit patterns cannot be directly 
exchanged, even if the number of bits used in the representations is identical. 
However, if one is aware of the differences in the number systems, one can take 
the necessary steps to make sure that the numbers on one machine are correct on 
another. In any event, this should serve as a reminder that with N bits on a com- 
puter, 2N different bit patterns are available. Floating point number systems allow 
the expression of large and small quantities, but do not expand the number of 
allowable representations. 

2.3. Coding for Nonnumeric Information 

The information utilized by computers in various tasks is not limited to numbers. 
Thus far, we have examined utilizing bit patterns to represent integer and floating 
point information. Other information must also be stored within the machine, or 
on electronic media such as tape or disks. This information may be instructions, 
text, addresses, status information, or other information needed by the machine. 
This inforrnation will be represented by bit patterns, just as the numbers were 
represented by bit patterns. And in a manner similar to the numeric data, the 
assumptions about the format of the information is made at design time. We will 
briefly examine several types of nonnumeric information in this section, including 
text, boolean, graphics symbols, and addresses. 

Textual information has bccome one of the most often utilized forms of 
inforrnation for both storage and manipulation. This seems counterintuitive, since 
computers have historically been used to "compute," that is, doing calculations for 
a variety of applications. However, when one considers the fact that programs are 
input in text form, that compilers operate on strings of characters, and that 
answers are generally provided via some type of textual information, then the 
amount of character information begins to be appreciated. A more recent utiliza- 
tion for computers is in the office, where reports, letters, contracts, and other types 
of printed information are generated. In short, many applications must store, 
manipulate, and transfer textual information. How can this be accomplished? 

One question in this regard is, what is the set of elements to be represented? 
Those interested in mathematical information would immediately respond with the 
characters needed to represent data: the digits (0-9). decimal point, plus, minus, 
and space. This gives a minimal character set with only I4 elements. However, 
there are severe limitations to the understandability of the results: no labels, no 
carriage returns or line feeds, and so on. So, at least add the alphabet (A-Z), 
punctuation, and formatting characters (comma, tab, carriage return, line feed, 
form feed, parenthesis). This gets the number of elements up to 46. We know 
that, in order to represent 46 different elements, we will need at least 
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Table 2.6. Floating Point Information Systems. 
Word 
Size Exponent Mantissa 

System (# Bits) rb #Bi t s  Code #Bits Repre. Code 

Burroughs 48 
B6700/1700 

CDC 60 
7600 

DEC - single 32 

DEC-double 64 

Honeywell 48 
8200 

IBM - single 32 

IBM -double 64 

IEEE - single 32 

IEEE - double 64 

Cray 64 

Ex 1024 48 Int 1's C 

Ex 128 24 Fra SM 

Ex 128 56 Fra SM 

Ex 64 40 (base 2) Fra 
20(base10) Fra SM 

Ex 64 24 Fra SM 

Ex 64 56 Fra SM 

Ex 127 24 Fra SM 

Ex 1023 53 Fra SM 

15 Ex 16384 48 Fra Sh4 
- 

Int = Integer representation 

SM = Sigdmagnitude 

Fra = Fractional 

1's C = One's corn!dernmt 

Ex = Excess code 

rl0gz 4 6 1  = 6 bits. With 6 bits we would be able to represent 26 = 64 different 
bit patterns, or 64 different elements in the set. So we can represent most of the 
information that we need with 6-bit characters; however, note that this set is not 
large enough to include both upper- and lowercase letters. Character sets that are 
to represent both upper- and lowercase letters, control characrers, punctuation 
marks, and other special characters must have at least 7 bits. The bit patterns can 
then be mapped to the characters or control information to be represented. 

