
ln formation Representation

One definition of a computer is a black box that manipulates information. First,
information is entered into the computer. Then some f m of processing is
applied to the input information. Finally. the result is output to the user. In order
to make any sort of evaluation of the computer or the proposed manipulation,
some knowledge is required of the methods used for information storage and
transfer. The purpose of this chapter is to examine the methods used for represent-
ing information. This includes not only numeric information, but also textual
information, address representation, error coding information, boolean values, and
status information. Each of these types of information is useful, and each type
will be used by the computer at the appropriate time for a specific function. First,
let us examine number representation, both integer and floating point, to deter-
mine the capabilities and limitations of available types of number systems. In
addition, we will examine some of the difficulties i n d u c e d by numeric manipu-
lation. Then we will move on to representation of status information, boolean
information, and addresses. Finally we will consider the problems associated with
integrating all of these types of information into the same system.

2.1. Integer Number Systems: Bounded Usefulness

Representation of information within a computer, and in most communication
methods associated with computers, relies on the concept of a "bit." We will con-
sider a bit to be a variable capable of assuming one of two distinct values. For
numbers, these values are considered ones and zeros. Other interpretations are
possible: true and false, asserted and unasserted, and so on. Collections of bits
form numbers; each bit position doubles the possible representations of the sys-
tem. Thus. the number of bits available for representation determines the number
of representable values. For N bits, there are 2N possible representations. Table
2.1 summarizes the number of representable values for popular computer sizes.

Table 2.1. Number of Representable Values.

Number of Number of
Bits Represenrohle Values Machines. Uses

4 16 4004, control
8 256 8080,6800, control, communicafion

16 65.536 PDPI 1,8086,32020
32 4.29 X 109 lBM 370, 68020. VAXII/IIO
48 1.41 x 10" Unisys
64 1.84 x 1019 Cray. E E E (dp)

The number of bits used in a particular format identifies the total number of
representable values, but does not directly speciiy the range of those values. The
assumptions made about the representations actually identify the range and useful-
ness of the system. The simplest assumption is to let the binary numbers
represent unsigned integers. If this is the case. then the range of representable
numbers is from 0 to 2N - 1. These numbers are equally spaced. with a value of 1
between each representation. The system is a positional system, in every respect
like the base 10 system with which we are familiar. Each bit position k has asso-
ciated with it a value of 2'. and the value represented by the collection of bits is
represented by:

where bi is the one or zero in position i . Thus, in unsigned binary the pattern
101101 means l x 2 ' + 0 ~ 2 ~ + I x ~ ~ + 1 ~ 2 ~ + O x 2 ' + l x 2' =4SI0.

While the unsigned integer representation is simple and easily manipulated,
negative numbers cannot be represented. Hence, other integer systems are more
often used for information representation. Perhaps the most widely utilized sys-
tem is the two's complement system. Here, the 2N representable values ran e f from -(2N-t) to 2N-' - 1. To negate a value, the value is subtracted from 2 .
Table 2.2 gives a few of the 256 values of an 8-bit two's complement system.
This representation has also a positional nature, and the value of a panicular
representation is given by:

Thus, in two's complement representation, the pattern 101101 means
- 1 ~ 2 ~ + 0 ~ 2 ~ + 1 ~ 2 ~ + 1 ~ 2 ~ + 0 ~ 2 ~ + 1 ~ 2 ~ = - 1 9 . One thing to note here is
that, even though the most significant bit is not defined as a sign bit, it can be
considered such. The reason for this is that, if the most significant bit is set. then
the value will be negative, since the most significant bit canies more weight than
all of the other bits combined.

Example 2.1: Finding values in two's complement number system: What is
the bit representation of 87t0 in an 8-bit two's complement number system?

There are a variety of algorithms for converting between bases; it is
not our intention to promote one or another. And since this number is a
positive number within the representable values of the system. the various

Chap. 2: Information Representation 33

Table 2.2. 8-Bit Two's Complement Representations.
Bir Pattern Value Note

01 11 11 11 127 Largest representable value.
01111110 126
OlllllOl 125

... .'.
000000 10 2 Note that leading zero indicates
0000000 1 1 positive number.
00000000 0 Unique representation of zero.
11111111 -1 Minus one is always all ones.
11111110 -2 Note that leading one indicates
l l l l l l O l -3 negative number.

... ...
10000010 -126
1OOOOOO1 -127
1OOOOOOO -128 Smallest (most negative) representable value.

bit positions can each be checked to ascertain that the desired bit pattern is
01010111.

What is the bit representation of -7610 in an 8-bit two's complement
number system?

Again, the solution begins by finding the bit pattern for 7610, which is
0 1001 100. To negate this, the number is then subtracted from 28:

It is not necessaly to do these calculations in binary:

The representation 101 10100 is equivalent (in unsigned binary) to 180.
Also note that negalive numbers are negated to positive numbers in exactly
the same way:

What is the representation of the negative of 110101 lo2?
Base two:

Base 10:

The answer 42 converts to 00101010, as above.

The last portion of the example demonstrates the method utilized by many
people to anive at the correct bit representation for negating a two's complement

Chop. 2: Information Representation

number: complement all of the bits and add 1, which is h e same as complement
and increment. This also demonstrates the method for subtracting one number
from another: the number to be subtracted is complen~ented and fed into one input
of an adder, the other number forms the other adder input, and the carry in of the
adder is asserted. The result is that a complement and increment have been per-
formed on the number to be negated, and the result out of the adder will be the
desired value.

One of the extremely attractive features of the two's complement system is
its circular nature. This is graphically demonstrated in Figure 2.1 for a Cbit two's
complement system. The numbers are arranged around a circle from 1000 to
01 11. As can be seen from the figure, progressing from one point to the next, or
from one number to the next is accomplished by simply increasing or decreasing
the values by one. When this happens at the 01 11 to 1000 border, the number
changes from a positive to a negative value. The net result is a discontinuity in
the desired numeric sequence. The name given to this discontinuity is an
overflow - we have exceeded our ability to represent information in the number
system. The same thing will happen if you specify successively more negative
numbers: decrementing 1001 to 1000 works fine, but decrementing 1000 results in
0111, which is a positive number. We have again crossed the discontinuity boun-
dary, and exceeded our ability to represent information in the number system.
When an arithmetic operation causes this to occur, many computers will respond
by setting an "overflow bit." This bit can be included as one of the several bits
making up the status word of a processor; these bits will be further described in
the next chapter. In addition, the benefit of the circular nature of the two's com-
plement system will be further discussed after consideration of a fractional
representation of information.

The numbers to this point have been described as integers, which is the
correct interpretation only if we make the proper assumptions concerning the
placement of the radix point of the system. Unless otherwise stated, we naturally
assume that the radix point is located directly to the right of the least significant
bit. With this assumption the patterns do indeed represent integers, and all of the

Figure 2.1. Graphical Representation of the Circular
Nature of Two's Complement Numbers.

Chap. 2: Information Representation

statements made concerning integer manipulation apply. However, if we assume
that the radix point is located at some point other than to the right of the least
significant bit position, then the range and granularity of the representable values
changes.

The placement of the radix point (we are used to base 10, where it is the
decimal point) is a matter of definition; no piece of hardware is installed on circuit
boards to identify the location of the radix point. The radix point is established to
satisfy the needs for which the processing element is utilized. If the information
to be represented contains fractional values, then assumption of a radix point
establishes a fixed point system that is so adjusted that it can cover the necessary
range. Addition and subtraction operations for this type of a system are exactly
the same as integer operations. However, for multiplication and division, care
must be taken to assure that the radix point is in the correct place after an opera-
tion, and that the correct bits are saved. For example, multiplication of two 16-bit
numbers, regardless of the placement of a radix point, results in a 32-bit number.
However, if the result of the multiplication of two 16-bit numbers is to be stored
in a 16-bit number, then there are limits to the size of the number. In the case of
a fixed point system, the correct bits must be selected so that the assumptions
made about the radix point of the multiplier and multiplicand are also true for the
result.

A fixed point, noninteger system is also a positional system, just like the
positional systems already described. The only difference is that the position of
the radix point introduces a new factor into the equation. Let p represent the loca-
tion of the radix point; this is the number of bit positions to the left of the least
significant digit (bit) where the assumed radix point is found. Thus, the value of
p for an integer system would be zero. Then the equation for the value of a two's
complement fixed point number would be given by:

This gives the user the flexibility to choose a system that will fulfill the needs of a
specific project. That is, a designer can determine the smallest value required to
meet the needs of the system, and select a number system accordingly. Therefore,
one of the characteristic values of a number system that will help determine its
usefulness is the difference (in absolute value) between adjacent numeric
representations. We will call this difference Ar. Note that Ar for all integer sys-
tems is 1; Ar for fixed point systems will be 2*.

A simple example of this is a 5-digit decimal number system for representa-
tion of monetary values. If p is equal to 0, then the system can represent values
from $0 to $99999, and Ar has a value of $1. Thus, any value less than a dollar
cannot be represented in the system. If the system designer needs to represent
cents as well as dollars, then p can be assumed to have a value of 2. The five
digits can then represent values from $0.00 to $999.99, and Ar has a value of
$0.01. Both systems have the same number of representable values, but the range
and the Ar differ with the use of the system and the assumed value for p.

Example 2.2: Fixed point number system: Consider a fixed point 16-bit
two's complement system with a value of p equal to 8. What is the smallest
representable number? What is the largest representable number? What is
the Ar? We know that addition and subtraction will not have any effect on

Chap. 2: Information Representation

the position of the radix point, but what is the correct procedure for select-
ing the bits to retain after a multiplication?

