2

Information Representation

2.1.

One definition of a computer is a black box that manipulates information. First,
information is entered into the computer. Then some form of processing is
applied to the input information. Finally. the result is output to the user. In order
to make any sort of evaluation of the computer or the proposed manipulation,
some knowledge is required of the methods used for information storage and
transfer. The purpose of this chapter is to examine the methods used for represent-
ing information. This includes not only numeric information, but also textual
information, address representation,error coding information, boolean values, and
status information. Each of these types of information is useful, and each type
will be used by the computer at the appropriatetime for a specific function. First,
let us examine number representation, both integer and floating point, to deter-
mine the capabilitiesand limitations of available types of number systems. In
addition, we will examine some of the difficultiesintroduced by numeric manipu-
lation. Then we will move on to representationof status information, boolean
information, and addresses. Finally we will consider the problems associated with
integrating all of these types of informationinto the same system.

Integer Number Systems: Bounded Ussfulness

Representation of information within a computer, and in most communication
methods associated with computers, relies on the concept of a'hit." We will con-
sider a bit to be a variable capable of assuming one of two distinct values. For
numbers, these vaues are considered ones and zeros. Other interpretationsare
possible: true and false, asserted and unasserted, and so on. Collections of bits
form numbers; each bit position doubles the possible representationsof the sys-
tem. Thus. the number of bitsavailable for representation determines the number
of representablevalues. For N hits, there are 2¥ possible representations. Table
2.1 summarizesthe number of representablevaluesfor popular computer sizes.

Table 21 Numbea o RepresentableVaues

Number d Number of

Bits Representable Values Machines. Uses
4 16 4004, control
8 256 8080, 6800,control, communication
16 65. 536 PDP11, 8086, 32020

k7 429x% 10° 18M 370, VAX11/780

48 141x 10" Unisys

64 1L84x 10" Cray, IEEE (dp)

The number of bits used in a particular format identifies the total number of
representablevalues, but does not directly specify the range of those vaues. The
assumptions made about the representationsactually identify the range and useful-
ness of the syssem. The simplest assumption is to let the binary numbers
represent unsigned integers. If this is the case. then the range of representable
numbersisfrom 0 to 2V - 1. These numbers are equally spaced. with a vaue of 1
between each representation. The system is a positional system, in every respect
like the base 10 system with which we are familiar. Each bit position k has asso-
ciated with it a value of 2%, and the value represented by the collection of bits is
represented by:

N-1

- i
VunsionepiNtecer = X, b X 2
i=0

where b; is the one or zero in position i. Thus, in unsigned binary the pattern
101101 means 1x 25 +0x 2% + 1x 22 + 1x 22+ 0% 2" + 1x 20 =45,

While the unsigned integer representationis simple and easily manipulated,
negative numbers cannot be represented. Hence, other integer systems are more
often used for information representation. Perhaps the most widely utilized sys
tem is the two's complement system. Here, the 2V representable values range
from 21y to 2¥-! - 1. To negate a value, the value is subtracted from j’
Table 2.2 gives a few of the 256 values of an 8-bit two's complement system.
This representation has also a positional nature, and the value of a panicular
representation is given by:

N-2

N -1 ;

Viwo'scompLement = ~by.y X 2770 + ¥ by x 2
izo

Thus, in two's complement representation, the pattern 101101 means
“I1x25+0x2* +1x 23 +1x22+0x2' +1x2% =-19. One thing to note here is
that, even though the most significant bit is not defined as a sign bit, it can be
considered such. The reason for this is that, if the most significant bit is set. then
the value will be negative, since the most significant bit carries more weight then
al of the other bitscombined.

Example 2.1: Finding values in two's complement number system: What is
the bit representationaf 87y in an 8-bit two's complement number system?

There are a variety of algorithmsfor converting between bases; it is
not our intention to promote one or another. And since this number is a
positive number within the representablevaues of the system. the various

Chap. 2: Information Representation 33

Table22 8-Bit Two's Complement Representations.
Bit Pattern ~ Value Note

01111111 127 Larges representablevaue.
01111110 126

01111101 125

00000010 2 Note that leading zese indicates
00000001 1 positive number.

00000000 0 Unique representation of zero.
11111111 -1 Minusone is awaysall ones.
11111110 -2 Nate that leading one indicates

1111110t -3 negative number.

l(K)(.K"K)IO —126
10000001 =127
10000000 -128 Smallest (most negative) representable value.

bit positions can each be checked to ascertain that the desired bit pattern is
01010111.
What is the bit representation of —761q in an 8-bit two's complement
number system?
Again, the solution begins by finding the bit pattern for 76,9, which is
01001100. To negate this, the number is then subtracted from 28
1 00000000
-~ 01001100
10110100

I'tis not necessary to do these calculations in binary:
256
- 76
180

The representation 10110100 is equivaent (in unsigned binary) to 180.
Also note that negative numbers are negated to positive numbers in exactly

the same way:
What is the representation of the negative of 11010110,?
Base two:
1 00000000
— 11010110
00101010
Base 10:
256
-214
42

The answer 42 converts to 00101010, as above.

The last portion of the example demonstrates the method utilized by many
people to arrive a the correct it representation for negating a two's complement

Chop. 2: Information Representation

number: complement all of the bits and add 1, which is the same as complement
and increment. This also demonstrates the method for subtracting one number
from another: the number to be subtracted is complemented and fed into one input
of an adder, the other number forms the other adder input, and the carry in of the
adder is asserted. The result is that a complement and increment have been per-
formed on the number to be negated, and the result out of the adder will be the
desired value.

One of the extremely attractivefeatures of the two's complement system is
itscircular nature. Thisis graphically demonstratedin Figure 2.1 for a 4-bit two's
complement system. The numbers are arranged around a circle from 1000 to
0111. Ascan be seen from the figure, progressing from one point to the next, or
from one number to the next is accomplished by simply increasing or decreasing
the values by one. When this happens at the 0111 to 1000 border, the number
changes from a positive to a negative value. The net result is a discontinuity in
the desired numeric sequence. The name given to this discontinuity is an
overflow — we have exceeded our ability to represent informationin the number
system. The same thing will happen if you specify successively more negative
numbers: decrementing 1001 to 1000 works fine, but decrementing 1000 results in
0111, which is a positive number. We have again crossed the discontinuity boun-
dary, and exceeded our ability to represent information in the number system.
When an arithmetic operation causes this to occur, many computers will respond
by setting an "overflow hit."" This bit can be included as one of the severa bits
making up the status word of a processor; these bits will be further described in
the next chapter. In addition, the benefit of the circular nature of the two's com-
plement system will be further discussed after consideration of a fractiona
representation of information.

The numbers to this point have been described as integers, which is the
correct interpretation only if we make the proper assumptions concerning the
placement of the radix point of the system. Unless otherwise stated, we naturaly
assume that the radix point is located directly to the right of the least significant
bit. With this assumption the patterns do indeed represent integers, and all of the

Figure21l Grgphicd Represntation o the Circular
Neature d Two's Complement Numbers

Chap. 2: Information Representation 35

statements made concerning integer manipulation apply. However, if we assume
that the radix point is located a some point other than to the right of the least
significant bit position, then the range and granularity of the representable values
changes.

The placement of the radix point (we are used to base 10, where it is the
decimal point) is a matter of definition; no piece of hardwareisinstalled on circuit
boards to identify the location of the radix point. The radix point is established to
satisfy the needsfor which the processing element is utilized. If the information
to be represented contains fractional vaues, then assumption of a radix point
establishes a fixed point system that is so adjusted that it can cover the necessary
range. Addition and subtraction operations for this type of a system are exactly
the same as integer operations. However, for multiplication and division, care
must be taken to assure that the radix point is in the correct place after an opera-
tion, and that the correct bits are saved. For example, multiplicationof two 16-bit
numbers, regardlessof the placement of a radix point, resultsin a 32-bit number.
However, if the result of the multiplication of two 16-bit numbersis to be stored
in a 16-bit number, then thereare limits to the size of the number. In the case of
a fixed point system, the correct bits must be selected so that the assumptions
made about the radix point of the multiplier and multiplicand are also true for the
result.

A fixed point, noninteger system is aso a positional system, just like the
positional systems aready described. The only differenceis that the position of
the radix point introduces a new factor into the equation. Let p represent the loca-
tion of the radix point; this is the number of bit positions to the left of the least
significant digit (bit) where the assumed radix point is found. Thus, the vaue of
p for an integer system would be zero. Then the equation for the value of atwo's
complement fixed point number would be given by:

N-2

- N-p-1 i~

Vexeppont = ~byog X 277770 + ¥ by x 277
i=0

This gives the user the flexibility to choose a system that will fulfill the needsof a
specific project. That is, a designer can determine the smallest value required to
meet the needs of the system, and select a number system accordingly. Therefore,
one of the characteristic vaues of a number system that will help determine its
usefulness is the difference (in absolute value) between adjacent numeric
representations. We will call this differenceAr. Note that Ar for all integer sys-
temsis 1; Ar for fixed point systems will be 277.

A simpleexampleof this isa 5-digit decimal humber system for representa-
tion of monetary values. If p isequa to 0, then the system can represent values
from $0 to $99999, and Ar hasa value of $1. Thus, any value less than a dollar
cannot be represented in the system. If the system designer needs to represent
cents as well as dollars, then p can be assumed to have a value of 2. The five
digits can then represent values from $0.00 to $999.99, and Ar has a value of
$0.01. Both systems have the same number of representable values, but the range
and the Ar differ with the use of the system and the assumed value for p.

Example 2.2: Fixed point number system: Congder a fixed point 16-bit
two's complement system with a valueof p equal to 8 What is the smallest
representable number? What is the largest representable number? What is
the Ar? We know that addition and subtraction will not have any effect on

Chap. 2: Information Representation

the position of the radix point, but what is the correct procedure for select-
ing the hits to retain after a multiplication?

The smallest representable number can be defined to be either the
smallest absolute value that can be represented or the most negative number.
The smallest absolute value for this system is zero; the next smallest abso-
lute value is represented by the bit pattem 00000000.00000001. This has
the value of 278, which is just 39 x 1073, The most negative representable
number has the bit pattern 10000000.00000000; this has the value of 27,
which is-128. The Ar for this system is the same as the smallest represent-
able value, 28, To ascertain the effect that multiplication has upon the
radix point, notice what happens when we multiply two of these numbers:
the least significant bit will represent 216, while the most significant bit
will be 2!, Thus, to get a properly aligned value when the process is over,
the 31-bit result must be right shifted 8 bits, and then the next 16 bits form
the desired result. Note that this dictates that the multiplication of the two
input numbers has a maximum value if the number of bits saved as a result
is to be the same as the number of bits used for the inputs. If the number of
bits required to represent the value of the result exceeds 16, then an
overflow has occurred.