One of the early types of devices utilized to communicate with computers 
was the card reader. This mechanical marvel utilized a coding scheme to 
represent its various information. The information represented in the earliest 
machines included only uppercase letters, nmbers,  and special characters. To  
represent this information a code was developed for use with the card reader 
which was capable of this reduced set of characters. This 6-bit code, called the 
BCD code, should not be confused with the 4-bit representation mentioned earlier 
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in this chapter used to represent the digits 0-9. Later, the 6-bit BCD code was 
extended to include the lowercase characters and additional information needed in 
computer communications. This code (given in Appendix A) is known as 
EBCDIC: Extended Binary Coded Decimal Interchange Code. It was used in the 
IBM 3601370 and other IBM equipment, but is not in general use in computers. 
However, this information can be useful if one needs to decode data generated by 
an EBCDIC machine. An examination of the code reveals that not all of the 28 = 
256 representations are used. However, all 8 of the bits are required to specify 
the various characters and control codes. It is also interesting to note that arith- 
metic using these codes may not always give the desired result. That is, if a rou- 
tine were written to write out all of the standard letters (A-Z) in the alphabet, 
then one way to approach it would be to place the code for " A  in a register, and 
increment it to get the code for "B", and so on. However, note the discontinuity 
at "I": the code for the letter "J" is not the next in numeric sequence from "I." 
This illustrates one of the reasons that the code was not widely received. 

Another code, which has received almost universal acceptance for the 
representation of textual information, is the ASCII code: American Standard Code 
for Information Interchange (also in Appendix A). In contrast to the EBCDIC for- 
mat, the ASCII code is a 7-bit representation, which limits it to 128 different 
values. The difficulty mentioned in connection with the EBCDIC format does not 
apply to the ASCII code: incrementing the representation of a letter gives the suc- 
cessive letter, except for 'Z." This code is used in most terminals, printers, and 
other devices that deal with character information. 

The normal method for handling this information is to place the bit pattern 
in an 8-bit field called a byte. The EBCDIC format would utilize all of the bits in 
a byte, while the ASCII code would "waste" one of the bits. These bytes form 8- 
bit values, which are treated in exactly the same fashion as numbers. Thus, the 
hardware elements that operate on integers will also operate on characters. This 
allows one set of characters to be compared to a similar set of information, to be 
searched for specific patterns, or to be operated on by programs seeking statistical 
information. A spelling check program, for example, would identify a group of 
letters as a word, then compare that word against words that it knows are spelled 
correctly. If the program is unable to recognize the word, or construct it from a 
known word according to a set of rules, then the word is labeled as incorrect. and 
the operator is informed of this infraction. In all of these operations, the computer 
is operating on the bit patterns representing the characters, and the meaning of 
those characters becomes significant only to the humans at the end of the process. 

The difficulty of expanding the set of representable elements can be over- 
come in a variety of ways. One obvious way would be to include the eighth bit 
of the ASCII code, doubling the available representations. Another method is 
exemplified by the character codes used in some 60-bit machines. Some 
machines have been built with 60-bit word lengths, a compromise between the 
needed accuracy and the expensive memory available at design time. It is not 
possible to equally divide the 60-bit word into either 7- or 8-bit quantities. So the 
system designers implemented a 6-bit system, which limited the number of avail- 
able characters to 64. This system works well as long as the information output is 
in the specified characters, which consist of the numbers, the uppercase letters, 
common punctuation, and special characters. To represent the lowercase charac- 
ters, a two-character sequence is used. The first character is an "escape" charac- 
ter, which informs the system that the desired character was not in the standard 
set, but rather in an alternate set. And the pattern identifying that character in the 
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alternate set is found in the next 6-bit field. The effect of this method of informa- 
tion representation is to use 6 bits to represent some characters (preferably the 
most often used), and 12 bits to represent other characters. This method works 
well for data that is basically numbers and uppercase characters. But for text. 
such as correspondence or reports, this method is cumbersome and wasteful of 
bits. 

The same type of arrangements can be utilized to enhance the number of 
representable elements for "standard" character sets. For example, nonstandard 
characters, such as Greek characters or special purpose characters (#, -, f, x, ... ) 
can be represented in this fashion. These characters become even more important 
as graphics-oriented devices become more prevalent. 