The smallest representable number can be defined to be either the
smallest absolute value that can be represented or the most negative number.
The smallest absolute value for this system is zero; the next smallest abso-
lute value is represented by the bit pattem 00000000.M)o0001. This has
the value of 2*, which is just 3.9 x The most negative representable
number has the bit pattern 10000000.00000000, this has the value of -2'.
which is -128. The Ar for this system is the same as the smallest represtnt-
able value, 2*. To ascertain the effect that n~rrltiplication has upon the
radix point, notice what happens when we multiply two of these numbers:
the least significant bit will represent 2-16, while the most significant bit
will be 214. Thus, to get a properly aligned value when the process is over,
the 31-bit result must be right shiftcd 8 bits, and then the next 16 bits form
the desired result. Note that this dictates that the multiplication of the two
input numbers has a maximum value if the number of bits saved as a result
is to be the same as the number of bits used for the inputs. If the number of
bits required to represent the value of the result exceeds 16, then an
overflow has occurred.

A fixed point system is often used in applications like digital signal process-
ing (DSP), where the values are scaled as they enter the system, and the intermedi-
ate values are sufficiently represented by the number of bits in the system. The
Fujitsu 8764 DSP chip uses a 16-bit value with p equal to 14, while some com-
ponents, such as the AMD29517, are set up for a 16-bit system with p equal to 15.
If p is equal to 15 then all representable values (except for -1.0) have an absolute
value less than one, and the system scales easily. These systems utilize integer
arithmetic units, which are faster and require fewer devices than their floating
point counterparts.

Some applications, such as the digital signal processing applications men-
tioned above, are able to take full advantage of the circular nature of the two's
complement number system. These applications have a characteristic, inherent in
the application itself, that will permit the number system to cross the overflow
boundary without causing a disruption in the overall flow of instructions and data.
For example, one of the frequently used digital signal processing algorithms is a
finite impulse response (FIR) filter function. It can be shown that certain FIR
filters will always result in a value within the ability of the number system to
represent information; hence, intermediate overflows in the addition process can
be ignored.

The two's complement number system is the most widely used integer sys-
tem in machines, but it is not the only one. Another method used in some
machines is the one's complement system. Mathematically, the one's comple-
ment of an N-bit number with value V is defined as 2N - 1 - V. The 2N - 1 por-
tion of the equation is merely N one's, and subtracting V from a pattem of all 1's
results in zeros where the ones were, and ones where the zeros were. Hence, the
negative of a number is formed by complementing all of the bits in the number.
Therefore, to negate any number, all that is required is to invert every bit position,
which is a very fast operation. The range covered by this method is from 2N-2
- 1 to -(2N-2 - I), which is just one different from the range of the two's comple-
ment number system. However, some "features" of this system limit its useful-
ness in digital systems. Unlike the other systems discussed above, this system

Chap. 2: Information Representation 37

does not follow a positional notation methodology. The bits have different
significance depending on the sign of the number. Also, this system has two legal
representations for the number zero, both of which must be checked by any opera-
tion that tests for zero. Finally, treaiment of the cany in this system is different
from other systems, because of its "end-around" feature. The proof of this feature
will be left as an exercise, but the effect can be seen from the following example:

Example 2.3: One's complement arithmetic: Consider a 6-bit one's comple-
ment system. Represent 15. -15. 13. and -13 in this system. Then perform
the following additions: 15 + 13, 15 + (-13), 13 + (-13). and 13 + (-15).

The numbers are derived in a simple fashion:

Decimal One's
Value Complement Comment

Now for the additions:

Positive numbers same as two's complement.
Complement bits to negate.
Positive numbers same as two's complement.
Complement bits to negate.

This proceeds just like the two's
complement version.

No cany out: number is correct, and
the result is as we expect.

The addition is done in the normal
fashion, but
the result of one is incorrect;
however, the presence of a carry says we
should add that as a 1 in the LSB

which gives the expected result.

This time we will add a positive number
to its negative (which is just complement)

and end up with all ones -a valid zero.
Here the positive number is smaller
than the negative number, so result
is negative; no cany - the value is correct.

Note that, in all of the above cases, the carry out can be added to the
intermediate result (hence the name of end-around carry) to produce the
correct final result.

The one's con~plement nulnlrr syslcln c ~ r be uwri in many of the
same ways that other systems can be used, but care must be. taken to operate
within the constraints that it imposes.

Another system utilized to represent numbers is the excess system. Here an
excess is purposely added to the value to be represented, and the resulting bit pat-
tern is stored or used as required. One of the most prevalent uses of excess codes
is to store exponents in floating point numbers. If we let S represent the value that

Chap. 2: Information Representation

will be stored or otherwise utilized. V the true value of the number, and E the
excess, then the relationship between them is defined as:

In operations utilizing this type of representation care must be taken to be sure
that the result is within the desired range. That is, if two numbers are added
together, the following will happen:

To obtain the correct result [(VI + V 2) + El , a value equal to E must be removed
from the calculated result. In some systems, where E is a power of 2, this is a
simple operation. However, in other systems the operation can become more
complicated.

Example 2.4: Number representation in excess codes: What is the represen-
tation of +3710 in an 8-bit excess 128 code? What is the representation of
-23,, in an 8-bit excess 128 code? What is the sum of the two numbers, in
the 8-bit excess 128 code?

An 8-bit unsigned number can represent values between 0 and 255.
The excess representation can then represent values from -128 to +127.

This is the excess.
The value to be represented.
The representation of 37,, in excess 128 code.
This is the excess.
The value to be represented.
The representation of -23,, in excess 128 code.
This is +37 in excess 128.
This is -23 in excess 128.
Note the carry out 'in this operation. 270 is too
big to represent in 8 bits; to correct for the
2 x E that is in this sum, subtract 128.

In binary, is this add or subtract?
This is the representation of 14, the correct result.
in excess 128.

Another use for the excess code is in representing decimal numbers. A 4 bit
integer representation can assume values between 0 and 15. If we limit ourselves
to decimal nu~nbcrs, the desired values are 0 to 9. These are represented in excess
3 by the numbers 3 to 12. One of the beneficial effects of this type of representa-
tion is that, when two numbers are added together by a 4-bit binary adder, if the
addition of those d c ~ i ~ ~ l n l values would have resulted in a carry ou':, then there
will be a carry out of the binary adder. Note that if D l and D 2 are decimal
numbers represented by V I = D l + 3 and V 2 = D 2 + 3 , then V I + V 2 =
D I + D2 + 6. Then if the sum of D I and D2 would result in a value greater than
9, which would cause a carry in a decimal adder, V I + V 2 would cause a carry in

Chap. 2: Information Representation 39

a binary adder. Note also that the resulting value (Dl +D2 + 6) must have 3
removed from it before it is the valid representation in excess 3 for the resulting
number, assuming that no carry out resulted. If a carry out did result, then the 4-
bit representation is actually the correct value, since the excess is 6, and there are
6 unused representations in the 4-bit scheme. This code can be very useful for
systems that work with 4-bit quantities.

Example 2.5: BCD excess 3 system: Consider a system that works with 3-
digit decimal numbers, and it stores the digits in excess 3 format. What is
the representation of 573? What is the representation of 142? Add the two
numbers, and give the correct result in excess 3 format.

The numbers are handled on a digit-by-digit basis, with the excess
being included with each digit:

Decimal B i ~ r v

This is the excess.
And the number to be represented.
The excess 3 representation.
This is the excess.
This is the number to be represented.

'

The excess 3 representation.
Do the addition in decimal and in
binary. Correct as needed to
make output correct.

Carry out of second set of 4 bits indicates
that the most significant digit should be
incremented by one. Also indicates that
this value is conect as it stands (since 2 x
E = 6 and the carry out indicates that the
number overflowed into the next digit) so
we need to add 3. Therefore, the MSD
needs to be incremented by one and decre-
mented by 3; the middle digit needs to
have 3 added; and the LSD needs to be de-
cremented by 3.

Which is the correct excess 3
representation for 715,,.

The excess representation for decimal numbers does have some useful
characteristics, but usually this information is represented in the more natural
binary coded decimal format (BCD). This code is listed in Table 2.3. Here, the
numbers 0-9 are represented by the equivalent binary representations 0000 to
1001. Thus, 4 bits are used for each decimal number. To represent all of the
decimal numbers from 0 to 9910, 8 bits would be required. The smallest number
(zero) would be represented as 00000000; the largest would be 1001 1001. But we
already know thatwith 8 bits we should be able to represent 256 values; why are
we limited to 100 values with BCD? The other representations (1010 to 11 11) are
not used with BCD, which does not fully utilize all of the representable values.
Thus, a BCD system is capable of different representations.

Chap. 2: Information Representation

The above representations point out some very important char?.cteristics of
the representation of information with bit patterns:

Table 2.3. Binary Coded Decimal

For a representatiowof N bits, 2N different values can be represented. This is
true whether the information represented is numerical in nature, an address, or
any other information, such as an instruction.
The meaning associated with a bit pattern depends on the assumptions made.
The assumptions about bit meaning will impact on the design of the hardware
that manipulates the bits. Note that a one's complement adder is a different
piece of hardware than a two's complement adder.
The Ar for each representation is the same for the entire range of representable
values.
The assumption of a radix point will allow representation of fractional values.
Note that the assumption of a radix point does'not impact on the addition pro-
cess; however, multiplication and division must account for shifts in the radix
point due to an increased number of bits in the result.
The choice of a coding method is based on available hardware, the desired
range of values, and other system goals.