A fixed point system is often used in applicationslike digital signal process-
ing (DSP), where the values are scaled as they enter the system, and the intermedi-
ate values are sufficiently represented by the number of bits in the system. The
Fujitsu 8764 DSP chip uses a 16-bit value with p equal to 14, while some com-
ponents, such as the AMD29517, are set up for a 16-bit system with p equal to 15.
If pisequal to 15 then all representablevalues (except for —1.0) have an absolute
value less than one, and the system scales easily. These systems utilize integer
arithmetic units, which are faster and require fewer devices than their floating
point counterparts.

Some applications, such as the digital signal processing applications men-
tioned above, are able to take full advantage of the circular nature of the two's
complement number system. These applications have a characteristic, inherent in
the application itself, that will permit the number system to cross the overflow
boundary without causing a disruption in the overall flow of instructionsand data.
For example, one of the frequently used digital signa processing algorithmsis a
finite impulse response(A R filter function. It can be shown that certain FIR
filters will aways result in a value within the ability of the number system to
represent information; hence, intermediate overflows in the addition process can
be ignored.

The two's complement number system is the most widely used integer sys-
tem in machines, but it is not the only one. Another method used in some
machines is the one's complement system. Mathematically, the one's comple-
ment of an N-hit number with value v is defined as 2V - 1 - V. The 2¥ - 1 por-
tion of the equation is merely ¥ one's, and subtracting V from a pattern of all 1's
results in zeros where the ones were, and ones where the zeros were. Hence, the
negative of a number is formed by complementing al of the bits in the number.
Therefore, to negate any number, all that is required is to invert every bit position,
which is a very fast operation. The range covered by this method is from 2¥-2
-1 to—«2¥-2 _ 1), which is just one different from the range of the two's comple-
ment number system. However, some "features” of this system limit its useful-
ness in digital systems. Unlike the other systems discussed above, this system

Chap. 2: Information Representation 37

does not follow a positiona notation methodology. The hits have different
significance depending on the sign of the number. Also, this system has two lega
representations for the number zero, both of which must be checked by any opera-
tion that tests for zero. Finally, treatment of the cany in this system is different
from other systems, because of its *'end-around™ feature. The proof of this feature
will be left as an exercise, but the effect can be seen from the following example:

Example 2.3: One's complement arithmetic: Consider a 6-bit one's comple-

ment system. Represent 15. —15. 13. and —13 in this system. Then perform

the following additions: 15 * 13, 15+ (~13), 13 + (-13), and 13 * (-15).
The numbers arederived in a simple fashion:

Decimal One's
Value Complement Comment
15 001111 Positivenumberssame as two's complement.
-15 110000 Complement bits to negate.
13 001101 Positive numbers same as two's complement.
-13 110010 Complement bits to negate.
Now for the additions:
15 001111 Thisproceedsjud like the two's
+13 + 001101 complement verson.

28 0011100 No cany out: number is correct, and
the result is as we expect.

15 001111 The addition is done in the normd
+-13 + 110010 fashion, but
2 1 000001 the result of oneis incorrect;
however, the presence of acarry sayswe
+ 000001 should add that ssat inthe LSB
000010 which gives the expected result.

13 001101 Thistime we will add a positive number
+-13 + 110010 to its negative (which is just complement)
0 H1ite and end up with dl ones— avaid zero.

13 001101 Herethe positivenumber is smaller
+-15 + 110000 than the negative number, so result
) 0o is negative; no cany — the vaueis correct.

Note that, in al of the above cases, the carry out can be added to the
intermediate result (hence the name of end-around carry) to produce the
correct final result.

The one's complement aumber system can be used in many of the
same ways that other systems can be used, but care must be. taken to operate
within the constraints that it imposes.

Another system utilized to represent numbers is the excess system. Here an
excess is purposely added to the value to be represented, and the resulting bit pat-
tern i s stored or used as required. One of the most prevalent uses of excess codes
isto store exponents in floating point numbers. If we let S represent the value that

Chap. 2: Information Representation

will be stored or otherwise utilized. Vv the true value of the number, and & the
excess, then the relationship between them is defined as:

S=V+E

In operations utilizing this type of representation care must be taken to be sure
that the result is within the desired range. That is, if two numbers are added
together, the following will happen:

Sl+S2=(V|+E)+(V2+E)
=WV + V) + 2 XE

To obtain the correct result [(V, * V,) * E], a value equal to E must be removed
from the calculated result. In some systems, where E is a power of 2, thisis a
simple operation. However, in other systems the operation can become more
complicated.

Example 2.4: Number representation in excess codes: What is the represen-
tation of +37,, in an 8-bit excess 128 code? What is the representation of
=23, in an 8-hit excess 128 code? What is the sum of the two numbers, in
the 8-bit excess 128 code?

An 8-bit unsigned number can represent values between 0 and 255.
The excess representation can then represent values from —128 to +127.

+128 10000000 Thisis theexcess
+ 37 0010010t The vaue to be represented.

165 10100101 The representation of 37,4 in excess 128 code.
+128 10000000 Thisistheexcess.
-23 00010111 The vaueto be represented.
105 01101001 The representation of ~23,, in excess 128 code.
165 10100101 Thisis +37 in excess 128.
+105 +01101001 Thisis-23in excess 128.
270 100001110 Note the carry out 'in thisoperation. 270 is too
hig to represent in 8 bits; to correct for the
2 x E tha isin this sum, subtract 128.
—~128 -10000000 In binary, is thisadd or subtract?
142 10001110 Thisis the representation o 14, the correct result.
in excess 128.

Another use for the excess code is in representing decimal numbers. A 4 bit
integer representation can assume values between 0 and 15. If we limit ourselves
to decimal numbers, the desired values are 0 t0 9. These are represented in excess
3 by the numbers 3 to 12. One of the beneficial effects of this type of representa-
tion is that, when two numbers are added together by a 4-bit binary adder, if the
addition of those decimal vaues would have resulted in a carry ous, then there
will be a carry out of the binary adder. Note that if D and D, are decimal
numbers represented by V;=D;+3 and V,=D,+3, then V,+V, =
D, * D, + 6. Then if the sum of D, and 0, would result in a value greater than
9, which would cause a carry in adecimal adder, v, * v, would cause a carry in

Chap. 2: Information Representation 39

a binary adder. Note also that the resulting value (D + D, *6) must have 3
removed from it beforeit is the valid representationin excess 3 for the resulting
number, assuming that no carry out resulted. If a carry out did result, then the 4-
bit representation is actually the correct value, since the excess is 6, and there are
6 unused representationsin the 4-bit scheme. This code can be very useful for
systems that work with 4-bit quantities.

Example 2.5: BCD excess 3 system: Consider a system that works with 3-
digit decimal numbers, and it stores the digits in excess 3 format. What is
the representationof 573? What is the representationof 142? Add the two
numbers, and give the correct result in excess 3 format.

The numbers are handled on a digit-by-digit basis, with the excess
being included with each digit:

Decimal Binary

+333 0011 0011 0011 Thisistheexcess

573 0101 0111 0011 And the number to be represented.
810 6 1000 1010 0110 Theexcess 3 representation.

+333 0011 0011 0011 Thisistheexcess .
142 0001 0100 0010 Thisisthe number to be represented.
475 0100 0111 0101 Theexcess3 represantation.

573 1000 1010 o110 Do theadditionin decimd and in
+142 0100 0111 0101 hinary. Correct s hesded to
meke output correct.

715 1100 1 0001 1011
Cary out d second s2t o 4 bitsindicates
that the most significant digit should be
incremented by one. Also indicatesthat
this value is correct as it Stands (Snce 2 x
E = 6 and the carry out indicates thet the
number overflowed into the next digit) so
we ned to add 3. Therefore, the MSD
needs to be incremented by one and decre-
mented by 3; the middedigit needsto
have 3 added; and the LSD needs to be de-
cremented by 3.

—0010 + 0011 - 0011
1010 0100 1000 Which isthe correct excess 3

representationfor 715,4.

The excess representation for decimal numbers does have some useful
characteristics, but usually this information is represented in the more natural
binary coded decimal format (BCD). This code is listed in Table 2.3. Here, the
numbers 0-9 are represented by the equivalent binary representations 0000 to
1001. Thus, 4 bits are used for each decima number. To represent al of the
decimal numbersfrom 0 to 99;¢, 8 bits would be required. The smallest number
(zero) would be represented as (30000000; the largest would be 10011001, But we
already know that with 8 bits we should be able to represent 256 values, why are
we limited to 100 vaues with BCD? The other representations(1010 to 1111) are
not used with BCD, which does not fully utilizeall of the representable values.
Thus, aBCD systemis capable of 10¥4 different representations.

Chap. 2: Information Representation

Table 23 Binay Coded Decmd
(RcD) Representations.

Bir Pattern Value
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 Noat vaid
1011 Nat vdid
1100 Nat vdid
1101 Nat vdid
1110 Nat vdid
1111 Nat vaid

The above representationspoint out some very important characteristics of
the representation of informationwith bit patterns:

e For a representation~of N bits, 2V different values can be represented. This is
true whether the information represented is numerical in nature, an address, or
any other information, such as an instruction.

¢ The meaning associated with a bit pattern depends on the assumptionsmade.

¢ The assumptions about bit meaning will impact on the design of the hardware
that manipulates the bits. Note that a on€'s complement adder is a different
piece of hardware than a two's complement adder.

e The Ar for each representationis the same for the entire range of representable
values.

e The assumption of a radix point will allow representation of fractional values.
Note that the assumption of a radix point does not impact on the addition pro-
cess; however, multiplication and division must account for shifts in the radix
point due to an increased number of bits in the result.

e The choice of a coding method is based on available hardware, the desired
range of values, and other system goals.