Regardless of the coding scheme chosen, the computer deals with characters 
in the same fashion as it does with other data; the arithmetic is performed in the 
same way, and conditions are tested in much the same fashion. The result of a 
test is an example of another type of information: boolean. In general, the term 
"boolean" refers to information that can assume one of two possible values. For 
status information, this seems intuitively obvious: is the result of the arithmetic 
operation positive or negative? Is there an operflow or not? This type of infor- 
mation requires only a single bit to represent. In fact, a status register in a 
machine is nothing more than a collection of this type of single bits. Depending 
on the instruction set of the machine, these bits may or may not be individually 
setable/clearable/testable. We will examine this issue more closely when we dis- 
cuss instruction sets. 

Many languages also allow this type of variable to be declared. In general. 
the language will utilize an entire word to represent this information, which 
wastes a lot of bits. The smallest unit that could represent this under language 
control would be the smallest addressable unit of the computer. In most comput- 
ers, the smallest addressable unit is the byte, but some large, mathematical type 
machines have a smallest addressable unit of a word (32 or 64 bits). In any case, 
compilers can be called upon to generate sequences of instructions that will allow 
storing of boolean information in individual bits of a word. This is a tradeoff 
between the use of time and the use of memory. Assigning a boolean variable to 
the smallest addressable unit of the machine will be faster than the alternative, 
which is to have boolean information limited to. individual bits within a word. 
However, this method uses more memory. The alternative, using individual bits 
for storage of boolean information, requires a smaller amount of storage for the 
boolean information, but also requires more instructions to interact with this infor- 
mation. 

In general, information is stored in locations within the memory of the 
machine, and those locations are identified by addresses. The addresses, which 
themselves form information that can be manipulated and utilized as needed, are 
simply numbers that can be considered integers. The number of bits in the 
address determines the number of uniquely identifiable items: N bits specifies one 
of 2N unique items. The address is utilized by the machine to "point" to an item; 
hence, the use of the address in this manner gives rise to the term "pointer." 
Pointers are very useful to create within a machine an instantiation of an abstrac- 
tion, such as a tree structure or queue. 

Bit patterns, then. can be used to represent different types of information: 
numbers (integer, floating point, fixed point. ... ), characters, symbols, addresses, 
and so on. The meaning attached to the bit pattern is a function of when it is 
used and where it is found. 
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2.4. Coding for Errors - Detection and Correction 

Information can be represented in a variety of ways, and in the previous sections 
we examined some of the different coding techniques. We know that with N bits 
we can represent 2N different values, or addresses, or instructions, or ... . To 
represent anything else requires more bits, and the number of additional bits 
needed is determined by the amount of information to be supplied. If we add one 
more bit to an N-bit representation, then the number of representable elements 
doubles, from 2N to 2N+'. So how are these additional elements identified and 
treated? That is, what rules exist to effectively utilize the additional information 
present? Let us examine mles (codes) for adding sufficient information to detect 
the presence of errors. And then we will examine some rules (codes) for adding 
enough information not only to detect that an error occurred, but also to correct 
that error. 

Perhaps the simplest method of adding error detection to data is to include a 
parity bit. Here, the N bits of information is augmented by an additional bit, 
which doubles the representable patterns. However, this additional bit is so con- 
structed that half of these patterns will not be legal representations. Hence, it is 
possible to detect the presence of a single bit that is incorrect. The fault can be a 
"stuck-at" fault, in which the incorrect bit is "stuck" at that incorrect value, or it 
can be transitory in nature. In either case, if only one bit is incorrect, the manner 
of constructing the correct code words enables us to detect that an error has 
occurred. The construction rule is to choose the value for the additional bit so 
that the number of "one" bits is odd (or even). Figure 2.4 gives a circuit that will 
creatc the proper signal for 8 bits. This circuit is available in integrated circuit 
form as a '280. Note that the expansion of the exclusive-OR tree by one bit would 
enable checking the parity across 9 bits, to identify if it is odd (or even). (The 
'280 is an exclusive-OR tree for nine bits.) 