(RCD)

Bir Pattern

0000
OOO1
0010
001 1
0100
0101
01 10
0111
1OOO
lo01
1010
1011
1 I00
1101
11 10
1111

Regardless of the mechanisms chosen for information representation, the
resulting collection of bits must be represented and communicated. Internal to a
machine, the data is just that: a collection of bits in a register, in a memory loca-
tion, or on a bus. But how humans see and remember or communicate this infor-
mation is not usually in bit panem format. We generally gtoup bits together and
utilize a different base to represent them; the most common systems are octal and
hexadecimal. These representations will be utilized as appropriate throughout this
book.

Representations.
Vahe

0
1
2
3
4
5
6
7
8
9

Not valid
Not valid
Not valid
Not valid
Not valid
Not valid

Example 2.6: Alternate representations for bit patterns: Represent -157,,,
and +25,47710 in binary, octal, and hexadecimal. Do this for the 16-bit
two's complement representation and a 16-bit excess 32,768 representation.

Chap. 2: Information Representatlon 4 1

+I57 = OOOOOOOOlOO11101 The binary representation. to 16 bits.
-157 = 1111111101100011 To negate, complement and increment.

= 1 11 1 11 1 101 100 01 1 Group in groups of 3 for octal.
= 177543

= 1 11 1 1 11 l 01 10 001 1 Group in groups of 4 for hexadecimal.
= FF63

25.477 = 01 10001 1 IOOOO101 the binary representation. to 16 bits.
= 0 I I0 001 110 000 I01 Group in groups of 3 for octal.
= 061605

= 01 10 001 1 1000 0101 Group in groups of 4 for hexadecimal.
= 6385

Excess 32.768

Excess code for -157.
Group for octal.
Compare with two's complement.
Group for hexadecimal.
Compare with two's complement.
Excess code for 25477.
Group for octal.
Compare with two's complement.
Group for hexadecimal.
Compare with two's complement.

.2. Fioating Point Number Systems: Coding for Range

The previous section pointed out the fact that for an N-bit number, there are 2N
different representable values. If we assume an integer interpretation to the bit
pattern, then we have a numerical range of 2N. Throughout this range & is equal
to one. The coding mechanism (two's complement, one's complement, excess
code, etc.) identifies the low point and the high point of that range. If we assume
a radix point within the word, then the range is smaller; however, now we have
the ability to represent fractional values. Many problems require the ability to
represent information of a much greater or smaller magnitude than possible with
fixed point systems, and for these problems we need a different type of infonna-
tion representation system. We are familiar with the use of scientific notation to
represent large numbers, such as Avogadro's number (6.022 x loz3), or small
numbers, such as the mass of a proton (1.673 x g). This same scheme is
used t o represent large and small numbers in computers, and has the name of a
floating point number system (FPNS). This type of number system does not
expand the quantity of representable values; rather, it modifies the way in which
the 2N values is interpreted.

T o specify a floating point number, seven different pieces of information are
necessary: base of the system, sign, magnitude, and base of the mantissa, and the
sign, magnitude, and base of the exponent. We will first look at scientific nota-
tion, which is used to identify these pieces, and then examine methods used in
computers to do the same things. The numbers in scientific notation above have
the following format:

Chap . 2: Information Representation

(Sign) Mantissa x ~ a s e ~ ~ ~ ~ " ~ ~ ~

The "base" in the above equation is the radix of the system. For "normal"
scientific numbers this radix is 10, because that is the base of the number system
with which we are most familiar. Most computers do arithmetic in a binary
fashion, so this choice would not be advantageous for a computer. The radix of
the system is a constant that is decided at the time the system is defined, and it
has a direct bkaring on the range of values that the system can represent, as we
shall see. The value used for the radix is not stored in the computer, but forms
part of the definition of the number system. We will denote the radix of the sys-
tem as rb.

The radix of the system also applies to the mantissa. The mantissa is used
to identify the significant digits of a value. In practice, we may use mantissas
with few digits or many digits. 111 a machin? rc.prw=n!:l:ion, the number of digits
used for mantissa representation is the same for all numbers (of the same type,
i.e., single precision or double precision). One of the characteristics of the float-
ing point number is the number of digits used to represent the mantissa. This
number will be ide~tified simply as m. Thus, for a specific floating point number
system, each mantissa will consist of m base rb digits. Let us designate the value
of a mantissa as VM. In the consideration of the range of the system, we will need
to know the maximum and minimum allowable values for the mantissa, which we
will designate as VMHAX and VMMIN.

The location of the value of a floating point number on the real number line
will be determined by the exponent. If the exponent is a large positive number,
then the value of the floating point number is very large. If the exponent is zero
then the value of the floating point number is just the value of the mantissa. If the
exponent is a large negative number, then the value of the floating point number
is very small. Determining the value of the exponent requires information con-
cerning the sign, the radix. and the number of digits in the representation. We
will let the radix of the exponent be designated by re. Like the radix of the sys-
tem, the choice of re is made at design time, and is part of the number definition.
For the scientific number examples above, rb = re = 10, but in most computers,
re = 2.

The number of digits in the exponent specifies the maximum size of the
exponent, which, in conjunction with the radix of the system, identifies the range
of the number system. We will designate this number (the number of digits in the
exponent) with the letter e. Note that the exponent will contain e base re digits,
and that, like the mantissa, r, and e are decisions made at the time the number
system is defined.

The sign of the exponent also needs to be identified. For our scientific
examples, this was directly identified by the presence or absence of the minus
sign. It is possil~lc to do the same for exponcnts stored in floating point numbers
in computers: identify a bit that is a sign bit for the exponent, and let the exponent
be stored in sign-magnitude format. However, most computers use not this
method, but rather a coding technique to represent positive and negative values.
The method most often used is the excess code technique, although other methods
could be used as well. We will examine the reason for excess codes in the
exponent a little later. Whatever the coding scheme chosen, each of the allowable
representations for the exponent results in a unique value for the exponent. Let
the value of the exponent be represented as VE. As with the mantissa, we will

Chap. 2: Information Representation 43

need t o know the maximum and minimum representable values of the exponent.
We will designate these as VEM,, and VEM,,.

The sign of the number itself must also be known. In the scientific
representation above it is identified explicitly by a sign. This sign-magnitude
mechanism is also the most prevalent mechanism for the storage of floating point
numbers in computers. However, this information may be coded into the number
by any of the coding schemes which allow for positive and negative representa-
tions.

The final piece of information we need is the placement of the radix point.
In scientific notation, we explicitly designate the location of the radix point.
However, in the machine we will need to make provisions for identifying the
location of the radix point, or make appropriate assumptions about the system at
design time. As with the fractional systems discussed above, let p designate the
location of the radix point with respect to the least significant digit. This p will
be used in determining the value of the mantissa, since, for an unsigned mantissa.

where the mantissa is composed of N r, digits labeled dN-' to d o So, the value!
of the floating point number. VmN, is given by

The location of the radix point of the mantissa is directly connected to the
value of the exponent. Consider the following representations for the number
32,768 10.

Each of the representations is a correct number in scientific notation, and the loca-
tion of the decimal point is reflected in the value of the exponent. If the location
of the radix point within the word is allowed to vary from number to number,
then provisions must be made to record p and use that information in all of the
calculations. This could be confusing and cumbersome, so in most systems an
assumption is made concerning the location of the radix point (that is, the value of
p) to minimize the amount of stored information and to make the arithmetic
easier. The process of representing all of the numbers such that the mantissas all
have the same value for p is called normalization. This process also identifies the
allowable mantissa values. The assumption that we will make for our examples is
that p = M, and that the leftmost digit of the mantissa is nonzero. This means that
the mantissa is a fraction that can have values between Ilrb and almost 1.
Specifically, the maximum value is VM- = O.dn1d,,, dm ... to the length of the
mantissa, where dh, = rb - 1; this number is very close to one (1 - r i N , for N
digits). And the minimum mantissa value is VMMIN = 0.100 ... = l / r b . The va!ue
of this number varies with each rb. Thus, the only legal values for the mantissas
vary from VMMIH to VMMAX, and the numbers represented by the FPNS must be
obtained by combining a member of this set of mantissas and one of the available
exponents. This leads to the following observations concerning nonzero values in
a normalized floating point number system:

Chap. 2: Information Representation

Maximum representable value = VFPNM,, = VMNAX x rbVcu..

Minimum representable value = VmNMIN = VMHIN x rbvc-.

Number of legal mantissas = NLMFpN

Number of representable values = NRVwN

= Number of legal mantissas

x Number of legal exponents

These values help to identify the characteristics of a floating point number system,
and are useful to determine if the system can be used in a specific application.

Example 2.7: Chpracteristics of a FPNS: Consider a normalized floating
point number system which has rb = 10, re = 10, m = 3, e = 2, both
exponent and number itself stored in signfmagnitude format. What is the
largest representable fraction? What is the smallest representable fraction?
What is the largest representable exponent? What is the smallest represent-
able exponent? What is the largest representable number? What is the
smallest representable positive nonzero number? How many nonzero
numbers can be represented in this system?

From the equations given above,

Note that this is the most negative exponent. The smallest exponent in
absolute value is 0, but that exponent does not lead to the smallest
representable numbers.

Chap. 2: Information Representation

There are 199 representable exponents: 99 greater than zero, 99 less than
zero, and zero. At this point we will make an observation concerning the
number system, but leave the discussion of the problem until a later section.
The number system can represent very large values, and very small values.
The question is, can the value 1.00 be added to 10,000? The representation
of 1.00 is 0.100 x 10'. The representation of 10,000 is 0.100 x 16. ~ u t
there is no legal representation for 10,001. This points out the fact that the
Ar is different for each VE. For the legal representation of 1.00, the Ar is
11 100. For the representation of 10,000 the Ar is 100.