Regardless of the mechanisms chosen for information representetion, the
resulting collection of bits must be represented and communicated. Internd to a
machine, the data is just that: a collection of bits in a register, in a memory loca-
tion, or on a bus. But how humans see and remember or communicate this infor-
mation is not usudly in bit pattern format. We generally group bits together and
utilize a different base to represent them; the most common systemsare octal and
hexadecimal. These representations will be utilized as appropriate throughout this
book.

Example 2.6: Alternate representations for bit patterns: Represent =157,
and +25,477,, in binary, octal, and hexadecimal. Do this for the 16-hit
twa's complement representation and a 16-bit excess 32,768 representation.

Chap. 2: information Representation 41

2.2

Two's Complement

+157 = 0000000010011101 The binary representation. to 16 hits.
-157 = 1111111101100011 To negate, complement and increment.
= 1111111 101100011 Group in groups of 3 for octdl.
= 177543
= 11111111 01100011 Group in groupsdf 4 for hexadecimal.
= FF63
25477 = (0110001110000101 the binary representation. to 16 bits.
= 011000t 110000101 Groupin groupsdf 3foroctd.
= 061605
= 01100011 1000 0101 Groupin groupsaf 4 for hexadecimd.
= 6385
Excess32.768
32,611 = 0111111101100011 Excesscode for -157.
= 0111111101 100011 Group for octal.
= 077543 Comparewith two's complement.
= 0111 1111 0110 0011 Group for hexadecima.
= 7F63 Comparewith two's complement.
58,245 = 1110001110000101 Excesscode for 25477.
= 1110001 110000101 Groupfor octd.
= 161605 Comparewith two's complement.
= 1110 0011 1000 0101 Group for hexadecimal.
= E385 Compare with two's complement.

Fioating Point Number Syst ens. Coding for Range

The previous section pointed out the fact that for an N-bit number, there are 2V
different representable values. If we assume an integer interpretation to the bit
pattern, then we have a numerical range of 2N, Throughout this range Ar is equal
to one. The coding mechanism (two's complement, one's complement, excess
code, etc.) identifies the low point and the high point of that range. If we assume
a radix point within the word, then the range is smaller; however, now we have
the ability to represent fractional values. Many problems require the ability to
represent information of a much greater or smaller magnitude than possible with
fixed point systems, and for these problems we need a different type of informa-
tion representation system. We are familiar with the use of scientific notation to
represent large numbers, such as Avogadro's number (6.022 x 10%), or small
numbers, such as the mass of a proton (1.673 x 107 g). This same scheme is
used to represent large and small numbers in computers, and has the name of a
floating point number system (FPNS). This type of number system does not
expand the quantity of representable values; rather, it modifies the way in which
the 2V values is interpreted.

T o specify a floating point number, seven different pieces of information are
necessary: base of the system, sign, magnitude, and base of the mantissa, and the
sign, magnitude, and base of the exponent. We will first look at scientific nota-
tion, which is used to identify these pieces, and then examine methods used in
computers to do the same things. The numbers in scientific notation above have
the following format:

Chap. 2: Information Representation

(Sign) Mantissa x BaseFXPONENT

The "base" in the above equation is the radix of the system. For "norma"
scientific numbers this radix is 10, because that is the base of the number system
with which we are most familiar. Most computers do arithmetic in a binary
fashion, so this choice would not be advantageous for a computer. The radix of
the system is a constant that is decided at the time the system is defined, and it
has a direct bearing on the range of values that the system can represent, as we
shall see. The value used for the radix is not stored in the computer, but forms
part of the definition of the number system. We will denote the radix of the sys-
tem asrp.

The radix of the system also applies to the mantissa. The mantissa is used
to identify the significant digits of a value. In practice, we may use mantissas
with few digits or many digits. In a machin2 repeesentaiion, the number of digits
used for mantissa representation is the same for al numbers (of the same type,
i.e., single precision or double precision). One of the characteristics of the float-
ing point number is the number of digits used to represent the mantissa. This
number will be identified simply asm. Thus, for a specific floating point number
system, each mantissa will consist of m base r, digits. Let us designate the vaue
of a mantissa asv,,. In the consideration of the range of the system, we will need
to know the maximum and minimum allowable values for the mantissa, which we
will designate asVy,,,, and Viy,, .-

The location of the value of a floating point number on the real number line
will be determined by the exponent. If the exponent is a large positive number,
then the value of the floating point number is very large. If the exponent is zero
then the value of the floating point number is just the value of the mantissa. If the
exponent is a large negative number, then the value of the floating point number
is very small. Determining the value of the exponent requires information con-
cerning the sign, the radix. and the number of digits in the representation. We
will let the radix of the exponent be designated by r,. Like the radix of the sys-
tem, the choice of r, is made at design time, and is part of the number definition.
For the scientific number examples above, r, =r, = 10, but in most computers,
re = 2.

The number of digits in the exponent specifies the maximum size of the
exponent, which, in conjunction with the radix of the system, identifies the range
of the number system. We will designate this number (the number of digits in the
exponent) with the letter e, Note that the exponent will contain e base r, digits,
and that, like the mantissa, r, and e are decisions made at the time the number
system is defined.

The sign of the exponent also needs to be identified. For our scientific
examples, this was directly identified by the presence or absence of the minus
sign. It is possible to do the same for exponeats stored in floating point numbers
in computers: identify a bit that is a sign bit for the exponent, and let the exponent
be stored in sign-magnitude format. However, most computers use not this
method, but rather a coding technique to represent positive and negative values.
The method most often used is the excess code technique, athough other methods
could be used as well. We will examine the reason for excess codes in the
exponent a little later. Whatever the coding scheme chosen, each of the allowable
representations for the exponent results in a unique value for the exponent. Let
the value of the exponent be represented as V. As with the mantissa, we will

Chap. 2: Information Representation 43

need to know the maximum and minimum representable values of the exponent.
We will designatetheseas Ve, and Ve, ..

The dgn of the number itsef must also be known. In the scientific
representation above it is identified explicitly by a sign. This sign-magnitude
mechanism is also the most prevaent mechanism for the storage of floating point
numbers in computers. However, this information may be coded into the number
by any of the coding schemes which allow for positive and negative representa:
tions.

Thefind pieceof information we need is the placement of the radix point.
In scientific notation, we explicitly designate the location of the radix point.
However, in the machine we will need to make provisions for identifying the
location of the radix point, or make appropriate assumptions about the system at
design time. As with the fractional systems discussed above, let p designate the
location of the radix point with respect to the least significant digit. This p will
be used in determining the value of the mantissa, since, for an unsigned mantissa.

N-1
VM = Z d" x r;,"’
i=0

where the mantissaiscomposed of N r, digits labeled dy_ to dg. So, the value!
of the floating point number. Vgpy, iS given by

Vien = (DS vy x ry*

The location of the radix point of the mantissais directly connected to the
value of the exponent. Consider the following representations for the number
32,768)¢.

3.2768 x 10* = 32.768 x 10° = 3276.8 x 10!

Each of the representationsis a correct number in scientific notation, and the loca-
tion of the decimal point is reflected in the value of the exponent. If the location
of the radix point within the word is alowed to vary from number to number,
then provisions must be made to record p and use that informationin al of the
calculations. This could be confusing and cumbersome, so in most systems an
assumption is made concerning the location of the radix point (that is, the value of
p) to minimize the amount of stored information and to make the arithmetic
easier. The process of representing all of the numbers such that the mantissas all
have the same value for p is called normalization. This process also identifies the
allowable mantissa values. The assumption that we will make for our examplesis
that p =M, and that the leftmost digit of the mantissais nonzero. This means that
the mantissa is a fraction that can have values between 1/r, and amost 1.
Specifically, the maximum vaue is Vityay = 0:dn d,d, ... to the length of the
mantissa, where dy;, = rp — 1; this number is very close to one (1 - rsY, for N
digits). And the minimum mantissa value is vy, = 0.100 ... = 1/r,. The value
of this number varies with each r,. Thus, the only legal vaues for the mantissas
vary from vy, . 10 Vy,,, ., and the numbers represented by the FPNS must be
obtained by combining a member of this set of mantissas and one of the available
exponents. This leads to the following observationsconcemning nonzero values in
anormalized floating point number system:

Chap. 2: information Representation

Maximum representeble value = Vipy,,,, = Vi, X To' s
Minimum representable value = Vepn,,,, = Vi, X 75" %
Number of legal mantissas= NLMppy
=(r, = 1) xr,™!
Number of representablevaues= NRVgpy
= Number of legal mantissas

x Number of legal exponents

These values help to identify the characteristicsof a floating point number system,
and are useful to determineif the system can be used in a specific application.

Example 2.7: Characteristics of a FPNS; Consider a normalized floating
point number system which has r, = 10, r, = 10, m = 3, e = 2, both
exponent and number itself stored in sign/magnitude format. What is the
largest representablefraction? What is the smallest representablefraction?
What is the largest representable exponent? What is the smallest represent-
able exponent? What is the largest representable number? What is the
smallest representable positive nonzero number? How many nonzero
numberscan be represented in this system?
From the equations given above,

Vit = 0999 = 1.000 — 107
Vi, = 0.100
Ve =99
Vg ==99
Note that this is the most negative exponent. The smallest exponent in
absolute value is 0, but that exponent does not lead to the smallest
representablenumbers.
Vin,,,, = 0.999 x 107
Veen,,,, = 0.100 x 10
NLMgppy =9 X 10 X 10
=900
NRVgpy = 2 % 900 X 199

= 358,200

Chap. 2: Information Representation 45

There are 199 representable exponents: 99 greater than zero, D less than
zero, and zero. At this point we will make an observation concerning the
number system, but leave the discussion o the problem until a later section.
The number system can represent very large values, and very small values.
The question is, can the value 1.00 be added to 10,0007 The representation
of 1.00 is 0.100 x 10!, The representation of 10,000 is 0.100 X 10°. But
thereis no legal representation for 10,001. This points out the fact that the
Ar is different for each vg. For the lega representation of 1.00, the Ar is
1/100. For the representation of 10,000the A~ is 100.