This type of error detection is useful wherever errors have a reasonable pro- 
bability of occurrence. In general they are used in serial transmissions (terminal 
lines, etc.), in parallel data transmission systems (buses), or in memory systems. 
However, some conditions will invalidate the effectiveness of the use of a parity 
check. That is, if the assumptions of the fault model are exceeded or not applica- 
ble, then the effectiveness of the method is moot. For example, in one of the 
errors observed in bus systems the data is read (incorrectly) as all zero's. This 
would be a valid even parity condition, and so a system built to check for even 
parity would not detectthe presence of an error. Likewise, for a 16-bit bus with 

DATAl7)-H 
DATA 16) -H 

DATA (5) -H 
DATA 14) -H 

ODD-P-H 
DATA (3)-H 

Figure 2.4. Generation of Parity Bits. 
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EXTERNAL DATA BUS 

an additional bit for parity, the total number of lines is 17. And the similar error 
of reading all the lines as one's would be correct for a system using odd parity. 
One method suggested for this situation is to use two parity bits for the 16-bit 
bus, one for each byte. The parity sense of half of the bus would be set to odd, 
the other half to even. Then if all zero's were read, half of the bus would com- 
plain. And if the condition of all one's were read, then the other half of the bus 
would complain. In :either case, the fact that an error had occurred would be 
correctly identified, even though the assumptions of the fault model had been 
violated. 

Example 2.12: Parity defection and generation: Construct a circuit provid- 
ing a bidirectional data path that is 8 bits of data plus parity. That is, one 
side of the path is a byte-wide source/destination of information, and the 
other side is a tri-state data bus that includes a parity bit. 

The solution of this problem is to expand the circuit given in Figure 
2.4 to include the generateldecode capability. An example of such a circuit 
is given in Figure 2.5. This figure shows that the data path is treated in the 
same way that a data path might be if no parity capabilily were required: thy 
data is fed through a bidirectional tri-state transceiver ('245). So the only 
bit that needs to be dealt with is the parity bit (PARITY-H). When the direc- 
tion line (IN-H) identifies incoming data, the parity line is enabled into the 
parity circuit to check consistency. If the parity sense is incorrect, then the 
error line (ERROR-L) is asserted. When the direction line identifies that this 
module provides information to the bus, then the outgoing parity generator 
is enabled, and the parity line is driven in the same way (by different physi- 
cal circuits) that the bus lines are driven. Figure 2.5 shows the parity cir- 
cuits as being separate, but they need not be, and cleverness in the design 
will match system requirements with an appropriate circuit. Some 
integrated circuits will do this function, such as the '286, a symbol of which 
is shown in Figure 2.6. 

If we want be able to identify the location of an error, then more informa- 
tion must be added to the system than can be added by a single bit. A sufficiently 

INTERNAL DATA BUS 

I CC 

Figure 2.5. Byte-Wide Data Path with Bidirectional Parity Bit. 
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Figure 2.6. Functional Diagram for '286 Parity Checker/Generator. 

large number of bits must be added to the data to not only identify the fact that 
one of the bits is in error, but also identify the faulty bit. Again, the fault model 
can be a stuck-at or a transient fault. But, for our discussion, we are limiting the 
errors to a single fault within the word. One class of codes that allows this type 
of information to be encoded into the extra bits is the set of Hamming codes. 
Many methods can be used to construct a code of this type. We will examine one 
method, but, once the principles are understood, the exact implementation and 
design choices can be driven by whatever constraints are imposed by the system. 
  hat is. the code could be chosen so that a minimal number of gates are required 
to identify errors, or the code could be chosen in an attempt to optimally position 
the 2N valid code words in the total of 2N+p choices, where p code bits are added 
to N data bits. 