The above example provides a very interesting illustration. With five digits
and two sign bits 358,200 different values can be represented with a normalized
floating point system. If we assume that one of the sign bits can be interpreted as
a number with a value of 0 or 1, then an integer number system with the same
quantity of symbols (i.e., five base 10 digits, a base 2 digit, and a sign) would be
capable of representing 399,998 values, more than the floating point system. But
these numbers vary between -199,999 and 199,999. (Note that we are not count-
ing the representation of zero in either case.)

The range of the system and the number of representable fractions are both
affected by the choice of the base of the system. The example given above used
base 10, but computers don't usually provide that capability. With the base 2
arithmetic capabilities of the machines, one would assume that the most natural
base for floating point numbers would be two. However, grouping the bits into
other base values, such as base 4 or base 8, can expand the range of the system.
To demonstrate this let us compare two different normalized floating point
number systems, simplified enough that we can enumerate all of the legal values
in the systems.

Both of these systems are representable in six bits. The first system is
enumerated in Table 2.4. This table identifies how each bit is used in the number
system. Four bits are used in the mantissa, and two bits for the exponent. With
the rb = 2 for this system, m = 4. Also, r, = 2, and e = 2. Missing from the
number system are negative values, both for the exponent and for the number
itself. Nevertheless, the system demonstrates some important points. First of all,
the first bit in the mantissa gives no information. In our definition of a normal-
ized WNS, the first digit to the right of the radix point must be nonzero, and for a
base 2 system, the only digit left is a one. Hence, this digit adds no information
to the system. Second, the Ar changes for each value of the exponent: when the
exponent is 0, the Ar is 1/16; when the exponent is 1, the Ar is 118. The Ar dou-
bles for successive exponent values. The third observation is that the 32 values
representable in this system is only half of the 26 = 64 legal combinations of six
bits. Thus, while an integer system would represent 64 equally spaced values (0
to 63). the system demonstrated in Table 2.4 represents 32 nonequally spaced
values from ' 12 to 7'12.

In contrast to the system of Table 2.4 is another 6-bit normalized floating
point system shown in Table 2.5. This system is constructed so that the bits are
grouped into base 4 digits; thus, the permissible values for the first digit are 1. 2,
and 3, all of which take two bits to represent. However, note that the digit l 4 has
a leading 0 (I4 = 012). This increases the number of allowable mantissas from
eight to twelve. Thus, the first bit of the mantissa in this representation is not
redundant, as it was for the previous system. The Ar for this system varies by a
factor of four for subsequent exponent values. Note that the Ar for VE = 0 is the

Chop. 2: Information Representation

Table 2.4. 6-Bit Normalized Floating Point System, Base 2.

VM base 2

Smallest fraction = 0.1000, = f

Largest fraction = 0.1 11 1, = 16

Smallest number = 0.1000, x 2' = f

Largest number = 0.1 11 1, x 23 = 7+

Number of fractions = 1 x 2 x 2 x 2 = 8

Number of values = 8 x 4 = 32

Adapted from David J. Cwke. The Structure of Computers and Compu-
tations, Tables 3.2 and 3.3 (1978), p. 203.

,

same in both systems. Finally, the 64 element capability for a six-bit system is
more closely approached by the 48 values representable in this system than the

- -

previous system. Note that these values range from 114 to 60 - a much greater
range than the base 2 system. However, also note that this system does not have
the capability to represent many of the numbers represented in the base 2 system,
such as 1'1s.

These examples (6-bit normalized floating point number systems) underline
the fact that not all floating point number systems are created equal. One N-bit
floating point representation with its set of values for rb, rn, re, e, and so on, will
have different characteristics from another N-bit floating point system. The
designer is left with the task of selecting a representation which will fit the
required combination of needs.

The method of storing numbers in a machine underlines the differences and
similarities in computer floating point number systems. The information stored
(or sent, or manipulated, or ...) is the sign, the exponent, and the mantissa. This
information is usually grouped in that way: the sign of the number is the most
significant bit, followed by the exponent, and then the mantissa. This is

Chap. 2: Information Representation 47

Table 2.5. 6-Bit Normalized Floating Point System. Base 4.

VM base 4

Smallest fraction = 0.104 = 1

Largest fraction = 0.334 = '1
16

Smallest number = 0.10, x 4' = $

Largest number = 0.334 x 4) = 60

Number of fractions = 3 x 4 = 12

Number of values = 12 x 4 = 48

Adapted from David J. Cooke, The Structure of Cornput.
ers and Computatiom, Tables 3.2 and 3.3 (1978). p. 203.

graphically depicted in Figure 2.2. The information that never changes is not
stored. Examples of this nonstored information are the radix of the system and
the radix of the exponent; not so obvious examples of this are the location of the
radix point and the coding method for storing the exponent. All of these are
decided at design time, and remain constant for the life of the data. Another piece
of constant information is the leading "1" for normalized base 2 mantissas. There
is no reason to store this bit, and so the usual way to store a normalized base 2
mantissa is shown in Figure 2.2. Only the bits that change are stored, so the most
significant bit of the mantissa is said to be "hidden" behind the exponent. Some
manufacturers refer to this as a "hidden bit" technique. The net result is to double
the number of representable mantissas.

Chap. 2: lnformatlon Representation

Storage Location (register or memory)

Mantissa
I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 l I I I I I I I

I
Sign Bit Exponent Bits' Hidden Bit (if used) Mantissa BitsA

Figure 2.2. Normalized Floating Point Number Storage.

Some interesting observations can be made by considering the use of the
"hidden bit" technique with the system depicted in Table 2.4. If this technique
were adopted, then the number of legal mantissas would double, as would the
representable values. Thus, all 64 combinations of bits would form correct float-
ing point numbers. Note, however, the following: VMMIN remains the same at 1/2,
and VMMAx is 31/32. The new representable values available by this technique are
between each of the old values; the overall range is increased only from 7'h to
7'14. SO although the number of values has doubled, the range of representable
numbers is basically the same. Finally, none of the values representable is zero;
the smallest number is 000000, which turns out to be (with the hidden bit coming
into play), 0.10002 x 2' = 1/2.

This raises the question: how is the number zero represented? We will
examine this more closely in the examples to follow, but the general technique is
to make an assumption concerning the exponent. A common method is to use an
excess 2'-' code for exponent representation. As the binary representations of
this code vary from 2' - 1 to 1, the exponents vary from 2'-' - 1 to -(2'-I - 1).
If the exponent bits are all zero, then the number is assumed to be zero, regardless
of the values of the bits located in the mantissa field.

Example 2.8: Characteristics of a base 2 FPNS: Determine the characteris-
tics, as defined by the above equations, bf the DEC 32-bit normalized float-
ing point number system.

This system has an rb of 2, an re of 2, rn = 24 with hidden bit, p = 24,
e = 8, the exponent is stored in excess 128 code, and the number is stored in
sign-magnitude form (mantissa is considered positive). So, from the above
equations:

Chap. 2: Information Representation

Discussion: This system uses 99.6% of the available bit patterns for legal
normalized floating point values. However, if the computations are very
small or very large, then the system will not be able to provide the dynamic
range needed for the calculations. One of the questions sometimes asked
about a floating point system is how many significant digits are available.
This is a subjective measure, since the amount of precision available is a
function of the number on1 not of the mess producing the number. That

I! ' . is, for any Vr there are Z2L 8.4 x 10 different values. A n u m k in this
system represented in base 10 scientific notation would require six digits;
we say that there are six significant figures. even though a measurement
represented by those figures may only be accurate to three places. DEC also
provides a double precision format to increase the amount of precision with
which calculations can be made. The double precision system is identical
(rb = re = 2, e = 8, exponent in excess 128 format, sign-magnitude represen-
tation for the number) except that the number of bits in the mantissa is
extended from 24 to 56. Thus, the values cover the same sections of the
real number line, but there are 232 more values to represent the information
to a greater precision. Thus for a given VE there are 3.6 x 1 0 ' ~ values, or
about 16 digits of significance.

The DEC format is prevalent simply because of the large number of DEC
machines in use today. However, there are other systems available in both 32-
and 64-bit formats. Another prevalent system is the IBM floating point system,
which is analyzed in the next example.

Example 2.9: Characteristics of a base 16 FPNS: Determine the characteris-
tics of the IBM 32-bit normalized floating point number system.

This system has an rb of 16, an re of 2, m = 6 hexadecimal digits, p =
6, e = 7 , the exponent is stored in excess 64 code, number is stored in sign-
magnitude form (mantissa is considered positive).

This system has a far greater range than the DEC system, but actually has
7% fewer representable values. Nevertheless in certain applications, this is
a reasonable system, and is chosen by some system designers. The IBM
system has a double precision format which, like the DEC format, does not

Chap. 2: Information Representation

extend the range of the system, but includes 1 6 ~ more values in the same
basic area of the real number line.

One of the disappointing features of a normalized floating point system is
that there is a large discontinuity when the values of the numbers approach zero.
This is depicted graphically in Figure 2.3, which shows the smallest representable
values of the DEC floating point system. The problem is, with the stipulation that
the first digit to the right of the radix point be nonzero, the first representable
value away from zero is disproportionately large. This is one of the problems
addressed by the IEEE floating point system, which is the object of the next exam-
ple.

Example P.10: Churacreristics of IEEE FPNS: Determine the characteristics,
as defined by the above equations, of the IEEE 32-bit and 64-bit normalized
floating point number systems.