The above example provides a very interesting illustration. With five digits
and two sign bits 358,200 different values can be represented with a normalized
floating point system. If we assume that one of the sign bits can be interpreted as
a number with a value of 0 or 1, then an integer number system with the same
quantity of symbols(i.e., five base 10 digits, a base 2 digit, and a sign) would be
capable of representing 399,998 values, more than the floating point system. But
these numbers vary between —199,999 and 199,999. (Note that we are not count-
ing the representation of zeroin either case)

The range of the system and the number of representable fractions are both
affected by the choice of the base of the system. The example given above used
base 10, but computers don't usualy provide that capability. With the base 2
arithmetic capabilitiesof the machines, one would assume that the most natural
base for floating point numbers would be two. However, grouping the bits into
other base values, such as base 4 or base 8, can expand the range of the system.
To demongtrate this let us compare two different normalized floating point
number systems, simplified enough that we can enumerate al of the legal values
in the systems.

Both of these systems are representable in six bits. The first system is
enumerated in Table 24. This table identifies how each bit is used in the number
system. Four bits are used in the mantissa, and two bits for the exponent. With
the rp, = 2 for this system, m= 4. Also, r, = 2, and € = 2. Missing from the
number system are negative values, both for the exponent and for the number
itself. Nevertheless, the system demonstratessome important points. First of al,
the first bit in the mantissa gives no information. In our definition of a normal-
ized FPNS, the firgt digit to the right of the radix point must be nonzero, and for a
base 2 system, the only digit left is a one. Hence, this digit adds no information
to the system. Second, the &~ changesfor each value of the exponent: when the
exponent is 0, the Ar is 1/16; when the exponent is 1, the Ar is 1/8. The 4Ar dou-
bles for successive exponent values. The third observation is that the 32 values
representablein this system is only haf of the 26 = 64 legal combinations of six
bits. Thus, while an integer system would represent 64 equally spaced values (0
to 63). the system demonstrated in Table 2.4 represents 32 nonequally spaced
vauesfrom Y2 to 7'/2.

In contrast to the system of Table 24 is another 6-bit normalized floating
point system shown in Table 2.5. This system is constructed so that the bits are
grouped into base 4 digits; thus, the permissible valuesfor the first digit are 1, 2,
and 3, dl of which take two bits to represent. However, note that the digit 14 has
aleading 0 (14 = 01). This increases the number of allowable mantissas from
eight to twelve. Thus, the first bit of the mantissa in this representation is not
redundant, as it was for the previous system. The Ar for this system varies by a
factor of four for subsequent exponent values. Note that the A~ for V; =0 isthe

Chop.2: Information Representation

Table 24. 6-Bit Normdized Hoating Point System, Base 2.

=2 r.=2,m=4,e=2

Ve - 00 o1 10 11

2" o 1 2 4 8

Vy base2 Vu Vi x 2%

1 0 o o T + 1 2 4
oo by [2 4
1 0 1 0 1 3 1+ 24 s
N
1 1 0 (] 3 2 14 6
N B 22 3 6)
1 1 1 0 1 1 12 3+ 7
I U 5 SR T P S

Smallest fraction = 0.1000,

o=

Largest fraction = 0.1111,

sz

Smallest number = 0.1000, x 2°

[

Largest number = 0.1111, x 2°

I
-~
o=

Number of fractions=1x2x2x2=8

Number of values=8 x 4 =32

Adapted from David J. Cooke, The Structure d Computers and Compu-
tations, Tables 3.2and 3.3 (1978), p. 203.

same in both systems. Finally, the 64 element capability for a six-bit system is
more closely approached by the 48 values representable in this system than the
previous system. Note that these values range from 1/4 to 60 — a much greater
range than the base 2 system. However, also note that this system does not have
the capability to represent many of the numbers represented in the base 2 system,
such as 1'/s.

These examples (6-bit normalized floating point number systems) underline
the fact that not alt floating point number systems are created equal. One N-bit
floating point representation with its set of values for ry, m, r, € and so on, will
have different characteristics from another N-bit floating point system. The
designer is left with the task of selecting a representation which will fit the
required combination of needs.

The method of storing numbers in a machine underlines the differences and
similarities in computer floating point number systems. The information stored
(or sent, or manipulated, or ..) is the sign, the exponent, and the mantissa. This
information is usually grouped in that way: the sign of the number is the most
significant bit, followed by the exponent, and then the mantissa. This is

Chap. 2: Information Representation 47

Table 25. 6-Bit Normdized Floaing Point System. Base 4.

ry=4, r,=2,m=2, e=2

Ve | 000 013 10, 11,
2% 5 | 1 4 e 64 43

V, based Vi Vi x 2% v, xhVE

1 0 N 1 4 16
1 1 3 < 13 5 20
1 2 1 2 14 6 24
1 3 € =12 7 28
2 0 T + 2 8 32
2 1 2 2 2t 9 36
2 2 2 2 2L 10 40
2 3 o i 22 11 4
3 0 3 2 3 12 48
3 1 2 2 3 13 5
3 2 1 1 3L 14 56
3 3 L £ 32 15 60

Sméllest fraction = 0.10, =1

Lages fracion=033, =2

16

Smallest number =010, x 4°=$

Largest number =0.33, x 4> = 60
Number of fractions= 3 x 4 =12
Number of values=12x4 =48

Adapted from David J. Cooke, The Structure d Comput-
ers and Computations, Tables3.2 and 3.3(1978). p. 203.

graphically depicted in Figure 2.2. The information that never changes is not
stored. Examples of this nonstored information are the radix of the system and
the radix of the exponent; not so obvious examples of this are the location of the
radix point and the coding method for storing the exponent. All of these are
decided at design time, and remain constant for the life of the data. Another piece
of constant information is the leading *“1" for normalized base 2 mantissas. There
is no reason to store this bit, and so the usual way to store a normalized base 2
mantissa is shown in Figure 2.2. Only the bits that change are stored, so the most
significant bit of the mantissa is said to be "hidden™ behind the exponent. Some
manufacturers refer to this as a**hidden hit" technique. The net result is to double
the number of representable mantissas.

Chap. 2: Information Representation

Storage Location (register or memory)

w

1 301291 28|27126125124]23 22l 2] 20l19|18]17l 16]15I14|13 12J111101918’7 ! (il 51 4 l3 |2 | 1 I0

HSJ Exponent B Mantissa
| T T S S | S Y O N N U T T T e Ny A T Iy |
Sign Bit

)
Exponent Bits' L Hidden Bit (if used) Mantissa Bits
Figure 22 Normalized Floating Point Number Storage.

Some interesting observations can be made by considering the use of the
"hidden bit" technique with the system depicted in Table 2.4. If this technique
were adopted, then the number of lega mantissas would double, as would the
representable values. Thus, al 64 combinations of bits would form correct float-
ing point numbers. Note, however, the following: v),, . remains the same at 172,
and Vy,,, is 31/32. The new representable values avallable by this technique are
between each of the old values; the overall range is increased only from 71/: to
T*s. So athough the number of values has doubled, the range of representable
numbers is basically the same. Finaly, none of the values representable is zero;
the smallest number is 000000, which turns out to be (with the hidden bit coming
into play), 0.1000, x 20 = 172.

This raises the question: how is the number zero represented? We will
examine this more closely in the examples to follow, but the general technique is
to make an assumption concerning the exponent. A common method is to use an
excess 2°~! code for exponent representation. As the binary representations of
this code vary from 2¢ -1 to 1, the exponents vary from 267! =1 to —-2¢~! -1).
If the exponent bits are all zero, then the number is assumed to be zero, regardless
of the values of the bits located in the mantissa field.

Example 2.8: Characteristics of a base 2 FPNS: Determine the characteris-
tics, as defined by the above equations, of the DEC 32-bit normalized float-
ing point number system.

This system has an r, of 2, an r, of 2, m = 24 with hidden bit, p = 24,
e = 8, the exponent is stored in excess 128 code, and the number is stored in
sign-magnitude form (mantissa is considered positive). So, from the above
equations:

VMM]N = 010002 =1/2
Vi =0.1111.., = 0.999999940395 = 1.0 - 27
MAX
VpN,, = 0.1000.., x 27177 =2.9387 x 107

Ve, = 011115 x 2177 = 1.7014 x 10

Chap. 2: information Representation 49

NLMgpy = 2% = 8,388,608
NRVppy = 22 x (2 - 1) = 2.139 x 10°

Discussion: This system uses 99.6% of the available bit patternsfor lega
normalized floating point values. However, if the computations are very
small or very large, then the system will not be able to provide the dynamic
range needed for the calculations. One of the questions sometimes asked
about a floating point system is how many significant digits are available.
This is a subjective measure, since the amount of precision availableis a
function of the number onl}y, not of the process producing the number. That
is, for any v there are 223 = 84 x 10P different values. A number in this
system represented in base 10 scientific notation would require six digits;
we say that there are six significant figures. even though a measurement
represented by those figures may only be accurate to three places. DEC also
provides a double precision format to increase the amount of precision with
which calculations can be made. The double precision system is identical
(ry =r, =2, e =38, exponentin excess 128 format, sign-magnituderepresen-
tation for the number) except that the number of bits in the mantissa is
extended from 24 to 56. Thus, the values cover the same sections of the
real number ling, but there are 232 more valuesto represent the information
to a greater precison. Thus for a given Vi there are 3.6 x 10" values, or
about 16 digitsof significance.

The DEC format is prevalent smply because of the large number of DEC
machines in use today. However, there are other systems available in both 32-
and 64-bit formats. Another prevalent system is the IBM floating point system,
which isanalyzedin the next example.

Example 2.9: Characteristicsdf a base 16 FPNS: Determinethe characteris-

tics of the IBM 32-hit normalized floating point number system.

This system hasan ry, of 16, an r, of 2, m = 6 hexadecimal digits, p =

6, e=7, the exponent is stored in excess 64 code, number is stored in sign-

magnitude form (mantissais considered positive).

VMmN = 0-10000016 = 1/16
Vu,,, = O.-FFFFFF)g = 0.999999940395 = 1.0 — 16
Vepn,,,, = 0.100000;5 X 167 =8.636 x 1078
Veen,,,, = O.FFFFFF g x 16' =17.237 x 107
NLMgpy = 15 x 16° = 15,728,640
NRVppy = 15 x 16° x (27 - 1) = 1.9975 x 10°
This system has a far greater range than the DEC system, but actualy has
7% fewer representable values. Neverthelessin certain applications, this is

a reasonable system, and is chosen by some system designers. The | BM
system has a double precision format which, like the DEC format, does not

Chap. 2 Information Representation

x 10738

1.2 —
1.1
1.0 —
098 —
08 —
0.7
06 —
0.5 —
04 —

]

0.3
02 —
0.1

|

Flgatirn o
ng% inearly

extend the range of the system, but includes 168 more values in the same
basic area of the real number line.