First, let us describe one method for construction of a code to identify the 
location of an error. To illustrate this method, we will utilize a system with 4 
data bits and 3 code bits, or 7 bits in all. We will arrange these bits as shown in 
Figure 2.7, with the data bits labeled 4, 4, DL, and Do, and the code bits labeled 
C2, C,, and Co. Note that the cad? bits physically cccr~py the yoWm.;  
corresponding to their binary weight. Thus, Co is in the 2' = 1 position; CI is in 
the 2' = 2 position; and C2 is in the 2' = 4 position. The remaining positions are 
occupied by the 4 &ta bits. Also shown in the figure is the fact that the code bits 
are constructed in such a way that parity is preserved across a subset of the bits of 

Code Bits 

7 6 j 4 3 1 Column Number 

Parity Group for C P-J-JJJ 
Parity Group for C, --Ll-lJ 
Parity Group for C 

Figure 2.7. Const~ction of a Hamming Code for 7 Bits. 
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the entire word. The subsets are so constructed that when a single bit is in error, 
a unique pattern is identified by the code bits. Notc that there is a single code bit 
in each subset; let the subset associated with code bit Ck be called set k. In this 
example, subset k contains all of the bits that have the 2k bit set in the binary 
representation of bit position. The following table describes the situation for this 
system: 

Since three code bits are associated with this method, there. must be three parity 
circuits to generate the three parity bits when the word is written - and three par- 
ity circuits to check the parity when the word is read. The ordering of these bits 
is such that they form a 3-bit word (set 2, set 1, set 0). which will identify a 
column. In Figure 2.8, the number 0101 is used as an example. me bits are 
placed in their proper position in the word, the code bits are generated assuming 
odd parity sense, and the result is presented as 0100110. If there are no errors, 
the output of the parity checkers for the subsets would be 000, which identifies a 
nonexistent bit position in our system. If the pattern 01MK)lO is detected, then the 
parity checks of the subsets identifies some errors. Set 2 is correct, set 1 is 

7 6 5 4 3 2 1  Column number 

Coned repesentation 
b j . i .  . r e - '  

*L. - L ..'I 

Column 3  is in error 
Set 2  parity is OK (0) 
Set 1 parity Is in error 1 
set 0 parity IS in error 111 
Pattern 01 1 identifies column 3  

Set 2  parity Is In error (1) 
Set 1 parity is OK (0) 
Set 0 parity is in error (1) 
Pattern 101 Identifies column 5 
Data bit 1 is in error 

Set 2  parity is OK (0) 
Set 1 parity is in error (1) 
Set 0 par1 Is OK (0) 
Pattern 011 identfies column 2  
Parity bit 1  is in error 

Figure 2.8. Hamming Code Examples for Data = 0101. 
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incorrect. and set 0 is incorrect, which results in an error syndrome of 01 1. This 
identifies the fact that the bit in position 3 is incorrect, and to make the word 
comct all that needs to happen is to invert the bit in position 3, Do. Figure 2.9 
indicates how some parity checkers, a decoder, and some exclusive-OR gates 
could be connected to perform this function. 

The method described above was constructed to have the property previ- 
ously mentioned: any single error will prod~~ce a unique bit pattern at the output 
of the parity check stages. Also, the placement of the code bits was done in such 
a fashion that decoding the location of the error from the pattern which the e m r  
created could be accomplished with a standard decoder IC. Other coding schemes 
are possible, as long as each single error causes a unique response, and a decoder 
system can be constructed to identify the location of the error from that response. 

This method can effectively utilize 2N - 1 bits, N bits to create the data 
dependent code, and up to - I - N bits for data. For small N. 2N - 1 - N data 
bits is also small; thus. for a small number of data bits the overhead is large. 
However, as the number of data bits becomes larger. then the overhead is reduced. 
For example, a system with 64 data bits would require 7 code bits, or about a 
10% overhead. One of the problems incurred in using an error correcting code in 
a memory system is the fact that many machines are byte addressable. That is, 
even though the system memory may be organized in 32- or 64-bit elements for 
the error correction capability, the system must be able to modify only part of the 
data bits in a 32- or 64-bit word. This requires a read/modify/write capability, so 
that the other par& of the data word remain correct, and the code bits are 

CODED D A T A  

OATAI3 ) -H  

Figure 2.9. Correction Circuit for 7-Bit Hamming Code System.. 
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appropriately set. In any case, this type of code will properly provide capability 
for single error correction (SEC). 