First, the 32-bit system: This system has an rb of 2, an re of 2, m =
24 with hidden bit, but here p = 23; e = 8, the exponent is stored in excess
127 code, and the number is stored in sign-magnitude form (mantissa is
considered positive). The effect of p being 23 while m is 24 is that rather
than range from 1/2 to almost 1, as in the DEC system, these mantissas
range from 1 to almost 2. Another difference is that the exponent VE = 255
is special. That is, when the exponent is 255, special values are possible,
such as infinity. So, the system has the following characteristics for normal-
ized numbers:

Ar = 7.0 x
between values

IEEE
Floatm Point
a r %hes
z&f)olnear~~

JI a*......*...

....ma. +- Ar =2.938 x loa9 between zero and smallest representable value -
Zero / . I -YE=-127- I - YE=-125---+I

Figure 2.3. Values of the DEC Normalized Floating Point System Near Zero.

C h a p . 2: Information Representation

Discussion: Notice that the largest representable number in this system is
twice as large as the VFPNMx of the DEC system. The reason for this is that
the VELIAX of both systems is the same (127), but the VMMAX of till: LEEE SYS-

tem is -2, while the VMMAX of the DEC system is -1. At the other end of the
normalized numbers, the smallest value (VFpNMu,) representable by the lEEE
system is four times as large as the VmNHIN of the DEC system. One of the
reasons the system is organized the way it is concerns the representation of
zcrn, and the use of un~iorrnalized numbers. The previous representations
assumed that the number was zero if the exponent bits were all zero. The
IEEE floating point system has a provision that lets the number become
unnormalized as it approaches zero. That is, when the exponent bits are all
zero, then the bits in the mantissa field continue to be significant, and the
exponent remains at a -126. This allows the number to approach zero in a
linear fashion, as opposed to the discontinuity depicted in Figure 2.3. There
are two representations for zero: when all bits (excluding sign bit) are zero,
the value of the number is zero. The use of unnormalized representations
extends the range of the system down to loA5. The number of significant
digits here is basically the same as the systems already discussed.

When VE is 255, the system allows for representation of some specific
information:

The formal number system specification should be consulted for a complete
explanation of the definition and use of the system. As shown above, the
single precision system is very similar in many respects with the DEC sys-
tem. However, the IEEE system changes the number of bits in the exponent
for the double precision representation.

For the 64-bit representation, rb = re = 2 as before, but m = 53, p =
52, e = 11, and the exponent is stored in excess 1,023 format. With these
modifications, the chiuacteristics of the number system change somewhat.
The VMMN is still 1.0, and the VMMAx gets closer to two (2 - 2?). But:

Chop. 2: Information Representation

The double precision system provides 15 significant digits, and has a range
much larger than either the DEC or IBM double precision formats.

The floating point number systems already mentioned are the ones that are
most accessible for the majority of computer users. This is especially true in that
the newer machines are utilizing chip sets that conform to the IEEE standard. This
is true of the:

68020, which is the processor in many of the Sun computers.

80386, which is in the Sequent systems and many other computer systems.

32332, which is in the Encore systems and other computers.

MIPS R2000, which is used in many engineering workstations.

In addition, many chip sets (see the AMD29C327, the ADP2100, etc.) are available
for users to implement machines of their own design, utilizing the IEEE floating
P J I I I ~ format. And thc DLC and IBM machines continue to be extremely prevalent
throughout the computing community.

We will mention one more floating point system, that utilized by the Cray
machines. This 64-bit format is utilized a great deal for scientific computing.

Example 2.11: Cray FPNS: Consider the Cray 64-bit floating point format.
This system has an rb of 2, an re of 2, m = 48, p = 48, e = 15, number is
stored in sign-magnitude form (mantissa is considered positive). The
exponent is stored in excess 16,384 format. With an exponent so large,
Cray does not use the full range, but rather uses the uppermost (and also,
the most negative) portions to identify underflow and overflow. This infor-
mation is then stored in the number itself. The effect is to have a maximum
positive exponent of 8,191, and a maximum negative exponent of -8,192.
This gives rise to the following set of numbers:

This system has an extremely large range, and carries about 14 significant
figures. The effect is to have a number system capable of extremely large
and extremely small numbers, and sufficient significance for almost all
necessary computations. Compare this system, for example, with the 64-bit
IEEE format, which does not have the extreme range, but does carry over 15
digits of significance.

The information in this section points out the fact that not all floating point
number systems are created equal. Each of the designers of the various systems

Chap. 2: Information Representation 55

has been influenced by a different set of real or perceived requirements in the
choices made. Table 2.6 identifies a number of machines and the floating point
choices made for them. We should add here that many manufacturers support
floating point formats (as a special option) which go beyond those we have
identified here. Some 128-bit and 256-bit formats allow calculations with
extremely large and small numbers. However, the principles of data representa-
tion are the same, and an understanding of the principles discussed here will apply
to the larger numbers.

As we have seen, a variety of floating point formats have been utilized in
the design of different computer systems. One of the problems that arises is the
exchange of data from one system to another: the bit patterns cannot be directly
exchanged, even if the number of bits used in the representations is identical.
However, if one is aware of the differences in the number systems, one can take
the necessary steps to make sure that the numbers on one machine are correct on
another. In any event, this should serve as a reminder that with N bits on a com-
puter, 2N different bit patterns are available. Floating point number systems allow
the expression of large and small quantities, but do not expand the number of
allowable representations.

2.3. Coding for Nonnumeric Information

The information utilized by computers in various tasks is not limited to numbers.
Thus far, we have examined utilizing bit patterns to represent integer and floating
point information. Other information must also be stored within the machine, or
on electronic media such as tape or disks. This information may be instructions,
text, addresses, status information, or other information needed by the machine.
This inforrnation will be represented by bit patterns, just as the numbers were
represented by bit patterns. And in a manner similar to the numeric data, the
assumptions about the format of the information is made at design time. We will
briefly examine several types of nonnumeric information in this section, including
text, boolean, graphics symbols, and addresses.

Textual information has bccome one of the most often utilized forms of
inforrnation for both storage and manipulation. This seems counterintuitive, since
computers have historically been used to "compute," that is, doing calculations for
a variety of applications. However, when one considers the fact that programs are
input in text form, that compilers operate on strings of characters, and that
answers are generally provided via some type of textual information, then the
amount of character information begins to be appreciated. A more recent utiliza-
tion for computers is in the office, where reports, letters, contracts, and other types
of printed information are generated. In short, many applications must store,
manipulate, and transfer textual information. How can this be accomplished?

One question in this regard is, what is the set of elements to be represented?
Those interested in mathematical information would immediately respond with the
characters needed to represent data: the digits (0-9). decimal point, plus, minus,
and space. This gives a minimal character set with only I4 elements. However,
there are severe limitations to the understandability of the results: no labels, no
carriage returns or line feeds, and so on. So, at least add the alphabet (A-Z),
punctuation, and formatting characters (comma, tab, carriage return, line feed,
form feed, parenthesis). This gets the number of elements up to 46. We know
that, in order to represent 46 different elements, we will need at least

Chap. 2: Information Representation

Table 2.6. Floating Point Information Systems.
Word
Size Exponent Mantissa

System (# Bits) rb #Bi t s Code #Bits Repre. Code

Burroughs 48
B6700/1700

CDC 60
7600

DEC - single 32

DEC-double 64

Honeywell 48
8200

IBM - single 32

IBM -double 64

IEEE - single 32

IEEE - double 64

Cray 64

Ex 1024 48 Int 1's C

Ex 128 24 Fra SM

Ex 128 56 Fra SM

Ex 64 40 (base 2) Fra
20(base10) Fra SM

Ex 64 24 Fra SM

Ex 64 56 Fra SM

Ex 127 24 Fra SM

Ex 1023 53 Fra SM

15 Ex 16384 48 Fra Sh4
-

Int = Integer representation

SM = Sigdmagnitude

Fra = Fractional

1's C = One's corn!dernmt

Ex = Excess code

rl0gz 4 6 1 = 6 bits. With 6 bits we would be able to represent 26 = 64 different
bit patterns, or 64 different elements in the set. So we can represent most of the
information that we need with 6-bit characters; however, note that this set is not
large enough to include both upper- and lowercase letters. Character sets that are
to represent both upper- and lowercase letters, control characrers, punctuation
marks, and other special characters must have at least 7 bits. The bit patterns can
then be mapped to the characters or control information to be represented.

One of the early types of devices utilized to communicate with computers
was the card reader. This mechanical marvel utilized a coding scheme to
represent its various information. The information represented in the earliest
machines included only uppercase letters, nmbers, and special characters. To
represent this information a code was developed for use with the card reader
which was capable of this reduced set of characters. This 6-bit code, called the
BCD code, should not be confused with the 4-bit representation mentioned earlier

Chap. 2: Information Representation 55

in this chapter used to represent the digits 0-9. Later, the 6-bit BCD code was
extended to include the lowercase characters and additional information needed in
computer communications. This code (given in Appendix A) is known as
EBCDIC: Extended Binary Coded Decimal Interchange Code. It was used in the
IBM 3601370 and other IBM equipment, but is not in general use in computers.
However, this information can be useful if one needs to decode data generated by
an EBCDIC machine. An examination of the code reveals that not all of the 28 =
256 representations are used. However, all 8 of the bits are required to specify
the various characters and control codes. It is also interesting to note that arith-
metic using these codes may not always give the desired result. That is, if a rou-
tine were written to write out all of the standard letters (A-Z) in the alphabet,
then one way to approach it would be to place the code for " A in a register, and
increment it to get the code for "B", and so on. However, note the discontinuity
at "I": the code for the letter "J" is not the next in numeric sequence from "I."
This illustrates one of the reasons that the code was not widely received.