One of the disappointing features of a normalized floating point system is
that there is a large discontinuity when the values of the numbers approach zero.
This is depicted graphicaly in Figure 2.3, which shows the smallest representable
values of the DEC floating point system. The problem is, with the stipulation that
the first digit to the right of the radix point be nonzero, the first representable
value away from zero is disproportionately large. This is one of the problems
addressed by the IEEE floating point system, which is the object of the next exam-

ple.

Example 2.10: Characteristics & |IEEE FPNS: Determine the characteristics,
as defined by the above equations, of the IEEE 32-bit and 64-bit normalized
floating point number systems.

First, the 32-bit system: This system has an ry, of 2, an r, of 2, m =
24 with hidden bit, but here p = 23; e = 8, the exponent is stored in excess
127 code, and the number is stored in sign-magnitude form (mantissa is
considered positive). The effect of p being 23 while m is 24 is that rather
than range from 1/2 to aimost 1, as in the DEC system, these mantissas
range from 1 to almost 2. Another difference is that the exponent v, = 255
is special. That is, when the exponent is 255, special values are possible,
such as infinity. So, the system has the following characteristics for normal-
ized numbers:

Ar=7.0x

Ar = 35 x 10746
between values

Smallest
Representable

alue =
'EgaEpoim 2.938 x 10°39
ch

/ « A =2.938 x 1039 between zero and smallest representable value

"
Zero | «— Vg = -127—— I «—— Vg = -126 ——>

Figure 23 Vauesaf the DEC Normdized Hoating Point System Near Zero.

Chap. 2: Information Representation 51

Vi, = 1.000..., = 1
Vit = 11115 = 199999988 = 2.0 — 2723
Vepnyg = 10009 x 271 = 1.1755 x 107
VEpRy o = 111100 X 29 3.4028 x 10%
NLMgpy = 22 = 8,388,608
NRVpy =22 x (28 - 2) =2.131 x 10°

Discussion: Natice that the largest representable number in this system is
twice as large as the Vgpy,,, OF the DEC system. The reason for this is that
the Vi, of both systemsis the same (127), but the V), , of the IEEE sys-
tem is - 2 while the vy, of the DEC systemis-1. At the other end of the
normalized numbers, the smallest value (Veen,,,,) representableby the IEEE
system is four times as large as the Vpy, of the DEC system. One of the
reasons the system is organized the way it is concerns the representation of
zero, ad the use of unnormalized numbers. The previous representations
assumed that the number was zero if the exponent bits were al zero. The
| EEE floating point system has a provision that lets the number become
unnormalized as it approacheszero. That is, when the exponent bits are all
zero, then the bits in the mantissa field continue to be significant, and the
exponent remains at a —126. This alows the number to approach zero in a
linear fashion, as opposed to the discontinuity depicted in Figure 2.3. There
are two representationsfor zero: when dl bits (excluding sign bit) are zero,
the value of the number is zero. The use of unnormalized representations
extends the range of the system down to 103, The number of significant
digits here is basically the same as the systems aready discussed.

When Vg is 255, the system allows for representation of some specific
information:

Ve l Sign , Meaning of Representation

#0 1,0 | Not a number (NaN)
0 0| 4
0 1| ~eo

The formal number system specification should be consulted for a complete
explanation of the definition and use of the system. As shown above, the
single precision system is very similar in many respects with the DEC sys-
tem. However, the IEEE system changes the number of bits in the exponent
for the double precision representation.

For the 64-bit representation,r, =r, =2 as before, but m =53, p =
52, e = 11, and the exponent is stored in excess 1,023 format. With these
modifications, the characteristics of the number system change somewhat.
Thevy,,, isstill 1.0, and the vy,,,, getscloser to two (2 - 2753, But:

Vepnyy = 1.000..5 x 27192 = 2.225 x 107

Vipny,, = 11113 x 27120 = 1.798 x 10°®

Chop. 2 information Representation

NLMgpy = 2°2 =4.5x 10"
NRVppy =22 x (2'' =2) =9214x 10"

The double precision system provides 15 significant digits, and has a range
much larger than either the DEC or IBM double precision formats.

The floating point number systems already mentioned are the ones that are
most accessiblefor the majority of computer users. Thisis especially true in that
the newer machines are utilizing chip sets that conform to the IEEE standard. This
istrueof the:

e 68020, which is the processor in many of the Sun computers.

e 80386, which is in the Sequent systems and many other computer systems.
e 32332, which is in the Encore systems and other computers.

e MIPS R2000, which is used in many engineering workstations.

In addition, many chip sets (see the AMD29C327, the ADP2100, etc.) are available
for users to implement machines of their own design, utilizing the | BEEE floating
point format. And the DLC and IBM machines continue to be extremely prevalent
throughout the computing community.

We will mention one more floating point system, that utilized by the Cray
machines. This 64-bit format is utilized a great deal for scientific computing.

Example 2.11: Cray FPNS: Consider the Cray 64-bit floating point format.
This system hasan r, of 2, anr, of 2, m = 48, p = 48, e = 15, number is
gored in sign-magnitude form (mantissa is considered positive). The
exponent is stored in excess 16,384 format. With an exponent so large,
Cray does not use the full range, but rather uses the uppermost (and aso,
the most negative) portions to identify underflow and overflow. This infor-
mation is then stored in the number itself. The effect is to have a maximum
positive exponent of 8,191, and a maximum negative exponent of -8,192.
This gives rise to the following set of numbers:

Vipn,,, = 0.1000...2 X 278192 = 4,584 x 107247
Vepn,, = 011115 x 28191 = 5.4537 % 10746
NLMpy = 24 =2815x 10"
NRVEpn =28¥ x 2¥ - 1) =4.6114x 10"
This system has an extremely large range, and carries about 14 significant
figures. The effect is to have a number system capable of extremely large
and extremely small numbers, and sufficient significance for amost all
necessary computations. Compare this system, for example, with the 64-bit
| EEE format, which does not have the extreme range, but does carry over 15
digitsof significance.
The information in this section points out the fact that not all floating point
number systems are created equal. Each of the designersof the various systems

Chap. 2: Information Representation 53

23.

has been influenced by a different set of rea or perceived requirements in the
choices made. Table 2.6 identifies a number of machines and the floating point
choices made for them. We should add here that many manufacturers support
floating point formats (as a specia option) which go beyond those we have
identified here. Some 128-bit and 256-bit formats alow calculations with
extremely large and smal numbers. However, the principlesof data representa-
tion are the same, and an understanding of the principlesdiscussed here will apply
to the larger numbers.

As we have seen, a variety of floating point formats have been utilized in
the design of different computer systems. One of the problems that arises is the
exchange of data from one system to another: the bit patterns cannot be directly
exchanged, even if the number of bits used in the representationsis identical.
However, if one is aware of the differences in the number systems, one can take
the necessary steps to make sure that the numberson one machine are correct on
another. In any event, this should serve as a reminder that with N bits on a com-
puter, 2 different bit patterns are available. Floating point number systemsallow
the expression of large and small quantities, but do not expand the number of
allowable representations.

Coding for Nonnumeric Information

The information utilized by computers in various tasks is not limited to numbers.
Thus far, we have examined utilizing bit patternsto represent integer and floating
point information. Other information must also be stored within the machine, or
on electronic media such as tape or disks. This information may be instructions,
text, addresses, status information, or other information needed by the machine.
This inforrnation will be represented by bit patterns, just as the numbers were
represented by bit patterns. And in @ manner similar to the numeric data, the
assumptionsabout the format of the informationis made at design time. We will
briefly examine severa typesof nonnumeric informationin this section, including
text, boolean, graphicssymbols, and addresses.

Textua information has become one of the most often utilized forms of
inforrnation for both storage and manipulation. This seems counterintuitive, since
computers have historically been used to *compute,” that is, doing calculationsfor
a variety of gpplications. However, when one considers the fact that programsare
input in text form, that compilers operate on strings of characters, and that
answers are generally provided via some type of textual information, then the
amount of character information begins to be appreciated. A more recent utiliza-
tion for computersisin the office, where reports, | etters, contracts, and other types
of printed information are generated. In short, many applications must store,
manipulate, and transfer textua information. How can this be accomplished?

One question in this regard is, what is the set of elements to be represented?
Those interested in mathematical information would immediately respond with the
characters needed to represent data: the digits (0-9), decimal point, plus, minus,
and space. This gives a minima character set with only 14 elements. However,
there are severe limitations to the understandability of the results: no labels, no
carriage returns or line feeds, and s0 on. So, at least add the aphabet (A-2),
punctuation, and formatting characters (comma, tab, carriage return, line feed,
form feed, parenthesis). This gets the number of elements up to 46. We know
that, in order to represent 46 different elements, we will need at least

Chap. 2: Information Representation

Table 26. Floating Point Information Systems.

Word

Size Exponent Mantissa
System (# Bits) rp # Bits Code # Bits Repre. Code
Burroughs 48 8 7 SM 39 Int SM
B6700/7700
D 60 2 11 B 1024 48 It 1sC
7600
DEC — single 32 2 8 Ex 128 24 Fra sm
DEC—double 64 2 8 Ex 128 56 Fra sm
Honeywell 48 2o0r10 7 Ex64 40 (base2) Fra
8200 20 (base 10) Fra sM
IBM — single 32 16 7 E &4 24 Fra sm
I1BM —double 64 16 7 E &4 56 Fra SM
|IEEE — single 32 2 8 B 127 24 Fra sm
| EEE — double 64 2 i1 1023 53 Fra sm
Cray &4 2 15 K 16334 48 Fra SM

Int = Integer representation
M = Sign/magnitude
Fra= Fractiond

1's C = Ones complement

Ex = Excesscode

[1og, 46 1= 6 bits. With 6 hits we would be able to represent 26 = 64 different
bit patterns, or 64 different elements in the set. So we can represent most of the
information that we need with 6-bit characters; however, note that this set is not
large enough to include both upper- and lowercase letters. Character sets that are
to represent both upper- and lowercase letters, control characters, punctuation
marks, and other special characters must have at least 7 bits. The hit patterns can
then be mapped to the characters or control information to be represented.