This method is not sufficient to also provide double error detection (DED). 
Notice that, if two errors were to occur in the example just given, then an 
incorrect bit position would be identified, and the results would be wrong. Dou- 
ble error detection can be added to this method by including a single parity bit 
across the entire word, data bits and code bits alike. This bit would be created 
after the code bits had already been identified. So, the decoding system needs to 
take into account parity errors detected by the code bits. C2. CIS CO. and 
occurrences of parity errors detected by the double enor bit. These are then han- 
dled in the following fashion: 

Porify Condition 
Double Bit Code Bits Comment 

Correct Correct No error detected; normal condition. 
lncorrect Incorrect Single error; location of error identified 

by binary weighting of code bits. 
Incorrect Correct Single bit error; double bit is incorrect. 

Correct Incorrect Double bit error; two bits in error - not correctable. 

Example 2.13: Hamming Code for 8 bits: Consider a code for 8 data bits 
constructed after the pattern described above. In this code. what is thc 
correct representation for 0101 1100? Also, describe the infomiation avail- 
able in the patterns. 

This code will require 8 data bits (D, - Do). 4 code bits (C3 - h ) .  
and a double error bit (DEB). Following the pattern above, these will be 
arranged as follows: 

(DEB -Double Error Bit; BW - Binary Weight) 
13 I2 11 10 9 8 7 6 5 4 3 2 1 Columnnumber 

DEB D, D, D, D, C, D, D, D, C, Do C, C, Content of bit position 
I I 1 I 1 0 0 0 0 0 0 ,  0 BW of Column Number; 8-bit 
I 0 0 0 0 1 I I 1 0 0 0 BW ofcolumn Number; 4-bit 
0 I 1 0 0 I 1 0 0 I 1 0 BW ofcolumn Number; 2-bit 
0 1 0 1 0 I 0 1 0 1 0 1 BWofColumnNumber; 1-bit 

From the above information. set 3 consists of C3, D4, D5, D6. and Df. Set 2 
consists of Cz. D,. D,, D3, and D,. Set 1 consists of CI. Do, D2. D3. DS. and 
D6. Set 0 consists of C,,. Do. Dl, D3, D+ and D,. With this information, the 
desired pattern can be created: 

0 1 0 1 1 1 0 0 Placement of d?ta bits 
1 0 1 0 1 1 1 I 0 1 0 0 0 Code bits added to word 

2.5. Information Representation - A  Matter of Bits 

We have discussed a number of different methods of representing information. A 
collection of bits will be interpreted by the computer in any of a number of ways. 
depending on the instruction being executed, the number systems adopted by the 
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designers, and the coding schemes employed. It is not sufficient to know the pat- 
tern of ones and zeroes; we must know the rules concerning the interpretation of 
those bits. The rules for interpretation of the information are established at design 
time, and will be effective throughout the life of the system. These rules will 
enable the following pattern to be correctly interpreted: 

If this i s  a DEC floating point number, it has the value of 2.537 x 10'. If this is a 
IEEE floating point number, it has the value of 1.015 X lo9. If it is an integer, it 
has the value 2.106 x 10l0. If this is a 68000 instruction, the computer should 
respond by performing a stop if the system is in the supervisor state; otherwise it 
will trap. If it is to be part of an ASCII character string, then it will provide the 
characters "Nr c n u b  cnul>". In any case, the spectrum of possibilities of infor- 
mation content is limited in quantity, since N bits allows only for 2N representable 
values. However, the interpretation of those values is influenced by the cir- 
cumstance in which the value is found. The system designers make the choices 
that will allow representation of the information in a sensible and coherent 
fashion. 