Another code, which has received almost universal acceptance for the
representation of textual information, is the ASCII code: American Standard Code
for Information Interchange (also in Appendix A). In contrast to the EBCDIC for-
mat, the ASCII code is a 7-bit representation, which limits it to 128 different
values. The difficulty mentioned in connection with the EBCDIC format does not
apply to the ASCII code: incrementing the representation of a letter gives the suc-
cessive letter, except for 'Z." This code is used in most terminals, printers, and
other devices that deal with character information.

The normal method for handling this information is to place the bit pattern
in an 8-bit field called a byte. The EBCDIC format would utilize all of the bits in
a byte, while the ASCII code would "waste" one of the bits. These bytes form 8-
bit values, which are treated in exactly the same fashion as numbers. Thus, the
hardware elements that operate on integers will also operate on characters. This
allows one set of characters to be compared to a similar set of information, to be
searched for specific patterns, or to be operated on by programs seeking statistical
information. A spelling check program, for example, would identify a group of
letters as a word, then compare that word against words that it knows are spelled
correctly. If the program is unable to recognize the word, or construct it from a
known word according to a set of rules, then the word is labeled as incorrect. and
the operator is informed of this infraction. In all of these operations, the computer
is operating on the bit patterns representing the characters, and the meaning of
those characters becomes significant only to the humans at the end of the process.

The difficulty of expanding the set of representable elements can be over-
come in a variety of ways. One obvious way would be to include the eighth bit
of the ASCII code, doubling the available representations. Another method is
exemplified by the character codes used in some 60-bit machines. Some
machines have been built with 60-bit word lengths, a compromise between the
needed accuracy and the expensive memory available at design time. It is not
possible to equally divide the 60-bit word into either 7- or 8-bit quantities. So the
system designers implemented a 6-bit system, which limited the number of avail-
able characters to 64. This system works well as long as the information output is
in the specified characters, which consist of the numbers, the uppercase letters,
common punctuation, and special characters. To represent the lowercase charac-
ters, a two-character sequence is used. The first character is an "escape" charac-
ter, which informs the system that the desired character was not in the standard
set, but rather in an alternate set. And the pattern identifying that character in the

Chap. 2: Infomatlon Repesentatlon

alternate set is found in the next 6-bit field. The effect of this method of informa-
tion representation is to use 6 bits to represent some characters (preferably the
most often used), and 12 bits to represent other characters. This method works
well for data that is basically numbers and uppercase characters. But for text.
such as correspondence or reports, this method is cumbersome and wasteful of
bits.

The same type of arrangements can be utilized to enhance the number of
representable elements for "standard" character sets. For example, nonstandard
characters, such as Greek characters or special purpose characters (#, -, f, x, ...)
can be represented in this fashion. These characters become even more important
as graphics-oriented devices become more prevalent.

Regardless of the coding scheme chosen, the computer deals with characters
in the same fashion as it does with other data; the arithmetic is performed in the
same way, and conditions are tested in much the same fashion. The result of a
test is an example of another type of information: boolean. In general, the term
"boolean" refers to information that can assume one of two possible values. For
status information, this seems intuitively obvious: is the result of the arithmetic
operation positive or negative? Is there an operflow or not? This type of infor-
mation requires only a single bit to represent. In fact, a status register in a
machine is nothing more than a collection of this type of single bits. Depending
on the instruction set of the machine, these bits may or may not be individually
setable/clearable/testable. We will examine this issue more closely when we dis-
cuss instruction sets.

Many languages also allow this type of variable to be declared. In general.
the language will utilize an entire word to represent this information, which
wastes a lot of bits. The smallest unit that could represent this under language
control would be the smallest addressable unit of the computer. In most comput-
ers, the smallest addressable unit is the byte, but some large, mathematical type
machines have a smallest addressable unit of a word (32 or 64 bits). In any case,
compilers can be called upon to generate sequences of instructions that will allow
storing of boolean information in individual bits of a word. This is a tradeoff
between the use of time and the use of memory. Assigning a boolean variable to
the smallest addressable unit of the machine will be faster than the alternative,
which is to have boolean information limited to. individual bits within a word.
However, this method uses more memory. The alternative, using individual bits
for storage of boolean information, requires a smaller amount of storage for the
boolean information, but also requires more instructions to interact with this infor-
mation.

In general, information is stored in locations within the memory of the
machine, and those locations are identified by addresses. The addresses, which
themselves form information that can be manipulated and utilized as needed, are
simply numbers that can be considered integers. The number of bits in the
address determines the number of uniquely identifiable items: N bits specifies one
of 2N unique items. The address is utilized by the machine to "point" to an item;
hence, the use of the address in this manner gives rise to the term "pointer."
Pointers are very useful to create within a machine an instantiation of an abstrac-
tion, such as a tree structure or queue.

Bit patterns, then. can be used to represent different types of information:
numbers (integer, floating point, fixed point. ...), characters, symbols, addresses,
and so on. The meaning attached to the bit pattern is a function of when it is
used and where it is found.

Chap. 2: Information Representation 57

2.4. Coding for Errors - Detection and Correction

Information can be represented in a variety of ways, and in the previous sections
we examined some of the different coding techniques. We know that with N bits
we can represent 2N different values, or addresses, or instructions, or To
represent anything else requires more bits, and the number of additional bits
needed is determined by the amount of information to be supplied. If we add one
more bit to an N-bit representation, then the number of representable elements
doubles, from 2N to 2N+'. So how are these additional elements identified and
treated? That is, what rules exist to effectively utilize the additional information
present? Let us examine mles (codes) for adding sufficient information to detect
the presence of errors. And then we will examine some rules (codes) for adding
enough information not only to detect that an error occurred, but also to correct
that error.

Perhaps the simplest method of adding error detection to data is to include a
parity bit. Here, the N bits of information is augmented by an additional bit,
which doubles the representable patterns. However, this additional bit is so con-
structed that half of these patterns will not be legal representations. Hence, it is
possible to detect the presence of a single bit that is incorrect. The fault can be a
"stuck-at" fault, in which the incorrect bit is "stuck" at that incorrect value, or it
can be transitory in nature. In either case, if only one bit is incorrect, the manner
of constructing the correct code words enables us to detect that an error has
occurred. The construction rule is to choose the value for the additional bit so
that the number of "one" bits is odd (or even). Figure 2.4 gives a circuit that will
creatc the proper signal for 8 bits. This circuit is available in integrated circuit
form as a '280. Note that the expansion of the exclusive-OR tree by one bit would
enable checking the parity across 9 bits, to identify if it is odd (or even). (The
'280 is an exclusive-OR tree for nine bits.)

This type of error detection is useful wherever errors have a reasonable pro-
bability of occurrence. In general they are used in serial transmissions (terminal
lines, etc.), in parallel data transmission systems (buses), or in memory systems.
However, some conditions will invalidate the effectiveness of the use of a parity
check. That is, if the assumptions of the fault model are exceeded or not applica-
ble, then the effectiveness of the method is moot. For example, in one of the
errors observed in bus systems the data is read (incorrectly) as all zero's. This
would be a valid even parity condition, and so a system built to check for even
parity would not detectthe presence of an error. Likewise, for a 16-bit bus with

DATAl7)-H
DATA 16) -H

DATA (5) -H
DATA 14) -H

ODD-P-H
DATA (3)-H

Figure 2.4. Generation of Parity Bits.

Chap. 2: Information Representation

EXTERNAL DATA BUS

an additional bit for parity, the total number of lines is 17. And the similar error
of reading all the lines as one's would be correct for a system using odd parity.
One method suggested for this situation is to use two parity bits for the 16-bit
bus, one for each byte. The parity sense of half of the bus would be set to odd,
the other half to even. Then if all zero's were read, half of the bus would com-
plain. And if the condition of all one's were read, then the other half of the bus
would complain. In :either case, the fact that an error had occurred would be
correctly identified, even though the assumptions of the fault model had been
violated.

Example 2.12: Parity defection and generation: Construct a circuit provid-
ing a bidirectional data path that is 8 bits of data plus parity. That is, one
side of the path is a byte-wide source/destination of information, and the
other side is a tri-state data bus that includes a parity bit.

The solution of this problem is to expand the circuit given in Figure
2.4 to include the generateldecode capability. An example of such a circuit
is given in Figure 2.5. This figure shows that the data path is treated in the
same way that a data path might be if no parity capabilily were required: thy
data is fed through a bidirectional tri-state transceiver ('245). So the only
bit that needs to be dealt with is the parity bit (PARITY-H). When the direc-
tion line (IN-H) identifies incoming data, the parity line is enabled into the
parity circuit to check consistency. If the parity sense is incorrect, then the
error line (ERROR-L) is asserted. When the direction line identifies that this
module provides information to the bus, then the outgoing parity generator
is enabled, and the parity line is driven in the same way (by different physi-
cal circuits) that the bus lines are driven. Figure 2.5 shows the parity cir-
cuits as being separate, but they need not be, and cleverness in the design
will match system requirements with an appropriate circuit. Some
integrated circuits will do this function, such as the '286, a symbol of which
is shown in Figure 2.6.

If we want be able to identify the location of an error, then more informa-
tion must be added to the system than can be added by a single bit. A sufficiently

INTERNAL DATA BUS

I CC

Figure 2.5. Byte-Wide Data Path with Bidirectional Parity Bit.