One of the early types of devices utilized to communicate with computers
was the card reader. This mechanical marvel utilized a coding scheme to
represent its various information. The information represented in the earliest
machines included only uppercase letters, nnmbers, and specia characters. To
represent this information a code was developed for use with the card reader
which was capable of this reduced set of characters. This 6-bit code, called the
BCD code, should not be confused with the 4-bit representation mentioned earlier

Chap.2: Information Representation 55

in this chapter used to represent the digits 0-9. Later, the 6-bit BCD code was
extended to include the lowercase characters and additiona information needed in
computer communications. This code (given in Appendix A) is known as
EBCDIC: Extended Binary Coded Decima Interchange Code. It was used in the
IBM 3601370 and other IBM equipment, but is not in general use in computers.
However, this information can be useful if one needs to decode data generated by
an EBCDIC machine. An examination of the code revealsthat not all of the 28 =
256 representationsare used. However, al 8 of the bits are required to specify
the various characters and control codes. It is aso interesting to note that arith-
metic using these codes may not always give the desired result. That is, if arou-
tine were written to write out al of the standard letters (A-Z) in the aphabet,
then one way to approach it would be to place the codefor ™" Ain a register, and
increment it to get the code for “B”, and so on. However, note the discontinuity
a "I'": the code for the letter “J” is not the next in numeric sequence from "'1."
Thisillustratesone of the reasonsthat the code was not widely received.

Another code, which has received amost universal acceptance for the
representation of textuad information, is the ASCII code: American Standard Code
for Information Interchange (also in Appendix A). In contrast to the EBCDIC for-
mat, the ASCII code is a 7-bit representation, which limits it to 128 different
values. The difficulty mentioned in connection with the EBCDIC format does not
apply to the ASCII code: incrementing the representation of a letter gives the suc-
cessive letter, except for “Z.” This code is used in most terminals, printers, and
other devices that ded with character information.

The norma method for handling this information is to place the bit pattern
in an 8-bit field called a byte. The EBCDIC format would utilizeall of the bitsin
a byte, while the ASCII code would "'waste™ one of the bits. These bytesform 8-
bit values, which are treated in exactly the same fashion as numbers. Thus, the
hardware elements that operate on integers will aso operate on characters. This
allows one set of charactersto be compared to a similar set of information, to be
searched for specific patterns, or to be operated on by programs seeking statistical
information. A spelling check program, for example, would identify a group of
letters as a word, then compare that word against words that it knows are spelled
correctly. If the program is unable to recognize the word, or construct it from a
known word according to a set of rules, then the word is labeled as incorrect. and
the operator is informed of thisinfraction. In all of these operations, the computer
is operating on the bit patterns representing the characters, and the meaning of
those characters becomes significant only to the humansat theend of the process.

The difficulty of expanding the set of representable elements can be over-
come in a variety of ways. One obvious way would be to include the eighth bit
of the ASCII code, doubling the available representations. Another method is
exemplified by the character codes used in some 60-bit machines. Some
machines have been built with 60-bit word lengths, a compromise between the
needed accuracy and the expensive memory available at design time. It is not
possible to equally divide the 60-bit word into either 7- or 8-bit quantities. So the
system designersimplemented a 6-bit system, which limited the number of avail-
ablecharactersto 64. This system works well as long as the information output is
in the specified characters, which consist of the numbers, the uppercase letters,
common punctuation, and special characters. To represent the lowercase charac-
ters, a two-character sequenceis used. The first character is an "escape’ charac-
ter, which informs the system that the desired character wes not in the standard
set, but rather in an dternateset. And the pattern identifying that character in the

Chap. 2 Information Representation

aternateset isfound in the next 6-bit field. The effect of this method of informa
tion representation is to use 6 hits to represent some characters (preferably the
most often used), and 12 hits to represent other characters. This method works
well for data that is basically numbers and uppercase characters. But for text.
such as correspondenceor reports, this method is cumbersome and wasteful of
bits.

The same type of arrangements can be utilized to enhance the number of
representable elements for "'standard" character sets. For example, nonstandard
characters, such as Greek characters or special purpose characters (#, =, £, X, ...
can be represented in this fashion. These characters becomeeven more important
as graphics-orienteddevices become more prevalent.

Regardlessof the coding scheme chosen, the computer deals with characters
in the same fashion as it does with other data; the arithmetic is performed in the
same way, and conditions are tested in much the same fashion. The result of a
test is an example of another type of information: boolean. In general, the term
""boolean” refers to information that can assume one of two possible values. For
status information, this seems intuitively obvious: is the result of the arithmetic
operation positive or negative? |s there an gverflow or not? This type of infor-
mation requires only a single hit to represent. In fact, a status register in a
machineis nothing more than a collection of this type of single bits. Depending
on the instruction set of the machine, these bits may or may not be individualy
setable/clearable/testable. We will examine this issue more closely when we dis-
cuss ingtruction sets.

Many languagesalso alow this type of variable to be declared. In general.
the language will utilize an entire word to represent this information, which
wastes a lot of bits. The smallest unit that could represent this under language
control would be the smallest addressable unit of the computer. In most comput-
ers, the smallest addressable unit is the byte, but some large, mathematical type
machines have a smallest addressable unit of a word (32 or 64 bits). In any case,
compilerscan be called upon to generate sequences of instructions that will allow
storing of boolean information in individua bits of a word. This is a tradeoff
between the use of time and the use of memory. Assigning a boolean variable to
the smallest addressable unit of the machine will be faster than the alternative,
which is to have boolean information limited to.individua bits within a word.
However, this method uses more memory. The alternative, using individua hits
for storage of boolean information, requires a smaller amount of storage for the
boolean information, but also requires more instructionsto interact with this infor-
mation.

In general, information is stored in locations within the memory of the
machine, and those locations are identified by addresses. The addresses, which
themselvesform information that can be manipulated and utilized as needed, are
simply numbers that can be considered integers. The number of bits in the
address determines the number of uniquely identifiable items: N bits specifies one
of 2V unique items. The addressis utilized by the machine to "'point"* to an item;
hence, the use of the address in this manner gives rise to the term “pointer.”
Pointers are very useful to create within a machine an instantiation of an abstrac-
tion, such asa tree structure or queue.

Bit patterns, then. can be used to represent different types of information:
numbers (integer, floating point, fixed point. ...), characters, symbols, addresses,
and so on. The meaning atached to the bit pattern is a function of when it is
used and whereit isfound.

Chap. 2: Information Representation 57

2.4.

Coding for Erors = Detection and Correction

Information can be represented in a variety of ways, and in the previous sections
we examined some of the different coding techniques. We know that with N bits
we can represent 2N different values, or addresses, or instructions, or To
represent anything else requires more bits, and the number of additional bits
needed is determined by the amount of information to be supplied. If we add one
more bit to an N-bit representation, then the number of representable elements
doubles, from 2V to 2V*1. Sp how are these additional elements identified and
treated? That is, what rules exist to effectively utilize the additional information
present? Let us examinerules (codes) for adding sufficient information to detect
the presence of errors. And then we will examine some rules (codes) for adding
enough information not only to detect that an error occurred, but also to correct
that error.

Perhaps the simplest method of adding error detection to data is to include a
parity bit. Here, the N bits of information is augmented by an additiona hit,
which doubles the representable patterns. However, this additional bit is so con-
structed that haf of these patterns will not be legal representetions. Hence, it is
possible to detect the presence of a single bit that is incorrect. The fault can be a
"stuck-at"* fault, in which the incorrect bit is “stuck” at that incorrect value, or it
can be transitory in nature. In either case, if only one bit is incorrect, the manner
of constructing the correct code words enables us to detect that an error has
occurred. The construction rule is to choose the value for the additional bit so
that the number of "one™ bitsis odd (or even). Figure 2.4 gives a circuit that will
creatc the proper signa for 8 bits. This circuit is available in integrated circuit
form as a'280. Note that the expansion of the exclusve-OR tree by one bit would
enable checking the parity across 9 bits, to identify if it is odd (or even). (The
'280 is an exclusive-OR treefor nine hits.)

This type of error detection is useful wherever errors have a reasonable pro-
bability of occurrence. In general they are used in seria transmissions(terminal
lines, etc.), in parallel data transmission systems (buses), or in memory systems.
However, some conditions will invalidate the effectivenessof the use of a parity
check. That is, if the assumptionsof the fault model are exceeded or not applica-
ble, then the effectivenessof the method is moot. For example, in one of the
errors observed in bus systems the data is read (incorrectly) as al zero's. This
would be a valid even parity condition, and so a system built to check for even
parity would not detectthe presence of an error. Likewise, for a 16-bit bus with

DATA {7)-H
DATA (6)-H

DATA (5)-H
DATA (4)-H

RN ODD-P-H
DATA (3)-H /
DATA (2)-H

DATA (1)-H
DATA (0)-H

Figure 24. Gengrdtion o Parity Bits.

Chap. 2: Information Represantetion

EXTERNAL DATA BUS

-

a7

(I - - 3

K

A

!

[1

L 3§

n
n

an additional bit for parity, the total number of linesis 17. And the similar error
of reading dl the lines as one's would be correct for a system using odd parity.
One method suggested for this situation is to use two parity bits for the 16-bit
bus, one for each byte. The parity sense of haf of the bus would be set to odd,
the other haf to even. Then if al zero's were read, haf of the bus would com-
plain. And if the condition of al one's were read, then the other haf of the bus
would complain. Ineither case, the fact that an error had occurred would be
correctly identified, even though the assumptions of the fault model had been
violated.

Example 2.12: Parity defectionand generation: Construct a circuit provid-
ing a bidirectional data path that is 8 bits of data plus parity. That is, one
side of the path is a byte-wide source/destination of information, and the
other sideis a tri-state data bus that includesa parity bit.

The solution of this problem is to expand the circuit given in Figure
24 to include the generate/decode capability. An example of such a circuit
isgiven in Figure 25. This figure shows that the data path is trested in the
same way that a data path might be if no parity capability were required: the
data is fed through a bidirectiona tri-state transceiver ('245). So the only
bit that needsto be dealt with is the parity bit (PARITY-H). When the direc-
tion line (IN-H) identifies incoming data, the parity line is enabled into the
parity circuit to check consistency. If the parity sense is incorrect, then the
error line (ERROR-L) is asserted. When the direction line identifies that this
module provides information to the bus, then the outgoing parity generator
isenabled, and the parity line is driven in the same way (by different physi-
cal circuits) that the bus lines are driven. Figure 25 shows the parity cir-
cuits as being separate, but they need not be, and clevernessin the design
will match system requirements with an appropriate circuit. Some
integrated circuits will do this function, such as the '286, a symbol of which
is shown in Figure 2.6.