Information representation requires that both the supplier and the user of the 
patterns agree on the significance of the arrangements of digits (bits). The current 
technology represents information within a computing system in the form of bits, 
and those bits can be organized in many ways. However, the use of standard 
representations promotes systematic interpretation of the information. As we have 
seen, 

With N bits for the representation of information. 2N different things can be 
represented. 

The coding of the N bits in an integer form allows representation of 2N numeri- 
cal values, all separated from their neighbors by one (Ar = 1). 

Integer representations can assume different coding schemes, such as ones com- 
plcrxnt, t\\.os comp!m:n1, cxcesn codes, and thc Iikc, each o l  which h x  its 
own unique set of characteristics. The coding scheme for a number is a choice 
made at the definitionldesign stage of a computer system, and the choice is 
made in such a way that the system will behave in a predictable and appropri- 
ate fashion. 

Most computer systems use two's complement representations for integer 
values. 

Coding of information in a floating point format allows the range of the 
representable numbers to increase dramatically. This allows computer users to 
remove themselves from the scaling aspects of the data manipulation. 

The magnitude of the representable values in a floating point number system 
changes with each exponent. And the distance between representable values 
(Ar) doubles each time the exponent increases in value by one. 

Not all floating point number systems are created equal. They have different 
capabilities for storing information and different ranges, which effect their 
applicability for user problems. The choice of the radix, the placement of the 
radix point, and the coding schemes all influence the values that can be 
represented by the system. 
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Bit patterns can be used to represent other types of information besides 
numbers. Characters, instructions, addresses, and status information are just a 
few of the kinds of information also represented as a collection of bits. 
By creating rules concerning the legal patterns of bits, sufficient information 
can be included in a pattern of bits to identify the fact that an error occurred, 
and find the location of the error. This reduces the total number of correct 
values represented by a number of bits, but can be very useful in identifying 
problems in data transfers. 

2.6. Problems 

2.1 If the technology were available for a wire or "bit" to represent three values 
rather than two, what would the result be? That is, consider a system with n 
tertiary bits, as opposed to n binary bits. Each "bit" in this system would be 
c~tpable of representing the values 0, 1, or 2. How many different values 
could be represented with 8 tertiary bits? 16 tertiary bits? 32 tertiary bits? 
What is the general formula for the total number of values available in the 
tertiary system? 

2.2 Examples were given in the chapter to demonstrate the mechanism involved 
in adding one's complement arithmetic, i.e.. the end-around carry. Prove 
that the end-around carry works and is needed. 

2.3 What does the bit pattern 1OOlOlO1 represent in the following systems: 
unsigned binary, 8-bit two's complement,, 8-bit one's complement, 8-bit 
BCD (2 digits), two 4-bit excess 3 coded base 10 digits. 

2.4 Represent +95 and -95 as 8-bit one's complement and &bit two's comple- 
ment numbers. 

2.5 Express the following base 10 numbers in a 4-bit-per-digit excess 3 code: 
45932 and 51373. Add the numbers together. Express the result in the 
same code. 

2.; Coii::i!..i. ;I 13 hi: i .+r~-r  n~rcqhv s:;<frm v,h; rh  i z  all ps,. ..q 1.0?1 sy?h m. 
What is the smallest representable value? The largest representable value'! 
What is the representation of zero? 

2.7 Consider a 12-bit fixed point two's complement number system with p=7. 
What is the smallest representable (positive) value? What is the largest 
representable value? What is the most negative value? What is Ar for this 
system? 

2.8 Consider an 8-bit fixed point two's complement number system. Give the 
equation for the value of a number. Multiply two such equations together to 
give the result of a multiplication. Give an algorithm for selecting the 
proper 8 bits from all of the bits available after a multiplication. 

2.9 A base 10, 5-digit, sign-magnitude system has a value of p equal to 3. What 
is the largest representable number? What is the smallest representable 
(positive) number? What is the most negative representable number? What 
is Ar for this system? 