Chap. 2: lnforrnatlon Representation

INPUTS

6 PARlN
ERROR

KMIT

OIRECTlON LINE

INPUT OR OUTPUT
BASED ON

Y C T I O N LINE

\ ERROR lNOICblION
I F XHIT HIGH AND
PARITY ERROR ON

INPUT LINES

Figure 2.6. Functional Diagram for '286 Parity Checker/Generator.

large number of bits must be added to the data to not only identify the fact that
one of the bits is in error, but also identify the faulty bit. Again, the fault model
can be a stuck-at or a transient fault. But, for our discussion, we are limiting the
errors to a single fault within the word. One class of codes that allows this type
of information to be encoded into the extra bits is the set of Hamming codes.
Many methods can be used to construct a code of this type. We will examine one
method, but, once the principles are understood, the exact implementation and
design choices can be driven by whatever constraints are imposed by the system.
 hat is. the code could be chosen so that a minimal number of gates are required
to identify errors, or the code could be chosen in an attempt to optimally position
the 2N valid code words in the total of 2N+p choices, where p code bits are added
to N data bits.

First, let us describe one method for construction of a code to identify the
location of an error. To illustrate this method, we will utilize a system with 4
data bits and 3 code bits, or 7 bits in all. We will arrange these bits as shown in
Figure 2.7, with the data bits labeled 4, 4, DL, and Do, and the code bits labeled
C2, C,, and Co. Note that the cad? bits physically cccr~py the yoWm.;
corresponding to their binary weight. Thus, Co is in the 2' = 1 position; CI is in
the 2' = 2 position; and C2 is in the 2' = 4 position. The remaining positions are
occupied by the 4 &ta bits. Also shown in the figure is the fact that the code bits
are constructed in such a way that parity is preserved across a subset of the bits of

Code Bits

7 6 j 4 3 1 Column Number

Parity Group for C P-J-JJJ
Parity Group for C, --Ll-lJ
Parity Group for C

Figure 2.7. Const~ction of a Hamming Code for 7 Bits.

Chap. 2: Information Representation

the entire word. The subsets are so constructed that when a single bit is in error,
a unique pattern is identified by the code bits. Notc that there is a single code bit
in each subset; let the subset associated with code bit Ck be called set k. In this
example, subset k contains all of the bits that have the 2k bit set in the binary
representation of bit position. The following table describes the situation for this
system:

Since three code bits are associated with this method, there. must be three parity
circuits to generate the three parity bits when the word is written - and three par-
ity circuits to check the parity when the word is read. The ordering of these bits
is such that they form a 3-bit word (set 2, set 1, set 0). which will identify a
column. In Figure 2.8, the number 0101 is used as an example. me bits are
placed in their proper position in the word, the code bits are generated assuming
odd parity sense, and the result is presented as 0100110. If there are no errors,
the output of the parity checkers for the subsets would be 000, which identifies a
nonexistent bit position in our system. If the pattern 01MK)lO is detected, then the
parity checks of the subsets identifies some errors. Set 2 is correct, set 1 is

7 6 5 4 3 2 1 Column number

Coned repesentation
b j . i . . r e - '

*L. - L ..'I

Column 3 is in error
Set 2 parity is OK (0)
Set 1 parity Is in error 1
set 0 parity IS in error 111
Pattern 01 1 identifies column 3

Set 2 parity Is In error (1)
Set 1 parity is OK (0)
Set 0 parity is in error (1)
Pattern 101 Identifies column 5
Data bit 1 is in error

Set 2 parity is OK (0)
Set 1 parity is in error (1)
Set 0 par1 Is OK (0)
Pattern 011 identfies column 2
Parity bit 1 is in error

Figure 2.8. Hamming Code Examples for Data = 0101.

Chap. 2: information Representation

incorrect. and set 0 is incorrect, which results in an error syndrome of 01 1. This
identifies the fact that the bit in position 3 is incorrect, and to make the word
comct all that needs to happen is to invert the bit in position 3, Do. Figure 2.9
indicates how some parity checkers, a decoder, and some exclusive-OR gates
could be connected to perform this function.

The method described above was constructed to have the property previ-
ously mentioned: any single error will prod~~ce a unique bit pattern at the output
of the parity check stages. Also, the placement of the code bits was done in such
a fashion that decoding the location of the error from the pattern which the e m r
created could be accomplished with a standard decoder IC. Other coding schemes
are possible, as long as each single error causes a unique response, and a decoder
system can be constructed to identify the location of the error from that response.

This method can effectively utilize 2N - 1 bits, N bits to create the data
dependent code, and up to - I - N bits for data. For small N. 2N - 1 - N data
bits is also small; thus. for a small number of data bits the overhead is large.
However, as the number of data bits becomes larger. then the overhead is reduced.
For example, a system with 64 data bits would require 7 code bits, or about a
10% overhead. One of the problems incurred in using an error correcting code in
a memory system is the fact that many machines are byte addressable. That is,
even though the system memory may be organized in 32- or 64-bit elements for
the error correction capability, the system must be able to modify only part of the
data bits in a 32- or 64-bit word. This requires a read/modify/write capability, so
that the other par& of the data word remain correct, and the code bits are

CODED D A T A

OATAI3) -H

Figure 2.9. Correction Circuit for 7-Bit Hamming Code System..

Chap. 2: Information Representotlon

appropriately set. In any case, this type of code will properly provide capability
for single error correction (SEC).

This method is not sufficient to also provide double error detection (DED).
Notice that, if two errors were to occur in the example just given, then an
incorrect bit position would be identified, and the results would be wrong. Dou-
ble error detection can be added to this method by including a single parity bit
across the entire word, data bits and code bits alike. This bit would be created
after the code bits had already been identified. So, the decoding system needs to
take into account parity errors detected by the code bits. C2. CIS CO. and
occurrences of parity errors detected by the double enor bit. These are then han-
dled in the following fashion:

Porify Condition
Double Bit Code Bits Comment

Correct Correct No error detected; normal condition.
lncorrect Incorrect Single error; location of error identified

by binary weighting of code bits.
Incorrect Correct Single bit error; double bit is incorrect.

Correct Incorrect Double bit error; two bits in error - not correctable.

Example 2.13: Hamming Code for 8 bits: Consider a code for 8 data bits
constructed after the pattern described above. In this code. what is thc
correct representation for 0101 1100? Also, describe the infomiation avail-
able in the patterns.

This code will require 8 data bits (D, - Do). 4 code bits (C3 - h) .
and a double error bit (DEB). Following the pattern above, these will be
arranged as follows:

(DEB -Double Error Bit; BW - Binary Weight)
13 I2 11 10 9 8 7 6 5 4 3 2 1 Columnnumber

DEB D, D, D, D, C, D, D, D, C, Do C, C, Content of bit position
I I 1 I 1 0 0 0 0 0 0 , 0 BW of Column Number; 8-bit
I 0 0 0 0 1 I I 1 0 0 0 BW ofcolumn Number; 4-bit
0 I 1 0 0 I 1 0 0 I 1 0 BW ofcolumn Number; 2-bit
0 1 0 1 0 I 0 1 0 1 0 1 BWofColumnNumber; 1-bit

From the above information. set 3 consists of C3, D4, D5, D6. and Df. Set 2
consists of Cz. D,. D,, D3, and D,. Set 1 consists of CI. Do, D2. D3. DS. and
D6. Set 0 consists of C,,. Do. Dl, D3, D+ and D,. With this information, the
desired pattern can be created:

0 1 0 1 1 1 0 0 Placement of d?ta bits
1 0 1 0 1 1 1 I 0 1 0 0 0 Code bits added to word

2.5. Information Representation - A Matter of Bits

We have discussed a number of different methods of representing information. A
collection of bits will be interpreted by the computer in any of a number of ways.
depending on the instruction being executed, the number systems adopted by the

Chap. 2: lnformatlon Representation 63

designers, and the coding schemes employed. It is not sufficient to know the pat-
tern of ones and zeroes; we must know the rules concerning the interpretation of
those bits. The rules for interpretation of the information are established at design
time, and will be effective throughout the life of the system. These rules will
enable the following pattern to be correctly interpreted:

If this i s a DEC floating point number, it has the value of 2.537 x 10'. If this is a
IEEE floating point number, it has the value of 1.015 X lo9. If it is an integer, it
has the value 2.106 x 10l0. If this is a 68000 instruction, the computer should
respond by performing a stop if the system is in the supervisor state; otherwise it
will trap. If it is to be part of an ASCII character string, then it will provide the
characters "Nr c n u b cnul>". In any case, the spectrum of possibilities of infor-
mation content is limited in quantity, since N bits allows only for 2N representable
values. However, the interpretation of those values is influenced by the cir-
cumstance in which the value is found. The system designers make the choices
that will allow representation of the information in a sensible and coherent
fashion.

Information representation requires that both the supplier and the user of the
patterns agree on the significance of the arrangements of digits (bits). The current
technology represents information within a computing system in the form of bits,
and those bits can be organized in many ways. However, the use of standard
representations promotes systematic interpretation of the information. As we have
seen,

With N bits for the representation of information. 2N different things can be
represented.

The coding of the N bits in an integer form allows representation of 2N numeri-
cal values, all separated from their neighbors by one (Ar = 1).

Integer representations can assume different coding schemes, such as ones com-
plcrxnt, t\\.os comp!m:n1, cxcesn codes, and thc Iikc, each o l which h x its
own unique set of characteristics. The coding scheme for a number is a choice
made at the definitionldesign stage of a computer system, and the choice is
made in such a way that the system will behave in a predictable and appropri-
ate fashion.

Most computer systems use two's complement representations for integer
values.