If we want be able to identify the location of an error, then more informa-

tion must be added to the system than can be added by asingle bit. A sufficiently

| m=| N} | | N} O]~

INTERNAL DATA BUS

i
7
['8
5 86
3 88 Y &
IN-H
J ~ 0 ‘
2 86
1 86 4
0 '8) ERROR-L
4 PARLTY-H A
‘M N-H 08 4 p
ODD-H - ! yl PARITY-H
~| A
1) — Wi

Figure25. ByteWide Data Path with Bidirectiond Paity Bit.

Chap. 2: Information Representation 59

INPUT R OUTPUT
BASED ON
DIRECTION LINE

INPUTS
6 PARITY
ERROR["
It I \
ERROR INDICATION
[F XMIT HIGH AND
DIRECT ION LINE PARITY ERROR ON

INPUT LINES

Figure 26. Functional Diagram for *286 Parity Checker/Generator.

large number of bits must be added to the data to not only identify the fact that
one of the bitsis in error, but also identify the faulty bit. Again, the fault model
can be astuck-at or a transent fault. But, for our discussion, we are limiting the
errors to a single fault within the word. One class of codes that allows this type
of information to be encoded into the extra bits is the set of Hamming codes.
Many methods can be usad to construct a code of thistype. We will examineone
method, but, once the principles are understood, the exact implementation and
design choices can be driven by whatever constraintsare imposed by the system.
That is. the code could be chosen so that a minimal number of gates are required
to identify errors, or the code could be chosen in an attempt to optimally position
the 2V valid code wordsin the total of 2¥*? choi ces, where p code bits are added
to ~ data bits.

First, let us describe one method for construction of a code to identify the
location of an error. To illustrate this method, we will utilize a system with 4
data bitsand 3 code bits, or 7 bitsin all. We will arrange these bits as shown in
Figure 2.7, with the data bits labeled D3, D5, D}, and Dy, and the code bits labeled
Gy, Cy, and C; Note that the code bits physicaly eccupy the positions
corresponding to their binary weight. Thus, C, is in the 2° = 1 position; C, isin
the 2 = 2 position; and C, isin the 2% = 4 position. The remaining positionsare
occupied by the 4 data bits. Also shown in the figureis the fact that the code bits
are constructed in such a way that parity is preserved across a subset of the bits of

Code Bits

Data Bits T IL]] I

7 6 5 4 3 2 1 Column Number
D3 D, D, C; D, C; Cp

Parity Group for C

Parity Group for G, I]] I

Parity Group for C

Figure 27. Construction of a Hamming Code for 7 Bits.

Chap. 2: Information Representation

Data bits
Parity bits

the entire word. The subsets are so constructed that when a single bit is in error,
a unique pattern is identified by the code bits. Note that there is a single code bit
in each subset; let the subset associated with code hit C, be called set k. In this
example, subset k contains al of the bits that have the 2% pit set in the bi nary
representation of bit position. The following table describes the situation for this
system:

Bit Bit
Set Positions Names
0 1,357 Gy DDy, Ds
1 2,367 C,D,D;,D;
2 4,56,7 C,D,D;D;

Since three code bits are associated with this method, there. must be three parity
circuitsto generate the three parity bits when the word is written — and three par-
ity circuitsto check the parity when the word is read. The ordering of these bits
is such that they form a 3-bit word (set 2, set 1, set 0), which will identify a
column. In Figure 2.8, the number 0101 is used as an example. The bits are
placed in their proper position in the word, the code bits are generated assuming
odd parity sense, and the result is presented as 0100110. If there are no errors,
the output of the parity checkersfor the subsets would be 000, which identifiesa
nonexistent bit positionin our system. If the pattern 0100010 is detected, then the
parity checks of the subsets identifies some errors. Set 2 is correct, set 1 is

6 5 4 3 2 1 Column number

i 0 o0 1 1 O Coned representaﬁon
2 ' f /‘ IA for data - €131

1 0o 0 © 1 0 Odum3|5|nerror
2 paity is OK (0)
1pa|ty Isin error 21;
0 | Is in error
an 1 Identifies column 3

§$

Ish 1
iy ROKE
|t}/ is

BB

2

1

0 in error (1)

an |dentifies column 5
aht 1 isin emor

SRER

2 paity isOK (0}

1 Bgrlty isin eror (1)

0 parity IS OK (0)

Pattern 010 identfies column 2
Perity bit 1 isin eror

SELE

Figure28 Hamming Code Examplesfor Daa = 0101.

Chap. 2: information Representation é1

CODED DATA

—

62

%7

incorrect. and set 0 is incorrect, which results in an error syndrome of 011, This
identifiesthe fact that the bit in position 3 is incorrect, and to make the word
correct all that needs to happen is to invert the bit in position 3, p,, Figure 2.9
indicates how some parity checkers, a decoder, and some exclusive-OR gates
could be connected to perform this function.

The method described above was constructed to have the property previ-
oudy mentioned: any single etrror will produce a unique bit pattern at the output
of the parity check stages. Also, the placement of the code bits was done in such
a fashion that decoding the location of the error from the pattern which the error
created could be accomplished with a standard decoder IC. Other coding schemes
are possible, as long as each single error causes a unique response, and a decoder
system can be constructed to identify the location of the error from that response.

This method can effectively utilize 2NV _ 1 bits, N hits to create the data
dependent code, and up to 2¥ _ | = N bitsfor data. For small N, 2V -1 - N data
bits is also small; thus. for a small number of data bits the overhead is large.
However, as the number of data bits becomeslarger. then the overhead is reduced.
For example, a system with 64 data bits would require 7 code bits, or about a
10% overhead. One of the problemsincurred in using an error correctingcodein
a memory system is the fact that many machinesare byte addressable. That is,
even though the system memory may be organized in 32- or 64-bit elements for
the error correction capability, the system must be able to modify only part of the
data bits in a 32- or 64-bit word. This requires a read/modify/write capability, so
that the other parts of the data word remain correct, and the code bits are

AT DATA(Z)-H

)

rd

5

7

\lj > DATA(2)-H

>
w

\)j > DATA(1)-H

DATA(O)-H

[FT (T (11T

1 HI

1 PARITY W

, CHECKER &% —— T—ﬂ "
(]

1 -]

"

T = DECODER

1 PARITY ¢ n

| CHECKER &= ’ "
L]

1]

1

| PARITY

; CHECKER @ ——

H

Figure 29. Correction Circuit for 7-Bit Hamming Code System..

Chap. 2: Information Representation

25.

appropriately set. In any case, this type of code will properly provide capability
for single error correction (SEC).

This method is not sufficient to also provide double error detection (DED).
Notice that, if two errors were to occur in the example just given, then an
incorrect bit position would be identified, and the results would be wrong. Dou-
ble error detection can be added to this method by including a single parity bit
across the entire word, data bits and code bits alike. This bit would be created
after the code bits hed already been identified. So, the decoding system needs to
take into account parity errors detected by the code bits. €3, €. Cp and
occurrencesof parity errors detected by the double error bit. Theseare then han-
dled in the following fashion:

Parity Condition
DoubleBit Code Bits Comment

Correct Correct No error detected; normd condition.
Incorrect Incorrect Single eror; location d error identified

by binary weighting d code bits.
Incorrect Correct Single bit error; double bit isincorrect.
Correct Incorrect Double hit error; two bitsin error — nat correctable.

Example 2.13: Hamming Codefor 8 hits. Consider a code for 8 data bits
constructed after the pattern described above. In this code. what is the
correct representationfor 010111007 Also, describe the infomiation avail-
ablein the patterns.

This code will require 8 data bits (D; = Dy), 4 code bits (C; — Cyp),
and a double error bit (DEB). Following the pattern above, these will be
arranged as follows:

(DEB —Double Error Bit; BV — Binay Weight)

131211109 &8 76 5 4 3 2 1 Columnnumber

DEB D, Dy Dy D, C; D; D; D, C, Dy C, C, Contentof hit postion
I 111 1000 0 0 0 0 BWd Cdumn Nurbe;8hit
I 00 0011 | 10 0 0 BVofColumn Numbe; 4-bit
01 1001 1 00| 0 BV of Column Number; 2-bit
0101 01 010 1 0 1 BWofColumn Number, 1-bit

From the above information. set 3 consistsof Cy, Dy, Ds, Dg, and D3. Set 2
consistsof C,, Dy, Dy, Dy, and D3. Set 1 consistsof Cy, Dy, Dy, D3, Ds, and
Dg. Set 0 consists of Cg, Do, D}, D3, Dy, and Dg. With this information, the
desired pattern can be created:

0101 110 O Placement d data bits
1010111101000 Codehitsadded to wod

Information Representation — AMatter of Bits
We have discussed a number of different methods of representing information. A

collectiondf bits will be interpreted by the computer in any of a number of ways.
depending on the instruction being executed, the number systems adopted by the

Chap. 2. Informatlon Representation 63

designers, and the coding schemesemployed. It is not sufficient to know the pat-
tern of ones and zeroes;, we must know the rules concerning the interpretation of
those bits. The rules for interpretation of the informationare establishedat design
time, and will be effective throughout the life of the system. These rules will
enable the following pattern to be correctly interpreted:

0100111001 1100100000000000000000

If thisis a DECfloating point number, it has the value of 2.537 x 108, If thisisa
| BEE floating point number, it has the value of 1.015 x 10°. Ifitisan integer, it
has the value 2.106 x 10'%, If this is a 68000 instruction, the computer should
respond by performing a stop if the system is in the supervisor state; otherwise it
will trap. If it isto be part of an ASCII character string, then it will provide the
characters ""Nr <nul> <nul>”. In any case, the spectrum of possibilitiesof infor-
mation content is limited in quantity, since’ bits allows only for 2V representable
values. However, the interpretation of those values is influenced by the cir-
cumstance in which the value is found. The system designers make the choices
that will alow representation of the information in a sensible and coherent
fashion.