2.10 Consider a 16-bit floating point number stored in the following format: 

s eeeee ffffffffff 
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The "s" represents the sign of the number. The "eeeee" is the exponent. 
stored in excess 12. The "fff. .." is the 'mantissa, which is a base 2 fraction, 
stored with the hidden bit technique. Give the characteristics (VFPN,,,. etc.) 
of this number system. What is Ar for this system when the value of the 
exponent is zero? 

2.11 A floating point number system has the basic format given in 2.10, but the 
mantissa is a base 4 fraction, so that the hidden bit technique is not viable. 
Give the characteristics for this system. What is Ar for this system when the 
value of the exponent is zero? 

2.12 Consider a floating point number system with the following characteristics: 
normalized, radix of the system is 4, radix of the exponent is 2, 12 bits total, 
with 4 bits in the exponent (e = 4). exponent stored in excess 8 format, 8 
bits in the mantissa (m = 4, since base 4 number), mantissa stored in frac- 
tional form. 

a. What is the smallest representable nonzero value? 

b. What is the largest representable value? 

c. What is the decimal equivalent of Ar when the exponent pattern is 01 1 I? 

d. What is the value, base 10, of the following pattern: 11000100101 I? 

e. What is the pattern for the number 2 $-? 

f. What is the resulting pattern from adding the following positive numbers: 
01 1001 10101 1 and 1000101 101 lo? Use rounding for the result. 

2.13 Given the following floating point format 

s exp man 

where the "s" is a 1-bit sign, "exp" is the 4-bit exponent field (exponent 
stored in excess 4 format), and "man" is the fractional mantissa, base 8, 6 
bits wide. The format is for a normalized number system. Give the; 

a. largest fraction. 

b. smallest fraction. 

c. largest number. 

d. smallest number. 

f. what number is represented by 001 10101000? 

g. represent the number 5/16 in this format. 

2.14 A Hamming code has been created with the following pattern: 

7 6 5 4 3 2 1 ColumnNumber 
D3 D2 Dl P2 DO PI PO Data, parity designators 

The code is constructed as discussed in the text. The parity sense is odd. 
Given that information, answer the following: 

a. Is the representation correct? If not, is it correctable? To what? 

Chap. 2: Information Representation 



b. Is the representation correct? If not, is it correctable? To what? 

c. Is the representation correct? If not, is it correctable? To what? 

d. What is the number represented? 

e. Represent the number 6 in this code. 

2.15 Consider the following floating point system: 

a b c  

a = sign of mantissa 
b = 4-bit exponent in excess 8 code, radix = 4 
c = 7-bit normalized mantissa 

a. What number is represented by 0101 1 1001000? 

b. What number is represented by 101 11 1100000? 

e. Represent 4 9  in this code. 

d. Represent 114 in this code. 

2.16 An error detectinglcorrecting code is constructed as described in the chapter, 
with the following format (parity sense is odd parity; PA is parity across the 
entire word): 

Col - t  16 I5 14 13 1211 10 9 8 7 6 5  4 3  2 1 

Name -t PA Dlo D, ' D8 D7 D6 4 D4 P3 D, D2 Dl P2 DO PI PO 

For the first four numbers: if there is a single error, identify the bit in error; 
if there is a double error, indicate this result. For the final part, create the 
correct code for the decimal number 653. ' 

2.17 Give the bit pattern for the following numbers in the 32-bit DEC, IEEE, and 
IBM floating point formats: 12, 127, 2.5,768. 

2.18 For the number systems listed in Table 2.6, find the minimum and maximum 
positive nonzero representable values. 

2.19 Construct a 16-bit SECDED code using the technique demonstrated in Sec- 
tion 2.4. In this code, represent -512 and 183. 

2.20 Design a combinational circuit that will correct single errors in a 7-bit Ham- 
ming coded word. The inputs thus are (all H asserted): 

Odd parity is used. Outputs are H asserted also. Use any basic gates you 
choose, including EXORs, but make sure you maintain polarized mnemon- 
ics, incompatibility triangles, and so on. Explain any logic that is not intui- 
tively obvious to the casual observer. 
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