Coding of information in a floating point format allows the range of the
representable numbers to increase dramatically. This allows computer users to
remove themselves from the scaling aspects of the data manipulation.

The magnitude of the representable values in a floating point number system
changes with each exponent. And the distance between representable values
(Ar) doubles each time the exponent increases in value by one.

Not all floating point number systems are created equal. They have different
capabilities for storing information and different ranges, which effect their
applicability for user problems. The choice of the radix, the placement of the
radix point, and the coding schemes all influence the values that can be
represented by the system.

Chap. 2: Information Representation

Bit patterns can be used to represent other types of information besides
numbers. Characters, instructions, addresses, and status information are just a
few of the kinds of information also represented as a collection of bits.
By creating rules concerning the legal patterns of bits, sufficient information
can be included in a pattern of bits to identify the fact that an error occurred,
and find the location of the error. This reduces the total number of correct
values represented by a number of bits, but can be very useful in identifying
problems in data transfers.

2.6. Problems

2.1 If the technology were available for a wire or "bit" to represent three values
rather than two, what would the result be? That is, consider a system with n
tertiary bits, as opposed to n binary bits. Each "bit" in this system would be
c~tpable of representing the values 0, 1, or 2. How many different values
could be represented with 8 tertiary bits? 16 tertiary bits? 32 tertiary bits?
What is the general formula for the total number of values available in the
tertiary system?

2.2 Examples were given in the chapter to demonstrate the mechanism involved
in adding one's complement arithmetic, i.e.. the end-around carry. Prove
that the end-around carry works and is needed.

2.3 What does the bit pattern 1OOlOlO1 represent in the following systems:
unsigned binary, 8-bit two's complement,, 8-bit one's complement, 8-bit
BCD (2 digits), two 4-bit excess 3 coded base 10 digits.

2.4 Represent +95 and -95 as 8-bit one's complement and &bit two's comple-
ment numbers.

2.5 Express the following base 10 numbers in a 4-bit-per-digit excess 3 code:
45932 and 51373. Add the numbers together. Express the result in the
same code.

2.; Coii::i!..i. ;I 13 hi: i .+r~-r n~rcqhv s:;<frm v,h; rh i z all ps,. ..q 1.0?1 sy?h m.
What is the smallest representable value? The largest representable value'!
What is the representation of zero?

2.7 Consider a 12-bit fixed point two's complement number system with p=7.
What is the smallest representable (positive) value? What is the largest
representable value? What is the most negative value? What is Ar for this
system?

2.8 Consider an 8-bit fixed point two's complement number system. Give the
equation for the value of a number. Multiply two such equations together to
give the result of a multiplication. Give an algorithm for selecting the
proper 8 bits from all of the bits available after a multiplication.

2.9 A base 10, 5-digit, sign-magnitude system has a value of p equal to 3. What
is the largest representable number? What is the smallest representable
(positive) number? What is the most negative representable number? What
is Ar for this system?

2.10 Consider a 16-bit floating point number stored in the following format:

s eeeee ffffffffff

Chap. 2: Information Representation 65

The "s" represents the sign of the number. The "eeeee" is the exponent.
stored in excess 12. The "fff. .." is the 'mantissa, which is a base 2 fraction,
stored with the hidden bit technique. Give the characteristics (VFPN,,,. etc.)
of this number system. What is Ar for this system when the value of the
exponent is zero?

2.11 A floating point number system has the basic format given in 2.10, but the
mantissa is a base 4 fraction, so that the hidden bit technique is not viable.
Give the characteristics for this system. What is Ar for this system when the
value of the exponent is zero?

2.12 Consider a floating point number system with the following characteristics:
normalized, radix of the system is 4, radix of the exponent is 2, 12 bits total,
with 4 bits in the exponent (e = 4). exponent stored in excess 8 format, 8
bits in the mantissa (m = 4, since base 4 number), mantissa stored in frac-
tional form.

a. What is the smallest representable nonzero value?

b. What is the largest representable value?

c. What is the decimal equivalent of Ar when the exponent pattern is 01 1 I?

d. What is the value, base 10, of the following pattern: 11000100101 I?

e. What is the pattern for the number 2 $-?

f. What is the resulting pattern from adding the following positive numbers:
01 1001 10101 1 and 1000101 101 lo? Use rounding for the result.

2.13 Given the following floating point format

s exp man

where the "s" is a 1-bit sign, "exp" is the 4-bit exponent field (exponent
stored in excess 4 format), and "man" is the fractional mantissa, base 8, 6
bits wide. The format is for a normalized number system. Give the;

a. largest fraction.

b. smallest fraction.

c. largest number.

d. smallest number.

f. what number is represented by 001 10101000?

g. represent the number 5/16 in this format.

2.14 A Hamming code has been created with the following pattern:

7 6 5 4 3 2 1 ColumnNumber
D3 D2 Dl P2 DO PI PO Data, parity designators

The code is constructed as discussed in the text. The parity sense is odd.
Given that information, answer the following:

a. Is the representation correct? If not, is it correctable? To what?

Chap. 2: Information Representation

b. Is the representation correct? If not, is it correctable? To what?

c. Is the representation correct? If not, is it correctable? To what?

d. What is the number represented?

e. Represent the number 6 in this code.

2.15 Consider the following floating point system:

a b c

a = sign of mantissa
b = 4-bit exponent in excess 8 code, radix = 4
c = 7-bit normalized mantissa

a. What number is represented by 0101 1 1001000?

b. What number is represented by 101 11 1100000?

e. Represent 4 9 in this code.

d. Represent 114 in this code.

2.16 An error detectinglcorrecting code is constructed as described in the chapter,
with the following format (parity sense is odd parity; PA is parity across the
entire word):

Col - t 16 I5 14 13 1211 10 9 8 7 6 5 4 3 2 1

Name -t PA Dlo D, ' D8 D7 D6 4 D4 P3 D, D2 Dl P2 DO PI PO

For the first four numbers: if there is a single error, identify the bit in error;
if there is a double error, indicate this result. For the final part, create the
correct code for the decimal number 653. '

2.17 Give the bit pattern for the following numbers in the 32-bit DEC, IEEE, and
IBM floating point formats: 12, 127, 2.5,768.

2.18 For the number systems listed in Table 2.6, find the minimum and maximum
positive nonzero representable values.

2.19 Construct a 16-bit SECDED code using the technique demonstrated in Sec-
tion 2.4. In this code, represent -512 and 183.

2.20 Design a combinational circuit that will correct single errors in a 7-bit Ham-
ming coded word. The inputs thus are (all H asserted):

Odd parity is used. Outputs are H asserted also. Use any basic gates you
choose, including EXORs, but make sure you maintain polarized mnemon-
ics, incompatibility triangles, and so on. Explain any logic that is not intui-
tively obvious to the casual observer.

Chop. 2: lnformatlon Representation 67

2.7. References and Readings

[Bart851 Banee. T. C.. Digital Computer Fundamenfals, 6th edition. New York: McGraw
Hill Book Company, 1985.

[Boot841 Booth. T. L., Introduction to Computer Engineering: Hardware and Sofrwore
Design. New Yo* John Wiley & Sons, 1984.

[B&9] Breeding, K. I.. Digital Design Fudomentals. Englewood Cliffs, NJ: Prentice
Hall. 1989.

[Cody841 Cody. W. I. et al.. "A Proposed Radix-and Word-Length-Independent Standard
for Floating-Point Arithmetic," lEEE Micro. Vol. 4. No. 4. August 1984, pp.
86-100.

[Flct80] Fletcher. W. I.. An Engineering Approach to Digital Design. E n g l e w d Cliffs,
NJ: Pnntice Hall. 1980.

[IEEEBS] Institute of Electrical and Electronic Engineers. Binary Floating Point Arith-
metic. IEEE Standard 754-1985. New Yo* EEE. 1985.

(Knu1731 Knuth. D. E.. The Art of Computer Progranwnir~g: Volume I . Fundamental Algo-
rithm. Reading. MA: Addiwn-Wesley. 1973.

[Knur69] KnuIh. D. E.. The Art of Computer Programming: Volume 2, Seminumerical
Alogrithms. Reading. MA: Addison-Wesley. 1%9.

[Kuck78] Kucs. D. I.. The Structure of Computers and Computations. New York: John
Wiley & Sons, 1978.

[Lang821 Langdon. G. G.. Ir., Computer Design. San Jose. CA: Computeach Rcss Inc.
1982.

[tic0631 Lin. S.. and D. I. Costello. Ir.. Error Control Coding, Fundamcntols and Appli-
cations. Englewood Cliffs, NJ: Rentice Hall, 1983.

[Man0791 Mano. M. M.. Digital Logic and Computer Design. Englewood Cliffs. NJ: Pnn-
tice Hall. 1979.

[ManoBS] Mano. M. M., Computer Engineering: Hardwore Design. Englewood Cliffs. NJ:
Rentice Hall. 1988.

[PeWe72] Peterson. W. Wesley. and E. I. Weldon. 11.. Error-Correcting Codes. 2nd Edi-
tion. Cambridge. MA: MIT &ss, 1972.

[RaFu89] Rao. T. R. N., and E. Fujiwara, ErrorControl Coding for Computer System.
Englewood Cliffs, NJ: Prentice Hall. 1989.

[Schn85] Schneider. G. M.. The Principles of Cornpurer organization: New Yo* John
Wiley & Sons, 1985.

[Wdk87] Wilkinson, B., Digital System Design. E n g l e w d Cliffs, NJ: Prentice Hall Inter-
national, 1987.

C h a p . 2: Information Representation