Information representation requires that both the supplier and the user of the
patterns agree on the significance of the arrangements of digits (bits). The current
technology represents information within a computing system in the form of bits,
and those bits can be organized in many ways. However, the use of standard
representations promotes systematic interpretation of the information. As we have
seen,

e With N bits for the representation of information. 2V different things can be
represented.

e The coding of the N bits in an integer form allows representation of 2V numeri-
cal values, all separated from their neighbors by one (Ar = 1).

¢ Integer representations can assume different coding schemes, such as ones com-
plenient, twos complement, excess codes, and the like, each of which has its
own unique set of characteristics. The coding scheme for a number is a choice
made at the definition/design Stage of a computer system, and the choice is
made in such a way that the system will behave in a predictable and appropri-
ate fashion.

e Most computer systems use two's complement representations for integer
values.

e Coding of information in a floating point format alows the range of the
representable numbers to increase dramaticaly. This allows computer users to
remove themsalvesfrom the scaling aspects of the data manipulation.

e The magnitude of the representable vaues in a floating point number system
changes with each exponent. And the distance between representable vaues
(Ar) doubles each time the exponent increasesin vaue by one.

Not al floating point number systems are created equal. They have different
capabilities for storing information and different ranges, which effect their
applicability for user problems. The choice of the radix, the placement of the
radix point, and the coding schemes all influence the values that can be
represented by the system.

Chap. 2: Information Representation

e Bit patterns can be used to represent other types of information besides
numbers. Characters, instructions, addresses, and status information are just a
few o the kindsof information aso represented as a collection of hits.

e By creating rules concerning the lega pattemns of bits, sufficient information
can be included in a pattern of bits to identify the fact that an error occurred,
and find the location of the error. This reduces the totd number of correct
values represented by a number of bits, but can be very useful in identifying
problemsin data transfers.

2.6. Problems

2.1 If the technology were availablefor a wire or *'hit" to represent three values
rather than two, what would the result be? That is, consider a system with n
tertiary bits, as opposed to n binary bits. Each"bit" in this system would be
capable of representing the vaues 0, 1, or 2. How many different values
could be represented with 8 tertiary bits? 16 tertiary bits? 32 tertiary bits?
What is the general formulafor the total number of values available in the
tertiary system?

2.2 Examples were given in the chapter to demonstrate the mechanism involved

in adding one's complement arithmetic, i.e., the end-around carry. Prove
that the end-around carry worksand is needed.

2.3 What does the bit pattern 10010101 represent in the following systems:
unsigned binary, 8-bit two's complement,, 8-bit one's complement, 8-bit
BCD (2 digits), two 4-bit excess 3 coded base 10 digits.

24 Represent +95 and —95 as 8-bit one's complement and 8-bit two's comple-
ment numbers.

25 Express the following base 10 numbers in a 4-bit-per-digit excess 3 code:
45932 and 51373. Add the numbers together. Express the result in the
same code.

2.5 Considiy a 12 bit irteger number sysfem which is an exe se 1023 systom.
What is the smallest representablevalue? The largest representable vaue!
Whét is the representation of zero?

27 Consder a 12-bit fixed point two's complement number system with p=7.
What is the smallest representable (positive) value? What is the largest
representable value? What is the most negative vaue? What is Ar for this
system?

2.8 Consider an 8-hit fixed point two's complement number system. Give the
equation for the value of a number. Multiply two such equationstogether to
give the result of a multiplication. Give an agorithm for sdlecting the
proper 8 bitsfrom all of the bits available after a multiplication.

29 A base 10, 5-digit, sign-magnitudesystem has a vaue of p equal to 3. What
is the largest representable number? What is the smallest representable
(positive) number? What is the most negative representable number? What
is4r for this system?

2.10 Consider a 16-hit floating point number stored in the following format:
s eeeeeffffffffff

Chap. 2 Information Representation 65

211

212

213

214

The "'s" represents the sign of the number. The "eeeee” is the exponent.
stored in excess 12. The "fff...” is the 'mantissa, which is a base 2 fraction,
stored with the hidden bit technique. Give the characteristics(Vepn,,,,» EIC.)
of this number system. What is Ar for this system when the value of the
exponent is zero?

A floating point number system has the basic format given in 2.10, but the
mantissa is a base 4 fraction, so that the hidden bit technique is not viable.
Give the characteristicsfor this system. What is Ar for this system when the
vaue of the exponent is zero?

Consider a floating point number system with the following characteristics:
normalized, radix of the system is 4, radix of the exponentis 2, 12 bitstotal,
with 4 bits in the exponent (e = 4), exponent stored in excess 8 format, 8
bitsin the mantissa ¢m = 4, since base 4 number), mantissa stored in frac-
tional form.

a. What is the smallest representable nonzero value?

. What is the largest representablevalue?

What is the decimal equivalent of Ar when the exponent patternis 0111?
. What is the value, base 10, of the following pattern: 1100010010117
Wha is the pattern for the number 2 -7

D Q0O o

f. What is the resulting pattern from adding the following positive numbers:
011001101011 and 100010110110? Use rounding for the result.

Given the following floating point format
S exp man

where the “s” is a 1-bit sign, “exp” is the 4-bit exponent field (exponent
stored in exc&ss4 format), and "'man" is the fractional mantissa, base 8, 6
bitswide. The format isfor a normalized number system. Give the;
a largest fraction.
b. smallest fraction.

largest number.
. smallest number.

what number is represented by 001101010007

represent the number 5/16 in this format.
A Hamming code has been created with the following pattern:

Q =™ o O

7 6 5 4 3 2 1 Column Number
D3 D2 b1 P2 DO Pl RO Daa paity designaors

The code is constructed as discussed in the text. The parity sense is odd.
Given that information, answer the following:

01 0 0 1 1 0 PartA
1 0 0 0 0 1 1 PatB
1 1 0 0 1 1 1 PatC
01 0 1 0 0 O PatDh

a. Isthe representation correct? If not, is it correctable? To what?

Chap. 2: Information Representation

215

2.16

b. Isthe representation correct? If not, is it correctable? To what?
C. Is the representation correct? If not, is it correctable? To what?
d. What is the number represented?

€. Represent the number 6 in this code.

Consider the following floating point system:
a b c

a=sign of mantissa
b = 4-bit exponent in excess 8 code, radix =4
¢ = 7-bit normaized mantissa
a What number is represented by 0101110010007
b. What number is represented by 101111100000?
¢. Represent4 9in thiscode.
d. Represent 114 in this code.
An error detectinglcorrectingcode is constructed as described in the chapter,

with the following format (parity senseis odd parity; PA is parity acrossthe
entire word):

Cl-» 16 15 14 1B 12 11 0 9 8 7 6 5 4 3 2 1

Name—» PA D, Dy°Dy D, Dy Dy D, P, D D, D, P, D, P, P,

A

moaw

0 1

-0 & —
© = = o
—_ O -
O O =
_ O =
——
S - o o
[
R
o o oo
—_ - . -
S oD -

1 1
0 o0
0 1

(=]

217

218

219

220

For the first four numbers: if thereis a single error, identify the bit in error;
if there is a double error, indicate this result. For the final part, create the
correct codefor the decimal number 653.

Give the bit pattern for the following numbers in the 32-bit DEC, IEEE, and
IBM floating point formats: 12, 127, 2.5, 768.

For the number systemslisted in Table 2.6, find the minimum and maximum
positive nonzero representabl eval ues.

Construct a 16-hit SECDED code using the technique demonstrated in Sec-
tion 24. In this code, represent -512 and 183.

Design a combinational circuit that will correct single errors in a 7-bit Ham-
ming coded word. The inputsthus are (all H asserted):

D3y D Dy P, Dy Py Py

Odd parity is used. Outputs are H asserted also. Use any basic gates you
choose, including EXORs, but make sure you maintain polarized mnemon-
ics, incompatibility triangles, and so on. Explain any logic that is not intui-
tively obviousto the casual observer.

Chop. 2 Information Representation 67

2.7.

References and Readings
[Bar8S] Bartee, T. C.. Digital Computer Fundamentals, 6th edition. New York: McGraw
Hill Book Company, 1985.

[Boot84] Booth. T. L., Introduction to Computer Engineering: Hardware and Sofrware
Design. New York: John Wiley & Sons, 1984.

{Bree89] Breeding, K. |.. Digital Design Fundamentals. Englewood Cliffs, NJ Prentice
Hall. 1989.

[Cody84) Cody. W. I. et d.. "A Proposed Radix-and Word-Length-Independent Standard
for Floating-Point Arithmetic,”" IEEE Micro. Vol. 4, No. 4, August 1984, pp.
86—-100.

{Flet80] Fletcher. W. I.. An Engineering Approachto Digital Design. Englewood Cliffs,
NJ Prentice Hall. 1980.

[1EEES5) Institute of Electrical and Electronic Engineers. Binary Floating Point Arith-
metic. IEEE Standard 754-1985. New York: [EEE, 1985.

{Knwi73] Knuth. D. E., The Art of Computer Programming: Volume | . Fundamental Algo-
rithm. Reading. MA: Addiwn-Wesley. 1973.

{Knut69] Knuth, D. E. The Art of Computer Programming: Volume 2, Seminumerical
Alogrithms. Reading. MA: Addison-Wesley, 1969.

[Kuck78) Kucs. D. I.. The Sructureof Computers and Computations. New York: John
Wiley & Sons, 1978.

{Lang82] Langdon. G. G.. Jr., Computer Design. San Jose, CA: Computeach Press Inc,
1982.

[LiCo83] Lin. S., and D. . Costello, Ir.. Error Control Coding, Fundamentals and Appli-
cations. Englewood Cliffs, NJ Prentice Hall, 1983.

[Mano79] Mano, M. M., Digital Logic and Computer Design. Englewood Cliffs. NJ Pren-
tice Hall. 1979.

[Mano88] Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs. NJ
Prentice Hall. 1983.

[PeWe72] Peterson. W. Wedey. and E. |. Weldon, Jr., Error-Correcting Codes. 2nd Edi-
tion. Cambridge. MA: MIT Press, 1972.

[RaFu89] Reo. T. R N., and E. Fujiwara, Error-Control Coding for Computer Systems.
Englewood Cliffs, NJ: Prentice Hall. 1989.

[Schn8s] Schneider. G. M.. The Principles of Computer organization: New York: John
Wiley & Sons, 1985.

[wilk87] Wilkinson, B., Digital System Design. Englewood Cliffs, NJ Prentice Hall Inter-
national, 1987.

Chap. 2: Information Representation

